On Sharing, Memoization, and Polynomial Time

Martin Avanzini¹ (Joint work with Ugo Dal Lago¹)

¹Università di Bologna & INRIA, Sophia Antipolis

STACS, March 5, 2015

Implicit Computational Complexity

Characterizing Complexity Classes

Implicit Computational Complexity

Characterizing Complexity Classes

Implicit Computational Complexity

Characterizing Complexity Classes

General Simultaneous Recursion (GSR)

- let $\mathbb A$ be a term algebra formed from constructors $\{\mathbf c_1,\ldots,\mathbf c_k\}$
- class of functions definable by general simultaneous recursion (GSR) is least class of function $f : \mathbb{A} \times \cdots \times \mathbb{A} \to \mathbb{A}$:
 - 1. contains projection and constructor functions
 - 2. closed under function composition
 - 3. closed under general simultaneous recursion (GSR)
- functions f_1, \ldots, f_n are defined by **GSR** with equations

$$f_j(\mathbf{c}_i(x_1,\ldots,x_l),\vec{y}) = g_{i,j}(x_1,\ldots,x_l,\underbrace{\vec{f}(x_1,\vec{y}),\ldots,\vec{f}(x_l,\vec{y})}_{n \cdot l \text{ recursive calls}},\vec{y})$$

where $\vec{f}(x_i, \vec{y}) = f_1(x_i, \vec{y}), \dots, f_n(x_i, \vec{y})$

General Ramified Simultaneous Recursion (GRSR)

ramification

[Leivant, 93; Bellantoni & Cook, 92]

- take copies $\mathbb{A}_0, \mathbb{A}_1, \mathbb{A}_2, \dots$ of algebra \mathbb{A}
- ramification can then be expressed as a typing system

$$\frac{\mathrm{g}_{i,j} \triangleright \mathbb{A}_p^l \times \mathbb{A}_q^{n \cdot l} \times \mathbf{A} \to \mathbb{A}_q \qquad p > q}{\mathrm{f}_j \triangleright \mathbb{A}_p \times \mathbf{A} \to \mathbb{A}_q} \quad (\texttt{SimRec})$$

• functions f_1, \ldots, f_n are defined by GSR with equations

$$f_j(\mathbf{c}_i(x_1,\ldots,x_l),\vec{y}) = g_{i,j}(x_1,\ldots,x_l,\underbrace{\vec{f}(x_1,\vec{y}),\ldots,\vec{f}(x_l,\vec{y})}_{n \cdot l \text{ recursive calls}},\vec{y})$$

where $\vec{f}(x_i, \vec{y}) = f_1(x_i, \vec{y}), \dots, f_n(x_i, \vec{y})$

GRSR on Trees

- we can define functions $\mathtt{rabbits}_i: \ \mathbb{N}_{i+1} \to \mathbb{T}_i \ \mathsf{by}$

$$\begin{split} \texttt{rabbits}_i(\mathbf{0}) &= \mathbf{B}_l \qquad \texttt{b}_i(\mathbf{0}) = \mathbf{B}_l \qquad \texttt{m}_i(\mathbf{0}) = \mathbf{M}_l \\ \texttt{rabbits}_i(\mathbf{S}(n)) &= \texttt{b}_i(n) \quad \texttt{b}_i(\mathbf{S}(n)) = \mathbf{B}(\texttt{m}_i(n)) \quad \texttt{m}_i(\mathbf{S}(n)) = \mathbf{M}(\texttt{m}_i(n),\texttt{b}_i(n)) \end{split}$$

GRSR on Trees

- we can define functions $\texttt{rabbits}_i: \ \mathbb{N}_{i+1} \to \mathbb{T}_i \ \mathsf{by}$

$$\begin{split} \texttt{rabbits}_i(\mathbf{0}) &= \mathbf{B}_l \qquad \texttt{b}_i(\mathbf{0}) = \mathbf{B}_l \qquad \texttt{m}_i(\mathbf{0}) = \mathbf{M}_l \\ \texttt{rabbits}_i(\mathbf{S}(n)) &= \texttt{b}_i(n) \quad \texttt{b}_i(\mathbf{S}(n)) = \mathbf{B}(\texttt{m}_i(n)) \quad \texttt{m}_i(\mathbf{S}(n)) = \mathbf{M}(\texttt{m}_i(n),\texttt{b}_i(n)) \end{split}$$

- data tiering prevents us from defining $\#\texttt{leafs}: \mathbb{T}_j \to \mathbb{N}_i$

 $\begin{aligned} \#\texttt{leafs}(\mathbf{B}_l) &= \#\texttt{leafs}(\mathbf{M}_l) = \mathbf{S}(\mathbf{0}) \\ \#\texttt{leafs}(\mathbf{B}(t)) &= \#\texttt{leafs}(t) \\ \#\texttt{leafs}(\mathbf{M}(l,r)) &= \texttt{add}_\texttt{i}(\#\texttt{leafs}(l), \#\texttt{leafs}(r)) \end{aligned}$

and thus from defining the exponential growing function

 $fib(n) = #leafs(rabbits_i(n))$

Theorem (Leivant, 93)

The following classes of functions coincide:

1. function over strings definiable by GRSR

constructor arity ≤ 1

2. class FPTIME of polytime computable functions

Theorem (Leivant, 93)

The following classes of functions coincide:

- 1. function over strings definiable by GRSR $constructor arity \leq 1$
- 2. class FPTIME of polytime computable functions

- expressive power of GRSR on trees unknown since ≥ 20 years
- does GRSR lead outside FPTIME in general?

The Need for Sharing

The Need for Sharing

The Need for Sharing

The Need for Memoisation

The Need for Memoisation

The Need for Memoisation

Key Observations

Let ${\tt f}$ be defined by GRSR.

Suppose $f(v_1, \ldots, v_k)$ evaluates to u.

Then we can bind by a **polynomial** in the (shared) size of arguments v_1, \ldots, v_k :

1. the shared size of result *u*

values can always be represented as a compact DAG

2. number of *distinct* function calls in evaluation of $f(v_1, ..., v_k)$

reduction with *memoization* feasible

Definition

shared size of value v := number of *distinct* subterms in value v

Memoization & Sharing, Reconsiled

Call-by-value Memoizing Semantics

- configuration is tuple (*e*, *C*)
 - e is expression
 - C is cache, mapping calls $f(\vec{v})$ to results u
- semantics are given as statements

 $(\mathtt{f}(\vec{\textit{v}}),\textit{C})\Downarrow_{\textit{m}}(\textit{u},\textit{D})$

Call-by-value Memoizing Semantics

- configuration is tuple (*e*, *C*)
 - e is expression
 - C is cache, mapping calls $f(\vec{v})$ to results u
- semantics are given as statements

 $(\mathbf{f}(\vec{\mathbf{v}}), \mathbf{C}) \Downarrow_{\mathbf{m}} (\mathbf{u}, \mathbf{D})$

Example

$$\frac{(\texttt{f}(\vec{\textit{v}}),\textit{u}) \in \textit{C}}{(\texttt{f}(\vec{\textit{v}}),\textit{C}) \Downarrow_{0} (\textit{u},\textit{C})} \ (\texttt{Read})$$

 $\frac{(\mathtt{f}(\vec{v}),u') \not\in \mathtt{C} \quad \mathtt{f}(\vec{p}) = r \in \mathcal{E} \quad \mathtt{f}(\vec{p})\sigma = \mathtt{f}(\vec{v}) \quad (r\sigma,\mathtt{C}) \Downarrow_{\mathtt{m}} (u,\mathtt{D})}{(\mathtt{f}(\vec{v}),\mathtt{C}) \Downarrow_{\mathtt{m+1}} (u,\mathtt{D} \cup \{(\mathtt{f}(\vec{v}),u)\})} \ (\texttt{Update})$

Call-by-value Memoizing Semantics

- configuration is tuple (e, C)
 - e is expression
 - C is cache, mapping calls $f(\vec{v})$ to results u
- semantics are given as statements

 $(\mathbf{f}(\vec{\mathbf{v}}), \mathbf{C}) \Downarrow_{\mathbf{m}} (\mathbf{u}, \mathbf{D})$

Example

$$\frac{(\texttt{f}(\vec{\textit{v}}),\textit{u}) \in \textit{C}}{(\texttt{f}(\vec{\textit{v}}),\textit{C}) \Downarrow_{0} (\textit{u},\textit{C})} \ (\texttt{Read})$$

 $\frac{(\mathtt{f}(\vec{v}), u') \not\in \mathtt{C} \quad \mathtt{f}(\vec{p}) = r \in \mathcal{E} \quad \mathtt{f}(\vec{p})\sigma = \mathtt{f}(\vec{v}) \quad (r\sigma, \mathtt{C}) \Downarrow_{\mathtt{m}} (u, \mathtt{D})}{(\mathtt{f}(\vec{v}), \mathtt{C}) \Downarrow_{\mathtt{m+1}} (u, \mathtt{D} \cup \{(\mathtt{f}(\vec{v}), u)\})} \quad (\texttt{Update})$

 gives rist to a cost model, where re-occurring calls are free memoized cost

Integrating Sharing

crucial, one can now define an implementation such that:

- 1. each reduction step is atomic
 - no copying of arbitrary large data
 - data is stored on a heap H
- 2. overheads are "small"

Integrating Sharing

crucial, one can now define an implementation such that:

- 1. each reduction step is atomic
 - no copying of arbitrary large data
 - data is stored on a heap H
- 2. overheads are "small"

implementation is given as reduction relation $\rightarrow_{\mathtt{Rrsm}}$ on configurations

(**e**, **H**, **C**)

- H is heap
- e is expression
- C is cache

contain references to heap

Polynomial Invariance of Memoized Cost Model

Theorem

 $(f(\vec{v}), \varnothing) \Downarrow_m (u, C)$ if and only if $(f(\vec{v}), \varnothing, \varnothing) \rightarrow_{\mathtt{Rrsm}}^n (\ell, H, C')$ where

- result **u** is stored in final heap **H** at location ℓ
- $\mathbf{n} \leqslant \delta \cdot \mathbf{m} + \operatorname{size}(\mathbf{\vec{v}})$ for $\delta \in \mathbb{N}$
- size $((\ell, H, C)) \leqslant \Delta \cdot m + size(\vec{v})$ for $\Delta \in \mathbb{N}$

Polynomial Invariance of Memoized Cost Model

Theorem

 $(\mathtt{f}(\vec{v}), \varnothing) \Downarrow_{m} (u, C) \text{ if and only if } (\mathtt{f}(\vec{v}), \varnothing, \varnothing) \rightarrow_{\mathtt{Rrsm}}^{n} (\ell, H, C') \text{ where }$

- result **u** is stored in final heap **H** at location ℓ
- $\mathbf{n} \leqslant \delta \cdot \mathbf{m} + \operatorname{size}(\mathbf{\vec{v}})$ for $\delta \in \mathbb{N}$
- $size((\ell, H, C)) \leq \Delta \cdot m + size(\vec{v})$ for $\Delta \in \mathbb{N}$

Corollary (Polynomial Invariance of Memoized Cost Model)

There exists a polynomial $p_{f} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that for $(\mathbf{f}(\vec{v}), \varnothing) \Downarrow_{m} (u, C)$, the value u represented as DAG is computable from arguments \vec{v} in time $p_{f}(\text{size}(\vec{v}), m)$.

GRSR is Sound for Polynomial Time

Theorem

Let $f : \mathbf{A} \to \mathbb{A}_m$ be a function defined by GRSR.

For all inputs \vec{v} , a DAG representation of $f(\vec{v})$ is computable in time polynomial in the sizes of the inputs.

GRSR is Sound for Polynomial Time

Theorem

Let $f : \mathbf{A} \to \mathbb{A}_m$ be a function defined by GRSR.

For all inputs \vec{v} , a DAG representation of $f(\vec{v})$ is computable in time polynomial in the sizes of the inputs.

Outline.

• by observation on number of distinct function calls during evaluation

$$(\mathbf{f}(\vec{\mathbf{v}}), \varnothing) \Downarrow_{\mathbf{m}} (\mathbf{u}, \mathbf{C}) \implies \mathbf{m} \leqslant p_{\mathbf{f}}(\operatorname{size}(\vec{\mathbf{v}}))$$

for a polynomial $p_{\rm f}$

GRSR is Sound for Polynomial Time

Theorem

Let $f : \mathbf{A} \to \mathbb{A}_m$ be a function defined by GRSR.

For all inputs \vec{v} , a DAG representation of $f(\vec{v})$ is computable in time polynomial in the sizes of the inputs.

Outline.

• by observation on number of distinct function calls during evaluation

$$(\mathtt{f}(\vec{v}), \varnothing) \Downarrow_{m} (u, C) \implies m \leqslant p_{\mathtt{f}}(\mathsf{size}(\vec{v}))$$

for a polynomial $p_{\rm f}$

• the theorem then follows from polynomial invariance of memoized cost model

Conclusion

- memoized cost gives rise to notion of memoized runtime complexity, this cost model is polynomial invariant if we allow sharing
- 2. general simultaneous ramified recursion is sound for polynomial time
 - extensions, such as parameter substitution, lead immediately outside polynomial time

Thanks!

Cost Annotated Memoizing Semantics

$$\frac{(\texttt{f}(\vec{\textit{v}}),\textit{\textit{v}}) \in \textit{\textit{C}}}{(\texttt{f}(\vec{\textit{v}}),\textit{\textit{C}}) \Downarrow (\textit{\textit{v}},\textit{\textit{C}})} \; (\texttt{Read})$$

 $\frac{(\mathtt{f}(\vec{v}),u') \not\in \mathtt{C} \quad \mathtt{f}(\vec{p}) = r \in \mathcal{E} \quad \mathtt{f}(\vec{p})\sigma = \mathtt{f}(\vec{v}) \quad (r\sigma,\mathtt{C}) \Downarrow \quad (u,D)}{(\mathtt{f}(\vec{v}),\mathtt{C}) \Downarrow \quad (u,D \cup \{(\mathtt{f}(\vec{v}),u)\})} \text{ (Update)}$

$$\begin{array}{c|c} \mathbf{f} \in \mathcal{F} & (\boldsymbol{t}_i, \boldsymbol{C}_{i-1}) \Downarrow & (\boldsymbol{v}_i, \boldsymbol{C}_i) & (\mathbf{f}(\vec{\boldsymbol{v}}), \boldsymbol{C}_k) \Downarrow & (\boldsymbol{v}, \boldsymbol{C}_{k+1}) \\ \hline & (\mathbf{f}(\boldsymbol{t}_1, \dots, \boldsymbol{t}_k), \boldsymbol{C}_0) \Downarrow & (\boldsymbol{v}, \boldsymbol{C}_{k+1}) \end{array} (\text{Split}) \end{array}$$

 $\begin{array}{c|c} \mathbf{c} \in \mathcal{C} & (t_i, \mathcal{C}_{i-1}) \Downarrow & (\mathbf{v}_i, \mathcal{C}_i) \\ \hline (\mathbf{c}(t_1, \dots, t_k), \mathcal{C}_0) \Downarrow & (\mathbf{c}(\vec{\mathbf{v}}), \mathcal{C}_k) \end{array} (\texttt{Con}) \end{array}$

Cost Annotated Memoizing Semantics

$$\frac{(\texttt{f}(\vec{\textit{v}}),\textit{\textit{v}}) \in \textit{C}}{(\texttt{f}(\vec{\textit{v}}),\textit{C}) \Downarrow_{0} (\textit{\textit{v}},\textit{C})} \; (\texttt{Read})$$

 $\frac{(\mathtt{f}(\vec{v}), u') \notin \mathtt{C} \quad \mathtt{f}(\vec{p}) = r \in \mathcal{E} \quad \mathtt{f}(\vec{p})\sigma = \mathtt{f}(\vec{v}) \quad (r\sigma, \mathtt{C}) \Downarrow_m (u, \mathtt{D})}{(\mathtt{f}(\vec{v}), \mathtt{C}) \Downarrow_{m+1} (u, \mathtt{D} \cup \{(\mathtt{f}(\vec{v}), u)\})} \quad (\texttt{Update})$

$$\underbrace{ \begin{array}{c} \underbrace{\mathbf{f} \in \mathcal{F} \quad (\mathbf{t}_i, \mathbf{C}_{i-1}) \Downarrow_{n_i} (\mathbf{v}_i, \mathbf{C}_i) \quad (\mathbf{f}(\vec{\mathbf{v}}), \mathbf{C}_k) \Downarrow_n (\mathbf{v}, \mathbf{C}_{k+1}) \\ (\mathbf{f}(\mathbf{t}_1, \dots, \mathbf{t}_k), \mathbf{C}_0) \Downarrow_{n + \sum_{i=1}^k n_i} (\mathbf{v}, \mathbf{C}_{k+1}) \end{array}}_{(\mathsf{Split})$$

 $\frac{\mathbf{c} \in \mathcal{C} \quad (t_i, C_{i-1}) \Downarrow_{n_i} (\mathbf{v}_i, C_i)}{(\mathbf{c}(t_1, \dots, t_k), C_0) \Downarrow_{\sum_{i=1}^k n_i} (\mathbf{c}(\vec{\mathbf{v}}), C_k)}$ (Con)

Small Step Semantics

Memoization and Sharing Reconsiled

$$\frac{(\texttt{f}(\vec{\ell}),\ell) \in \textit{C}}{(\textit{E}[\texttt{f}(\vec{\ell})],\textit{H},\textit{C}) \rightarrow_{\texttt{r}} (\textit{E}[\ell],\textit{H},\textit{C})} \; (\texttt{read})$$

 $\begin{array}{ccc} (\mathtt{f}(\vec{\ell}),\ell) \not\in \mathtt{C} & \mathtt{f}(\vec{p}) = \mathtt{r} \in \mathcal{E} \\ \text{``}\mathtt{f}(\vec{\ell}) \text{ matches } \mathtt{f}(\vec{p}) \text{ with } \sigma: \mathcal{V} \to \mathtt{Loc}_{\mathtt{H}}" \\ \hline (\mathtt{E}[\mathtt{f}(\vec{\ell})], \mathtt{H}, \mathtt{C}) \to_{\mathtt{R}} (\mathtt{E}[\langle \mathtt{f}(\vec{\ell}), \mathtt{r}\sigma \rangle], \mathtt{H}, \mathtt{C}) \end{array} (\texttt{rule})$

 $\frac{1}{(\textit{E}[\langle \texttt{f}(\vec{\ell}), \ell \rangle], \textit{H}, \textit{C}) \rightarrow_{\texttt{s}} (\textit{E}[\ell], \textit{H}, \textit{C} \cup \{(\texttt{f}(\vec{\ell}), \ell)\})} \text{ (store)}$

 $\begin{array}{l} \hline (H',\ell) = \mathsf{merge}(H,\mathbf{c}(\vec{\ell})) \\ \hline (E[\mathbf{c}(\vec{\ell})],H,C) \rightarrow_{\mathtt{m}} (E[\ell],H',C) \end{array} (\texttt{merge}) \end{array}$