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Starting Point

Proving Positive Almost-Sure Termination

Olivier Bournez, Florent Garnier S

LORIA/INRIA, 615 Rue du Jardin Botanique
54602 Villers 1és Nancy Cedex, France

Abstract In order to extend the modeling capabilities of rewriting sys-
tems, it is rather natural to consider that the firing of rules can be subject
to some probabilistic laws. Considering rewrite rules subject to proba-
bilities leads to numerous questions about the underlying notions and
results.

We focus here on the problem of termination of a set of probabilistic
rewrite rules. A probabilistic rewrite system is said almost surely termi-
nating if the probability that a derivation leads to a normal form is one.
Such a system is said positively almost surely terminating if furthermore
the mean length of a derivation is finite. We provide several results and
techniques in order to prove positive almost sure termination of a given
set of probabilistic rewrite rules. All these technigues subsume classical
ones for non-probabilistic systems.

1 Introduction

Since 30 years, term rewriting has shown to be a very powerful tool in several

[ O. Bournez and F. Garnier. “Proving Positive Almost-Sure Termination”.
In Proc. of 16th RTA, pp. 323-337, 2005.



Probabilistic Abstract Reduction Systems

Definition (PARS — Bournez & Garnier, RTA’05)

Probabilistic abstract reduction system is tuple A = (A, —) s.t.:
+ Ais countable set of objects

+ — C A x Dist(A) maps elements from A to (discrete) probability
distributions over A

Intuitions:

1. probabilistic choice:
if a — {p; : bj};i then a reduces to b; with probability p;;

2. non-deterministic choice:
ifa — dy and a — d, (dy # ds), reduct is chosen from d; or d-.



Example: Random walk
PARS W = (N, —) where
n—{3:n+1;3:n—1} (foralln>0),

defines simple random walk on N:

1 1 1
2 2 2
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Example: Random walk

PARS W = (N, —) where
n—{3:n+1;3:n—1} (foralln>0),

defines simple random walk on N:

1 1 1
2 2 2
O ONBOEOWN0
%
% ~_ — ~_ — ~_ —
1 1 1
2 2 2

Some properties of interest:
+ almost-sure termination
« positive almost-sure termination
+ expected runtime
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Dynamics: As Stochastic Processes

+ Bournez and Garnier model reductions as stochastic processes
X = X07X17X27X37 s
- nth random variable X, gives the nth reduct (or 1)

+ random variable Tx over N U {oo} measures reduction length

- expected reduction length defined as expectation of Tx:

E(Tx) £ f:n P(Tx =n) (=) _P(Tx >n))
n=1

n>1
+ +a.s. terminating (or PAST) if E(Tx) € N for all X
Pros
« solid theoretical foundation
Cons
« definition of whole machinery involved



Mixing Nondeterministic and Probabilistic Choice
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Mixing Nondeterministic and Probabilistic Choice

a—>{%:b1, %Zbg}

Trajectories

by = ¢ by = C

X3:{%:d1,%:d2}

Stochastic Process

A

c —dy

c —dy

{1:a}
$

{% 5b17% tbof

{%Zdhéldgﬁ

Multidistribution
Reduction

parameterised by strategy ¢:

¢(absc) = (c — dy) ¢(abyc) = (¢ — da)
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Dynamics: As Multidistribution Reductions

« a (finite) multidistribution over A is a (finite) multiset

p=Ap1:ai,....,pn:an},
where 0 < p; <1, a; € Aand

‘:U«‘ ZPIS 1.

« for PARS A = (A, —), reduction relatlon ~ 4 is defined s.t.:

fpr:a1,....pn:an} ~apr-v1W---Wpp vy,
where either
- v; = d; for some d; with a; — d;, or
- v; = @ if a; is terminal.

« expected derivation length of reduction M = g ~> 4 1 ~4 .. .:

edi(M) £ " || .

n>1



Reductions vs Stochastic Processes

Theorem (A., Dal Lago & Yamada, FLOPS’18)

Stochastic sequence X = {X, }n,cn and probabilistic reductions
M = 119 ~» 1 ~ ... are in one-to-one correspondence with:

P(X, = a) = |unla (foralln e Nanda € A),

where |p|q £ >_(p:a)ep P denotes the total probability of a in pu.



Reductions vs Stochastic Processes

Theorem (A., Dal Lago & Yamada, FLOPS’18)

Stochastic sequence X = {X, }n,cn and probabilistic reductions
M = 119 ~» 1 ~ ... are in one-to-one correspondence with:

P(X, = a) = |unla (foralln e Nanda € A),
where |p|q £ >_(p:a)ep P denotes the total probability of a in pu.

Corollary
edl(M) =E(Tx) .



Probabilistic Ranking Functions

Definition (Bournez & Garnier, RTA'05)

Function [-] : A — Rxg is (Lyapunov) ranking function for PARS
A= (A, —) if for some € > 0,

a—d = [a] > E([d]),

where E({p; - x;};) £ > pi-xiand x >, yif x > y + .



Probabilistic Ranking Functions

Definition (Bournez & Garnier, RTA'05)

Function [-] : A — Rxg is (Lyapunov) ranking function for PARS
A= (A, —) if for some € > 0,

a—d = [a] > E([d]),

where E({p; - x;};) £ > pi-xiand x >, yif x > y + .

Example

Consider the biased random walk W% = (N, —) where
n—{1/3:n+1;2/3: n—1} (forall n>0),
define [n] £ n and take e = . Then for all n > 0,

[n] > (1/3)-[n+1] +(2/3)-[n—1] .



Probabilistic Ranking Functions

Definition (Bournez & Garnier, RTA'05)
Function [-] : A — Rxg is (Lyapunov) ranking function for PARS
A= (A, —) if for some e > 0,
a—d = [a] >E([d]),
where E({p; - x;};) £ > pi-xiand x >, yif x > y + .

Theorem (Bournez & Garnier, RTA'05)
1. Soundness: If [-] is a ranking function for A, then A is PAST.

2. Completeness: If A is finitely branching and PAST, then there exists a
ranking function [-] for A.



Probabilistic Ranking Functions, revisited

Theorem (A., Dal Lago & Yamada, FLOPS’18)

Let [-] be a ranking function for A.
1. Soundness: If [-] is a ranking function for A, then edh 4(a) < [a] - 1
foralla € A.

2. Completeness: If edh4(a) € N for all a € A, then [a] £ edh4(a) is a
ranking function for A.



Probabilistic Ranking Functions, revisited

Theorem (A., Dal Lago & Yamada, FLOPS’18)

Let [-] be a ranking function for A.

1. Soundness: If [-] is a ranking function for A, then edh 4(a) < [a] - 1
foralla € A.

2. Completeness: If edh4(a) € N for all a € A, then [a] £ edh4(a) is a
ranking function for A.

Example

Consider

an = {3 :ant1;5:0} a—2"-n n+1—n (forallneN).

« this PARS is PAST, i.e., edl(M) € N for every reduction sequence M;

- edh(ag) > & - (2" -n) = nforall n € N, i.e., is not bounded.



Probabilistic Term Rewrite Systems

« probabilistic TRS R is finite set of probabilistic rewrite rules | — d

randy (zs) — {3 : @5, 3 : randy(0) :: randy (zs)}

randy(n) — {3 : n, 5 : randy(succ(n))}

- rewrite relation ~-% defined in terms of underlying PARS R



Interpretation Method for Runtime Analysis

Definition (Hirokawa & Moser, IJCAR’08)

Monotone algebra ([-], ) on domain X consists of:

. interpretations [£] : X — X satisfying:
- monotonicity: x =y = [£](...,%,...) = [£](...,y,...);

+ order > C X x X satisfying:
- collapsibility: x = y = G(x) >, G(y) for some G : X — R>;
orients TRS R if
| -reR = [la>[rla for all assignments o : V — X.
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Monotone algebra ([-], ) on domain X consists of:

. interpretations [£] : X — X satisfying:
- monotonicity: x =y = [£](...,%,...) = [£](...,y,...);

+ order > C X x X satisfying:
- collapsibility: x = y = G(x) >, G(y) for some G : X — R>;
orients TRS R if
| -reR = [la>[rla for all assignments o : V — X.
Theorem (Hirokawa & Moser, 1JCAR’08)
Suppose ([-], ) orients the TRS R. Then

dhx(®) < G([t]) - -



Interpretation Method for Runtime Analysis

Definition (A., Dal Lago & Yamada, FLOPS’18)
Barycentric, monotone algebra ([-],E, >) on domain X consists of:
+ barycentric operation E : Dist(X) — X
- interpretations [£] : X* — X satisfying:
- monotonicity: x =y = [£](....x,...) = [£] (..., y,...);
- concavity: [£](....,E({pi: xi}i),-..) = E{pi : [£] (.-, Xis. .. ) }i)-
+ order - C X x X satisfying:
- collapsibility: x =y = G(x) >. G(y) for some G : X — R>;
orients TRS R if
| -deR = [l[Ja = E([d]a) forall assignments o : V — X.

Theorem (A., Dal Lago & Yamada, FLOPS’18)
Suppose ([-],E, ) orients the PTRS R. Then

edhz () < G([{]) - %



Instances of Barycentric Algebras

1. multi-linear polynomial interpretations ([-], E, >.) where

[El (e, xa) = > o [][x (v €N/Q/R)

VC{X1,....Xn } x;iev
2. matrix interpretations ([-], E, >.) where
[£] (X1, ..., x Z Ci-%+¢C (Cj e mem/mem/Rmxm>

and
X' > ()= X >prand X)" > ).



Conclusion

« simple notion of reduction for probabilistic ARSs / TRSs based on
multidistributions

« recovered the completeness proof of Lyapunov ranking functions

« barycentric algebras for reasoning about expected runtimes of
probabilistic TRSs

« implementation of polynomial & matrix interpretations (over
RZ,) in NaTT



