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Term Rewriting

First Order Functional Program

≈ Term Rewrite System (TRS)

À d(c) = 0 Â d(x + y) = d(x) + d(y)

Á d(x × y) = d(x) × y + x × d(y) Ã d(x − y) = d(x) − d(y)

data Exp = Zero 0

| Const c

| Times Exp Exp e1 × e2

| Plus Exp Exp e1 + e2

| Minus Exp Exp e1 − e2

Underlying Computation

≈ Rewriting

d(c + (c × c))

= d(c) + d( c × c )

= 0 + d(c × c)

= 0 + d(c) × c + c × d(c)

= 0 + 0 × c + c × d(c)

= 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program

≈ Term Rewrite System (TRS)

À d(c) = 0 Â d(x + y) = d(x) + d(y)

Á d(x × y) = d(x) × y + x × d(y) Ã d(x − y) = d(x) − d(y)

Underlying Computation

≈ Rewriting

d(c + (c × c))

= d(c) + d( c × c )

= 0 + d(c × c)

= 0 + d(c) × c + c × d(c)

= 0 + 0 × c + c × d(c)

= 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program

≈ Term Rewrite System (TRS)

À d(c) = 0 Â d(x + y) = d(x) + d(y)

Á d(x × y) = d(x) × y + x × d(y) Ã d(x − y) = d(x) − d(y)

Underlying Computation

≈ Rewriting

d(c + (c × c))

= d(c) + d( c × c )

= 0 + d(c × c)

= 0 + d(c) × c + c × d(c)

= 0 + 0 × c + c × d(c)

= 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program

≈ Term Rewrite System (TRS)

À d(c) = 0 Â d(x + y) = d(x) + d(y)

Á d(x × y) = d(x) × y + x × d(y) Ã d(x − y) = d(x) − d(y)

Underlying Computation

≈ Rewriting

d(c + (c × c)) = d(c) + d( c × c )

= 0 + d(c × c)

= 0 + d(c) × c + c × d(c)

= 0 + 0 × c + c × d(c)

= 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program

≈ Term Rewrite System (TRS)

À d(c) = 0 Â d(x + y) = d(x) + d(y)

Á d(x × y) = d(x) × y + x × d(y) Ã d(x − y) = d(x) − d(y)

Underlying Computation

≈ Rewriting

d(c + (c × c)) = d(c) + d( c × c )

= 0 + d(c × c)

= 0 + d(c) × c + c × d(c)

= 0 + 0 × c + c × d(c)

= 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program

≈ Term Rewrite System (TRS)

À d(c) = 0 Â d(x + y) = d(x) + d(y)

Á d(x × y) = d(x) × y + x × d(y) Ã d(x − y) = d(x) − d(y)

Underlying Computation

≈ Rewriting

d(c + (c × c)) = d(c) + d( c × c )

= 0 + d(c × c)

= 0 + d(c) × c + c × d(c)

= 0 + 0 × c + c × d(c)

= 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program

≈ Term Rewrite System (TRS)

À d(c) = 0 Â d(x + y) = d(x) + d(y)

Á d(x × y) = d(x) × y + x × d(y) Ã d(x − y) = d(x) − d(y)

Underlying Computation

≈ Rewriting

d(c + (c × c)) = d(c) + d( c × c )

= 0 + d(c × c)

= 0 + d(c) × c + c × d(c)

= 0 + 0 × c + c × d(c)

= 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program

≈ Term Rewrite System (TRS)

À d(c) = 0 Â d(x + y) = d(x) + d(y)

Á d(x × y) = d(x) × y + x × d(y) Ã d(x − y) = d(x) − d(y)

Underlying Computation

≈ Rewriting

d(c + (c × c)) = d(c) + d( c × c )

= 0 + d(c × c)

= 0 + d(c) × c + c × d(c)

= 0 + 0 × c + c × d(c)

= 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program

≈ Term Rewrite System (TRS)

À d(c) = 0 Â d(x + y) = d(x) + d(y)

Á d(x × y) = d(x) × y + x × d(y) Ã d(x − y) = d(x) − d(y)

Underlying Computation

≈ Rewriting

d(c + (c × c)) = d(c) + d( c × c )

= 0 + d(c × c)

= 0 + d(c) × c + c × d(c)

= 0 + 0 × c + c × d(c)

= 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program ≈ Term Rewrite System (TRS)

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

Underlying Computation ≈ Rewriting

d(c + (c × c)) −→R d(c) + d( c × c )

−→R 0 + d(c × c)

−→R 0 + d(c) × c + c × d(c)

−→R 0 + 0 × c + c × d(c)

−→R 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program ≈ Term Rewrite System (TRS)

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

Underlying Computation ≈ Rewriting

d(c + (c × c)) −→!
R 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program ≈ Term Rewrite System (TRS)

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

Underlying Computation ≈ Rewriting

d(c + (c × c)) −→!
R 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting

First Order Functional Program ≈ Term Rewrite System (TRS)

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

Underlying Computation ≈ Rewriting

d(c + (c × c)) −→!
R 0 + 0 × c + c × 0

I above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Term Rewriting
Complexity

I innermost runtime complexity
number of eager evaluation steps as function in the size of the
initial terms

rciR(n) = max{dl(t, i−→R) | size(t) 6 n

and arguments values

}

• i−→R ⊆ −→R is restriction to eager evaluation

• measure complexity of direct function calls

I derivation length

dl(t, i−→R) = max{` | ∃(t1, . . . , t`). t i−→R t1
i−→R . . . i−→R t`}
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Term Rewriting
Complexity Analysis

Example

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

I runtime complexity of above TRS is linear

I this can be automatically verified
$ tct -a rc -p -s "wdp (matrix :kind triangular)" dif.trs

YES(?,O(n^1))

’Weak Dependency Pairs’

-----------------------

Answer: YES(?,O(n^1))

Input Problem: runtime-complexity with respect to

Rules:

{ D(c) -> 0()

, D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))

, D(+(x, y)) -> +(D(x), D(y))

, D(-(x, y)) -> -(D(x), D(y))}

Proof Details:

...

is this proof really
meaningful?

polytime computability?
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is this proof really
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polytime computability?
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Main Result

Yes

Theorem

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rciR(n) 6 nk ⇒ f ∈ TIME(O(n5·(k+1))) f computed by R
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Main Result

Theorem

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rciR(n) 6 nk ⇒ f ∈ FP f computed by R

Proof Idea
I implement rewriting efficiently
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Main Result
Difficulty

a single rewrite step may copy arbitrarily large terms

R terms may grow exponential in the length of derivations

Example

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

d(c) = 0

d(c× c) = 0× c + c× 0

d((c× c)× c) = (0× c + c× 0)× c + (c× c)× 0

d((c× c)× (c× c)) = ((0× c + c× 0)× c + (c× c)× 0)× (c× c)

+ (c× c)× ((0× c + c× 0)× c + (c× c)× 0)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Main Result
Difficulty

a single rewrite step may copy arbitrarily large terms

R terms may grow exponential in the length of derivations

Example

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

d(c) = 0

d(c× c) = 0× c + c× 0

d((c× c)× c) = (0× c + c× 0)× c + (c× c)× 0

d((c× c)× (c× c)) = ((0× c + c× 0)× c + (c× c)× 0)× (c× c)

+ (c× c)× ((0× c + c× 0)× c + (c× c)× 0)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Main Result
Difficulty

a single rewrite step may copy arbitrarily large terms

R terms may grow exponential in the length of derivations

Example

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

d(c) = 0

d(c× c) = 0× c + c× 0

d((c× c)× c) = (0× c + c× 0)× c + (c× c)× 0

d((c× c)× (c× c)) = ((0× c + c× 0)× c + (c× c)× 0)× (c× c)

+ (c× c)× ((0× c + c× 0)× c + (c× c)× 0)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Main Result
Difficulty

a single rewrite step may copy arbitrarily large terms

R terms may grow exponential in the length of derivations

Example

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

d(c) = 0

d(c× c) = 0× c + c× 0

d((c× c)× c) = (0× c + c× 0)× c + (c× c)× 0

d((c× c)× (c× c)) = ((0× c + c× 0)× c + (c× c)× 0)× (c× c)

+ (c× c)× ((0× c + c× 0)× c + (c× c)× 0)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Main Result
Difficulty

a single rewrite step may copy arbitrarily large terms

R terms may grow exponential in the length of derivations

Example

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

d(c) = 0

d(c× c) = 0× c + c× 0

d((c× c)× c) = (0× c + c× 0)× c + (c× c)× 0

d((c× c)× (c× c)) = ((0× c + c× 0)× c + (c× c)× 0)× (c× c)

+ (c× c)× ((0× c + c× 0)× c + (c× c)× 0)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Main Result
Difficulty

a single rewrite step may copy arbitrarily large terms

R terms may grow exponential in the length of derivations

Example

À d(c)→ 0 Â d(x + y)→ d(x) + d(y)

Á d(x × y)→ d(x) × y + x × d(y) Ã d(x − y)→ d(x) − d(y)

d(c) = 0

d(c× c) = 0× c + c× 0

d((c× c)× c) = (0× c + c× 0)× c + (c× c)× 0

d((c× c)× (c× c)) = ((0× c + c× 0)× c + (c× c)× 0)× (c× c)

+ (c× c)× ((0× c + c× 0)× c + (c× c)× 0)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Main Result
Proof Outline

f (s1, . . . , sn) t
`

R
term rewriting

· ·`
G

graph rewriting

〈f (s1, . . . , sn)〉 〈t〉
6p(`)

M
Turing machine

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 8/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Main Result
Proof Outline

f (s1, . . . , sn) t
`

R
term rewriting

· ·`
G

graph rewriting

〈f (s1, . . . , sn)〉 〈t〉
6p(`)

M
Turing machine

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 8/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Outline

Graph Rewriting in a Nutshell

Adequacy of Graph Rewriting

Conclusion

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 9/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell

I term rewriting on graphs

I copying  sharing

I structural equality  pointer equality

Example

term t = d(x + x) × d(x + x) represented by

×

d d

+ +

x

×

d d

+

x

unshared
shared

×

d

+

x

I variables always represented by unique node

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell

I term rewriting on graphs

I copying  sharing

I structural equality  pointer equality

Example

term t = d(x + x) × d(x + x) represented by

×

d d

+ +

x

×

d d

+

x

unshared
shared

×

d

+

x

I variables always represented by unique node

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell

I term rewriting on graphs

I copying  sharing

I structural equality  pointer equality

Example

term t = d(x + x) × d(x + x) represented by

×

d d

+ +

x

>

×

d d

+

x

unshared
shared

>

×

d

+

x

I variables always represented by unique node

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell

I term rewriting on graphs

I copying  sharing

I structural equality  pointer equality

Example

term t = d(x + x) × d(x + x) represented by

×

d d

+ +

x

>

×

d d

+

x
unshared

shared

>

×

d

+

x

I variables always represented by unique node

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell

Example

applying rule s(x) + y → s(x + y) on s(s(0) + s(0)) . . .

Term Rewriting

−→Rs(s(0) + s(0)) s(s(0 + s(0)))

Graph Rewriting

s

+

s s

0

s

s

+

s

0

=⇒G

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 11/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm

1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm

+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm

+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm

+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm

+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm

+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm

s(s(s(0) + 0))

+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm

s(σ(s(x) + y))

+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm

s(σ(s(x) + y)) −→R s(σ(s(x + y)))

+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm

s(σ(s(x) + y)) −→R s(s(0 + s(0)))

+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2. replace matched subgraph

s(σ(s(x) + y)) −→R s(s(0 + s(0)))
+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2a. add copy of right-hand side

s(σ(s(x) + y)) −→R s(s(0 + s(0)))
+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2a. add copy of right-hand side

s(σ(s(x) + y)) −→R s(s(0 + s(0)))
+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2a. add copy of right-hand side

s(σ(s(x) + y)) −→R s(s(0 + s(0)))
+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2b. redirect edges

s(σ(s(x) + y)) −→R s(s(0 + s(0)))
+

s

s s

0

s

+

x y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2b. redirect edges

s(σ(s(x) + y)) −→R s(s(0 + s(0)))
+

s

s s

0

s

+

y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2b. redirect edges

s(σ(s(x) + y)) −→R s(s(0 + s(0)))
+

s

s s

0

s

+

y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2b. redirect edges

s(σ(s(x) + y)) −→R s(s(0 + s(0)))
+

s

s s

0

s

+

y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2c. remove inaccessible nodes

s(σ(s(x) + y)) −→R s(s(0 + s(0)))
+

s

s s

0

s

+

y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2c. remove inaccessible nodes

s(σ(s(x) + y)) −→R s(s(0 + s(0)))

s

s

s

0

s

+

y

ss

+

s

0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Graph Rewriting in a Nutshell

Graph Rewriting in a Nutshell
Rewriting s(s(0) + s(0)) using rule s(x) + y → s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s(s(0) + s(0))|1 = σ(s(x) + y)

σ =

{
x 7→ 0

y 7→ s(0)

+

s

x

y

+

s

s s

0

2. replace matched subterm 2c. remove inaccessible nodes

s(σ(s(x) + y)) −→R s(s(0 + s(0)))

s

s s

0

s

+

y

ss

+

s

0
MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Adequacy of Graph Rewriting

Adequacy of Graph Rewriting

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 13/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Adequacy of Graph Rewriting

Adequacy of Graph Rewriting for Term Rewriting

s t
`

R
term rewriting

S T
`

G
graph rewriting

〈s〉 〈t〉
6p(`)

M
Turing machine

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 13/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Adequacy of Graph Rewriting

Adequacy of Graph Rewriting for Term Rewriting

s t
`

R
term rewriting

S T
`

G
graph rewriting

〈s〉 〈t〉
6p(`)

M
Turing machine

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 13/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Adequacy of Graph Rewriting

Simulating Graph Rewrite System

Definition
I simulating graph rewrite system G(R) of TRS R

G(R) : =
{
4(l)→4(r) | (l → r) ∈ R

}
I 4(s) is minimally sharing graph representing s

Example

x + x → d(x) ⇒ +

x

→ d

x
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Simulating Graph Rewrite System
Problems

x + x → d(x) ⇒ +

x

→ d

x

(
(0 + 0) + (0 + 0)

)
×
(
(0 + 0) + (0 + 0)

)
−→R

(
(0 + 0) + (0 + 0)

)
×
(
(0 + 0) + d(0)

)
×

+

+

0 0

0

+

x

→ d

x

no redex

Problem À
below redex
maximal sharing
required

=⇒G(R)

×

+

d

0

Problem Á
both arguments
of +\× rewritten
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Adequacy of Graph Rewriting

Theorem

suppose s is a term and S is a term graph representing s such that for
redex position p in s

1 node corresponding to p is unshared

2 subgraph S �p is maximally shared

Then
s −→R,p t ⇐⇒ S =⇒G(R),p T

where T represents t
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Idea

I condition Ê is invariant on innermost G(R) reductions

I recover condition Ë by extending rewrite relation with sharing

≥
=⇒G : = i=⇒G · ≥
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Theorem

s i−→`
R t ⇐⇒ S

≥
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G(R) T

for suitable graph representations S and T of terms s and t
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Adequacy of Graph Rewriting

Main Result Revisited

Theorem

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rciR(n) 6 nk ⇒ f ∈ FP f computed by R

Proof Idea

1 employ innermost rewriting for computation of results

adequacy theorem

2 graphs grow only polynomial in size S
≥
=⇒`
G T ⇒ |T | 6 |S |+ `∆

3 each step computable in polynomial time

in size of starting term

4 overall polynomial number of steps required
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Conclusion

Conclusion

I notion of runtime-complexity is a reason cost model for rewriting

1 cost of computation naturally expressed

2 polynomially related to actual cost on Turing machines

I runtime-complexity analysis gives rise automation

• CaT
http://cl-informatik.uibk.ac.at/research/software/ttt2

• TCT
http://cl-informatik.uibk.ac.at/research/software/tct

• Matchbox/Poly
http://dfa.imn.htwk-leipzig.de/matchbox/poly

Future Work
I extension of results to full rewriting just finished

• classification of nondeterministic computation possible

I complexity preserving translations of (pure) functional programs
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