Infinite Regular Languages Exercise

M1 Master Info $-\ 2021$

Exercise 1

Show that $L=\{w\in \Sigma^\omega\mid |w|_{\mathtt{a}}\neq\infty\}$ is not recognised by any DBA.

Hint: For a proof by contradiction, suppose DBA \mathcal{A} recognises L and consider runs on the family of words $w_0 = ab^{\omega}$, $w_1 = ab^{i_0}ab^{\omega}$, $w_2 = ab^{i_0}ab^{i_1}ab^{\omega}$, ..., for a carefully chosen *i*'s. Reason then that $w = ab^{i_0}ab^{i_1}ab^{i_2}a\cdots \in L(\mathcal{A})$.

Exercise 2

Show that for every NFA \mathcal{A} with $\epsilon \notin L(\mathcal{A})$, there exists a NBA \mathcal{B} s.t. $L(\mathcal{B}) = L(\mathcal{A})^{\omega}$.

Hint: The NFA construction for $L(A)^*$ does not work, see the following counter example. To overcome this introduce a fresh, single final state in the construction.

 $L(\mathcal{A}) = ab^* \qquad \qquad L(\mathcal{B}) = a(a+b)^{\omega} \neq L(\mathcal{A})^{\omega}$