1c

Complexity Analysis by Graph Rewriting

Martin Avanzini and Georg Moser

http://cl-informatik.uibk.ac.at
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

MA& GM (ICS @ UIBK) Analysis of Graph Rewriti

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program

O] d(c) =0

@ d(x xy) = d(x) x y +x xd(y) @ d(x—y) = d(x)—d(y)
data Exp = Zero 0
| Const c

| Times Exp Exp e X e

| Plus Exp Exp e+ e

€1 — €

| Minus Exp Exp

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program
©) d(c) = 0 ® d(x +y) = d(x) +d(y)
@dxxy)=d(x)xy+xxdly) @dx—y) =d

Underlying Computation

d(c + (c x ¢))

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program
@ d(c) =0 ® d(x +y) = d(x) +d(y)
@dxxy)=d(x)xy+xxdly) @dx—y) =d

Underlying Computation

d(c + (c x ¢))

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program
@ d(c) =0 ® d(x +y) = d(x) +d(y)
@dxxy)=d(x)xy+xxdly) @dx—y) =d

Underlying Computation

dlc+ (c xc)) = d(c)+d(cxc)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program
@ d(c) =0 ® d(x +y) = d(x) +d(y)
@dxxy)=d(x)xy+xxdly) @dx—y) =d
Underlying Computation

dlc+ (c xc)) = d(c)+d(cxc)
0+ d(c xc)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program
@ d(c) =0 ® d(x +y) = d(x) +d(y)
@dxxy)=d(x)xy+xxdly) ®@dx—y) =d
Underlying Computation

dic+ (c xc)) = d(c)+d(cxc)
= 0+ d(cxc)
= 0+ d(c) x c+ ¢ x d(c)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program

@ d(c) =0 ® d(x +y) = d(x) +d(y)
@dxxy)=d(x)xy+xxdly) @dx—y) =d

Underlying Computation

dic+ (c xc)) = d(c)+d(cxc)
= 0+ d(cxc)
= 0+ d(c) x c+ ¢ x d(c)
= 04+0xc+cx d(c)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program
@ d(c) =0 ® d(x +y) = d(x) +d(y)
@dxxy)=d(x)xy+xxdly) @dx—y) =d

Underlying Computation

dic+ (c xc)) = d(c)+d(cxc)
= 0+ d(cxc)
= 0+ d(c) x c+ ¢ x d(c)
= 04+0xc+cx d(c)
= 0+0xc+cx0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program
©) d(c) = 0 ® d(x +y) = d(x) +d(y)
@dxxy)=d(x)xy+xxdly) @dx—y) =d

Underlying Computation

dic+ (c xc)) = d(c)+d(cxc)
= 0+ d(cxc)
= 0+ d(c) x c+ ¢ x d(c)
= 04+0xc+cx d(c)
= 0+0xc+cx0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program ~ Term Rewrite System (TRS)
©) d(c) = 0 @ d(x + y) = d(x) + d(y)
@dxxy)—=dx)xy+xxd(ly) @dx—y)— dx)—d(y)

Underlying Computation ~~ Rewriting

dc+ (c x¢)) = d(c)+d(cxc)
—r 0+ d(c xc)
—r 0+ d(c) x c+c x d(c)
—r 0+0xc+cx d(c)
—r 0+0xc+cx0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program ~ Term Rewrite System (TRS)
©) d(c) = 0 @ d(x + y) = d(x) + d(y)
@dxxy)—=dx)xy+xxd(ly) @dx—y)— dx)—d(y)

Underlying Computation ~~ Rewriting

dic+(cxc) =R 0+0xc+cx0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program ~ Term Rewrite System (TRS)
©) d(c) = 0 @ d(x + y) = d(x) + d(y)
@dxxy)—=dx)xy+xxd(ly) @dx—y)— dx)—d(y)

Underlying Computation ~~ Rewriting

dic+(cxc) =R 0+0xc+cx0

» above TRS computes differentiation of arithmetical expressions

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Order Functional Program ~ Term Rewrite System (TRS)
©) d(c) = 0 @ d(x + y) = d(x) + d(y)
@dxxy)—=dx)xy+xxd(ly) @dx—y)— dx)—d(y)

Underlying Computation ~~ Rewriting

dic+(cxc) =R 0+0xc+cx0

» above TRS computes differentiation of arithmetical expressions

Runtime Complexity
number of reduction steps as function in the size of the initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Term Rewriting

Complexity

» innermost runtime complexity
number of eager evaluation steps as function in the size of the
initial terms

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 4/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Term Rewriting

Complexity

» innermost runtime complexity
number of eager evaluation steps as function in the size of the
initial terms

rcks (n) = max{dI(t, >) | size(t) < n }

° #R C — is restriction to eager evaluation

» derivation length

di(t,) = max{l | I(tr,...,tr). t S t1 B ... g ti}

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 4/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Term Rewriting

Complexity

» innermost runtime complexity
number of eager evaluation steps as function in the size of the
initial terms
rcis (n) = max{dI(t, \+) | size(t) < n and arguments values}
° #R C — is restriction to eager evaluation

e measure complexity of direct function calls
» derivation length

di(t,) = max{l | I(tr,...,tr). t S t1 B ... g ti}

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 4/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Term Rewriting

Complexity Analysis

O d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

—
MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 5/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Term Rewriting

Complexity Analysis

O d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

> runtime complexity of above TRS is linear

—
MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 5/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Term Rewriting

Complexity Analysis

O d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

> runtime complexity of above TRS is linear

> this can be automatically verified

$ tct -a rc -p -s "wdp (matrix :kind triangular)" dif.trs
YES(?,0(n"1))

’Weak Dependency Pairs’

Answer: YES(?,0(n"1))
Input Problem: runtime-complexity with respect to
Rules:
{ D(c) -> 00

, D(*(x, y)) -> +(x(y, D(x)), *(x, D(y)))
, D(+(x, y)) -> +(D(x), D(y))
, D(=(x, y)) -> -(D(x), D(y))}

Proof Details:

o
MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 5/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Term Rewriting

Complexity Analysis

Example

O d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

> runtime complexity of above TRS is linear

> this can be automatically verified

$ tct -a rc -p -s "wdp (matrix :kind trian IS thIS prOOf really
YES(7,0(n"1)) .
meaningful?
’Weak Dependency Pairs’
Answer: YES(?,0(n"1))
Input Problem: runtime-complexity with ct to
Rules:
{ D(c) -> 00

, D(*(x, y)) -> +(x(y, D(x)), *(x, D(y)))
, D(+(x, y)) -> +(D(x), D(y))
, D(=(x, y)) -> -(D(x), D(y))}

Proof Details:

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 5/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Term Rewriting

Complexity Analysis

Example

O d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

> runtime complexity of above TRS is linear

> this can be automatically verified
$ tct -a rc -p -s "wdp (matrix :kind trian| IS thIS prOOf rea”y
YES(?,0(n"1)) e
a certificate for
polytime computability?

’Weak Dependency Pairs’

Answer: YES(?,0(n"1))
Input Problem: runtime-complexity with ct to
Rules:
{ D(c) -> 00

, D(*(x, y)) -> +(x(y, D(x)), *(x, D(y)))
, D(+(x, y)) -> +(D(x), D(y))
, D(=(x, y)) -> -(D(x), D(y))}

Proof Details:

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 5/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

L
Main Result

Yes

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rci,(n) < nk = f € TIME(O(n® (1)) f computed by R

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 6/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = feFP f computed by R

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 6/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = feFP f computed by R
Example
O] d(c) =0 ® d(x + y) = d(x) + d(y)

@dx xy)—=dx) xy+xxdy) @ d(x—y)—d(x)—d(y)

@ polynomial runtime complexity can be automatically verified

® polytime computability of above given function can be verified
automatically

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 6/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = feFP f computed by R

Proof Idea
» implement rewriting efficiently

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 6/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

Difficulty

a single rewrite step may copy arbitrarily large terms

= terms may grow exponential in the length of derivations

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

Difficulty

a single rewrite step may copy arbitrarily large terms

= terms may grow exponential in the length of derivations

© d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

Difficulty

a single rewrite step may copy arbitrarily large terms

= terms may grow exponential in the length of derivations

© d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

d(c)=0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

Difficulty

a single rewrite step may copy arbitrarily large terms

= terms may grow exponential in the length of derivations

© d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

d(c)=0
dlcxc)=0xc+cx0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

Difficulty

a single rewrite step may copy arbitrarily large terms

= terms may grow exponential in the length of derivations

© d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

d(c)=0
dlcxc)=0xc+cx0
d((cxc)xc)=(0xc+cx0)xc+(cxc)x0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

Difficulty

a single rewrite step may copy arbitrarily large terms

= terms may grow exponential in the length of derivations

© d(c) =0 ® d(x 4+ y) = d(x) + d(y)
@d(x xy) = d(x) xy+xxd(y) @ d(x—y)—d(x)—d(y)

d(c)=0
dlcxc)=0xc+cx0
d((cxc)xc)=(0xc+cx0)xc+(cxc)x0
d((exc)x(cxc)=((0xc+cx0)xc+(cxc)x0)x(cxc)
+(cxc)x((0xc+ecx0)xc+(cxc)x0)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

Proof Outline

4 "
f(s1,---,5n) » t term rewriting

v <p(¢ : :
(f(s1,..-,5n)) T t) Turing machine

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 8/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result

Proof Outline

f(s1,---,5n) >;;t term rewriting
v L "
> - graph rewriting
G
¥ <p(¢ : :
(f(s1,..-,5n)) T t) Turing machine

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 8/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

@ Graph Rewriting in a Nutshell
@ Adequacy of Graph Rewriting

@ Conclusion

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 9/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

» term rewriting on graphs
» copying ~- sharing

» structural equality ~» pointer equality

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

» term rewriting on graphs
» copying ~- sharing

» structural equality ~» pointer equality

term t = d(x + x) x d(x + x) represented by

» variables always represented by unique node

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

» term rewriting on graphs
» copying ~- sharing

» structural equality ~» pointer equality

term t = d(x + x) x d(x + x) represented by

X X X
7\ / N\ ()
d d d d d
\ \ > N = [
I 4 4 F
\/ () ()
\x/ X X

» variables always represented by unique node

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

» term rewriting on graphs
» copying ~- sharing

» structural equality ~» pointer equality

Example
term t = d(x + x) x d(x + x) represented by

» variables always represented by unique node

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

applying rule s(x) +y — s(x + y) on s(s(0) +s(0)) ...

Term Rewriting

S S
\
4F S
/ N\ :>g |
S S +
\ 7/ \
: (%
/
0
11/17

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting

1. identifying matching subterm

5(s(0) +5(0))1 = a(s(x) +y)

U_{Xl—)O
|y s(0)

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting
1. identifying matching subterm 1. finding term graph morphism
s
\
5(s(0) +s(0))|r = o (s(x) +y) + +
/ N\ /N
_Jx=0 s s s Yy
7= N/ \
y = 5(0) 0 x

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting
1. identifying matching subterm 1. finding term graph morphism
s
\
5(s(0) +s(0))|r = o (s(x) +y) + i+
/ N\ /N
x+—0 s s s Yy
7= N/ \
y = 5(0) 0 x

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism
s
\

s(s(0) +5(0))[1 = o(s(x) +y) + i+

/ N\ /N
g = T 0 > N\ij/\y
y = (0) " X
MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting
1. identifying matching subterm 1. finding term graph morphism
S
\
s(s(0) +5(0))|1 = a(s(x) + y) e+
/ \ / N\
o — {X — 0 S S S y
= \W
MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting

graph rewriting

1. identifying matching subterm

5(s(0) +5(0))r = a(s(x) +y)

U_{Xl—)O
|y s(0)

1. finding term graph morphism

+—i+

S S s .y

2. replace matched subterm

s(s(s(0) +0))

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting

graph rewriting

1. identifying matching subterm

5(s(0) +5(0))r = a(s(x) +y)

U_{Xl—)O
|y s(0)

1. finding term graph morphism

+—i+

S S s .y

2. replace matched subterm

s(a(s(x) +¥))

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting

graph rewriting

1. identifying matching subterm

5(s(0) +5(0))r = a(s(x) +y)

U_{Xl—)O
|y s(0)

1. finding term graph morphism

+—i+

S S s .y

2. replace matched subterm

s(a(s(x) +y)) =r s(a(s(x +y)))

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting

graph rewriting

1. identifying matching subterm

5(s(0) +5(0))r = a(s(x) +y)

U_{Xl—)O
|y s(0)

1. finding term graph morphism

+—i+

S S s .y

2. replace matched subterm

s(a(s(x) +¥)) == s(s(0 +5(0)))

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting

graph rewriting

1. identifying matching subterm

5(s(0) +5(0))r = a(s(x) +y)

U_{Xl—)O
|y s(0)

1. finding term graph morphism

+—i+

2. replace matched subterm

s(a(s(x) +y)) == s(s(0 +5(0)))

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting

graph rewriting

1. identifying matching subterm

5(s(0) +5(0))r = a(s(x) +y)

U_{Xl—)O
|y s(0)

1. finding term graph morphism

+—i+

2. replace matched subterm

s(a(s(x) +¥)) == s(s(0 +5(0)))

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting

graph rewriting

1. identifying matching subterm

5(s(0) +5(0))r = a(s(x) +y)

U_{Xl—)O
|y s(0)

1. finding term graph morphism

+—i+

2. replace matched subterm

s(a(s(x) +¥)) == s(s(0 +5(0)))

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting

graph rewriting

1. identifying matching subterm

5(s(0) +5(0))r = a(s(x) +y)

U_{Xl—)O
|y s(0)

1. finding term graph morphism

+—i+

2. replace matched subterm

s(a(s(x) +¥)) == s(s(0 +5(0)))

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting

graph rewriting

1. identifying matching subterm

5(s(0) +5(0))r = a(s(x) +y)

U_{Xl—)O
|y s(0)

1. finding term graph morphism

+—i+

S S S y

2. replace matched subterm

s(a(s(x) +y)) == s(s(0 +5(0)))

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting
1. identifying matching subterm 1. finding term graph morphism
s
\
s(s(0) +5(0))[1 = o(s(x) +y) +e—+
/ N\ /N
x—0 s_. s s .y
0= N S(O) \W
y
0 ux
2. replace matched subterm 2b. redirect edges
s
+\]
s(o(s(x) +¥)) = s(s(0+5(0))) /A |
s s +
\ // \
0 y

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting
1. identifying matching subterm 1. finding term graph morphism
s
\
s(s(0) +5(0))[1 = o(s(x) +y) +e—+
/ N\ /N
x—0 s_. s s Y
o= . S(O) \W
y
0 _/\X
2. replace matched subterm 2b. redirect edges
s
+\]
s(o(s(x) +¥)) = s(s(0+5(0))) /A |
s s +
N
0 y

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting
1. identifying matching subterm 1. finding term graph morphism
s
\
s(s(0) +5(0))[1 = o(s(x) +y) +e—+
/ N\ /N
x—0 s_. s s Y
o= . S(O) \W
y
0 _/\X
2. replace matched subterm 2b. redirect edges
s
+\]
s(o(s(x) +¥)) = s(s(0+5(0))) /A |
s s +
>
0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting
1. identifying matching subterm 1. finding term graph morphism
s
\
s(s(0) +5(0))[1 = o(s(x) +y) +e—+
/ N\ /N
x—0 s_. s s Y
0= N S(O) \W
y
0 _/\X
2. replace matched subterm 2c. remove inaccessible nodes
s
+\]
s(o(s(x) +¥)) = s(s(0+5(0))) /A |
s s +
W
0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting
1. identifying matching subterm 1. finding term graph morphism
s
\
s(s(0) +5(0))[1 = o(s(x) +y) +e—+
/ N\ /N
x—0 s_. s s Y
0= N S(O) \W
y
0 _/\X
2. replace matched subterm 2c. remove inaccessible nodes
s \
s
s(o(s(x) +¥)) = s(s(0+5(0))) |
S +
;>
0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Graph Rewriting in a Nutshell

Rewriting s(s(0) + s(0)) using rule s(x) +y — s(x + y)

term rewriting graph rewriting

1. identifying matching subterm 1. finding term graph morphism

s
\
s(s(0) +5(0))[1 = o(s(x) +y) +e—+
/ N\ /N
x—0 s_. s s Y
0= N S(O) \W
y
0 _/\X
2. replace matched subterm

s(a(s(x) +¥)) == s(s(0 +5(0)))

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Adequacy of Graph Rewriting

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Adequacy of Graph Rewriting for Term Rewriting

s >Z t term rewriting
R 1

b / ..

S >g T graph rewriting

v <p(¢)

(s) ¥ (t) Turing machine

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting

13/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Adequacy of Graph Rewriting for Term Rewriting

s >€ t term rewriting
R 1

> l ..

S >g T graph rewriting

¥ <p(¢)

(s) " (t) Turing machine

MA& GM (ICS @ UIBK)

Complexity Analysis of Graph Rewriting

13/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System

» simulating graph rewrite system G(R) of TRS R
GR):={A(l) = L) | (I = r)eR}

» A(s) is minimally sharing graph representing s

Example

X+ x — d(x) — <>

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 14/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System

Problems

x4+ x — d(x) @ <>

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 15/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems
+ = d
x4+ x — d(x) @ <) ‘
X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 15/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems
+ = d
x4+ x — d(x) @ <) ‘
X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems
+ = d
x4+ x — d(x) @ <) ‘
X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems
+ = d
x4+ x — d(x) @ <) ‘
X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems
+ = d
x4+ x — d(x) @ <) ‘
X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems
+ = d
x4+ x — d(x) : < > ‘
X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

|

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems

- = d
x + x — d(x) — () |

X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

Problem © »
below redex <)
maximal sharing
required <+>
+ e+ — d
/ N\ () |
0 0 X X

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 15/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems

- = d
x + x — d(x) — () |

X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

Problem © »
below redex <)
maximal sharing

required <+>

Qe—— X X

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 15/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems

- = d
x + x — d(x) — () |

X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

Problem © y "

below redex

maximal sharing <) <)

required * ~G(R) T
(()
+ d
() |
0 0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 15/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulating Graph Rewrite System
Problems

+ = d
x4+ x — d(x) — <> |

X

((0+0)+(0+0)) x ((0+0)+ (0+0))
—x ((0+0) 4 (0+0)) x ((0+0)+d(0))

Problem © " y
below redex
maximal sharing <) <)
i + =GR + Problem @
required (R)
both arguments
(() g
+ d of +\ x rewritten
() |
0 0

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 15/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Adequacy of Graph Rewriting

Theorem

suppose s is a term and S is a term graph representing s such that for
redex position p in s

@ node corresponding to p is unshared
® subgraph S | p is maximally shared
Then
S—rpt — S =G(R),p T

where T represents t

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 16/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Adequacy of Graph Rewriting

suppose s is a term and S is a term graph representing s such that for
redex position p in s

@ node corresponding to p is unshared

® subgraph S | p is maximally shared
Then

S _>'R,p t < S :>g('R,),p T

where T represents t

v

> recover condition @ by extending rewrite relation with sharing

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 16/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Adequacy of Graph Rewriting

Theorem

suppose s is a term and S is a term graph representing s such that for
redex position p in s

@ node corresponding to p is unshared

® subgraph S | p is maximally shared
Then

S _>'R,p t < S :>g('R),p T

where T represents t

» condition @ is invariant on innermost G(R) reductions

> recover condition @ by extending rewrite relation with sharing

v

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 16/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Adequacy of Graph Rewriting

suppose s is a term and S is a term graph representing s such that for
redex position p in s

@ node corresponding to p is unshared

® subgraph S | p is maximally shared
Then

S _>'R,p t < S :>g('R,),p T

where T represents t

Theorem

for suitable graph representations S and T of terms s and t

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 16/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result Revisited

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = fe€FP f computed by R

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 17/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result Revisited

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = fe€FP f computed by R

Proof Idea

@ employ innermost rewriting for computation of results

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 17/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result Revisited

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = fe€FP f computed by R

Proof Idea

@ employ innermost graph rewriting for computation of results
adequacy theorem

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 17/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result Revisited

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = fe€FP f computed by R

Proof Idea

@ employ innermost graph rewriting for computation of results
adequacy theorem

@® graphs grow only polynomial in size S f>>é T=|T|<|S|+4¢A

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 17/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result Revisited

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = fe€FP f computed by R

Proof Idea

@ employ innermost graph rewriting for computation of results
adequacy theorem

@® graphs grow only polynomial in size S f>>é T=|T|<|S|+4¢A

© each step computable in polynomial time

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 17/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result Revisited

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = fe€FP f computed by R

Proof Idea

@ employ innermost graph rewriting for computation of results
adequacy theorem

@® graphs grow only polynomial in size S f>>é T=|T|<|S|+4¢A

© cach step computable in polynomial time in size of starting term

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 17/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Main Result Revisited

If the (innermost) runtime-complexity of R is polynomially bounded,
then each function f computed by R is polytime computable.

rc(n) < n* = fe€FP f computed by R

Proof Idea

@ employ innermost graph rewriting for computation of results
adequacy theorem

@® graphs grow only polynomial in size S f>>é T=|T|<|S|+4¢A

© each step computable in polynomial time in size of starting term

@ overall polynomial number of steps required

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 17/17

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Conclusion

Conclusion

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Conclusion

» notion of runtime-complexity is a reason cost model for rewriting
@ cost of computation naturally expressed
@ polynomially related to actual cost on Turing machines

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting

18/17

http://cl-informatik.uibk.ac.at/research/software/ttt2
http://cl-informatik.uibk.ac.at/research/software/tct
http://dfa.imn.htwk-leipzig.de/matchbox/poly
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Conclusion

» notion of runtime-complexity is a reason cost model for rewriting
@ cost of computation naturally expressed
@ polynomially related to actual cost on Turing machines

» runtime-complexity analysis gives rise automation

o TCT
http://cl-informatik.uibk.ac.at/research/software/tct

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 18/17

http://cl-informatik.uibk.ac.at/research/software/ttt2
http://cl-informatik.uibk.ac.at/research/software/tct
http://dfa.imn.htwk-leipzig.de/matchbox/poly
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Conclusion

» notion of runtime-complexity is a reason cost model for rewriting
@ cost of computation naturally expressed
@ polynomially related to actual cost on Turing machines

» runtime-complexity analysis gives rise automation
e CaT
http://cl-informatik.uibk.ac.at/research/software/ttt2
o TCT
http://cl-informatik.uibk.ac.at/research/software/tct
e Matchbox/Poly
http://dfa.imn.htwk-leipzig.de/matchbox/poly

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 18/17

http://cl-informatik.uibk.ac.at/research/software/ttt2
http://cl-informatik.uibk.ac.at/research/software/tct
http://dfa.imn.htwk-leipzig.de/matchbox/poly
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Conclusion

» notion of runtime-complexity is a reason cost model for rewriting
@ cost of computation naturally expressed
@ polynomially related to actual cost on Turing machines

» runtime-complexity analysis gives rise automation
e CaT
http://cl-informatik.uibk.ac.at/research/software/ttt2
o TCT
http://cl-informatik.uibk.ac.at/research/software/tct
e Matchbox/Poly
http://dfa.imn.htwk-leipzig.de/matchbox/poly

Future Work

» extension of results to full rewriting just finished

o classification of nondeterministic computation possible

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 18/17

http://cl-informatik.uibk.ac.at/research/software/ttt2
http://cl-informatik.uibk.ac.at/research/software/tct
http://dfa.imn.htwk-leipzig.de/matchbox/poly
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Conclusion

» notion of runtime-complexity is a reason cost model for rewriting
@ cost of computation naturally expressed
@ polynomially related to actual cost on Turing machines

» runtime-complexity analysis gives rise automation
e CaT
http://cl-informatik.uibk.ac.at/research/software/ttt2
o TCT
http://cl-informatik.uibk.ac.at/research/software/tct
e Matchbox/Poly
http://dfa.imn.htwk-leipzig.de/matchbox/poly

Future Work

» extension of results to full rewriting just finished

o classification of nondeterministic computation possible

» complexity preserving translations of (pure) functional programs

MA& GM (ICS @ UIBK) Complexity Analysis of Graph Rewriting 18/17

http://cl-informatik.uibk.ac.at/research/software/ttt2
http://cl-informatik.uibk.ac.at/research/software/tct
http://dfa.imn.htwk-leipzig.de/matchbox/poly
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Graph Rewriting in a Nutshell
	Adequacy of Graph Rewriting
	Conclusion

