
On Kernel’s Safety in the Spectre Era
(And KASLR is Formally Dead)

Davide Davoli

Inria, Université Côte d’Azur

Sophia Antipolis, France

davide.davoli@inria.fr

Martin Avanzini

Inria, Université Côte d’Azur

Sophia Antipolis, France

martin.avanzini@inria.fr

Tamara Rezk

Inria, Université Côte d’Azur

Sophia Antipolis, France

tamara.rezk@inria.fr

ABSTRACT
The efficacy of address space layout randomization has been for-

mally demonstrated in a shared-memory model by Abadi et al.,

contingent on specific assumptions about victim programs. How-

ever, modern operating systems, implementing layout randomiza-

tion in the kernel, diverge from these assumptions and operate on

a separate memory model with communication through system

calls. In this work, we relax Abadi et al.’s language assumptions

while demonstrating that layout randomization offers a comparable

safety guarantee in a system with memory separation. However, in

practice, speculative execution and side-channels are recognized

threats to layout randomization. We show that kernel safety can-

not be restored for attackers capable of using side-channels and

speculative execution and introduce a new condition, that allows

us to formally prove kernel safety in the Spectre era. Our research

demonstrates that under this condition, the system remains safe

without relying on layout randomization. We also demonstrate that

our condition can be sensibly weakened, leading to enforcement

mechanisms that can guarantee kernel safety for safe system calls

in the Spectre era.

CCS CONCEPTS
• Security and privacy→ Formal security models; Operating
systems security; Side-channel analysis and countermeasures.

KEYWORDS
Speculative execution; layout randomization; memory safety; con-

trol flow integrity; kernel safety

ACM Reference Format:
Davide Davoli, Martin Avanzini, and Tamara Rezk. 2024. On Kernel’s Safety

in the Spectre Era (And KASLR is Formally Dead). In Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security (CCS
’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3658644.3670332

1 INTRODUCTION
Memory safety violations on kernel memory can result in serious

ramifications for security, such as e.g. arbitrary code execution,

privilege escalation, or information leakage. In order to mitigate

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10.

https://doi.org/10.1145/3658644.3670332

safety violations, operating systems — such as Linux — employ

address space layout randomization [18, 19, 30, 42, 43, 47]. This

protection measure can prevent attacks that depend on knowledge

of specific data or function location, as it introduces randomization

of these addresses.

On the one hand, the efficacy of layout randomization has been

formally demonstrated in Abadi et al.’s line of work [2–4], as a

protective measure within a shared-memory model between the

attacker and the victim. These results, however, are contingent on

specific assumptions regarding victim programs, notably the ab-

sence of pointer arithmetic, introspection, or indirect jumps. These

precise constraints shaped a controlled environment where mem-

ory safety could be enforced effectively via layout randomization.

However, operating systems employing layout randomization on

kernel (a.k.a. KASLR in Linux e.g. [19]) diverge from these assump-

tions. Notably, they operate on a separate memory model, wherein,

kernel code — acting as the victim — resides on kernel memory,

while user code — acting as the potential attacker — resides in user

space. The interaction between the two occurs through a limited

set of functions provided via system calls [55]. In the operating

system’s realm, system calls may be written in C and assembly code,

further deviating from the restricted conditions outlined by Abadi

et al. This introduces a distinction not only in the expressiveness of

victim code considered but also in the underlying memory model.

Hence, our first research question emerges: can we relax the

language assumptions proposed by Abadi et al. [2–4] while con-

currently demonstrating that layout randomization offers a com-

parable safety guarantee in a system with memory separation?

We affirmatively respond to this question by showcasing that lay-

out randomization probabilistically ensures kernel safety within

a classic attacker model, where users of an operating system exe-

cute without privileges and victims can feature pointer arithmetic,

introspection, and indirect jumps.

On the other hand, in the current state-of-the-art of security,

often referred to as the Spectre era, speculative execution and side-

channels are well known to be effective vectors for compromising

layout randomization [24, 26, 35, 37–39]. Indeed, our first result

neglects the impact of speculative execution and side-channels.

Recognizing this limitation, our second research question arises:

can we restore a similar safety result in the Spectre era?

In this regard, we formally acknowledge that by relying solely

on layout randomization it is not possible to restore kernel safety.

We then introduce a new condition, called speculative layout non-
interference akin to speculative constant-time [14], which intuitively

asserts that victims should not unintentionally leak information on

the kernel’s layout through side-channels. Our research formally

demonstrates that under this assumption, the system is safe, and

https://orcid.org/0009-0009-2981-2962
https://orcid.org/0000-0002-6445-8833
https://orcid.org/0000-0003-3744-0248
https://doi.org/10.1145/3658644.3670332
https://doi.org/10.1145/3658644.3670332

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Davide Davoli, Martin Avanzini, and Tamara Rezk

perhaps surprisingly, without the necessity of layout randomization.

Later, we show that speculative layout non-interference is not a

necessary requirement, and this motivates us to study how safety

can be enforced without requiring that property.

Our third contribution is to show that kernels can be protected

even without requiring speculative layout non-interference. Follow-
ing other similar works [17, 57], we do so by relating safety in the

classic execution model to the speculative one. We achieve this

result by defining a program transformation by which we enforce

safety against speculative attackers on a system that does not con-

form to this property. This transformation, in turn, requires the

system to enjoy a notion of safety that cannot be provided by layout

randomization, but that is sensibly weaker than the safety property

it enforces. This marks the first formal step toward strengthening

kernel safety in the presence of speculative and side-channel vul-

nerabilities, and the surpassing of layout randomization as a system

level protection mechanism.

In summary, our contributions are:

• We formally demonstrate the effectiveness of layout random-

ization to provide kernel safety for a classic operating system

scenario, with system calls offered as interfaces to attackers

and different privilege execution modes, as well as kernel

and user memory separation.

• We empower attackers in our first scenario to execute side-

channel attacks and utilize speculative execution. Demon-

strating that kernel safety is not maintained under this more

potent attacker model, we subsequently present a sufficient

condition to ensure kernel safety.

• We show that it is possible to enforce safety against spec-

ulative attackers on a system that enjoys weaker security

guarantees by the application of a program transformation.

The paper is structured as follows: in Section 2 we give an

overview of the contributions of this paper, motivated by some

concrete examples. In Section 3, we introduce our execution model

by giving its language and semantics; in Section 4, we establish

threat models. Section 5 is devoted to showing that layout ran-

domization is an effective protection measure for attacks that do

not rely on speculative execution and side-channel observations.

In Section 6 we first extend the model of Section 3 to encompass

time-channel info leaks and speculative execution, then we show

that layout randomization is not a viable protection mechanism

in this scenario. In Section 7 we show that it is feasible to convert

any system that is safe against classic attackers into an equivalent

system that is safe against speculative attackers. Finally, we con-

sider related work in Section 8, and we conclude in Section 9. An

extended version of this paper with the complete semantics and

the omitted proofs is available online [?].

2 MOTIVATION
Each year, dozens of vulnerabilities are found in commodity op-

erating systems’ kernels, and the majority of them are memory

corruption vulnerabilities [53]. A kernel suffers a memory corrup-

tion vulnerability when an unprivileged attacker can trigger it to

read or write its memory in an unexpected way, usually, by issuing

a sequence of system calls with maliciously crafted arguments. In

Figure 1, we show a pair of system calls of a hypothetical system

int buf[K+1][H];
int recv(socket* s, size_t idx) {

if (valid(s, idx)) return buf[*s][idx];
return 0;

}
void send(socket* s, size_t idx , int msg) {

if (valid(s, idx)) {
buf[*s][idx] = msg;
if (buf[K][0] != NULL) (*buf[K][0])(s, idx);

}
}

Figure 1: System Calls vulnerable to memory corruption

that are subject to this kind of vulnerability. The recv and send
system calls are meant to implement a simple message passing

protocol. The implementation supports up to K sockets, each socket

storing up to H messages. A user can send messages by invoking

the system call send, and read them with the system call recv.
These system calls employ a shared buffer buf that stores messages,

together with a hook for a customizable callback buf[K][0]. If
specified, this callback is executed after a message is sent. Such a

callback may, for instance, signal the receiver that a new message

is available.

These system calls are meant to interact only with the memory

containing the buffer, the code of the called functions and with the

resources that these function in turn access. In the following, we

will refer to the set of memory resources that a system call may

access rightfully as the capabilities of that system call. Depending

on the implementation of the valid function, these system calls can

suffer from memory corruption vulnerabilities. For instance, if the

valid function does not perform any bound checks on the value of

idx, these two system calls can be used by the attacker to perform

arbitrary read and write operations. In particular, if the attacker

supplies an out-of-bounds value for idx to the recv system call, the

system call can be used to perform an unrestricted memory read.

Similarly, the send system call can be used to overwrite any value of

kernel memory and, in particular, to overwrite the function pointer

to the callback that is stored within the buffer. This means that the

attacker can turn this memory-vulnerability into a control-flow

vulnerability, as it can deviate the control flow from its intended

paths. When this happens, we talk about violations of control flow

integrity (CFI) [1].

However, if the system that implements these system calls is

protected with layout randomization — like many commodity oper-

ating systems do [18, 19, 30, 42, 43, 47] — the exploitation of these

vulnerabilities is not a straightforward operation. For instance, if

an attacker wants to mount a privilege-escalation attack, one of

the viable ways is to disable the SMEP protection by running the

native_write_cr4 function. When this protection is disabled, the

attacker is allowed to run any payload stored in user-space. To this

aim, the attacker can use the send system call twice: the first time

to run the native_write_cr4 function instead of the callback, and

the second time to run the payload. However, in order to do so, the

attacker has to first infer the address of native_write_cr4. In the

absence of side channel info-leaks, an attacker has to effectively

On Kernel’s Safety in the Spectre Era
(And KASLR is Formally Dead) CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

guess this address and, due to layout randomization, the probability

of success is low.

This is what we show with our first result (Theorem 5.3): with-

out side-channel leaks (and speculative execution), if a system is

protected with layout randomization, the probability that an un-

privileged attacker leads the system to perform an unsafe memory

access is very low, provided the address space is sufficiently large.

Of course, the precise probability depends on the concrete random-

ization scheme. We emphasize that this result is compatible with

the large number of kernel attacks that break Linux’s kernel layout

randomization, e.g. by means of heap overflows ([52]). The distri-

bution of Linux’s heap addresses lack entropy [21], in consequence,

the probability of mounting a successful attack are relatively high.

Although it was already well known that layout randomization

can provide some security guarantees [2–4], the novelty of The-

orem 5.3 lies in showing that these guarantees are valid even if

victims can perform pointer arithmetic and indirect jumps.

Despite this positive result, the threat model considered in The-

orem 5.3 is unrealistic nowadays. In particular, it does not take

in account the ability of the attackers to access side-channel info-

leaks and to steer speculative execution. There is evidence that, by

leveraging similar features, the attackers can leak information on

the kernel’s layout [26, 29, 35, 38, 39] and compromise the security

guarantees offered by layout randomization [24, 37].

In particular, if the system under consideration suffers from side-

channel info-leaks that involve the layout, an attacker may break

the protection offered by randomization. As an illustrative example,

suppose the system contains the following system call:

int sc_leak(x){
if ((void*) x == (void*) native_write_cr4)

for(int i = 0; i < K; i++);
return 0;

}

By measuring the execution time of the system call, an attacker

may deduce information on the location of native_write_cr4. If
a call sc_leak(a) takes sufficiently long to execute, the attacker can

deduce that the address a corresponds to that of native_write_cr4.
Once deduced, the attacker will be effectively able to disable SMEP

protection via the vulnerable system call send.
Similar attacks can be mounted by taking advantage of spec-

ulative execution: in our example from Figure 1, an attacker can

make use of the read primitive to probe for readable data without

crashing the system. This can be done by supplying to the system

call arguments s and idx such that valid(s, idx) returns false

— ideally, causing an out of bound access when the return value is

fetched from memory. If the attacker manages in mis-training the

branch predictor, the access to buf[*s][idx] is performed in tran-

sient execution. Depending on the allocation state of the address

referenced by buf[*s][idx], two cases arise. If that address does

not store any readable data, the memory violation is not raised to

the architectural state, because it occurred during transient exe-

cution. Most importantly, if that address stores writable data, this

operation loads a new line in the system’s cache and, as soon as

the system detects the mis-prediction, the execution backtracks

to the latest valid state. Although this operation does not affect

the architectural state, the insertion of a new line in the cache can

be detected from user-space. Thus, the attacker can infer that the

Expr ∋ E, F ::= 𝑣 values
| 𝑥 register
| a array identifier
| f procedure identifier
| op(E1, . . . , E𝑛) operation

Instr ∋ I, J ::= skip no-op
| 𝑥 := E assignment
| 𝑥 := *E memory load
| *E := F memory store
| call F(E1, . . . , E𝑛) procedure call
| syscall s(E1, . . . , E𝑛) system call
| if E then P else Q fi conditional
| while E do P od while loop

Cmd ∋ P, Q ::= 𝜖 | I; P

Figure 2: Syntax of the language.

address referenced by buf[*s][idx] contains readable data, and it
can make use of the vulnerabilities of the send and the recv system
calls to read or write the content of that memory address. This form

of speculative probing is very similar to what happens, for instance,

in the BlindSide attack [24] that effectively defeats Linux’s KASLR.

The reader may observe that these two attacks rely on the at-

tacker’s ability to reconstruct the kernel’s memory layout by col-

lecting side-channel info-leaks. For this reason, a natural question

is whether these attacks can be prevented by imposing that no

information of the layouts leaks to the architectural and the micro-

architectural state during the execution of system calls. It turns out

that this is the case, as we show in Theorem 6.4. In practice, this

mitigation is of little help though, as it would effectively rule out

all system calls that access memory at runtime.

However, we are able to show that any operating system can

be pragmatically turned into another system that is architecturally

equivalent to it, but that is not subject to vulnerabilities that are due

to transient execution. With this approach, showing that a kernel is

safe in the speculative execution model, reduces to showing that the

kernel under consideration is safe in the classic execution model.

Notably, this holds independently of the technique that is used to

show safety in the classic model. Concretely, with this approach,

the attack we showed above would be prevented by disallowing the

transient execution of the unsafe load operation. In turn, this can

be achieved by placing an instruction that stops transient execu-

tion before that operation. The efficacy of this technique is shown

in Theorem 7.4.

3 THE LANGUAGE
In this section, we introduce the language that we employ through-

out the following to study the effectiveness of kernel address space

layout randomization.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Davide Davoli, Martin Avanzini, and Tamara Rezk

Syntax and informal semantics. We are considering a simple

imperative while language. The address space is explicit, and seg-

regated into user and kernel space. The set Cmd of commands is
given in Figure 2. Memories may store procedures and arrays, i.e.,
sequences of values 𝑣 ∈ Val organized as contiguous regions. The

set of values is left abstract, but we assume that it encompasses

at least Boolean values Bool ≜ {true, false}, (memory) addresses
Addr, and an undefined value null. Within expressions, 𝑥 ∈ Reg
ranges over registers, a ∈ ArrId and f ∈ FunId over array and

procedure identifiers, and op ∈ Ops over operations. Identifiers
Id ≜ ArrId ⊎ FunId are mapped to addresses at runtime, as gov-

erned by a layout randomization scheme. The size (length) of an
array a is denoted by size(a) and is fixed for simplicity, i.e., we do

not model dynamic allocation and deallocation.

A command P ∈ Cmd is a sequence of instructions, evaluated in-

order. The instruction 𝑥 := E stores the result of evaluating Ewithin
register 𝑥 ∈ Reg. To keep the semantics brief, expressions neither

read nor write to memory. Specifically, addresses are dereferenced

explicitly. To this end, the instruction 𝑥 := *E performs a memory

read from the address given by E, and stores the corresponding

value in register 𝑥 . Dually, the instruction *E := F stores the value

of F at the address given by E. The instruction call F(E1, . . . , E𝑛)
invokes the procedure residing at address F in memory, supply-

ing arguments E1, . . . , E𝑛 . Likewise, syscall s(E1, . . . , E𝑛) invokes
a system call s ∈ Sys with given arguments. The execution of a

system call engages the privileged execution mode and thereby the

accessible address space changes. To this end, the address space

Addr is partitioned into kernel-space addresses Addrk , visible in

privileged mode, and user-space addresses Addru, visible in unpriv-

ileged mode. The remaining constructs are standard.

Stores. Regarding the address space, we categorize identifiers

Id into two distinct sets: kernel-space identifiers Idk and user-space
identifiers Idu. This distinction signifies the intended location of the

corresponding objects within the memory address space. We write

FunIdk ⊆ Idk and FunIdu ⊆ Idu for the kernel-space and user-space
procedure idenitifiers; similar for array identifiers. Let ids(P) ⊆ Id
refer to the set of identifiers literally occurring in P. A store is a
(well-sorted) mapping 𝜏 : Id → Arr ∪ Cmd, mapping

(1) procedure identifiers f to their implementation 𝜏 (f) ∈ Cmd;
and

(2) array identifiers a to arrays 𝜏 (a) of size |𝜏 (a) | = size(a).
Here, Arr(𝑛) denotes the set of arrays of size 𝑛, i.e., finite sequence
®𝑣 of values of fixed length 𝑛, and Arr the set of arrays of arbitrary
size. We write 𝜏 =𝐼𝑑 𝜏 ′ if 𝜏 and 𝜏 ′ coincide on 𝐼𝑑 ⊆ Id.

Capabilities. To model our notion of safety, each system call s is

associated at runtime with a fixed set of identifiers that it is meant

to access. In the following, we call that set the capabilities of s. This
set identifies those memory areas that are safe to access, when a

certain system call is running.

Systems. Let Sys denote a (finite) set of system call identifiers. A
system for Sys is a tuple 𝜎 = (𝜏,𝛾, 𝜉), consisting of:

– a store 𝜏 : Id → Arr ∪ Cmd, relating identifiers to their initial

value;

– a system call map 𝛾 : Sys → Cmd associating system calls to

their implementation; and

– a capability map 𝜉 : Sys → P
(
Idk

)
associating system calls

with their capabilities.

To prevent trivial memory safety violations, we impose the follow-

ing two restrictions:

(i) the code 𝜏 (f) associated to user space identifiers f ∈ FunIdu
is unprivileged, i.e. ids(P) ⊆ Idu;

(ii) the capabilities 𝜉 (s) of a system call s contain at least those

identifiers 𝐼 that s refers to in code, taking procedure calls

into account. Concretely, this means that we assume 𝐼 ⊆
𝜉 (s), where 𝐼 is the least set containing identifiers occurring
in the body of s (ids(𝛾 (s)) ⊆ 𝐼), and that is closed under

procedure calls (i.e., if f ∈ 𝐼 then ids(𝜏 (f)) ⊆ 𝐼).

Observe that by dropping (i) a user-space function may return

information on the kernel layout, such as the address of a kernel

function to the attacker, making the protection offered by layout

randomization vanish. Restriction (ii) relates the capabilities of a

system calls to its code, thereby avoiding trivial mis-classifications.

For the sake of simplicity, we also assume that neither kernel-

space procedures nor system calls perform system calls themselves.

These assumptions, although not substantial, are commonly verified

by commodity operating systems.

Memories and Layouts. A store 𝜏 determines the contents of

a memory, but not its layout, which is governed by a function

𝑤 : Id → Addr associating identifiers with their concrete mem-

ory addresses. Memories are modeled as functions 𝑚 : Addr →
Val ∪ Cmd ∪ {∗}, associating addresses with their content. Arrays

within 𝜏 will be laid out as continuous memory regions; ∗ ∉ Val
marks that an address is unoccupied in memory. We denote by

Mem the set of all memories. In the semantics, we will keep the

distinction of procedures from values, thereby modeling a WˆX

memory protection policy, separating writable from executable

memory space.

Let 𝜅u and 𝜅k denote the size of user-space and kernel-spaces ad-

dresses Addru and Addrk . For simplicity, we assume that Addru =

{0, . . . , 𝜅u − 1} and Addrk = {𝜅u, . . . , 𝜅u + 𝜅k − 1}, i.e., that user
and kernel address spaces are themselves continuous and consec-

utive regions in memory. Given a store 𝜏 , we will always assume

that the address space is sufficiently large to hold 𝜏 ; that is, 𝜅𝑏 ≥∑
id∈Id𝑏 size(id) (𝑏 ∈ {u, k}). Here, by convention size(f) ≜ 1.

A (memory) layout is a function 𝑤 : Id → Addr that describes
where objects are placed in memory. As we mentioned, an array a is
stored as continuous block at addresses𝑤 (a) ≜ {𝑤 (a), . . . ,𝑤 (a) +
size(a) − 1} within memory. For procedure identifiers f, we set

𝑤 (f) ≜ {𝑤 (f)}. We overload this notation to arbitrary sets of

identifiers in the obvious way. In particular,𝑤 (ArrId) and𝑤 (FunId)
refer to the address-spaces of arrays and procedures, under the

given layout. We regard only layouts that associate identifiers with

non-overlapping blocks (𝑤 (id1) ∩𝑤 (id2) = ∅ for all id1 ≠ id2)
and that respect address space separation (𝑤 (id) ⊆ Addr𝑏 for

id ∈ Id𝑏 , 𝑏 ∈ {u, k}). The set of all such layouts is denoted by Lay.
Note that, by the assumptions on 𝜅u and 𝜅k , Lay is non-empty.

On Kernel’s Safety in the Spectre Era
(And KASLR is Formally Dead) CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

The application of a layout to a store results in a memory and is

defined in the standard way:

(𝑤 ⋄ 𝜏) (𝑝) ≜


P if 𝜏 (𝑤−1 (𝑝)) = P ∈ Cmd,
𝑡 if𝑤 (a) + 𝑘 = 𝑝 , 𝜏 (a) = ®𝑣 ∈ Arr and ®𝑣 [𝑘] = 𝑡

for some a ∈ ArrId and 0 ≤ 𝑘 < size(a),
∗ otherwise,

where ®𝑣 [𝑘] denotes the 𝑘-th element of the tuple ®𝑣 , indexed starting
from 0.

Abstracting from details, we model an address space random-

ization scheme through a probability distribution over layouts. A

specific layout𝑤 is established prior to system execution by select-

ing a memory layout at random. For a given system 𝜎 = (𝜏,𝛾, 𝜉),
this choice then dictates the initial memory configuration 𝑤 ⋄ 𝜏 .
Although the semantics is itself deterministic, computation can

be viewed as a probabilistic process. Notably, as instructions are

layout-sensitive—such as the result of a memory load operation at

a specific address is contingent on whether𝑤 positions an object

at that address—kernel’s safety should be construed as a property

that holds in a probabilistic sense.

Operational semantics. In the following, we endow our while-
language with a small-step operational semantics. Due to the pres-

ence of (possible recursive) procedures, configurations make use

of a stack of frames. Each such frame records the command under

evaluation, the register contents and the execution mode. Formally,

configurations are drawn from the following BNF:

𝑏 ::= u | ks execution mode
𝐹 ::= 𝜀 | ⟨P, 𝜌, 𝑏⟩ : 𝐹 frame stack

𝐶, 𝐷 ::= (𝐹,𝑚) | err | unsafe configuration

A configuration is either of the form (𝐹,𝑚), where 𝐹 is a (non-

empty) frame stack and𝑚 the current memory. A top-frame ⟨P, 𝜌, 𝑏⟩
indicates that P is executed with allocated registers, modeled as a

mapping 𝜌 : Reg→ Val, in mode 𝑏. In particular, 𝑏 = ks indicates
that execution proceeds in privileged kernel-mode, triggered by

system call s. The annotation of the kernel-mode flag by a system call

name facilitates the instrumentation of the semantics. Indeed, every

time an access to thememory ismade, the semantics checkswhether

that address is in the capabilities of the system call that is running

(if any). If the address can be accessed, the execution proceeds

regularly, otherwise it halts in the unsafe state. Finally, an error err
signals abnormal termination (for instance, when dereferencing a

kernel-space reference in user-space mode or vice versa).

The small step operational semantics takes now the form

𝑤 ⊢𝜎 𝐶 → 𝐷,

indicating that, w.r.t. system 𝜎 , configuration𝐶 reduces to 𝐷 in one

step, under layout𝑤 . The reduction rules are defined in Figure 3.

Rules [Load] implements a successful memory load 𝑥 := *E. Ex-

pression E is evaluated to an address 𝑝 = JEKAddr𝜌,𝑤 , and the register

content of 𝑥 is updated with the value 𝑚(𝑝) residing at address

𝑝 in the memory 𝑚. Notice that, the semantics of an expression

depends, besides register contents, on the layout 𝑤 that resolves

identifiers to memory addresses. The side-condition 𝑝 ∈ 𝑤 (ArrId𝑏)
enforces that 𝑝 refers to a value accessible in the current execution

mode 𝑏 (by slight abuse of notation, we disregard the system call

label in kernel-mode), otherwise the instruction leads to err (see
rule [Load-Error]). As such, we are modeling unprivileged exe-

cution and SMAP protection, preventing respectively the access

of kernel-space addresses when in user-mode, and vice versa. The

final, boxed, side-condition refers to the safety instrumentation. In

kernel-mode, triggered by system call s (𝑏 = ks), the rule ensures
that 𝑝 refers to an object within the capabilities of s (𝑝 ∈ 𝑤 (𝜉 (s))).
When this condition is violated, unsafe execution is signaled (see

rule [Load-Unsafe]). In a similar fashion, the rules for memory

writes and procedure calls are defined.

Rule [Call] deals with procedure calls. It opens a new frame

and, by convention, places the 𝑛 evaluated arguments at registers

𝑥1, . . . , 𝑥𝑛 in an initial register environment 𝜌0. System calls, mod-

eled by rule [SystemCall], follow the same calling convention.

Note that in the newly created frame, the execution flag is set to

kernel-mode. Once a procedure or system call finished evaluation,

rule [Pop] removes the introduced frame from the stack. Note how

the rule permits return values through a designated register ret.
The remaining rules are standard.

Let us denote by𝑤 ⊢𝜎 𝐶 →∗ 𝐷 that configuration 𝐶 reduces in

zero or more steps to configuration 𝐷 , and by𝑤 ⊢𝜎 𝐶 ↑ that 𝐶 di-
verges. In our semantics, under layout𝑤 , any non-diverging compu-

tation halts in a terminal configuration of the form (⟨𝜖, 𝜌, 𝑏⟩,𝑤 ⋄ 𝜏 ′),
or abnormally terminates through an error err or through a safety

violation unsafe. This motivates the following definition of an eval-

uation function:

Eval𝜎,𝑤 (P, 𝜌, 𝑏, 𝜏) ≜



Ω if𝑤 ⊢𝜎 (⟨P, 𝜌, 𝑏⟩,𝑤 ⋄ 𝜏) ↑,
(𝑣, 𝜏 ′) if𝑤⊢𝜎 (⟨P, 𝜌, 𝑏⟩,𝑤 ⋄ 𝜏)

→∗ (⟨𝜖, 𝜌 [ret ↦→ 𝑣], 𝑏⟩,𝑤 ⋄ 𝜏 ′),
err if𝑤 ⊢𝜎 (⟨P, 𝜌, 𝑏⟩,𝑤 ⋄ 𝜏) →∗ err,
unsafe if𝑤 ⊢𝜎 (⟨P, 𝜌, 𝑏⟩,𝑤 ⋄ 𝜏) →∗ unsafe.

Note how, in the case of normal termination, we consider the

return value as well as the memory contents of the result.

4 THREAT MODEL
In our threat model, attackers are unprivileged user-space programs

that execute on a machine supporting two privilege rings: user-

mode and kernel-mode. The victim is the host operating system

which runs in kernel mode and has exclusive access to its private

memory. In particular, the operating system exposes a set of proce-

dures, the system calls, that can be invoked by the attacker and that

have access to kernel’s memory. The attacker’s goal is to trigger a

system call to perform an unsafe memory access.

In Section 5, attackers are ordinary programs that do not con-

trol speculative execution and do not have access to side-channel

info-leaks. However, the target machine implements standard miti-

gations against this kind of attacks. In particular, it supports data

execution protection mechanisms (DEP), SMAP [16] that prevents

kernel-mode access to user-space data, and SMEP [20] that prevents

the execution of user-space functions when running in kernel-mode.

More precisely, the above-mentioned protection mechanisms are

modeled in our semantics by the preconditions of the rules [Call],

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Davide Davoli, Martin Avanzini, and Tamara Rezk

JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∈ 𝑤 (ArrId𝑏) 𝑏 = ks ⇒ 𝑝 ∈ 𝑤 (𝜉 (s))

𝑤 ⊢𝜎 (⟨𝑥 := *E; P, 𝜌, 𝑏⟩ : 𝐹,𝑚) → (⟨P, 𝜌 [𝑥 ←𝑚(𝑝)], 𝑏⟩ : 𝐹,𝑚)
[
Load

]
JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∉ 𝑤 (ArrId𝑏)

𝑤 ⊢𝜎 (⟨𝑥 := *E; P, 𝜌, ks⟩ : 𝐹,𝑚) → err
[
Load-Error

] JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∈ 𝑤 (ArrIdk) 𝑝 ∉ 𝑤 (𝜉 (s))

𝑤 ⊢𝜎 (⟨𝑥 := *E; P, 𝜌, ks⟩ : 𝐹,𝑚) → unsafe
[
Load-Unsafe

]
JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∈ 𝑤 (ArrId𝑏) 𝑏 = ks ⇒ 𝑝 ∈ 𝑤 (𝜉 (s))

𝑤 ⊢𝜎 (⟨*E := F; P, 𝜌, 𝑏⟩ : 𝐹,𝑚) → (⟨P, 𝜌, 𝑏⟩ : 𝐹,𝑚[𝑝 ← JFK𝜌,𝑤])
[
Store

]
JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∉ 𝑤 (ArrId𝑏)

𝑤 ⊢𝜎 (⟨*E := F; P, 𝜌, 𝑏⟩ : 𝐹,𝑚) → err
[
Store-Error

] JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∈ 𝑤 (ArrIdk) 𝑝 ∉ 𝑤 (𝜉 (s))

𝑤 ⊢𝜎 (⟨*E := F; P, 𝜌, ks⟩ : 𝐹,𝑚) → unsafe
[
Store-Unsafe

]
JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∈ 𝑤 (FunId𝑏) 𝑏 = ks ⇒ 𝑝 ∈ 𝑤 (𝜉 (s))

𝑤 ⊢𝜎 (⟨call E(F1, . . . , F𝑛); P, 𝜌, 𝑏⟩ : 𝐹,𝑚) → (⟨𝑚(𝑝), 𝜌0 [𝑥1 ← JF1K𝜌,𝑤 , . . . , 𝑥𝑛 ← JF𝑛K𝜌,𝑤], 𝑏⟩ : ⟨P, 𝜌, 𝑏⟩ : 𝐹,𝑚)
[
Call

]

JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∉ 𝑤 (FunId𝑏)
𝑤 ⊢𝜎 (⟨call E(F1, . . . , F𝑛); P, 𝜌, 𝑏⟩ : 𝐹,𝑚) → err

[
Call-Error

] JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∈ 𝑤 (FunIdk) 𝑝 ∉ 𝑤 (𝜉 (s))

𝑤 ⊢𝜎 (⟨call E(F1, . . . , F𝑛); P, 𝜌, ks⟩ : 𝐹,𝑚) → unsafe
[
Call-Unsafe

]

𝑤 ⊢𝜎 (⟨syscall s(F1, . . . , F𝑛); P, 𝜌, 𝑏⟩ : 𝐹,𝑚) → (⟨𝛾 (s), 𝜌0 [𝑥1 ← JF1K𝜌,𝑤 , . . . , 𝑥𝑛 ← JF𝑛K𝜌,𝑤], ks⟩ : ⟨P, 𝜌, 𝑏⟩ : 𝐹,𝑚)
[
SystemCall

]
𝑤 ⊢𝜎 (⟨𝜖, 𝜌, 𝑏⟩ : ⟨P, 𝜌′, 𝑏′⟩ : 𝐹,𝑚) → (⟨P, 𝜌′ [ret ← 𝜌 (ret)], 𝑏′⟩ : 𝐹,𝑚)

[
Pop

]
𝑤 ⊢𝜎 (⟨skip; P, 𝜌, 𝑏⟩ : 𝐹,𝑚) → (⟨P, 𝜌, 𝑏⟩ : 𝐹,𝑚)

[
Skip

]
𝑤 ⊢𝜎 (⟨𝑥 := E; P, 𝜌, 𝑏⟩ : 𝐹,𝑚) → (⟨P, 𝜌 [𝑥 ← JEK𝜌,𝑤], 𝑏⟩ : 𝐹,𝑚)

[
Op

]

𝑤 ⊢𝜎 (⟨if E then Ptrue else Pfalse fi; Q, 𝜌, 𝑏⟩ : 𝐹,𝑚) → (⟨PJEKBool𝜌,𝑤
; Q, 𝜌, 𝑏⟩ : 𝐹,𝑚)

[
If

]
𝐶true = (⟨P; while E do P od; Q, 𝜌, 𝑏⟩ : 𝐹,𝑚) 𝐶false = (⟨Q, 𝜌, 𝑏⟩ : 𝐹,𝑚)

𝑤 ⊢𝜎 (⟨while E do P od; Q, 𝜌, 𝑏⟩ : 𝐹,𝑚) → 𝐶JEKBool𝜌,𝑤

[
While

]

Figure 3: Semantics w.r.t. system 𝜎 = (𝜏,𝛾, 𝜉).

[Load], [Store] that prevent the system from: (i) overwriting func-

tions, (ii) execute values, (iii) accessing user-space data and func-

tions when the system is in kernel-mode. Most importantly, the

system adopts kernel address space layout randomization, that is

modeled by sampling the memory layout from a probability distri-

bution.

In Section 6, we then consider a stronger threat model where, in

addition, attackers have access to side-channel observations and

control PHT and STL predictions, related to Spectre v1 and v4

vulnerabilities [33]. In addition to the above-mentioned mecha-

nisms against speculative attacks, the machine supports PTI [32]

to prevent the speculative access of kernel-space memory from

user-space; this is modeled by using the same preconditions of

rules [Call], [Load], [Store] for their speculative counterparts,

see Section 6.1.1.

5 CLASSIC THREAT MODEL
In this section we show how the result of Abadi et. al. [2–4] scales

to the model introduced in Section 3. We formalize memory safety

as follows:

Definition 5.1 (Kernel safety). We say that a system 𝜎 = (𝜏,𝛾, 𝜉)
is kernel safe, if for every layout𝑤 , unprivileged attacker P ∈ Cmd,
and registers 𝜌 , we have:

¬
(
𝑤 ⊢𝜎 (⟨P, 𝜌, u⟩,𝑤 ⋄ 𝜏) →∗ unsafe

)
Thus, safety is broken if an attacker P, executing in unprivileged

user mode, is able to trigger a system call in such a way that it

accesses, or invokes, a kernel-space object outside its capabilities.

The source of such a safety violation can be twofold:

1. Scope extrusion: An obvious reason why kernel-safety may

fail is due to apparent communication channels, specifically

through the memory and procedure returns. As an illustrative

example, consider the two system calls s1 and s2 shown below:

On Kernel’s Safety in the Spectre Era
(And KASLR is Formally Dead) CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

void *v();
void s1() { v = &f; };
void s2() { (*v)(); };

A malicious program can use s1 to store the address of f at

v, which is a shared capability. A consecutive call to s2 then

breaks safety if f is not within the capabilities of s2.
2. Probing: Another counterexample is given by a system call

accessing memory based on its input, such as

void s(a) { (*a)(); };

which directly invokes the procedure stored at the kernel-

address a, that is supplied as argument. This system call can po-

tentially be used as a gadget to invoke an arbitrary kernel-space

function from user-space. Since an attacker lacks knowledge of

the kernel-space layout, such an invocation needs to happen

effectively through probing. As any probe of an unused mem-

ory address leads to an unrecoverable error,
1
, the likelihood

of an unsafe memory access is, albeit not zero, diminishingly

small when the address-space is reasonably large.

To overcome Issue 1, we impose a form of (layout) non-interference
on system calls.

Definition 5.2 (Layout non-interference). Given 𝜎 = (𝜏,𝛾, 𝜉), a
system call s is layout non-interfering, if,

Eval𝜎,𝑤1
(𝛾 (s), 𝜌, ks, 𝜏 ′) � Eval𝜎,𝑤2

(𝛾 (s), 𝜌, ks, 𝜏 ′)

for all layouts 𝑤1,𝑤2, registers 𝜌 and stores 𝜏 ′ =FunId 𝜏 . Here,

the equivalence � extends equality by identifying the abnormal

termination states err and unsafe. The system 𝜎 is non-interfering

if all its system calls are.

In effect, layout non-interfering systems do not expose layout

information, neither through the memory nor through return val-

ues. In particular, observe how non-interference rules out Issue 1,

as witnessed by two layouts placing f at different addresses in

kernel-memory.

Concerning Issue 2, it is well known that layout randomization

provides in general safety not in an absolute sense, but probabilisti-
cally [4, 11, 56]. Indeed, the chance for a probe to be successful is

proportional to the ratio between occupied and free (kernel) mem-

ory space. Following Abadi and Plotkin [4], let 𝜇 be a probability
distribution of layouts, i.e., a function 𝜇 : Lay→ [0, 1] assigning to

each layout𝑤 ∈ Lay a probability 𝜇 (𝑤) (where ∑𝑤∈Lay 𝜇 (𝑤) = 1).

Without loss of generality, we assume that the layout of public,

i.e. user-space, addresses is fixed. That is, we require for each

𝑤1,𝑤2 with non-zero probability in 𝜇, that𝑤1 (id) = 𝑤2 (id) for all
id ∈ Idu. For a system call s ∈ Sys, let ids

1
, . . . , ids

𝑘
be an enumera-

tion of its capabilities 𝜉 (s). The following probability 𝛿𝜇 quantifies

the chance that accessing an address 𝑝 ∈ Addrk causes an error

(rather than an unsafe access), given that capabilities ids
1
, . . . , ids

ℎ
are stored at addresses 𝑝1, . . . , 𝑝ℎ respectively, and that 𝑝 does not

1
This is not always the case for user-space software protected with layout randomiza-

tion, as some programs (e.g. web servers) may automatically restart after a crash to

ensure availability. This behavior can be exploited by attackers to probe the entire

memory space of the victim program, thus compromising the protection offered by

layout randomization [54].

refer to any of the objects within the capabilities of s.

𝛿𝜇 ≜ min

{
Pr

𝑤←𝜇
[𝑝 ∉ 𝑤 (Id) | 𝑤 (ids𝑖) = 𝑝𝑖 , for 1 ≤ 𝑖 ≤ ℎ]

| s ∈ Sys, 𝑝, 𝑝1, . . . , 𝑝ℎ ∈ Addrk ∧
𝑝 ∉ {𝑝𝑖 , . . . , 𝑝𝑖 + size(ids𝑖) − 1}, for 1 ≤ 𝑖 ≤ ℎ

}
.

More concretely, 𝛿𝜇 is the probability that, during the execution of

a system call s, a fixed kernel address 𝑝 is not allocated, given that

it does not store any object that is the capabilities of that system

call. Notably, if an attacker controls the value of 𝑝 , this is a lower

bound to the probability that its guess fails. We arrive now at the

main result of this section:

Theorem 5.3. Let 𝜎 = (𝜏,𝛾, 𝜉) be layout non-interfering. Then
P𝑤←𝜇

[
𝑤 ⊢𝜎 ((P, 𝜌, u),𝑤 ⋄ 𝜏) →∗ unsafe

]
≤ 1 − 𝛿𝜇 ,

for any unprivileged attacker P ∈ Cmd, and registers 𝜌 .

Theorem 5.3 extends the results of [2–4] by showing that layout

randomization guarantees kernel safety probabilistically to operat-

ing systems; in contrast with [2–4], this holds even when victim’s

code contains unsafe programming constructs such as arbitrary

pointer arithmetic and indirect jumps. This is achieved by replacing

Abadi and Plotkin [4]’s restrictions on the syntax of the victims with

a weaker dynamic property: layout non-interference. Notice that the
strength of the security guarantee provided by Theorem 5.3 depends

on the distribution of the layouts 𝜇. Therefore, in practice, it is im-

portant to determine a randomization scheme that provides a good

bound. This can be done quite easily: for instance, if we assume that

(i) 𝜅k ≫
∑
id∈Idk size(id) and that (ii) 𝜃 ≜ maxid∈Idk (size(id)) di-

vides 𝜅k , we can think of the kernel space address range as divided

in
𝜅k
𝜃

slots, each storing a single object. In this setting, we can

define the distribution 𝜈 as the uniform distribution of all the lay-

outs that store each memory object within a slot starting from the

beginning of that slot. For this simple scheme, we can approximate

the bound 𝛿𝜈 as the ratio between unallocated slots and all the slots

that do not store an object that is referenced by the capabilities of

a system call:

𝛿𝜈 ≥ min

s∈Sys

𝜅k/𝜃 − size(Idk)
𝜅k/𝜃 − size(𝜉 (s))

.

In particular, the fraction in the right-hand side is the probability

that by choosing a slot that is not storing any object referenced

by s, we end up with a fully unoccupied slot. Observe that this

lower-bound approaches 1 when 𝜅k goes to infinity.

Now that we have established that Layout Randomization pro-

vides kernel safety in a probabilistic sense, it is worth mentioning

how this property relates with other desirable safety properties. In

particular, kernel safety encompasses some form of spatial memory
safety and of control flow integrity, that are maybe the most sought-

after security properties for operating systems, as witnessed by the

large number of measures that, together with layout randomization,

have been developed for their enforcement [22, 36, 45, 48, 50, 58].

Spatial Memory Safety. Although it is difficult to find a common

definition of spatial memory safety, many of these definitions asso-

ciate a software component (a program, an instruction, or even a

variable) with a fixed memory area, that this component can access

rightfully [7, 10, 44, 46]. In this realm, any load or store operation

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Davide Davoli, Martin Avanzini, and Tamara Rezk

that does not fall within this area is considered a violation of spatial
memory safety. Our notion of kernel safety encompasses a form

of spatial memory safety: if a system enjoys kernel safety, then no

system call can access a memory region that does not appear within

its capabilities.

Control Flow Integrity. This property requires that the control

transfer operations performed by a program can reach only specific

targets that are determined statically [1]. If a system enjoys kernel
safety then it also enjoys a weak form of control flow integrity.
Indeed, our semantics prevents the execution of a function if its

address does not belong to the set of capabilities of the current

system call. This means that if a system 𝜎 = (𝜏,𝛾, 𝜉) is kernel safe,
we are certain that by executing that system call, the control flow

will flow across the procedures that belong to 𝜉 (s).

6 SPECULATIVE THREAT MODEL
In this section we establish to which extent a system enjoys kernel
safety in presence of speculative attackers. To this aim, in Sec-

tion 6.1, we extend the model of Section 3 for this new scenario.

More precisely, we endow the semantics of Section 3 with spec-

ulative execution and side-channel observations that reveal the

accessed addresses and the value of conditional branches [10, 14,

27, 28]. In Section 6.2, we refine the notion of kernel safety for this

model, by defining speculative kernel safety.

6.1 The Speculative Execution Model
A substantial difference between our model and previous mod-

els [10, 14, 27, 28] lies in the possibility to explicitly model attack-

ers. More precisely, an attacker is not given as a mere sequence of

microarchitectural directives, but becomes a fully-fledged program

that can directly interact with the system. This permits us to natu-

rally extend the notion of kernel safety to the new scenario. Besides,

we believe that modeling an attack explicitly can be interesting on

its own. The feasibility of an attack is witnessed explicitly through a

program. In this setting, for instance, assumptions on the attacker’s

computational capabilities can be imposed seamlessly.

6.1.1 Victim Language and Semantics. The victims’ language re-

mains identical to the classic model. To permit attackers to influ-

ence the speculative execution of specific instructions, we assume

load and branch instructions are tagged by unique labels ℓ ∈ Lbl,
We enrich the language with a fence instruction found in modern

CPUs [31]:

Instr ∋ I ::= · · · | fence.

Architecturally, this instruction is a no-op, on the microarchitecture

level it commits all buffered writes to memory. Following Barthe

et al. [10], the speculative semantics is instrumented through direc-
tives, modeling the choice made by prediction units of the processor.

Directives take the form

𝑑 ∋ Dir ::= brℓ 𝑏 | ldℓ 𝑖 | bt | st,
where 𝑖 ∈ N and 𝑏 ∈ Bool. The brℓ 𝑏 directive causes a branch

instruction to be evaluated as if the guard resolved to 𝑏. The ldℓ 𝑖
causes the load instruction to load the 𝑖-th most recent value that

is associated to an address in a (buffered) memory. The bt directive

is used to direct speculations, either backtracking the most recent

mis-speculation or committing the microarchitectural state. Finally,

the st directive evaluates an instruction without engaging into

speculation, in correspondence to the semantics we have given in

Section 3.

The semantics is also instrumented with observations to model

timing side-channel leakage:

𝑜, 𝑞 ∋ Obs ::= ◦ | br𝑏 | mem𝑝 | jmp𝑝 | bt𝑏,
where 𝑛 ∈ N 𝑏 ∈ Bool, and 𝑝 ∈ Addr. We use ◦ to label transitions

that do not leak observations. The br𝑏 observation is caused by

branching instructions, with 𝑏 reflecting the taken branch. The

mem 𝑝 observation is caused by memory access, through loads

or stores, and contains the address of the accessed location, thus

modeling instruction-cache leaks. Likewise, the jmp 𝑝 observation

is caused by calls to procedures residing at address 𝑝 in memory.

Finally, the bt𝑏 observation signals a backtracking step during

speculative execution. Notice that we leak full addresses onmemory

accesses, and the value of the branching instructions, i.e. we adopt

the baseline leakage model that is widely employed in the literature

to model side-channel info-leaks [5, 9, 10, 14].

A reduction step now takes the form

𝑤 ⊢𝜎 𝑆
𝑑

𝑜
𝑆 ′,

indicating that for a given system 𝜎 , under layout 𝑤 ∈ Lay, the
system evolves from state 𝑆 with directive 𝑑 ∈ Dir to 𝑆 ′ in one step,

producing the side-channel observation 𝑜 . The state of a system 𝑆 is

nowmodeled as a stack of backtrackable configurations. Specifically,

configurations follow the following BNF:

𝐶, 𝐷 ::= (𝐹, 𝜇𝑚,𝑏ms) | (err, 𝑏ms) | unsafe
In a configuration (𝐹, 𝜇𝑚,𝑏ms), 𝐹 is a call-stack as in Section 3,

𝜇𝑚 is a memory equipped with a write buffer 𝜇, and 𝑏ms the mis-
speculation flag. Buffered memories 𝜇𝑚 permit out-of-order, specu-

lative memory operations. Specifically, writing a value 𝑣 at address

𝑝 results in a delayed write [𝑝 ↦→ 𝑣]𝜇𝑚, and (𝜇𝑚)𝑘 (𝑝) yields the
𝑘th-last buffered entry 𝑣 at address 𝑝 , together with a boolean flag 𝑓

that it ⊥ if and only if 𝑣 is the most recent one associated to address

𝑝 . This operation is formally described by the following function:

([]𝑚)𝑘 (𝑝) ≜ 𝑚(𝑎),⊥
([𝑝 ↦→ 𝑛] : 𝜇𝑚)0 (𝑝) ≜ 𝑛,⊥
([𝑝 ↦→ 𝑛] : 𝜇𝑚)𝑖+1 (𝑝) ≜ 𝑛′,⊤ if (𝜇𝑚)𝑖 (𝑝) = 𝑛′, 𝑏

([𝑝′ ↦→ 𝑛] : 𝜇𝑚)𝑖 (𝑝) ≜ (𝜇𝑚)𝑖 (𝑝) if 𝑝 ≠ 𝑝′ .

In a configuration, the mis-speculation flag 𝑏ms records whether a

past step of computation led to a mis-speculation. It is employed

when backtracking from a speculative state. As errors are recov-

erable under mis-speculation, error configurations err carry also

a mis-speculation flag. Finally, as in Section 3, unsafe indicates a
safety violation.

Some illustrative rules of the semantics are given in Figure 4,

The rules for a load instruction are very similar to the ones we

give in Section 3, but attackers can take advantage of the store-

to-load dependency speculation by issuing a ldℓ 𝑖 directive. When

this happens, the 𝑖-th most recent value associated to the address

On Kernel’s Safety in the Spectre Era
(And KASLR is Formally Dead) CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

JEKAddr𝜌,𝑤 = 𝑝 (𝜇𝑚)𝑖 (𝑝) = (𝑣, 𝑓) 𝑝 ∈ 𝑤 (ArrId𝑏) 𝑏 = ks ⇒ 𝑝 ∈ 𝑤 (𝜉 (s))

𝑤 ⊢𝜎 (⟨𝑥 :=ℓ *E; P, 𝜌, 𝑏⟩ : 𝐹, 𝜇𝑚,𝑏ms) : 𝑆 ldℓ 𝑖

mem𝑝 (⟨P, 𝜌 [𝑥 ← 𝑣], 𝑏⟩ : 𝐹, 𝜇𝑚,𝑏ms ∨ 𝑓) : (⟨𝑥 :=ℓ *E; P, 𝜌, 𝑏⟩ : 𝐹, 𝜇𝑚,𝑏ms) : 𝑆

[
SLoad-Load

]

JEKAddr𝜌,𝑤 = 𝑝 𝑝 ∉ 𝑤 (ArrId𝑏)

𝑤 ⊢𝜎 (⟨𝑥 :=ℓ *E; P, 𝜌, 𝑏⟩ : 𝐹, 𝜇𝑚,𝑏ms) : 𝑆 ldℓ 𝑖
◦ (err, 𝑏ms) : 𝑆

[
SLoad-

Error

] JEKAddr𝜌,𝑤 = 𝑝 ∈ 𝑤 (ArrIdk) 𝑝 ∉ 𝑤 (𝜉 (s)) 𝑑 ∈ {st, ldℓ 𝑖}

𝑤 ⊢𝜎 (⟨𝑥 :=ℓ *E; P, 𝜌, ks⟩ : 𝐹, 𝜇𝑚,𝑏ms) : 𝑆
𝑑

mem𝑝
unsafe

[
SLoad-

Unsafe

]

𝐶 = (⟨ifℓ E then Qtrue else Qfalse fi; Q, 𝜌, 𝑏⟩ : 𝐹, 𝜇𝑚,𝑏ms)

𝑤 ⊢𝜎 𝐶 : 𝑆
brℓ 𝑑
br𝑑 (⟨Q𝑑 ; Q, 𝜌, 𝑏⟩ : 𝐹, 𝜇𝑚,𝑏ms ∨ 𝑑 ≠ JEKBool𝜌,𝑤) : 𝐶 : 𝑆

[
If-Branch

]

JEKAddr𝜌,𝑤 = 𝑝 (𝜇𝑚)0 (𝑝) = 𝑣,⊥ 𝑝 ∈ 𝑤 (ArrId𝑏) 𝑏 = ks ⇒ 𝑝 ∈ 𝑤 (𝜉 (s))

𝑤 ⊢𝜎 (⟨𝑥 :=ℓ *E; P, 𝜌, 𝑏⟩ : 𝐹, 𝜇𝑚,𝑏ms) : 𝑆 st
mem𝑝 (⟨P, 𝜌 [𝑥 ← 𝑣], 𝑏⟩ : 𝐹, 𝜇𝑚,𝑏ms) : 𝑆

[
SLoad-Step

]
𝐶 = (𝐹, 𝜇𝑚,⊤) ∨𝐶 = (err,⊤)

𝑤 ⊢𝜎 𝐶 : 𝑆
bt
bt⊤

𝑆

[
Bt⊤

] 𝐶 = (𝐹, 𝜇𝑚,⊥) ∨𝐶 = (err,⊥) 𝑆 ≠ 𝜖

𝑤 ⊢𝜎 𝐶 : 𝑆
bt
bt⊥

𝐶 : 𝜖

[
Bt⊥

]

𝑤 ⊢𝜎 (⟨fence; P, 𝜌, 𝑏⟩ : 𝐹, 𝜇𝑚,⊥) : 𝑆
st
◦ (⟨P, 𝜌, 𝑏⟩ : 𝐹, 𝜇𝑚,⊥) : 𝑆

[
Fence

]

Figure 4: Speculative semantics, excerpt.

𝑝 = JEKAddr𝜌,𝑤 is retrieved from the buffered memory, as described

by rule [SLoad-Load]. This value may not correspond to that of

the most recent store to the address 𝑝 , and this is signaled by the

flag 𝑓 that is returned after the buffer lookup. If 𝑓 = ⊤, this oper-
ation may be engaging mis-speculation and, for this reason, the

semantics keeps track of the current configuration in the stack.

A successful load produces the observation mem 𝑝 that leaks the

address to the attacker. The rules for erroneous and unsafe loads

are [SLoad-Error] and [SLoad-Unsafe] and they are analogous

to their non-speculative counterparts.

Even branch instructions can be executed speculatively by is-

suing the directive br 𝑑 by means of the rule [If-Branch]. This

causes the evaluation to continue as if the guard resolved to 𝑑 . This

operation leaks which branch is being executed by means of the

observation br𝑑 . Even in this case, the rule may be mis-speculating;

for this reason, the current configuration is book-kept in the stack

and the mis-speculation flag is updated.

In our semantics, every command supports the st directive, which
evaluates the configuration without speculating. For instance, the

[SLoad-Step] rule evaluates the 𝑥 := *E command by fetching the

most recent value from the write buffer, instead of an arbitrary one.

When the topmost configuration of a stack carries the mis-

speculation flag ⊤, the configuration can be is discarded with the

rules [Bt⊤]. If it is ⊥, the current state is not mis-speculating, so

the whole stack of book-kept configurations can be discarded with

the rule [Bt⊥].

The [Fence] rule commits all the entries in the write buffer to

the memory. Precisely, this operation is defined as follows:

[]𝑚 ≜ 𝑚 [𝑝 ↦→ 𝑣] : 𝜇𝑚 ≜ 𝜇𝑚[𝑝 ← 𝑣],
where, by𝑚[𝑝 ← 𝑣], we denote the memory obtained by updating

the value at address 𝑝 with 𝑣 . In particular, for consistency, a poten-

tially mis-speculative state must be resolved. This is why this rule

requires the mis-speculation flag to be ⊥. This means that, if this

configuration is reached when the flag is ⊤, the semantics must

backtrack with the rule [Bt⊤].

6.1.2 Attacker’s Language and Semantics. To give a definition of

kernel safety w.r.t. speculative semantics, we endow an attacker

with the ability to engage in speculative executions, by issuing

directives, and by the ability to read side-channel information. To

this end, we extend the instructions from Section 3 as follows:

Instr ∋ I ::= . . .

| spec on P speculation on victim P

| poison(𝑑) speculative poisoning
| 𝑥 := observe() side-channel observation

SpAdv ∋ A ::= 𝜖 | I; A
The instruction spec on P is used to execute a victim code P, w.r.t.
the speculative semantics defined just above. By using the instruc-

tion poison(𝑑), the attacker is able to to mistrain microarchitec-

tural predictors and to control the speculative execution. Issued

directives control the evaluation of victim code under speculative

semantics. Dual, the instruction 𝑥 := observe() is used to extract

side-channel info-leaks, collected during speculative execution of

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Davide Davoli, Martin Avanzini, and Tamara Rezk

𝑤 ⊢𝜎 (⟨poison(𝑑); A, 𝜌, 𝑏⟩ : 𝐹,𝑚, 𝐷,𝑂) (⟨A, 𝜌, 𝑏⟩ : 𝐹,𝑚,𝑑 : 𝐷,𝑂)
[
Poison

]

𝑤 ⊢𝜎 (⟨𝑥 := observe(); A, 𝜌, 𝑏⟩ : 𝐹,𝑚, 𝐷, 𝑜 : 𝑂) (⟨A, 𝜌 [𝑥 ← 𝑜], 𝑏⟩ : 𝐹,𝑚, 𝐷,𝑂)
[
Observe

]

𝑤 ⊢𝜎 (⟨spec on P; A, 𝜌, 𝑏⟩ : 𝐹,𝑚, 𝐷,𝑂) (⟨P, 𝜌, 𝑏⟩, []𝑚,⊥) | (⟨A, 𝜌, 𝑏⟩ : 𝐹, 𝐷,𝑂)
[
Spec-Init

]

𝑤 ⊢𝜎 𝑆
𝑑

𝑜
𝑆 ′

𝑤 ⊢𝜎 𝑆 | (𝐹, 𝑑 :𝐷,𝑂) 𝑆 ′ | (𝐹, 𝐷, 𝑜 :𝑂)
[
Spec-D

] 𝑤 ⊢𝜎 𝑆↓𝐷 𝑤 ⊢𝜎 𝑆
st
𝑜

𝑆 ′

𝑤 ⊢𝜎 𝑆 | (𝐹, 𝐷,𝑂) 𝑆 ′ | (𝐹, 𝐷, 𝑜 :𝑂)
[
Spec-S

] 𝑤 ⊢𝜎 𝑆↓𝐷 𝑤 ⊢𝜎 𝑆↓st 𝑤 ⊢𝜎 𝑆
bt
𝑜

𝑆 ′

𝑤 ⊢𝜎 𝑆 | (𝐹, 𝐷,𝑂) 𝑆 ′ | (𝐹, 𝐷, 𝑜 :𝑂)
[
Spec-BT

]

𝑤 ⊢𝜎 (⟨𝜖, 𝜌, 𝑏⟩, 𝜇𝑚,⊥) | (⟨A, 𝜌′, 𝑏′⟩ : 𝐹, 𝐷,𝑂) (⟨A, 𝜌′, 𝑏′⟩ : 𝐹, 𝜇𝑚, 𝐷,𝑂)
[
Spec-Term

]

𝑤 ⊢𝜎 (err,⊥) | (𝐹, 𝐷,𝑂) err

[
Spec-Error

]
𝑤 ⊢𝜎 unsafe | (𝐹, 𝐷,𝑂) unsafe

[
Spec-Unsafe

]
Figure 5: Semantics for speculative attackers, excerpt.

the victim’s code. To model this operation, in the following, we

assume Obs ⊆ Val. As an example, the snippet

poison(brℓ ⊤);
spec on ifℓ E then syscall s(𝑝) fi;
𝑥 := observe()

(†)

forces the mis-speculative execution of syscall s(𝑝), indepen-
dently of the value of E. The register 𝑥 will hold the final observation

leaked through executing the system call.

The attacker’s semantics is defined in terms of a relation

𝑤 ⊢𝜎 𝐶 𝐶′ .

In essence, the attacker executes under the standard semantics

given in Section 3, the speculative semantics defined above play a

role only when execution of the victim is triggered by the directive

spec on P. Consequently, configurations are identical in structure

to the ones underlying the standard semantics, but carry however

additionally stacks 𝐷 and𝑂 of directives and observations, in order

to model the new constructs. In addition, hybrid configurations

𝑆 | (𝐹, 𝐷,𝑂) are used to model the system when executing the vic-

tim under speculative semantics. Here 𝑆 is a stack of speculative

configurations concerning the victim, and 𝐹 the attacker’s call stack

up to the invocation of speculation. Again, 𝐷 gives the directives

(to be processed) and 𝑂 the observations (collected from execut-

ing victim’s code). In summary, configurations are drawn from the

following BNF:

𝐶 ::= (𝐹,𝑚, 𝐷,𝑂) | 𝑆 | (𝐹, 𝐷,𝑂) | err | unsafe
Figure 5 shows the evaluation rules for the new constructs.

Rules [Poison] and [Observe] define the semantics for poisoning

and side-channel observations, by pushing and redacting elements

of the corresponding stacks. Rule [Spec-Init] deals with the initial-

ization spec on P of speculative execution, starting from the corre-

sponding initial configuration of the victim P in an empty specula-

tion context. A frame for the continuation of the attacker A is pushed
on the call stack 𝑆 . This frame is used to resume execution of the

attacker, once the victim has been fully evaluated. The victim itself

is evaluated via the speculative semantics through rules [Spec-D]–

[Spec-BT]. Note how execution of the victim is directed through

the directive stack 𝐷 (rule [Spec-D]). Should the current direc-

tive be inapplicable, a non-speculative rewrite step (rule [Spec-S])

or backtracking (rule [Spec-BT]) is performed. Here, the premise

𝑤 ⊢𝜎 𝑆↓𝑑 signifies that 𝑆 is irreducible w.r.t. the directive 𝑑 . Like-

wise,𝑤 ⊢𝜎 𝑆↓𝐷 means that 𝑆 is irreducible w.r.t. the topmost direc-

tive of 𝐷 , or that 𝐷 is empty. Note also how side-channel leakage,

modeled through observations, is collected in the configuration via

these rules. Upon normal termination, resuming of evaluation of

the attacker is governed by rule [Spec-Term] in the case of normal

termination. Finally, rules [Spec-Error] and [Spec-Unsafe] deal

with abnormal termination.

We write
∗
for the multistep reduction relation induced by ,

i.e, 𝑆
𝜖
𝜖

𝑆 and 𝑆
𝑑 :𝐷

𝑜 :𝑂 ∗ 𝑆 ′ if 𝑆
𝑑

𝑜 ·
𝐷

𝑂 ∗ 𝑆 ′.

6.2 Speculative Kernel Safety
We are now ready to extend the definition of kernel safety (Defini-

tion 5.1) to the speculative semantics.

Definition 6.1 (Speculative kernel safety). We say that a system

𝜎 = (𝜏,𝛾, 𝜉) is speculative kernel safe if for every unprivileged

attacker A ∈ SpAdv, every layout𝑤 , and register map 𝜌 , we have:

¬
(
𝑤 ⊢𝜎 (⟨A, 𝜌, u⟩,𝑤 ⋄ 𝜏, 𝜖, 𝜖) ∗ unsafe

)
.

It is important to note that this safety notion captures violations

that occur during transient execution. This is in line with what

happens, for instance, for Spectre and Meltdown [33, 37], both

exploiting unsafe memory access under transient execution in order

to reveal confidential information.

On Kernel’s Safety in the Spectre Era
(And KASLR is Formally Dead) CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

6.3 The Demise of Layout Randomization in the
Spectre Era

A direct consequence of Definition 6.1 is that every system that

is speculative kernel safe is also kernel safe. The inverse, of course,
does not hold in general. Most importantly, the probabilistic form

of safety provided by layout randomization in Section 5 does not

scale to this extended threat model. This happens because Defi-

nition 5.1 does not take side-channel leakage into account. As a

simple example, gadgets like

if f = 𝑝 then P else Q fi,

can be exploited by an attacker to infer information about the ad-

dress of a kernel-space procedure f, through side-channel leakage

distinguishing the execution of P and Q. In our model, this is re-

flected as executing this instruction allows the attacker to observe

br𝑏, with 𝑏 being true precisely when f resides at address 𝑝 . Sec-
ondly, speculative execution undermines a fundamental premise

crucially leveraged in Theorem 5.3 and, more widely, in the major-

ity of studies demonstrating the efficacy of layout randomization as

a defense against attacks (e.g., [2–4]): the notion that an unsuccess-

ful memory probe leads to abnormal termination, thus thwarting

the attack. Indeed, within transient executions, memory access

violations are recoverable.

This happens, for instance, if the system call s of (†) tries to load
the content of the address 𝑝 form the memory to a register. If 𝑝

is not allocated, the system performs a memory access violation

under transient execution, that does not terminate the execution.

Conversely, if 𝑝 is allocated, its content is loaded into the cache, pro-

ducing the observation mem 𝑝 before the execution of the branch

and the system call are backtracked. By reading side-channel obser-

vations, the attacker can thus distinguish allocated kernel-addresses

from those that are not allocated. This last example, in particular, is

not at all fictitious: the BlindSide attack [24] uses the same idea to

break Linux’s KASLR and locate the position of kernel’s executable

code and data.

6.4 Speculative Layout Non-Interference
As this revised model significantly enhances the attackers’ strength,

we will need to implement more stringent countermeasures in order

to restore kernel safety. To counter side-channel info-leaks, we can

impose a form of side-channel non-interference that is in line with

the notion of speculative constant-time from [14].

Definition 6.2 (Speculative layout non-interference). Given 𝜎 =

(𝜏,𝛾, 𝜉), a system call s is speculative layout non-interfering, if,

𝑤1 ⊢𝜎 (⟨𝛾 (s), 𝜌, ks⟩, 𝜇 (𝑤1 ⋄ 𝜏 ′), 𝑏ms)
𝐷

𝑂 ∗ 𝑆1

implies

𝑤2 ⊢𝜎 (⟨𝛾 (s), 𝜌, ks⟩, 𝜇 (𝑤2 ⋄ 𝜏 ′), 𝑏ms)
𝐷

𝑂 ∗ 𝑆2,

for all layouts𝑤1,𝑤2, configurations over stores 𝜏
′ =FunId 𝜏 coin-

ciding on procedures (𝜏 ′ (f) = 𝜏 (f) for all f ∈ FunId), directives 𝐷 ,
observations 𝑂 and register map 𝜌 .

Speculative layout non-interference effectively prevents side-

channel-related attacks, even during transient executions. Impor-

tantly, it ensures the non-leakage of layout information throughout

the side-channels by requiring the identity of the two sequences

of observations produced by the two reductions. This, however,

implies severe restrictions on memory interactions — effectively

prohibiting the use of random memory layouts! Unsurprisingly,

this form of non-interference directly establishes kernel safety of

system calls:

Lemma 6.3. For every system 𝜎 = (𝜏,𝛾, 𝜉), if

𝜅k ≥
∑︁

id∈Idk
size(id) + 2 · max

id∈Idk
size(id),

and if s is speculative layout non-interfering, then

¬
(
𝑤 ⊢𝜎 (⟨𝛾 (s), 𝜌, ks⟩, 𝜇 (𝑤 ⋄ 𝜏 ′), 𝑏ms)

𝐷

𝑂 ∗ unsafe
)

for all layouts𝑤 and initial configurations over stores 𝜏 ′ coinciding
with 𝜏 on FunId.

Intuitively, this statement holds because if an invocation of a

system call s performs an unsafe memory access when executing

under a layout𝑤 , the address 𝑝 of the accessed resource is leaked;

but the same address cannot leak if the resource is moved to another

location — this is why we impose the condition on the size of the

memory. Thus, if a system call is speculative layout non-interfering,

it cannot be speculative non-interferent because different memory

layouts produce different observations.

In general, it is not always the case that a non-interference prop-

erty has as consequence memory safety. For instance, being non-
interferent with respect to a set of secrets does not prevent a victim

program from breaking memory safety. In our case, this property

holds because the layouts are not only used as the inputs for a

computation, but they also determine where objects are placed in

memory.

Theorem 6.4. Under the assumption 𝜅k ≥
∑
id∈Idk size(id) + 2 ·

maxid∈Idk size(id), if a system is speculative layout non-interfering,
then it is also speculative kernel safe.

Observe that the safety guarantee provided by speculative layout
non-interference is not probabilistic. Although its effectiveness, lay-

out randomization is unlikely to be restored at the software level

without imposing speculative layout non-interference, in presence

of this assumption, layout randomization is a redundant protection

measure. Also notice that speculative layout non-interference is not
a necessary condition for speculative kernel safety. For instance, we
can take in consideration the following system:

void f() { skip; };
void s() { f(); };

where s is a system call and f is a kernel function. This system

does not enjoy speculative non-interference, because by executing

s, the address of f leaks, and this address depends on the layouts.

However, this system is speculatively safe if we assume that f
belongs to the capabilities of s.

7 ENFORCEMENT OF SPECULATIVE KERNEL
SAFETY

Although by requiring speculative layout non-interference, we would
be able to restore speculative kernel safety, this would impose im-

portant limitations on the system. For this reason, we believe it

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Davide Davoli, Martin Avanzini, and Tamara Rezk

is worth investigating whether speculative kernel safety can be

enforced without imposing speculative layout non-interference.
Nevertheless, directly enforcing speculative kernel safety is non-

trivial, because it requires the developers to constantly take in ac-

count a large variety of microarchitectural behaviors that their sys-

tem may run into. On the other hand, in the last decades, plenty of

effort has been put in developing safe code in the classic model, [22,

36, 45, 48, 50, 58]. So, our last question is to determine to which

extent we can establish a link between kernel safety and speculative
kernel safety. Following other works in this direction [17, 57], our

main idea is to nullify the gap between kernel safety and speculative
kernel safety, by making the latter property a consequence of the

former.

This goal can be achieved by finding a transformation 𝜁 that

turns any kernel safe system 𝜎 into another system 𝜁 (𝜎) which is

architecturally equivalent to 𝜎 but enjoys speculatively kernel safety.
The semantic requirement on the transformation 𝜁 is expressed by

Definition 7.1, by which we ask that no user-space program may

show different behaviors by executing in the two systems.

Definition 7.1 (Semantics preservation). A system transformation

𝜁 is user-space semantics preserving if, for any system 𝜎 = (𝜏,𝛾, 𝜉),
Eval𝜁 (𝜎),𝑤 (P, 𝜌, u, 𝜏 ′) ≃ Eval𝜎,𝑤 (P, 𝜌, u, 𝜏)

for every layout𝑤 , unprivileged command P, and registers 𝜌 . Here,

𝜏 ′ is the store underlying 𝜁 (𝜎). The equivalence is given by (𝑣, 𝜏1) ≃
(𝑣, 𝜏2) if 𝜏1 =Idu 𝜏2, and coincides with equality otherwise.

Notice that in the previous definition we require 𝜏1 =Idu 𝜏2
instead of 𝜏1 = 𝜏2 in order to allow the transformation 𝜁 to modify

kernel-space procedures.

Thanks to semantics preservation, the second requirement on 𝜁

can be fulfilled by asking that the system 𝜁 (𝜎) can violate specu-
lative kernel safety only if it violates kernel safety, as captured by

Definition 7.2 below.

Definition 7.2. We say that 𝜁 imposes speculative kernel safety if,

for every system 𝜎 such that 𝜁 (𝜎) = (𝜏,𝛾, 𝜉), every buffer 𝜇 with

dom(𝜇) ⊆ 𝑤 (ArrId) and store 𝜏 ′ =Fun 𝜏 , if

𝑤 ⊢𝜁 (𝜎) ((𝛾 (s), 𝜌, ks), 𝜇 (𝑤 ⋄ 𝜏 ′), 𝑏ms)
𝐷

𝑂 ∗ unsafe,

then

𝑤 ⊢𝜁 (𝜎) ((𝛾 (s), 𝜌, ks), 𝜇 (𝑤 ⋄ 𝜏 ′)) →∗ unsafe.

Observe that, by means of this property, we can easily show that

if a system 𝜁 (𝜎) is kernel safe, then it is also speculative kernel safe.
Finally, by combining Definition 7.2 and Definition 7.1, we obtain

the following conclusion:

Proposition 7.3. If a system 𝜎 is kernel-safe, and the transfor-
mation 𝜁 (i) imposes speculative kernel safety and (ii) is user-space
semantics preserving, then (i) 𝜁 (𝜎) is speculative kernel safe, and
(ii) 𝜁 (𝜎) is semantically equivalent to 𝜎 .

This result states that every kernel safe system can be trans-

formed into another system that is equivalent to it from the user’s

perspective and enjoys stronger security guarantees. Notice that

kernel safety cannot be provided solely by the adoption of layout

randomization: by Theorem 5.3, we know that layout randomization

provides kernel safety only modulo a small probability of failure.

Just as an example, we observe that a simple transformation that

satisfies the requirements of Proposition 7.3 can be implemented

by placing a fence instruction before all the potentially unsafe

operations. This instrumentation stops any ongoing speculation

before executing potentially unsafe operations, and prevents their

transient execution, yet leaving the program’s semantics unaltered

at the architectural level. This fencing transformation is expressed

by 𝜂 : Instr→ P on the level of instructions where, in particular:

𝜂 (*E := F) ≜ fence; *E := F

𝜂 (𝑥 := *E) ≜ fence;𝑥 := *E

𝜂 (call E(F1, . . . , F𝑘)) ≜ fence; call E(F1, . . . , F𝑘)
𝜂 (while E do P od) ≜ while E do 𝜂 (P) od

𝜂 (if E then P else Q fi) ≜ if E then 𝜂 (P) else 𝜂 (Q) fi,
and it is the identity on the remaining instructions. Here, the

transformation is extended homomorphically to a transformation

𝜂 : P→ P. It is lifted to a system 𝜎 by systematically applying it to

system calls and procedures 𝜏 (f) in kernel-memory (f ∈ FunIdk).
Notice that the transformation 𝜂, does not stop completely spec-

ulation as, for instance, speculation on conditional instructions is

still allowed. This is not in contrast with Definition 7.2 because even

in transient execution, a conditional instruction cannot perform

any safety violation. However, as their branches can contain unsafe

operations, the transformation visits them.

By observing that 𝜂 enjoys both the properties in Definitions 7.1

and 7.2, we can draw the following conclusion:

Theorem 7.4. If a system𝜎 is kernel-safe, then𝜂 (𝜎) is speculative
kernel safe, and 𝜂 (𝜎) is semantically equivalent to 𝜎 .

In addition to 𝜂, other program transformations that fit the re-

quirements of Proposition 7.3 can be identified: for instance, the

variation of 𝜂′ that places a single fence instruction before se-

quences of loads — and of stores — is a good choice. Similarly,

fence instructions can be omitted before direct calls. Finally, in

presence of an external proof that shows that a system call s enjoys
speculative kernel safety, the instrumentation may decide to leave

that system call unchanged, yet preserving Definition 7.2.

8 RELATEDWORK
On Layout Randomization. The first work that provided a formal

account of layout randomization was by Abadi and Plotkin [4], later

extended in [2, 3]. In these works, the authors show that layout

randomization prevents, with high probability, malicious programs

from accessing the memory of a victim in an execution context with

shared address space. We have already discussed this in the body

of the paper how these results do not model speculative execution

or side-channel observations.

Spatial Memory Safety and Non-Interference. Spatial memory

safety is typically defined by associating a software component

with a memory area and requiring that, at runtime, it only accesses

that area [10, 44, 46]. Azevedo de Amorim et al. [7] demonstrated

that memory safety can be expressed in terms of non-interference;

this property, in turn, stipulates that the final output of a compu-

tation is not influenced by secret data that a program must keep

confidential [23]. Both of these properties have been extended to

On Kernel’s Safety in the Spectre Era
(And KASLR is Formally Dead) CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

the speculative model. The definition of speculative memory safety
from [10] closely aligns with ours, while speculative non-interference
was initially introduced in the context of the Spectector symbolic

analyzer [27]. Spectector’s property captures information flows

to side-channels that occur with speculative execution but not in

sequential execution. In contrast to Spectector’s approach, our def-

inition aligns with speculative constant-time [14], as it specifically
targets information leaks that occur with speculative semantics.

Formal Analysis of Security Properties of Privileged Execution En-
vironments. Barthe et al. [9] deploy a model with side-channel

leaks and privileged execution mode, without specualtive execu-

tion. In particular, they are interested in studying the preserva-

tion of constant-time in virtualization platforms. They also model

privilege-raising procedures hypercalls, similar to our system calls.

They show that if one of the hosts is constant-time then the system

enjoys a form of non-interference with respect to that host’s secret

memory. For this reason, although the two models are similar, the

purposes of Barthe et al. [9] and our work are different: in [9] the

victim and the attacker have the same levels of privilege and the

role of the hypervisor is to ensure their separation whilst, in our

work, the privileged code base is itself the victim.

Attacks to Kernel Layout Randomization. Attacks that aim at

leaking information on the kernel’s layout are very popular and

can rely on implementation bugs that reveal information the ker-

nel’s layout [15, 34, 40] or on side-channel info-leaks [26, 35, 38,

38, 39]. In particular attacks such as EchoLoad, TagBleed and En-

tryBleed [12, 35, 39] are successful even in presence of state-of-art

mitigations such as Intel’s Page Table Isolation (PTI) [32]. These

attacks motivate our decision to take into account side-channel

info-leaks. Due to address-space separation between kernel and

user space programs, an attacker cannot easily use a pointer to a

kernel address to access the victim’s memory. So, in general, if the

attacker does not control the value of a pointer that is used by the

victim, this kind of leak is not harmful.

The Meltdown attack [37] uses speculative execution to over-

come this limitation on operating systems running on Intel pro-

cessors that do not adopt KAISER [25] or PTI [32]. In particular,

the hardware can speculatively access an address before checking

its permissions. The attack uses this small time window to access

kernel memory content and leak it by using a side-channel info-leak

gadget. These attacks can also be used to leak information on the

layout: by dereferencing pointers under transient execution, the

whole kernel’s address space can be brute-forced without crashing

the system. Due to the adoption of PTI [32], this kind of attack is

mitigated by removing most of the kernel-space addresses from

the page tables of user-space programs. The BlindSide attack [24]

overcomes this issue by probing directly from kernel-space. Similar

attacks can be mounted by triggering different forms of mispre-

dictions [8, 41]. Arm’s Pointer Authentication [51] is a technique

that prevents forging pointers by extending them with an authen-

tication code and raising an error if the code is violated. This can

be used to deploy protections similar to layout randomization, but

Ravichandran et al. [49] showed that by leveraging speculative

execution, it is possible to brute-force the authentication codes.

Relation Between Security in the Speculative- and Classic-model.
Blade [57] is a protection mechanism which is aimed at preventing

speculative data-flows by selectively stopping speculations. The

authors show that, with this mechanism, all those program that

are constant-time in the sequential model, are constant-time in the

speculative model too. This is similar to what we do in Section 7,

by imposing speculative kernel safety on a system that enjoys kernel
safety. ProSpeCT [17] is an open-source RISC-V processor that

ensures a similar guarantee: each program that is constant-time in

the classical model remains constant-time even when executed on

that processor. This protection relies on taint-tracking and requires

explicit annotations on the security level of programs’ data.

Protections against Speculative Data Leaks. Commonly, specu-

lative attacks are aimed at leaking its victim’s secret data [10, 14,

17, 27, 28, 33, 37, 57]. As a consequence, many of the conventional

mitigations against speculative attacks are aimed at preventing

secret data from leaking during speculative execution. For instance,

Speculative Load Hardening [13] is a software protection measure

which, in its simplest form, sets each value that is loaded frommem-

ory during transient execution to a constant value. By doing so,

this mechanism does not prevent these value to be loaded — i.e. its

application to the kernel would not prevent the attacker from break-

ing speculative kernel safety. Together with the above-mentioned

ProSpeCT, other hardware-level taint-tracking based mechanisms

have been deployed to prevent speculative leaks [59, 60]. These

mechanisms limit the speculative execution of load instructions

with different levels of strictness, ranging from completely prevent-

ing the execution of these instructions ([59], strict propagation and

load restriction mode), from just prohibiting the propagation of

the loaded value [60]. Although this approach is promising, the

above-mentioned mechanisms do not impose limitations on the

speculative execution of indirect branches that may be used by

attackers in practice to break speculative kernel safety.

9 CONCLUSION
We have formally demonstrated that kernel’s layout randomization

ensures kernel safety modulo a small probability of failure in a

classic threat model. Specifically, in this model attackers cannot

compromise the system via speculative execution or side-channels,

and users of an operating system execute without privileges, but

victims can feature pointer arithmetic, introspection, and indirect

jumps.

We have also shown that the protection offered by layout random-

ization does not naturally scale against attackers that can control

speculative execution and side-channels, and stipulate a sufficient

condition to enforce kernel safety in the Spectre era. Furthermore,

we propose mechanisms based on program transformations that

provably enforce speculative kernel safety on a system, provided

that this system already enjoys kernel safety in the classic model.

To the best of our knowledge, our work is the first to formally in-

vestigate and provide ways to achieve kernel safety in the presence

of speculative and side-channel vulnerabilities.

This work prepares the ground for future developments such as

modeling more expressive attacker models, e.g. attackers speculat-

ing on the branch target buffer, related to Spectre v2 [33], optimizing

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Davide Davoli, Martin Avanzini, and Tamara Rezk

the instrumentation we presented in Section 7, and assessing its

overhead on a real operating system.

An orthogonal research direction is to study more fine-grained

safety properties instead of (speculative) kernel safety — e.g. by

distinguishing violations of CFI from violations of spatial safety,

and data integrity from confidentiality, akin to what happens in [6].

In this direction, it would also be interesting to model a call stack

in order to determine whether the safety of kernel’s stack can be

granted under other, possibly weaker, conditions.

Finally, a valuable future development is to extend our execution

model with other features that are often used to undermine oper-

ating systems’ security, such as dynamic memory allocation and

dynamic module loading, with the aim to establish their impact on

system’s safety in presence of speculative attackers.

ACKNOWLEDGMENTS
We are grateful to Gilles Barthe, Márton Bognár, Ugo Dal Lago,

Lesly-Ann Daniel, Benjamin Grégoire, Jean-Pierre Lozi, and Frank

Piessens for their comments on an early draft of the paper. This

workwas partially supported through the projects PPSANR-19-C48-

0014 and UCA DS4H ANR-17-EURE-0004, and by the Wallenberg

AI, Autonomous Systems and Software Program (WASP) funded

by the Knut and Alice Wallenberg Foundation.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow

Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (Alexandria, VA, USA) (CCS ’05). Association for Computing Ma-

chinery, New York, NY, USA, 340–353. https://doi.org/10.1145/1102120.1102165

[2] Martín Abadi and Jérémy Planul. 2013. On Layout Randomization for Arrays and

Functions. In Principles of Security and Trust, David Basin and John C. Mitchell

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 167–185.

[3] Martín Abadi, Jérémy Planul, and Gordon D. Plotkin. 2014. Layout Randomization
and Nondeterminism. Springer International Publishing, Cham, 1–39. https:

//doi.org/10.1007/978-3-319-06880-0_1

[4] Martín Abadi and Gordon D. Plotkin. 2012. On Protection by Layout Ran-

domization. ACM Trans. Inf. Syst. Secur. 15, 2, Article 8 (jul 2012), 29 pages.

https://doi.org/10.1145/2240276.2240279

[5] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent

Laporte, and Swarn Priya. 2022. Enforcing Fine-grained Constant-time Policies. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery,

New York, NY, USA, 83–96. https://doi.org/10.1145/3548606.3560689

[6] Sean Noble Anderson, Roberto Blanco, Leonidas Lampropoulos, Benjamin C.

Pierce, and Andrew Tolmach. 2023. Formalizing Stack Safety as a Security

Property. In 2023 IEEE 36th Computer Security Foundations Symposium (CSF).
IEEE, New York, NY, USA, 356–371. https://doi.org/10.1109/CSF57540.2023.00037

[7] Arthur Azevedo de Amorim, Cătălin Hriţcu, and Benjamin C. Pierce. 2018. The

Meaning of Memory Safety. In Principles of Security and Trust, Lujo Bauer and

Ralf Küsters (Eds.). Springer International Publishing, Cham, 79–105.

[8] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-

frida. 2022. Branch History Injection: On the Effectiveness of Hardware Mit-

igations Against Cross-Privilege Spectre-v2 Attacks. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 971–988.

https://www.usenix.org/conference/usenixsecurity22/presentation/barberis

[9] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie.

2014. System-Level Non-Interference for Constant-Time Cryptography. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security (Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machin-

ery, New York, NY, USA, 1267–1279. https://doi.org/10.1145/2660267.2660283

[10] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao,

Tiago Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. 2021. High-

Assurance Cryptography in the Spectre Era. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, New York, NY, USA, 1884–1901. https://doi.org/10.1109/

SP40001.2021.00046

[11] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory

Safety for Unsafe Languages. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Ottawa, Ontario, Canada)

(PLDI ’06). Association for Computing Machinery, New York, NY, USA, 158–168.

https://doi.org/10.1145/1133981.1134000

[12] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl,

and Daniel Gruss. 2020. KASLR: Break It, Fix It, Repeat. In Proceedings of the
15th ACM Asia Conference on Computer and Communications Security (Taipei,

Taiwan) (ASIA CCS ’20). Association for Computing Machinery, New York, NY,

USA, 481–493. https://doi.org/10.1145/3320269.3384747

[13] Chandler Carruth. 2018. Speculative Load Hardening. https://llvm.org/docs/

SpeculativeLoadHardening.html

[14] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian

Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-time foundations for

the new spectre era. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (London, UK) (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 913–926. https:

//doi.org/10.1145/3385412.3385970

[15] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. 2020. A Systematic Study of Elastic

Objects in Kernel Exploitation. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security (Virtual Event, USA) (CCS
’20). Association for Computing Machinery, New York, NY, USA, 1165–1184.

https://doi.org/10.1145/3372297.3423353

[16] Jonathan Corbet. 2012. Supervisor mode access prevention. https://lwn.net/

Articles/517475/

[17] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara

Rezk, and Frank Piessens. 2023. ProSpeCT: Provably Secure Speculation for

the Constant-Time Policy. In 32nd USENIX Security Symposium (USENIX Security
23). USENIX Association, Anaheim, CA, 7161–7178. https://www.usenix.org/

conference/usenixsecurity23/presentation/daniel

[18] Theo de Raadt. 2017. OpenBSD 6.3. https://www.openbsd.org/33.html

[19] Jake Edge. 2013. Kernel address space layout randomization. https://lwn.net/

Articles/569635/

[20] Stephen Fischer. 2011. Supervisor Mode Execution Protection. https://www.

ncsi.com/nsatc11/presentations/wednesday/emerging_technologies/fischer.pdf

[21] Thomas Garnier. 2016. Randomizing the Linux kernel heap freel-

ists. https://mxatone.medium.com/randomizing-the-linux-kernel-heap-

freelists-b899bb99c767

[22] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-

Grained Control-Flow Integrity for Kernel Software. In 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P). IEEE, New York, NY, USA, 179–194.

https://doi.org/10.1109/EuroSP.2016.24

[23] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In

1982 IEEE Symposium on Security and Privacy. IEEE, New York, NY, USA, 11 pages.

https://doi.org/10.1109/SP.1982.10014

[24] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano

Giuffrida. 2020. Speculative Probing: Hacking Blind in the Spectre Era. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, USA) (CCS ’20). Association for Computing Machinery,

New York, NY, USA, 1871–1885. https://doi.org/10.1145/3372297.3417289

[25] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,

and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In Engineering Se-
cure Software and Systems, Eric Bodden, Mathias Payer, and Elias Athanasopoulos

(Eds.). Springer International Publishing, Cham, 161–176.

[26] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-

gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery,

New York, NY, USA, 368–379. https://doi.org/10.1145/2976749.2978356

[27] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez.

2020. Spectector: Principled Detection of Speculative Information Flows. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, New York, NY, USA, 1–19.

https://doi.org/10.1109/SP40000.2020.00011

[28] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-

Software Contracts for Secure Speculation. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, New York, NY, USA, 1868–1883. https://doi.org/10.1109/

SP40001.2021.00036

[29] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side

Channel Attacks against Kernel Space ASLR. In 2013 IEEE Symposium on Security
and Privacy. IEEE, New York, NY, USA, 191–205. https://doi.org/10.1109/SP.2013.

23

[30] Apple Inc. 2011. Mac OS X has you Covered. http://www.apple.com/macosx/

security/

[31] Intel Corporation 2023. Intel ®64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation.

[32] The kernel development community. 2023. Page Table Isolation (PTI). https:

//www.kernel.org/doc/html/next/x86/pti.html

[33] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In

2019 IEEE Symposium on Security and Privacy (SP). IEEE, New York, NY, USA,

1–19. https://doi.org/10.1109/SP.2019.00002

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1007/978-3-319-06880-0_1
https://doi.org/10.1007/978-3-319-06880-0_1
https://doi.org/10.1145/2240276.2240279
https://doi.org/10.1145/3548606.3560689
https://doi.org/10.1109/CSF57540.2023.00037
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1145/3320269.3384747
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3372297.3423353
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://www.usenix.org/conference/usenixsecurity23/presentation/daniel
https://www.usenix.org/conference/usenixsecurity23/presentation/daniel
https://www.openbsd.org/33.html
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://www.ncsi.com/nsatc11/presentations/wednesday/emerging_technologies/fischer.pdf
https://www.ncsi.com/nsatc11/presentations/wednesday/emerging_technologies/fischer.pdf
https://mxatone.medium.com/randomizing-the-linux-kernel-heap-freelists-b899bb99c767
https://mxatone.medium.com/randomizing-the-linux-kernel-heap-freelists-b899bb99c767
https://doi.org/10.1109/EuroSP.2016.24
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3372297.3417289
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP.2013.23
https://doi.org/10.1109/SP.2013.23
http://www.apple.com/macosx/security/
http://www.apple.com/macosx/security/
https://www.kernel.org/doc/html/next/x86/pti.html
https://www.kernel.org/doc/html/next/x86/pti.html
https://doi.org/10.1109/SP.2019.00002

On Kernel’s Safety in the Spectre Era
(And KASLR is Formally Dead) CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

[34] Jakob Koschel, Pietro Borrello, Daniele Cono D’Elia, Herbert Bos, and Cris-

tiano Giuffrida. 2023. Uncontained: Uncovering Container Confusion in the

Linux Kernel. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX
Association, Anaheim, CA, 5055–5072. https://www.usenix.org/conference/

usenixsecurity23/presentation/koschel

[35] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. Tag-

Bleed: Breaking KASLR on the Isolated Kernel Address Space using Tagged TLBs.

In 2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, New
York, NY, USA, 309–321. https://doi.org/10.1109/EuroSP48549.2020.00027

[36] Jinku Li, Zhi Wang, Tyler Bletsch, Deepa Srinivasan, Michael Grace, and Xuxian

Jiang. 2011. Comprehensive and Efficient Protection of Kernel Control Data.

IEEE Transactions on Information Forensics and Security 6, 4 (2011), 1404–1417.

https://doi.org/10.1109/TIFS.2011.2159712

[37] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-

ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,

and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User Space.

In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,

Baltimore, MD, 973–990. https://www.usenix.org/conference/usenixsecurity18/

presentation/lipp

[38] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-

ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,

and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User Space.

In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,

Baltimore, MD, 973–990. https://www.usenix.org/conference/usenixsecurity18/

presentation/lipp

[39] William Liu, Joseph Ravichandran, and Mengjia Yan. 2023. EntryBleed: A Uni-

versal KASLR Bypass against KPTI on Linux. In Proceedings of the 12th Interna-
tional Workshop on Hardware and Architectural Support for Security and Privacy
(<conf-loc>, <city>Toronto</city>, <country>Canada</country>, </conf-loc>)

(HASP ’23). Association for Computing Machinery, New York, NY, USA, 10–18.

https://doi.org/10.1145/3623652.3623669

[40] Ziqin Liu, Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Yalong Zou, Dongliang Mu,

and Xinyu Xing. 2023. Towards Unveiling Exploitation Potential With Multiple

Error Behaviors for Kernel Bugs. IEEE Transactions on Dependable and Secure
Computing 21, 1 (2023), 1–18. https://doi.org/10.1109/TDSC.2023.3246170

[41] A. Mambretti, A. Sandulescu, A. Sorniotti, W. Robertson, E. Kirda, and A. Kurmus.

2021. Bypassing memory safety mechanisms through speculative control flow

hijacks. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE Computer Society, Los Alamitos, CA, USA, 633–649. https://doi.org/10.

1109/EuroSP51992.2021.00048

[42] Tarjei Mandt. 2013. Attacking the iOS Kernel: A Look at ‘evasi0n’. https:

//papers.put.as/papers/ios/2013/NISlecture201303.pdf

[43] Ed Maste. 2023. Address Space Layout Randomization (ASLR). https://wiki.

freebsd.org/AddressSpaceLayoutRandomization

[44] Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan

Denlinger, Craig Disselkoen, ConradWatt, Bryan Parno, Marco Patrignani, Marco

Vassena, and Deian Stefan. 2023. MSWasm: Soundly Enforcing Memory-Safe

Execution of Unsafe Code, In Proceedings of the 50th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages. Proc. ACM Program. Lang.
7, Article 15, 30 pages. https://doi.org/10.1145/3571208

[45] João Moreira, Sandro Rigo, Michalis Polychronakis, and Vasileios P Kemerlis.

2017. DROP THE ROP Fine-grained Control-flow Integrity for the Linux Kernel.

[46] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.

2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for c.

SIGPLAN Not. 44, 6 (jun 2009), 245–258. https://doi.org/10.1145/1543135.1542504

[47] Android Open Source Project. 2022. Kernel Hardening. https://source.android.

com/docs/core/architecture/kernel/hardening

[48] Liam Proven. 2022. Linux 6.1: Rust to hit mainline kernel. https://www.

theregister.com/2022/10/05/rust_kernel_pull_request_pulled/

[49] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022. PAC-

MAN: Attacking ARM Pointer Authentication with Speculative Execution. In

Proceedings of the 49th Annual International Symposium on Computer Architecture
(New York, New York) (ISCA ’22). Association for Computing Machinery, New

York, NY, USA, 685–698. https://doi.org/10.1145/3470496.3527429

[50] Elena Reshetova, Hans Liljestrand, Andrew Paverd, and N Asokan. 2018. Toward

Linux kernel memory safety. Software: Practice and Experience 48, 12 (2018),

2237–2256.

[51] Mark Rutland. 2017. ARMv8. 3 Pointer Authentication.

[52] Michael S and Vitaly Nikolenko. 2022. Linux kernel heap feng shui in 2022.

https://duasynt.com/blog/linux-kernel-heap-feng-shui-2022

[53] SecurityScorecard. 2022. Threat overview for Linux Kernel. https://www.

cvedetails.com/product/47/Linux-Linux-Kernel.html

[54] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,

and Dan Boneh. 2004. On the Effectiveness of Address-Space Randomization.

In Proceedings of the 11th ACM Conference on Computer and Communications
Security (Washington DC, USA) (CCS ’04). Association for Computing Machinery,

New York, NY, USA, 298–307. https://doi.org/10.1145/1030083.1030124

[55] Andrew S. Tanenbaum and Herbert Bos. 2014. Modern Operating Systems (4th
ed.). Prentice Hall Press, USA.

[56] PaX Team. 2003. Documentation for the PaX project. https://pax.grsecurity.net/

docs/

[57] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,

Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Au-

tomatically eliminating speculative leaks from cryptographic code with blade.

Proc. ACM Program. Lang. 5, POPL, Article 49 (jan 2021), 30 pages. https:

//doi.org/10.1145/3434330

[58] ZhiWang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to Provide

Lifetime Hypervisor Control-Flow Integrity. In 2010 IEEE Symposium on Security
and Privacy. IEEE, New York, NY, USA, 380–395. https://doi.org/10.1109/SP.2010.

30

[59] OfirWeisse, Ian Neal, Kevin Loughlin, Thomas F.Wenisch, and Baris Kasikci. 2019.

NDA: Preventing Speculative Execution Attacks at Their Source. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture
(Columbus, OH, USA) (MICRO ’52). Association for Computing Machinery, New

York, NY, USA, 572–586. https://doi.org/10.1145/3352460.3358306

[60] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and

Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Compre-

hensive Protection for Speculatively Accessed Data. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH,

USA) (MICRO ’52). Association for Computing Machinery, New York, NY, USA,

954–968. https://doi.org/10.1145/3352460.3358274

https://www.usenix.org/conference/usenixsecurity23/presentation/koschel
https://www.usenix.org/conference/usenixsecurity23/presentation/koschel
https://doi.org/10.1109/EuroSP48549.2020.00027
https://doi.org/10.1109/TIFS.2011.2159712
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1145/3623652.3623669
https://doi.org/10.1109/TDSC.2023.3246170
https://doi.org/10.1109/EuroSP51992.2021.00048
https://doi.org/10.1109/EuroSP51992.2021.00048
https://papers.put.as/papers/ios/2013/NISlecture201303.pdf
https://papers.put.as/papers/ios/2013/NISlecture201303.pdf
https://wiki.freebsd.org/AddressSpaceLayoutRandomization
https://wiki.freebsd.org/AddressSpaceLayoutRandomization
https://doi.org/10.1145/3571208
https://doi.org/10.1145/1543135.1542504
https://source.android.com/docs/core/architecture/kernel/hardening
https://source.android.com/docs/core/architecture/kernel/hardening
https://www.theregister.com/2022/10/05/rust_kernel_pull_request_pulled/
https://www.theregister.com/2022/10/05/rust_kernel_pull_request_pulled/
https://doi.org/10.1145/3470496.3527429
https://duasynt.com/blog/linux-kernel-heap-feng-shui-2022
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://doi.org/10.1145/1030083.1030124
https://pax.grsecurity.net/docs/
https://pax.grsecurity.net/docs/
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3434330
https://doi.org/10.1109/SP.2010.30
https://doi.org/10.1109/SP.2010.30
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358274

	Abstract
	1 Introduction
	2 Motivation
	3 The Language
	4 Threat Model
	5 Classic Threat Model
	6 Speculative Threat Model
	6.1 The Speculative Execution Model
	6.2 Speculative Kernel Safety
	6.3 The Demise of Layout Randomization in the Spectre Era
	6.4 Speculative Layout Non-Interference

	7 Enforcement of Speculative Kernel Safety
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

