
On Sharing, Memoization, and Polynomial Time

Martin Avanzini1

(Joint work with Ugo Dal Lago1)

1Università di Bologna & INRIA, Sophia Antipolis

STACS, March 5, 2015



;Implicit Computational Complexity
Characterizing Complexity Classes

L C
J·K



;Implicit Computational Complexity
Characterizing Complexity Classes

L C
P



;Implicit Computational Complexity
Characterizing Complexity Classes

L C
PS



;General Simultaneous Recursion (GSR)

• let A be a term algebra formed from constructors {c1, . . . , ck}

• class of functions definable by general simultaneous recursion
(GSR) is least class of function f : A× · · · × A → A:
1. contains projection and constructor functions

2. closed under function composition

3. closed under general simultaneous recursion (GSR)

• functions f1, . . . , fn are defined by GSR with equations

fj(ci(x1, . . . , xl), y⃗) = gi,j(x1, . . . , xl, f⃗(x1, y⃗), . . . , f⃗(xl, y⃗)︸ ︷︷ ︸
n · l recursive calls

, y⃗)

where f⃗(xi, y⃗) = f1(xi, y⃗), . . . , fn(xi, y⃗)

ramification [Leivant, 93; Bellantoni & Cook, 92]

• take copies A0,A1,A2, . . . of algebra A

• ramification can then be expressed as a typing system

gi,j ▷ Al
p × An·l

q × A → Aq p > q

fj ▷ Ap × A → Aq
(SimRec)



;General Ramified Simultaneous Recursion (GRSR)

• let A be a term algebra formed from constructors {c1, . . . , ck}

• class of functions definable by general simultaneous recursion
(GSR) is least class of function f : A× · · · × A → A:
1. contains projection and constructor functions

2. closed under function composition

3. closed under general simultaneous recursion (GSR)

• functions f1, . . . , fn are defined by GSR with equations

fj(ci(x1, . . . , xl), y⃗) = gi,j(x1, . . . , xl, f⃗(x1, y⃗), . . . , f⃗(xl, y⃗)︸ ︷︷ ︸
n · l recursive calls

, y⃗)

where f⃗(xi, y⃗) = f1(xi, y⃗), . . . , fn(xi, y⃗)

ramification [Leivant, 93; Bellantoni & Cook, 92]

• take copies A0,A1,A2, . . . of algebra A

• ramification can then be expressed as a typing system

gi,j ▷ Al
p × An·l

q × A → Aq p > q

fj ▷ Ap × A → Aq
(SimRec)



;GRSR on Trees

• we can define functions rabbitsi : Ni+1 → Ti by

rabbitsi(0) = Bl bi(0) = Bl mi(0) = Ml

rabbitsi(S(n)) = bi(n) bi(S(n)) = B(mi(n)) mi(S(n)) = M(mi(n), bi(n))

• data tiering prevents us from defining #leafs : Tj → Ni

#leafs(Bl) = #leafs(Ml) = S(0)
#leafs(B(t)) = #leafs(t)

#leafs(M(l, r)) = addi(#leafs(l),#leafs(r))

and thus from defining the exponential growing function

fib(n) = #leafs(rabbitsi(n))



;GRSR on Trees

• we can define functions rabbitsi : Ni+1 → Ti by

rabbitsi(0) = Bl bi(0) = Bl mi(0) = Ml

rabbitsi(S(n)) = bi(n) bi(S(n)) = B(mi(n)) mi(S(n)) = M(mi(n), bi(n))

• data tiering prevents us from defining #leafs : Tj → Ni

#leafs(Bl) = #leafs(Ml) = S(0)
#leafs(B(t)) = #leafs(t)

#leafs(M(l, r)) = addi(#leafs(l),#leafs(r))

and thus from defining the exponential growing function

fib(n) = #leafs(rabbitsi(n))



;GRSR Characterizes FPTIME

Theorem (Leivant, 93)

The following classes of functions coincide:

1. function over strings definiable by GRSR constructor arity ⩽ 1

2. class FPTIME of polytime computable functions

• expressive power of GRSR on trees unknown since ⩾ 20 years

• does GRSR lead outside FPTIME in general?



;GRSR Characterizes FPTIME

Theorem (Leivant, 93)

The following classes of functions coincide:

1. function over strings definiable by GRSR constructor arity ⩽ 1

2. class FPTIME of polytime computable functions

• expressive power of GRSR on trees unknown since ⩾ 20 years

• does GRSR lead outside FPTIME in general?



;Feasible Evaluation of GRSR Functions
The Need for Sharing

B

M

M

M

M

Ml Bl

B

Ml

B

M

Ml Bl

B

M

M

Ml Bl

B

Ml

(a) result of rabbits(6).

B

M

M

M

M

Ml Bl

B

B

B

(b) shared.



;Feasible Evaluation of GRSR Functions
The Need for Sharing

B

M

M

M

M

Ml Bl

B

Ml

B

M

Ml Bl

B

M

M

Ml Bl

B

Ml

(a) result of rabbits(6).

B

M

M

M

M

Ml Bl

B

B

B

(b) shared.



;Feasible Evaluation of GRSR Functions
The Need for Sharing

B

M

M

M

M

Ml Bl

B

Ml

B

M

Ml Bl

B

M

M

Ml Bl

B

Ml

(a) result of rabbits(6).

B

M

M

M

M

Ml Bl

B

B

B

(b) shared.



;Feasible Evaluation of GRSR Functions
The Need forMemoisation

b(5)

m(4)

m(3)

m(2)

m(1)

m(0) b(0)

b(1)

m(0)

b(2)

m(1)

m(0) b(0)

b(3)

m(2)

m(1)

m(0) b(0)

b(1)

m(0)

(a) call tree of rabbits(6).

b(5)

m(4)

m(3)

m(2)

m(1)

m(0) b(0)

b(1)

b(2)

b(3)

(b) memoized.



;Feasible Evaluation of GRSR Functions
The Need forMemoisation

b(5)

m(4)

m(3)

m(2)

m(1)

m(0) b(0)

b(1)

m(0)

b(2)

m(1)

m(0) b(0)

b(3)

m(2)

m(1)

m(0) b(0)

b(1)

m(0)

(a) call tree of rabbits(6).

b(5)

m(4)

m(3)

m(2)

m(1)

m(0) b(0)

b(1)

b(2)

b(3)

(b) memoized.



;Feasible Evaluation of GRSR Functions
The Need forMemoisation

b(5)

m(4)

m(3)

m(2)

m(1)

m(0) b(0)

b(1)

m(0)

b(2)

m(1)

m(0) b(0)

b(3)

m(2)

m(1)

m(0) b(0)

b(1)

m(0)

(a) call tree of rabbits(6).

b(5)

m(4)

m(3)

m(2)

m(1)

m(0) b(0)

b(1)

b(2)

b(3)

(b) memoized.



;Key Observations

Let f be defined by GRSR.

Suppose f(v1, . . . , vk) evaluates to u.

Then we can bind by a polynomial in the (shared) size of arguments
v1, . . . , vk:

1. the shared size of result u

values can always be represented as a compact DAG

2. number of distinct function calls in evaluation of f(v1, . . . , vk)

reduction withmemoization feasible

Definition

shared size of value v := number of distinct subterms in value v



Memoization & Sharing, Reconsiled



;Call-by-value Memoizing Semantics

• configuration is tuple (e,C)

– e is expression

– C is cache, mapping calls f(⃗v) to results u

• semantics are given as statements

(f(⃗v),C) ⇓m (u,D)

Example (f(⃗v), u) ∈ C

(f(⃗v),C) ⇓0 (u,C)
(Read)

(f(⃗v), u′) ̸∈ C f(⃗p) = r ∈ E f(⃗p)σ = f(⃗v) (rσ,C) ⇓m (u,D)

(f(⃗v),C) ⇓m+1 (u,D ∪ {(f(⃗v), u)})
(Update)

• gives rist to a cost model, where re-occurring calls are free
memoized cost



;Call-by-value Memoizing Semantics

• configuration is tuple (e,C)

– e is expression

– C is cache, mapping calls f(⃗v) to results u

• semantics are given as statements

(f(⃗v),C) ⇓m (u,D)

Example (f(⃗v), u) ∈ C

(f(⃗v),C) ⇓0 (u,C)
(Read)

(f(⃗v), u′) ̸∈ C f(⃗p) = r ∈ E f(⃗p)σ = f(⃗v) (rσ,C) ⇓m (u,D)

(f(⃗v),C) ⇓m+1 (u,D ∪ {(f(⃗v), u)})
(Update)

• gives rist to a cost model, where re-occurring calls are free
memoized cost



;Call-by-value Memoizing Semantics

• configuration is tuple (e,C)

– e is expression

– C is cache, mapping calls f(⃗v) to results u

• semantics are given as statements

(f(⃗v),C) ⇓m (u,D)

Example (f(⃗v), u) ∈ C

(f(⃗v),C) ⇓0 (u,C)
(Read)

(f(⃗v), u′) ̸∈ C f(⃗p) = r ∈ E f(⃗p)σ = f(⃗v) (rσ,C) ⇓m (u,D)

(f(⃗v),C) ⇓m+1 (u,D ∪ {(f(⃗v), u)})
(Update)

• gives rist to a cost model, where re-occurring calls are free
memoized cost



;Integrating Sharing

crucial, one can now define an implementation such that:

1. each reduction step is atomic

– no copying of arbitrary large data

– data is stored on a heap H

2. overheads are “small”

implementation is given as reduction relation →Rrsm on configurations

(e,H,C)
• H is heap

• e is expression

• C is cache
contain references to heap



;Integrating Sharing

crucial, one can now define an implementation such that:

1. each reduction step is atomic

– no copying of arbitrary large data

– data is stored on a heap H

2. overheads are “small”

implementation is given as reduction relation →Rrsm on configurations

(e,H,C)
• H is heap

• e is expression

• C is cache
contain references to heap



;Polynomial Invariance of Memoized Cost Model

Theorem

(f(⃗v),∅) ⇓m (u,C) if and only if (f(⃗v),∅,∅) −→n
Rrsm (ℓ,H,C′) where

• result u is stored in final heap H at location ℓ

• n ⩽ δ ·m+ size(⃗v) for δ ∈ N

• size((ℓ,H,C)) ⩽ ∆ ·m+ size(⃗v) for∆ ∈ N

Corollary (Polynomial Invariance of Memoized Cost Model)

There exists a polynomial pf : N× N → N such that for
(f(⃗v),∅) ⇓m (u,C), the value u represented as DAG is computable from
arguments v⃗ in time pf(size(⃗v),m).



;Polynomial Invariance of Memoized Cost Model

Theorem

(f(⃗v),∅) ⇓m (u,C) if and only if (f(⃗v),∅,∅) −→n
Rrsm (ℓ,H,C′) where

• result u is stored in final heap H at location ℓ

• n ⩽ δ ·m+ size(⃗v) for δ ∈ N

• size((ℓ,H,C)) ⩽ ∆ ·m+ size(⃗v) for∆ ∈ N

Corollary (Polynomial Invariance of Memoized Cost Model)

There exists a polynomial pf : N× N → N such that for
(f(⃗v),∅) ⇓m (u,C), the value u represented as DAG is computable from
arguments v⃗ in time pf(size(⃗v),m).



;GRSR is Sound for Polynomial Time

Theorem

Let f : A → Am be a function defined by GRSR.

For all inputs v⃗, a DAG representation of f(⃗v) is computable in time
polynomial in the sizes of the inputs.

Outline.

• by observation on number of distinct function calls during
evaluation

(f(⃗v),∅) ⇓m (u,C) =⇒ m ⩽ pf(size(⃗v))

for a polynomial pf

• the theorem then follows from polynomial invariance of
memoized cost model



;GRSR is Sound for Polynomial Time

Theorem

Let f : A → Am be a function defined by GRSR.

For all inputs v⃗, a DAG representation of f(⃗v) is computable in time
polynomial in the sizes of the inputs.

Outline.

• by observation on number of distinct function calls during
evaluation

(f(⃗v),∅) ⇓m (u,C) =⇒ m ⩽ pf(size(⃗v))

for a polynomial pf

• the theorem then follows from polynomial invariance of
memoized cost model



;GRSR is Sound for Polynomial Time

Theorem

Let f : A → Am be a function defined by GRSR.

For all inputs v⃗, a DAG representation of f(⃗v) is computable in time
polynomial in the sizes of the inputs.

Outline.

• by observation on number of distinct function calls during
evaluation

(f(⃗v),∅) ⇓m (u,C) =⇒ m ⩽ pf(size(⃗v))

for a polynomial pf

• the theorem then follows from polynomial invariance of
memoized cost model



;Conclusion

1. memoized cost gives rise to notion of memoized runtime
complexity, this cost model is polynomial invariant if we allow
sharing

2. general simultaneous ramified recursion is sound for
polynomial time

– extensions, such as parameter substitution, lead immediately
outside polynomial time



Thanks!



;Cost Annotated Memoizing Semantics

(f(⃗v), v) ∈ C

(f(⃗v),C) ⇓

0

(v,C)
(Read)

(f(⃗v), u′) ̸∈ C f(⃗p) = r ∈ E f(⃗p)σ = f(⃗v) (rσ,C) ⇓

m

(u,D)

(f(⃗v),C) ⇓

m+1

(u,D ∪ {(f(⃗v), u)})
(Update)

f ∈ F (ti,Ci−1) ⇓

ni

(vi,Ci) (f(⃗v),Ck) ⇓

n

(v,Ck+1)

(f(t1, . . . , tk),C0) ⇓

n+
∑k

i=1 ni

(v,Ck+1)
(Split)

c ∈ C (ti,Ci−1) ⇓

ni

(vi,Ci)

(c(t1, . . . , tk),C0) ⇓

∑k
i=1 ni

(c(⃗v),Ck)
(Con)



;Cost Annotated Memoizing Semantics

(f(⃗v), v) ∈ C

(f(⃗v),C) ⇓0 (v,C)
(Read)

(f(⃗v), u′) ̸∈ C f(⃗p) = r ∈ E f(⃗p)σ = f(⃗v) (rσ,C) ⇓m (u,D)

(f(⃗v),C) ⇓m+1 (u,D ∪ {(f(⃗v), u)})
(Update)

f ∈ F (ti,Ci−1) ⇓ni (vi,Ci) (f(⃗v),Ck) ⇓n (v,Ck+1)

(f(t1, . . . , tk),C0) ⇓n+
∑k

i=1 ni
(v,Ck+1)

(Split)

c ∈ C (ti,Ci−1) ⇓ni (vi,Ci)

(c(t1, . . . , tk),C0) ⇓∑k
i=1 ni

(c(⃗v),Ck)
(Con)



;Small Step Semantics
Memoization and Sharing Reconsiled

(f(ℓ⃗), ℓ) ∈ C

(E[f(ℓ⃗)],H,C) −→r (E[ℓ],H,C)
(read)

(f(ℓ⃗), ℓ) ̸∈ C f(⃗p) = r ∈ E
“f(ℓ⃗) matches f(⃗p) with σ : V → LocH”

(E[f(ℓ⃗)],H,C) −→R (E[⟨f(ℓ⃗), rσ⟩],H,C)
(rule)

(E[⟨f(ℓ⃗), ℓ⟩],H,C) −→s (E[ℓ],H,C ∪ {(f(ℓ⃗), ℓ)})
(store)

(H′, ℓ) = merge(H, c(ℓ⃗))
(E[c(ℓ⃗)],H,C) −→m (E[ℓ],H′,C)

(merge)


