

Complexity Analysis by Graph Rewriting

Martin Avanzini and Georg Moser

+SIG1

Computational Logic Faculty of Computer Science, University of Innsbruck

FLOPS 2010

First Order Functional Program

1	d(c) = 0	V)
2 d(x	$(x \times y) = d(x) \times y + x \times d(y)$	/)

data Exp = Zero		0
	Const	С
	Times Exp Exp	$e_1 imes e_2$
	Plus Exp Exp	$e_1 + e_2$
	Minus Exp Exp	$e_1 - e_2$

First Order Functional Program

- ① d(c) = 0 ③ d(x + y) = d(x) + d(y)

Underlying Computation

 $d(c + (c \times c))$

First Order Functional Program

- ① d(c) = 0 ③ d(x + y) = d(x) + d(y)

Underlying Computation

 $d(c + (c \times c))$

First Order Functional Program

- ① d(c) = 0 ③ d(x + y) = d(x) + d(y)

Underlying Computation

 $d(c + (c \times c)) = d(c) + d(c \times c)$

First Order Functional Program

- ① d(c) = 0 ③ d(x + y) = d(x) + d(y)

Underlying Computation

 $d(c + (c \times c)) = d(c) + d(c \times c)$ $= 0 + d(c \times c)$

First Order Functional Program

- ① d(c) = 0 ③ d(x + y) = d(x) + d(y)
- $(2) d(x \times y) = d(x) \times y + x \times d(y) \quad (4) d(x y) = d(x) d(y)$

$$d(c + (c \times c)) = d(c) + d(c \times c)$$

= 0 + d(c × c)
= 0 + d(c) × c + c × d(c)

First Order Functional Program

- ① d(c) = 0 ③ d(x + y) = d(x) + d(y)

$$d(c + (c \times c)) = d(c) + d(c \times c)$$

= 0 + d(c × c)
= 0 + d(c) × c + c × d(c)
= 0 + 0 × c + c × d(c)

First Order Functional Program

- ① d(c) = 0 ③ d(x + y) = d(x) + d(y)

$$d(c + (c \times c)) = d(c) + d(c \times c)$$

= 0 + d(c × c)
= 0 + d(c) × c + c × d(c)
= 0 + 0 × c + c × d(c)
= 0 + 0 × c + c × 0

First Order Functional Program

- ① d(c) = 0 ③ d(x + y) = d(x) + d(y)

$$d(c + (c \times c)) = d(c) + d(c \times c)$$

= 0 + d(c × c)
= 0 + d(c) × c + c × d(c)
= 0 + 0 × c + c × d(c)
= 0 + 0 × c + c × 0

- $@ d(x \times y) \to d(x) \times y + x \times d(y) @ d(x y) \to d(x) d(y)$

Underlying Computation \approx Rewriting

$$d(c + (c \times c)) \rightarrow_{\mathcal{R}} d(c) + d(c \times c)$$

$$\rightarrow_{\mathcal{R}} 0 + d(c \times c)$$

$$\rightarrow_{\mathcal{R}} 0 + d(c) \times c + c \times d(c)$$

$$\rightarrow_{\mathcal{R}} 0 + 0 \times c + c \times d(c)$$

$$\rightarrow_{\mathcal{R}} 0 + 0 \times c + c \times 0$$

- $@ d(x \times y) \rightarrow d(x) \times y + x \times d(y) @ d(x y) \rightarrow d(x) d(y)$

Underlying Computation \approx Rewriting

 $\mathsf{d}(\mathsf{c} + (\mathsf{c} \times \mathsf{c})) \rightarrow^!_{\mathcal{R}} 0 + 0 \times \mathsf{c} + \mathsf{c} \times 0$

- $@ d(x \times y) \rightarrow d(x) \times y + x \times d(y) @ d(x y) \rightarrow d(x) d(y)$

Underlying Computation \approx Rewriting

$$\mathsf{d}(\mathsf{c} + (\mathsf{c} \times \mathsf{c})) \rightarrow^!_{\mathcal{R}} 0 + 0 \times \mathsf{c} + \mathsf{c} \times 0$$

above TRS computes differentiation of arithmetical expressions

- $@ d(x \times y) \rightarrow d(x) \times y + x \times d(y) @ d(x y) \rightarrow d(x) d(y)$

Underlying Computation \approx Rewriting

 $\mathsf{d}(\mathsf{c} + (\mathsf{c} \times \mathsf{c})) \rightarrow^!_{\mathcal{R}} 0 + 0 \times \mathsf{c} + \mathsf{c} \times 0$

above TRS computes differentiation of arithmetical expressions

Runtime Complexity

number of reduction steps as function in the size of the initial terms

Term Rewriting Complexity

innermost runtime complexity

number of eager evaluation steps as function in the size of the initial terms

Term Rewriting Complexity

innermost runtime complexity

number of eager evaluation steps as function in the size of the initial terms

 $\operatorname{rc}^{i}_{\mathcal{R}}(n) = \max\{\operatorname{dl}(t, \stackrel{i}{\to}_{\mathcal{R}}) \mid \operatorname{size}(t) \leqslant n$

• $\xrightarrow{i}_{\mathcal{R}} \subseteq \rightarrow_{\mathcal{R}}$ is restriction to eager evaluation

derivation length

 $\mathsf{dl}(t, \overset{\mathrm{i}}{\to}_{\mathcal{R}}) = \max\{\boldsymbol{\ell} \mid \exists (t_1, \ldots, t_{\boldsymbol{\ell}}). \ t \overset{\mathrm{i}}{\to}_{\mathcal{R}} t_1 \overset{\mathrm{i}}{\to}_{\mathcal{R}} \ldots \overset{\mathrm{i}}{\to}_{\mathcal{R}} t_{\boldsymbol{\ell}}\}$

}

Term Rewriting Complexity

innermost runtime complexity

number of eager evaluation steps as function in the size of the initial terms

 $\mathsf{rc}^{\mathsf{i}}_{\mathcal{R}}(n) = \max\{\mathsf{dl}(t, \stackrel{\mathsf{i}}{\to}_{\mathcal{R}}) \mid \mathsf{size}(t) \leqslant n \text{ and arguments values}\}$

• $\stackrel{i}{\rightarrow}_{\mathcal{R}} \subseteq \rightarrow_{\mathcal{R}}$ is restriction to eager evaluation

- measure complexity of direct function calls
- derivation length

 $\mathsf{dl}(t, \stackrel{i}{\to}_{\mathcal{R}}) = \max\{\ell \mid \exists (t_1, \ldots, t_\ell). \ t \stackrel{i}{\to}_{\mathcal{R}} t_1 \stackrel{i}{\to}_{\mathcal{R}} \ldots \stackrel{i}{\to}_{\mathcal{R}} t_\ell\}$

Example

Example

runtime complexity of above TRS is linear

Example

- $@ d(x \times y) \to d(x) \times y + x \times d(y) @ d(x y) \to d(x) d(y)$
- runtime complexity of above TRS is linear
- this can be automatically verified

```
$ tct -a rc -p -s "wdp (matrix :kind triangular)" dif.trs
YES(?,0(n^1))
'Weak Dependency Pairs'
_______
Answer: YES(?,0(n^1))
Input Problem: runtime-complexity with respect to
Rules:
        { D(c) -> 0()
        , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
        , D(+(x, y)) -> +(D(x), D(y))
        , D(-(x, y)) -> -(D(x), D(y))
Proof Details:
```

Example

> Answer: YES(?,0(n^1)) Input Problem: runtime-complexity with respect to Rules: { D(c) -> 0() , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y))) , D(+(x, y)) -> +(D(x), D(y)) , D(-(x, y)) -> -(D(x), D(y))} Proof Details:

```
MA& GM (ICS @ UIBK)
```

Example

- $\begin{array}{cccc} 1 & d(\mathbf{c}) \to \mathbf{0} & & & \\ \textcircled{0} & d(\mathbf{x} \times y) \to d(x) \times y + x \times d(y) & & \\ \end{array} \\ \begin{array}{cccc} \text{d}(x \times y) \to d(x) \times y + x \times d(y) & & \\ \text{d}(x y) \to d(x) d(y) \end{array}$
- runtime complexity of above TRS is linear

```
this can be automatically verified
```


MA& GM (ICS @ UIBK)

6/17

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable.

 $\mathsf{rc}^{\mathrm{i}}_{\mathcal{R}}(\mathbf{\textit{n}}) \leqslant \mathbf{\textit{n}}^{k} \; \Rightarrow \; f \in \mathsf{TIME}(\mathsf{O}(\mathbf{\textit{n}}^{5\cdot(k+1)}))$

f computed by ${\mathcal R}$

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable.

 $\operatorname{rc}^{\mathrm{i}}_{\mathcal{R}}(\mathbf{n}) \leqslant \mathbf{n}^{\mathbf{k}} \Rightarrow f \in \operatorname{FP}$

f computed by ${\mathcal R}$

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable.

 $\mathsf{rc}^{\mathrm{i}}_{\mathcal{R}}(\mathbf{n}) \leqslant \mathbf{n}^{\mathbf{k}} \Rightarrow f \in \mathsf{FP}$

f computed by \mathcal{R}

Example

- polynomial runtime complexity can be automatically verified
- Polytime computability of above given function can be verified automatically

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable.

 $\operatorname{rc}^{\mathrm{i}}_{\mathcal{R}}(\mathbf{n}) \leqslant \mathbf{n}^{\mathbf{k}} \Rightarrow f \in \operatorname{FP}$

f computed by ${\mathcal R}$

Proof Idea

implement rewriting efficiently

a single rewrite step may copy arbitrarily large terms

 $\ensuremath{\mathbb{I}}\xspace^{-1}$ terms may grow exponential in the length of derivations

a single rewrite step may copy arbitrarily large terms

IP terms may grow exponential in the length of derivations

Example

a single rewrite step may copy arbitrarily large terms

IP terms may grow exponential in the length of derivations

Example

 $\begin{array}{cccc} \textcircled{1} & \mathsf{d}(\mathsf{c}) \to \mathsf{0} & & \textcircled{3} & \mathsf{d}(x+y) \to \mathsf{d}(x) + \mathsf{d}(y) \\ \textcircled{2} & \mathsf{d}(x \times y) \to \mathsf{d}(x) \times y + x \times \mathsf{d}(y) & \textcircled{4} & \mathsf{d}(x-y) \to \mathsf{d}(x) - \mathsf{d}(y) \\ & \mathsf{d}(\mathsf{c}) = \mathsf{0} \end{array}$

a single rewrite step may copy arbitrarily large terms

IP terms may grow exponential in the length of derivations

Example

 $\begin{array}{cccc} & (1) & d(\mathbf{c}) \to \mathbf{0} & (3) & d(x+y) \to d(x) + d(y) \\ (2) & d(\mathbf{x} \times \mathbf{y}) \to d(\mathbf{x}) \times \mathbf{y} + \mathbf{x} \times d(\mathbf{y}) & (4) & d(x-y) \to d(x) - d(y) \\ & d(\mathbf{c}) = \mathbf{0} \\ & d(\mathbf{c} \times \mathbf{c}) = \mathbf{0} \times \mathbf{c} + \mathbf{c} \times \mathbf{0} \end{array}$

a single rewrite step may copy arbitrarily large terms

IP terms may grow exponential in the length of derivations

Example

 $\begin{array}{cccc} \textcircled{1} & d(\mathbf{c}) \rightarrow \mathbf{0} & \textcircled{3} & d(x+y) \rightarrow d(x) + d(y) \\ \textcircled{2} & d(\mathbf{x} \times y) \rightarrow d(\mathbf{x}) \times y + \mathbf{x} \times d(y) & \textcircled{4} & d(x-y) \rightarrow d(x) - d(y) \\ & d(\mathbf{c}) = \mathbf{0} \\ & d(\mathbf{c} \times \mathbf{c}) = \mathbf{0} \times \mathbf{c} + \mathbf{c} \times \mathbf{0} \\ & d((\mathbf{c} \times \mathbf{c}) \times \mathbf{c}) = (\mathbf{0} \times \mathbf{c} + \mathbf{c} \times \mathbf{0}) \times \mathbf{c} + (\mathbf{c} \times \mathbf{c}) \times \mathbf{0} \end{array}$

a single rewrite step may copy arbitrarily large terms

f terms may grow exponential in the length of derivations

Example

Main Result Proof Outline

Main Result Proof Outline

• Adequacy of Graph Rewriting

Conclusion

- term rewriting on graphs
- ▶ copying ~→ sharing
- ► structural equality ~→ pointer equality

- term rewriting on graphs
- ▶ copying ~→ sharing
- ► structural equality ~→ pointer equality

Example

term $t = d(x + x) \times d(x + x)$ represented by

variables always represented by unique node

- term rewriting on graphs
- ▶ copying ~→ sharing
- ► structural equality ~→ pointer equality

variables always represented by unique node

- term rewriting on graphs
- copying ~> sharing
- ► structural equality ~→ pointer equality

Example

term $t = d(x + x) \times d(x + x)$ represented by

variables always represented by unique node

Example

applying rule $s(x) + y \rightarrow s(x + y)$ on $s(s(0) + s(0)) \dots$ Term Rewriting

 $s(s(0) + s(0)) \longrightarrow_{\mathcal{R}} s(s(0 + s(0)))$

Graph Rewriting

term rewriting	graph rewriting
1. identifying matching subterm	
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0 \\ y \mapsto s(0) \end{cases}$	

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism
$\begin{aligned} s(s(0) + s(0)) _1 &= \sigma(s(x) + y) \\ \sigma &= \begin{cases} x \mapsto 0 \\ y \mapsto s(0) \end{cases} \end{aligned}$	$\begin{vmatrix} & \cdot & + \\ & + & + \\ s & s & s & y \\ & & \cdot & \cdot \\ s & s & s & y \\ & & & \cdot & 1 \\ 0 & & x \\ \end{vmatrix}$
AP, CM (ICS @ IIIRK) Complexity Applysic of G	ranh Douvriting 12

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0 \\ y \mapsto s(0) \end{cases}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Rewriting s(s(0) + s(0)) using rule $s(x) + y \rightarrow s(x + y)$

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism s
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0 \\ y \mapsto s(0) \end{cases}$	$s \\ 0 \\ x \\ y \\ y$

MA& GM (ICS @ UIBK)

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0 \\ y \mapsto s(0) \end{cases}$	$ \begin{array}{c} $

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0\\ y \mapsto s(0) \end{cases}$	$ \begin{array}{c} s \\ + \\ + \\ s \\ s \\ 0 \\ \end{array} x $
2. replace matched subterm	
s(s(s(0) + 0))	

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism s
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0 \\ y \mapsto s(0) \end{cases}$	$ \begin{array}{c} $
2. replace matched subterm	
$s(\sigma(s(x) + y))$	

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism s
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0\\ y \mapsto s(0) \end{cases}$	$ \begin{array}{c} $
2. replace matched subterm	
$s(\sigma(s(x)+y)) \to_{\mathcal{R}} s(\sigma(s(x+y)))$	

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism s
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0\\ y \mapsto s(0) \end{cases}$	$ \begin{array}{c} $
2. replace matched subterm	
$s(\sigma(s(x)+y)) o_{\mathcal{R}} s(s(0+s(0)))$	

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0\\ y \mapsto s(0) \end{cases}$	$ \begin{array}{c} \mathbf{s} \\ \mathbf{\cdot} \\ \mathbf{\cdot} \\ \mathbf{s} \\ \mathbf{s} \\ 0 \\ \mathbf{x} \\ \mathbf$
2. replace matched subterm	2. replace matched subgraph
$s(\sigma(s(x)+y)) o_{\mathcal{R}} s(s(0+s(0)))$	s s 0

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0\\ y \mapsto s(0) \end{cases}$	$ \begin{array}{c} $
2. replace matched subterm	2a. add copy of right-hand side
$s(\sigma(s(x)+y)) o_{\mathcal{R}} s(s(0+s(0)))$	$\begin{vmatrix} \mathbf{s} \\ \mathbf{s} $

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0 \\ y \mapsto s(0) \end{cases}$	$ \begin{array}{c} \mathbf{s} \\ \mathbf{\cdot} \\ \mathbf{\cdot} \\ \mathbf{s} \\ \mathbf$
2. replace matched subterm	2a. add copy of right-hand side
$s(\sigma(s(x)+y)) o_{\mathcal{R}} s(s(0+s(0)))$	$\begin{vmatrix} \mathbf{s} \\ \mathbf{l} \\ \mathbf{s} \\ \mathbf{y} \end{vmatrix}$

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0\\ y \mapsto s(0) \end{cases}$	s $+ + + + + + + + + + + + + + + + + + +$
2. replace matched subterm	2a. add copy of right-hand side
$s(\sigma(s(x)+y)) o_{\mathcal{R}} s(s(0+s(0)))$	$\begin{array}{c} + \\ s \\ s \\ 0 \\ 0 \\ \end{array}$

term rewriting	graph rewriting
1. identifying matching subterm	1. finding term graph morphism
$s(s(0) + s(0)) _{1} = \sigma(s(x) + y)$ $\sigma = \begin{cases} x \mapsto 0\\ y \mapsto s(0) \end{cases}$	$ \begin{array}{c} \mathbf{s} \\ + \\ \mathbf{s} \\ \mathbf{s}$
2. replace matched subterm	2c. remove inaccessible nodes
$s(\sigma(s(x)+y)) o_{\mathcal{R}} s(s(0+s(0)))$	$ \begin{array}{c} \mathbf{s} \\ \mathbf$

Adequacy of Graph Rewriting for Term Rewriting

Adequacy of Graph Rewriting for Term Rewriting

Simulating Graph Rewrite System

Definition

• simulating graph rewrite system $\mathcal{G}(\mathcal{R})$ of TRS \mathcal{R}

$$\mathcal{G}(\mathcal{R}) := \left\{ riangle (l)
ightarrow riangle (r) \mid (l
ightarrow r) \in \mathcal{R}
ight\}$$

• $\triangle(s)$ is minimally sharing graph representing s

Simulating Graph Rewrite System Problems

Simulating Graph Rewrite System Problems

$$x + x \to d(x) \qquad \Longrightarrow \qquad \begin{pmatrix} + & \to & d \\ () & | \\ x & x \end{pmatrix}$$

 $((0+0)+(0+0)) \times ((0+0)+(0+0))$ $\rightarrow_{\mathcal{R}} ((0+0)+(0+0)) \times ((0+0)+d(0))$

MA& GM (ICS @ UIBK)

Simulating Graph Rewrite System Problems

Х

n

0

 $((0+0)+(0+0)) \times ((0+0)+(0+0))$ $\rightarrow_{\mathcal{R}} ((0+0)+(0+0)) \times ((0+0)+d(0))$

Simulating Graph Rewrite System Problems

 $((0+0) + (0+0)) \times ((0+0) + (0+0))$ $\rightarrow_{\mathcal{R}} ((0+0) + (0+0)) \times ((0+0) + d(0))$

Simulating Graph Rewrite System Problems

 $((0+0)+(0+0)) \times ((0+0)+(0+0))$ $\rightarrow_{\mathcal{R}} ((0+0)+(0+0)) \times ((0+0)+d(0))$

MA& GM (ICS @ UIBK)
Simulating Graph Rewrite System Problems

 $((0+0) + (0+0)) \times ((0+0) + (0+0))$ $\rightarrow_{\mathcal{R}} ((0+0) + (0+0)) \times ((0+0) + d(0))$

$$\begin{array}{ccc} x + x \to \mathbf{d}(x) & \Longrightarrow & \begin{pmatrix} + & \to & \mathbf{d} \\ () & & \downarrow \\ x & & x \end{pmatrix} \\ ((0+0) + (0+0)) \times ((0+0) + (\mathbf{0}+\mathbf{0})) \\ & \to_{\mathcal{R}} ((0+0) + (0+0)) \times ((0+0) + \mathbf{d}(\mathbf{0})) \end{array}$$

Theorem

suppose s is a term and S is a term graph representing s such that for redex position p in s

1 node corresponding to p is unshared

2 subgraph $S \upharpoonright p$ is maximally shared

Then

$$s \rightarrow_{\mathcal{R},p} t \qquad \Longleftrightarrow \qquad S \Rightarrow_{\mathcal{G}(\mathcal{R}),p} T$$

where T represents t

Theorem

suppose s is a term and S is a term graph representing s such that for redex position p in s

1 node corresponding to p is unshared

2 subgraph $S \upharpoonright p$ is maximally shared

Then

$$s \to_{\mathcal{R},p} t \qquad \Longleftrightarrow \qquad S \Rightarrow_{\mathcal{G}(\mathcal{R}),p} T$$

where T represents t

Idea

▶ recover condition ② by extending rewrite relation with sharing

$$\stackrel{\geq}{\Rightarrow}_{\mathcal{G}} := \stackrel{\mathsf{i}}{\Rightarrow}_{\mathcal{G}} \cdot \geq$$

Theorem

suppose s is a term and S is a term graph representing s such that for redex position p in s

1 node corresponding to p is unshared

2 subgraph $S \upharpoonright p$ is maximally shared

Then

$$s \rightarrow_{\mathcal{R},p} t \qquad \Longleftrightarrow \qquad S \Rightarrow_{\mathcal{G}(\mathcal{R}),p} T$$

where T represents t

Idea

- condition **1** is invariant on innermost $\mathcal{G}(\mathcal{R})$ reductions
- recover condition 2 by extending rewrite relation with sharing

$$\stackrel{\geq}{\Rightarrow}_{\mathcal{G}} := \stackrel{\mathsf{i}}{\Rightarrow}_{\mathcal{G}} \cdot \geq$$

Theorem

suppose s is a term and S is a term graph representing s such that for redex position p in s

1 node corresponding to p is unshared

2 subgraph $S \upharpoonright p$ is maximally shared

Then

$$s \rightarrow_{\mathcal{R},p} t \qquad \Longleftrightarrow \qquad S \Rightarrow_{\mathcal{G}(\mathcal{R}),p} T$$

where T represents t

Theorem

$$s \stackrel{i}{\to} {}^{\ell}_{\mathcal{R}} t \qquad \Longleftrightarrow \qquad S \stackrel{\geq}{\Rightarrow} {}^{\ell}_{\mathcal{G}(\mathcal{R})} T$$

for suitable graph representations S and T of terms s and t

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable. $\operatorname{rc}_{\mathcal{R}}^{i}(n) \leqslant n^{k} \Rightarrow f \in \operatorname{FP}$ f computed by \mathcal{R}

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable. $\operatorname{rc}_{\mathcal{R}}^{i}(n) \leqslant n^{k} \Rightarrow f \in \operatorname{FP}$ f computed by \mathcal{R}

Proof Idea

1 *employ innermost rewriting for computation of results*

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable. $\operatorname{rc}_{\mathcal{R}}^{i}(n) \leqslant n^{k} \Rightarrow f \in \operatorname{FP}$ f computed by \mathcal{R}

Proof Idea

• employ innermost graph rewriting for computation of results adequacy theorem

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable. $\operatorname{rc}_{\mathcal{R}}^{i}(n) \leqslant n^{k} \Rightarrow f \in \operatorname{FP}$ f computed by \mathcal{R}

Proof Idea

 employ innermost graph rewriting for computation of results adequacy theorem

2 graphs grow only polynomial in size

 $S \stackrel{\geq}{\Rightarrow}_{\mathcal{G}}^{\ell} T \Rightarrow |T| \leqslant |S| + \ell \Delta$

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable. $\operatorname{rc}_{\mathcal{P}}^{i}(\boldsymbol{n}) \leq \boldsymbol{n}^{k} \Rightarrow f \in \operatorname{FP}$ f computed by \mathcal{R}

Proof Idea

1 employ innermost graph rewriting for computation of results adequacy theorem

2 graphs grow only polynomial in size $S \stackrel{\geq}{\Rightarrow}_{G}^{\ell} T \Rightarrow |T| \leq |S| + \ell \Delta$

3 each step computable in polynomial time

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable. $\operatorname{rc}_{\mathcal{R}}^{i}(n) \leqslant n^{k} \Rightarrow f \in \operatorname{FP}$ f computed by \mathcal{R}

Proof Idea

 employ innermost graph rewriting for computation of results adequacy theorem

2 graphs grow only polynomial in size $S \stackrel{\geq}{\Rightarrow}_{G}^{\ell} T \Rightarrow |T| \leq |S| + \ell \Delta$

3 each step computable in polynomial time in size of starting term

Theorem

If the (innermost) runtime-complexity of \mathcal{R} is polynomially bounded, then each function f computed by \mathcal{R} is polytime computable. $\operatorname{rc}_{\mathcal{R}}^{i}(n) \leqslant n^{k} \Rightarrow f \in \operatorname{FP}$ f computed by \mathcal{R}

Proof Idea

- employ innermost graph rewriting for computation of results adequacy theorem
- **2** graphs grow only polynomial in size $S \stackrel{\geq}{\Rightarrow}_{G}^{\ell} T \Rightarrow |T| \leq |S| + \ell \Delta$
- **3** each step computable in polynomial time in size of starting term
- 4 overall polynomial number of steps required

- notion of runtime-complexity is a reason cost model for rewriting
 - 1 cost of computation naturally expressed
 - 2 polynomially related to actual cost on Turing machines

- notion of runtime-complexity is a reason cost model for rewriting
 - 1 cost of computation naturally expressed
 - 2 polynomially related to actual cost on Turing machines
- runtime-complexity analysis gives rise automation

• TCT

http://cl-informatik.uibk.ac.at/research/software/tct

- notion of runtime-complexity is a reason cost model for rewriting
 - 1 cost of computation naturally expressed
 - 2 polynomially related to actual cost on Turing machines
- runtime-complexity analysis gives rise automation
 - CaT

http://cl-informatik.uibk.ac.at/research/software/ttt2

TCT

http://cl-informatik.uibk.ac.at/research/software/tct

 Matchbox/Poly http://dfa.imn.htwk-leipzig.de/matchbox/poly

- notion of runtime-complexity is a reason cost model for rewriting
 - 1 cost of computation naturally expressed
 - 2 polynomially related to actual cost on Turing machines
- runtime-complexity analysis gives rise automation
 - CaT

http://cl-informatik.uibk.ac.at/research/software/ttt2

- TCT http://cl-informatik.uibk.ac.at/research/software/tct
- Matchbox/Poly http://dfa.imn.htwk-leipzig.de/matchbox/poly

Future Work

extension of results to full rewriting

just finished

• classification of nondeterministic computation possible

- notion of runtime-complexity is a reason cost model for rewriting
 - 1 cost of computation naturally expressed
 - 2 polynomially related to actual cost on Turing machines
- runtime-complexity analysis gives rise automation
 - CaT

http://cl-informatik.uibk.ac.at/research/software/ttt2

- TCT http://cl-informatik.uibk.ac.at/research/software/tct
- Matchbox/Poly http://dfa.imn.htwk-leipzig.de/matchbox/poly

Future Work

extension of results to full rewriting

just finished

- classification of nondeterministic computation possible
- complexity preserving translations of (pure) functional programs