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Course Overview

1. Logics
- (weak) monadic second order logic Week 2,7
IX0eXAVn(n+1eXon¢X)
— Presburger arithmetic Week 3
Am.An.m+n=13Am=1+n
— linear time logic Week 8
Globally(request — Future(release))
2. Automata
— (non-)deterministic finite automata Week 1
- alternating finite automata Week 4
— tree automata Week 6
— Biichi automata Week 7
3. Games

- Parity games Week 5



Administratives

1. 1/3 of lecture devoted to exercise 25%

— approx. 2 hours of work between slots
— solutions presented in class
— participation in discussion counts towards final grade

2. two programming exercises 25%

— you are free to pick your programming language
— solutions presented in class

3. final exam 50%



Today'’s Lecture

Finite Word Automata Recap
1. regular languages and non-deterministic finite automata

2. closure properties, deterministic finite automata and Kleene's theorem
3. DFA equivalence and minimisation

4. decision procedures



Regular Languages and
Non-Deterministic Finite Automata



Finite Words

* alphabet X = {a,b,...} is finite set of letters

* (finite) word w = a4, ..., a, is finite sequence of lettersa; €
- |w| £ nis length of word

- w[i] £ a; denotes i-th letter in word w

€ is empty word of length 0

v - w (or simply vw) denotes concatenation of words vand w

E-W=W=W-¢€ u-(v-w)=(u-v) -w

— V" is the word v concatenated with itself n times
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* alphabet X = {a,b,...} is finite set of letters

* (finite) word w = a4, ..., a, is finite sequence of lettersa; €
- |w| £ nis length of word

- w[i] £ a; denotes i-th letter in word w

€ is empty word of length 0

v - w (or simply vw) denotes concatenation of words vand w

E-W=W=W-¢€ u-(v-w)=(u-v) -w
- V" is the word v concatenated with itself n times

» " denotes set of all words over alphabet =

* 3 23"\ {€} is set of non-empty words
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Languages

» alanguage L € X" is a set of words

- forinstance, @,{¢}, {aba}, {a,ab,abb,abbb,...} = {ab” | n € N}, 2" are all language

» new language definable from existing ones via set operations, e.g, if L, M € ="

union L U M, intersection L N M and difference L \ M are languages;

complement L 2 % \ L forms a language

concatenation L - M yields a language, defined by concatenating all words in L with those in
M:
L-Mz2{v-w]|veLandw e M}

- Kleene Star L™ yields a language, defined as
L*2 [ 1" wherel® 2 {e}and " =L 1"
neN

for instance
{ab,c}” ={e, ab,c, abab,abc,cab,cc,quad...}



Regular Languages
The class REG(X) of regular languages is the smallest class (i.e, set of) languages s.t.

1. @ € REG(X) and {a} € REG(X) for every a € ¥; and

2. ifL,M € REG(X) then L UM € REG(X),L - M € REG(Z) and L* € REG(X).
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Regular Languages

The class REG(X) of regular languages is the smallest class (i.e, set of) languages s.t.

1. @ € REG(X) and {a} € REG(X) for every a € ¥; and

2. ifL,M € REG(X) then L UM € REG(X),L - M € REG(Z) and L* € REG(X).

Examples
* {e} = 2" isregular
* {e} U (({a}u{b})" - {b}),0re U (aUb)*bforshort, is regular

* every finite language L = {w,, ..., w,} is regular

Note

* apart from those named in (2), REG(X) is closed under many more operations
(particularly: intersection, complement)

* to show such closure properties, it is convenient to have a suitable characterisation



Non-deterministic Finite Automata

A non-deterministic finite automata (NFA) A is a tuple (Q, X, g/, 6, F) consisting of

* afinite set of states Q

*

an alphabet X

*

an initial state g, € Q

a transition functiond : Q X X — 2?

*

*

aset of final states F ¢ Q
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Non-deterministic Finite Automata

A non-deterministic finite automata (NFA) A is a tuple (Q, X, g/, 6, F) consisting of
* afinite set of states Q
* an alphabet X
* aninitial state g, € Q
* atransition functiond : Q X X — 2?

* asetof final states Fc Q

Represented often as graph:

a b 0 a b
) b 11 {12} {2}
& 2| @ {3}
D080 {::

Notation: p = qifg e s(p,a)
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Language Recognized by NFA

Consider NFA A = (Q,%, g, 6,F)
* if gg is initial state g, then g, = q¢ 2, g1 22 gniscalledrunonw =a;...a,
* runisacceptingif g, € Fis final
* language L(.A) recognized by A consists of all words that have accepting run
L(A) & {w | 6" (q,w) N F # @}

where extended transition function 6 : Q x £* — 29 defined such that

as an

ges (poas...an)iffp=go > g — ... >qy=q

Example

‘ = @.a L(A) = {w € =¥ | wstarts and ends with a}



Closure Properties, Deterministic Finite
Automata and Kleene's Theorem



Closure Properties
Alanguage L is recognizable if there isan NFA A with L(A) = L

Theorem (Closure Properties of NFAs)

For recognizable L, M, the following are recognizable:
1. unionLuU M

concatenation L - M

Kleene’s star L™

intersection LN M

v

complement L
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Closure Properties
Alanguage L is recognizable if there isan NFA A with L(A) = L

Theorem (Closure Properties of NFAs)
For recognizable L, M, the following are recognizable:
1. unionLuU M
2. concatenationL - M
3. Kleene's star L*
4. intersection LN M
5. complement L

Proof Outline.

* (1)—(4) follow from a construction (see exercise, next slide)
* (5) translate to deterministic automaton (why can’t we simply invert final states?)

Note
* the class of recognized languages forms a Boolean Algebra



Closure Properties

Kleene's Star

Lemma

If L is recognizable, then sois L.

Proof Outline.
For NFA A = (Q,%, g, 6, F) recognizing L, define A* 2 (Qw {g'}.=.¢',6', FU {q'}) where

6(q’a) £ 5(q,2) 5'(q.a) £ {M Deohe) oEk

6(g,a) ifge Q\F.
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Theorem

NFAs recognize precisely the regular languages REG(X).

Proof Outline.
< By induction on REG(X), using closure properties. (how, why?)

= FixNFA A =(Q,2,q,,6,F).

— For p € Q, start with equations

L(P) = Up;q a- L(q) U {{E} if p final;

@  otherwise.
— (intuition?)



Characterisation of REG

Theorem

NFAs recognize precisely the regular languages REG(X).

Proof Outline.
< By induction on REG(X), using closure properties. (how, why?)
= FixNFAA=(Q,%,q,4,F).
— For p € Q, start with equations
B {e} ifpfinal;
Lp) = Upi’q a-L@u {0 otherwise.

— thus L(p) collects wordsw = a;...a, st.p = qq =, a1 oo 2 qn € F



Characterisation of REG

Theorem

NFAs recognize precisely the regular languages REG(X).

Proof Outline.
< By induction on REG(X), using closure properties. (how, why?)
= FixNFAA=(Q,%,q,4,F).
— For p € Q, start with equations
B {e} ifpfinal;
Lp) = Upi’q a-L@u {0 otherwise.

— thus L(p) collects wordsw = a;...a, st.p = qq =, a1 oo 2 qn € F
— pick p € Q and apply Arden’s Equality

L(p)=M-L(p)UN = L(p)=M"-N

M



Characterisation of REG

Theorem

NFAs recognize precisely the regular languages REG(X).

Proof Outline.
< By induction on REG(X), using closure properties. (how, why?)
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Characterisation of REG

Theorem

NFAs recognize precisely the regular languages REG(X).

Proof Outline.
< By induction on REG(X), using closure properties. (how, why?)
= FixNFA A = (Q.%,q,, 6, F).

- For p € Q, start with equations

L(p) =U,=, a-L(q) U{

thus L(p) collects wordsw = a; ...a, st. p = qg =, a1 oo 2 qn € F
pick p € Q and apply Arden’s Equality

{e} ifpfinal;
@  otherwise.

L(p)=M-L(p)UN = L(p)=M"-N

simplify; substitute and repeat until (1) not applicable
L(qg)) = L(A) eventually in REG(X)

M
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= L(1) =a"al(?) L(2) = (a*bb*a)*a"

= L[(1) =a"a(a*bb*a)*a”

= L[(1) =aa"(bb*aa®)*a"

= L(1)=a"(b"a")"
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Deterministic Finite Automata

A deterministic finite automata (DFA) A is a NFA where each state has precisely one
successor state:

0:QxX-0Q

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Proof Outline.
< Every DFA is an NFA.

= Given NFA A = (Q, %, g, 6, F) recognizing L, define DFA Ad(ZQ, >, {q,}, 64, Fq) s.t.
- 5d({Q17 DRI Qn}7a) 2 5(‘3]173) U---u 5(ana)
- F42{ScQ|FnS+a}ie{q.... gn} finalin Ay if one of the g; finalin A

Then Ay recognizes L:

runinnew Ayonwordw = allrunsonwin A



Deterministic Finite Automata

A deterministic finite automata (DFA) A is a NFA where each state has precisely one

successor state:
§:QXT > Q

Theorem (Determinisation)
A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Example

o
)
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Deterministic Finite Automata

A deterministic finite automata (DFA) A is a NFA where each state has precisely one
successor state:

6:QxX—-Q
Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Lemma

If L is regular, then so its complement L = =¥ \ L.

Proof Outline.

ideas?



Deterministic Finite Automata

A deterministic finite automata (DFA) A is a NFA where each state has precisely one
successor state:

§:0xX-0Q

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Lemma

If L is regular, then so its complement L = =¥ \ L.

Proof Outline.
* Since L is regular, thereisa DFA Awith L(A) = L

» flipping the set of final states in A results in DFA A with L(A) = L



Kleene’s Theorem

Theorem

The following are equivalent:
1. The class of regular languages REG(X)
2. The class of languages recognized by NFAs over

3. The class of languages recognized by DFAs over



An Unpleasant Theorem

Theorem

For every number n € N there exists an NFA A with n + 1states such that every equivalent
DFA has at least 2" states.

= NFAs can be exponentially more succinct than DFAs
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Proof Outline. 2
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- since there are 2" words of length n, there must be two such distinct words u, v € X" ending
up in the same state, i.e. 6" (q;,u) = 6™ (g, v)
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Theorem

For every number n € N there exists an NFA A with n + 1states such that every equivalent
DFA has at least 2" states.

Proof Outline. 2

* consider the NFA 2,b .

» for a proof by contradiction, suppose equivalent DFA A has strictly less than 2" states:

- since there are 2" words of length n, there must be two such distinct words u, v € X" ending
up in the same state, i.e. 6" (q;,u) = 6™ (g, v)

- suppose they differ at position j, e.g,, u[i] = aand v[i] = b, hence

ua-a €L(A) but va-a ¢L(A)
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An Unpleasant Theorem

Theorem

For every number n € N there exists an NFA A with n + 1states such that every equivalent
DFA has at least 2" states.

Proof Outline. 2

* consider the NFA 2,b .

» for a proof by contradiction, suppose equivalent DFA A has strictly less than 2" states:
- since there are 2" words of length n, there must be two such distinct words u, v € X" ending
up in the same state, i.e. 6" (q;,u) = 6™ (g, v)
- suppose they differ at position j, e.g,, u[i] = aand v[i] = b, hence

ua-a €L(A) but va-a ¢L(A)
[ — ——
i—1times i—1times
— the DFA now either accepts or rejects both extended words; contradicting that A is
equivalent to the NFA
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DFA Equivalence and Minimisation

Two NFAs (DFAs) A; and A; are equivalent if L(A;) = L(A).

Theorem
For every DFA there exists a unique (up to renaming of states) minimal DFA.

(=) M 5O
b
b
a b a
=X

* letL(p, A) 2 {w | 6" (p,w) € F}, hence in particular, L(A) = L(g,, A)

Example

* two states p, g are equivalent in A if accepting runs coincide:
P=4aq = L(p, A) = L(q,.A)



DFA Equivalence and Minimisation

Two NFAs (DFAs) A; and A; are equivalent if L(A;) = L(A).

Theorem
For every DFA there exists a unique (up to renaming of states) minimal DFA.

050 m 5O
b
b
a b a
=X

* letL(p, A) 2 {w | 6" (p,w) € F}, hence in particular, L(A) = L(g,, A)

Example

* two states p, g are equivalent in A if accepting runs coincide:
P=4aq = L(p, A) = L(q,.A)

* merging equivalent states (e.g. 2 = 4 4) does not change L(.A); results in minimal DFA



Table Filling Algorithm

Definition (Computing Distinguished States)

1. initially, we distinguish pairs D = {(p,q) | g € Fand g ¢ F}

2. As long as new pairs are added, repeat:
D:=Du{(p.q) | Ja € Z.(6(p,2),5(q,2)) € D}

3. ReturnD
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*

let A =(Q, %, q), 6, F) without non-reachable states (otherwise, remove them)

* note =4 is an equivalence relation
* let [g] denote the equivalence classof g € Q
* define the quotient automata A= = (Q=,%,[q,], 6=, F=) where:

- Q=={[q]l g€ Q}
- 0=([gl.a) £[6(g,a)]foralla e =

- F-={[qllqeF}



Minimisation

* let A =(Q,%,q),d,F)without non-reachable states (otherwise, remove them)
* note =4 is an equivalence relation

* let [q] denote the equivalence class of g € Q

* define the quotient automata A= = (Q=,%,[q,], 6=, F=) where:

- Q=={[q]l g€ Q}
- 0=([gl.a) £[6(g,a)]foralla e =

- F-2{[qllq€eF}

Theorem
The quotient automata A= is the minimal and unique DFA equivalent to A



Discussion

How computationally difficultisit to ...
1. check L(A) = @ for given A

2. checkw € L(A) forgivenw € A
3. check L(A) = 2" forgivenw € A
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Decision Problems

* A decision problem presents itself as a question to which must be answered yes or no.

— Isthe list sorted? Is the automaton minimal? etc.
* A decision problem depends on a given input, which has a certain size n

— the list of length n, the automaton with n states, etc.
* Often, a problem admits several algorithmic solutions, whose effectiveness varies.
* For some problems, no algorithmic solution exists

— halting problem, Hilberts 10th problem, etc.

* To compare them, from a theoretical point of view, we usually assess their worst case
complexity wrt. some notion of cost

— e.g. time or space
* The complexity is generally described by a function in the input size n.

* Usually, we are interested in an asymptotic analysis.
- 0(n), 0(n*),0(2"), .
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Complexity Classes

* The complexity of a problem can be thought of as the complexity of the best algorithm
that solves it.

* this allows us to classify problems based on their inherent difficulty

— polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time
(EXPTIME), etc.
- polynomial space (PSPACE), etc.

* complexity theory is concerned with the classification and relationships among classes

PTIME € NP < PSPACE ¢ EXPTIME

— we know PTIME ¢ EXPTIME, but we do not know the status of individual inclusions

?
- solving PTIME & NP is worth 1.000.0005: a strict inclusion would separate, what we assume
to be, feasible from unfeasible problems

- nowadays, some pretty good algorithms exists that can tackle unfeasible problems on
average cases (e.g. SAT solvers)
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The Word Problem

* Given: An NFA A with n states and word w of length |w|
* Question: w € L(A)?

Theorem
The word problem for NFAs is in PTIME.

Proof Outline.
* the following depth-first search solves the problem in exponential time
def explore(q, w)
if w is € : return g € F
for p in §(q, wl0])

if explore(p, w[l:]) : return True
return False
def member(w) : return explore(q,, w)

* redundant calls can be eliminated via memoisation (i.e,, tabulate calls explore(g, w))

* table bounded in size O(n - |w|2)
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The Emptiness Problem

* Given: An NFA A
* Question: L(A) = @?

Theorem

The emptiness problem for NFAs is in PTIME.

Proof Outline.
* essentially a graph reachability problem (why?)
* solvable by depth-first or breath-first search in time O(nz)
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The Universal Language Problem

* Given: An NFA A
* Question: L(A) = £*?

Theorem

The universal language problem for NFAs is in PSPACE < EXPTIME.

Proof Outline.

x we check L(A) = =¥ in PSPACE for A = (Q,%,q,,6, F)

* as we saw, this amount to translating A into an equivalent DFA 3 and checking B = @
* constructing B on-the-fly, this can be done non-deterministically in polynomial space

* by Savich's theorem, any such algorithm can be turned into a deterministic one in
PSPACE



Further Consequences

The Inclusion Problem The Equivalence Problem
* Given: two NFA A and BB * Given: two NFA Aand B
* Question: L(A) € L(B)? * Question: L(A) = L(B)?
Theorem

Both problem are PSPACE complete.

* model checking, i.e, checking an implementation against high-level specifications,
usually expressed as language inclusion.
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NFA  PTIME PTIME PSPACE PSPACE PSPACE

* Michael Rabin and Dana Scott received their Turing Award for their work “Finite
Automat and Their Decision Problems”

Applications
* finite state machines (and its extensions) used in many disciplines

* efficient string search (Knuth-Morris-Pratt algorithm), e.g,, in grep, sed, awk, Java, C#...

* Antivirus software

*

DNA/protein analysis

effectively satisiability/validity decision procedures for certain logics (see next lecture)

*



Programming Project (l)

Program a function match(w, e) that matches a word w over alphabet X = {a, ..., z}
against a regular expression e

» regular expressions should encompass letters, union e | f, concatenation e.fand e*

— bonus: complement, intersection, etc.

* test your implementation against Exercise 1
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Programming Project (l)

Program a function match(w, e) that matches a word w over alphabet X = {a, ..., z}
against a regular expression e

» regular expressions should encompass letters, union e | f, concatenation e.fand e*

— bonus: complement, intersection, etc.

*

test your implementation against Exercise 1

»*

concrete method and programming language up to you

*

parser and stand-alone executable nice to have, but not a must

*

send solutions including instructions tomartin.avanzini@inria.fr

»*

deadline Friday 23/04 08:00, exercise will be discussed in lecture 4


martin.avanzini@inria.fr

