Accessibility Games and Tree Automata Exercises

M1 Master Info – 2021

Exercise 1

Consider the BUTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where

- 1. $Q = \{NOM, DET, ADJ, VERB, GN, GV\};$
- 2. the following are letters of arity 0 in Σ : le, la, petit, chat, souris, mange, nargue; furthermore, Σ contains one symbol + of arity 2 and a symbol ++ of arity 3;
- 3. the transition function delta is given such that:
 - $\delta_{chat} = \{\text{NOM}\}, \, \delta_{souris} = \{\text{NOM}\}, \, \delta_{le} = \{\text{DET}\}, \, \text{etc.};$
 - δ_+ (DET,NOM) = {GN};
 - δ_{++} (DET,ADJ,NOM) = {GN}, δ_{++} (GN,VERB,GN) = {GV}.

4. $F = \{GV\}$

Give an example of a tree recognised by this BUTA. Why are some "leafsentences" not correct in French? Can you repair the automaton? Can the so obtained language be recognised by a deterministic TDTA?

Exercise 2

Fix $\Sigma = \{0, 1, +, \times\}$ where 0, 1 are constants and $+, \times$ are binary. Note that trees over this alphabet form arithmetical expressions. Which of the following languages are recognised by a BUTA? Which are recognised by a DTDTA?

- 1. The set of L_1 expressions that evaluate to an even integer.
- 2. The set L_2 of expressions parenthesised only on the left: E.g., $0 \in L_2$, $(1+0) \times 1 \in L_2$ but $(1+0) \times (1+1) \in L_2$.
- 3. The set L_3 of balanced binary trees.

Exercise 3

Show that we can associate an accessibility game with a TDTA, so that the player \blacklozenge has a winning strategy iff the language of this TDTA is not empty.

Exercise 4

Show that the set of winning strategies for player \blacklozenge of a *finite* accessibility game (seen as trees) are recognised by a TDTA.