
Verifying Polytime Computability
Automatically

dissertation

by

Martin Avanzini

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of doctor of science

advisor: Assoc. Prof. Dr. Georg Moser

Innsbruck, 8 July 2013

dissertation

Verifying Polytime Computability
Automatically

Martin Avanzini (0216396)
martin.avanzini@uibk.ac.at

8 July 2013

advisor: Assoc. Prof. Dr. Georg Moser

mailto:martin.avanzini@uibk.ac.at

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich
die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich
den angegebenen Quellen entnommen wurden, sind als solche kenntlich gemacht.
Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht
als Magister-/Master-/Diplomarbeit/Dissertation eingereicht.

Datum Unterschrift

For Asal.

Abstract

We strive to advance the field of complexity analysis from a theoretical and
practical perspective. We use term rewrite systems as machine model, which is
a formal model of computation close to first order functional programs. A term
rewrite system, the program, consists of a collection of directed equations, so
called rewrite rules. Computation in this model is performed by successively
applying equations from left to right.
The runtime complexity of a rewrite system, which relates the sizes of the inputs
to the maximal number of steps in such computations, forms a natural cost model.
In the first part of this work we argue that this cost model is indeed reasonable.
Our polytime invariance theorem states that algorithms expressed as rewrite
systems admit implementations on a conventional model of computation, the
Turing machine, such that the computational complexity of this implementation
is tightly related to runtime complexity of the underlying rewrite systems.
In the second part we present a novel technique to analyse the runtime complexity
of rewrite systems. If this analysis is successful, we can deduce that the runtime
complexity of the analysed rewrite system is bounded by a polynomial, whose
degree can be precisely inferred. The described technique is purely syntactical,
and as a consequence its automation is feasible. Beyond this practical application,
the technique yields a resource free characterisation of the class of functions
computable in polynomial time. Hence our method has also ramifications in
the context of implicit computational complexity theory. We then generalise this
technique so that exponential bounds can be inferred. In turn, this provides a
resource free characterisation of the exponential time computable functions.
We have designed the fully automatic complexity analyser TCT, the Tyrolean
Complexity Tool. TCT is a competitive tool that integrates a majority of the
techniques known for the automated polytime complexity analysis. The final part
of this work is concerned with this implementation and its underlying theoretical
framework.

Acknowledgments

I would not have been able to complete this thesis without the aid and support
of countless people over the last years.
First and foremost, I want to express my sincere gratitude to my supervisor

Georg Moser for his patience and continuous support. His gentle guidance helped
me in pursuing my research, without limiting my freedom. I could profit from
Georg not only scientifically, but also on a personal level.
I want to thank Nao Hirokawa. He initially raised my interest in theoretical

computer science, and teached me not to be afraid of proofs. I am thankful for
the numerous fruitful discussions we had over the last years, and for the very
pleasant days in Kanazawa.
I am indebted to my comrades from the CL working group in Innsbruck:

Simon Bailey, Naohi Eguchi, Bertram Felgenhauer, Stéphane Gimenez, Martin
Ingenhaeff, Cezary Kaliszyk, Cynthia Kop, Julian Nagele, Christian Sternagel,
Thomas Sternagel, Andreas Schnabl, René Thiemann, Benjamin Winder, Sarah
Winkler and last but not least Harald Zankl. The number of enjoyable discussions
I had with members of the working group is uncountable. I want to thank them
also for become true friends. Dedicated thanks go to Aart Middeldorp, who
succeeded in establishing a professional and comfortable working environment.
I am thankful for the fruitful collaborations with Andreas Schnabl and Naohi
Eguchi, which is reflected also in this thesis. Without the efforts of Andreas, our
jointly developed complexity tool TCT could not have matured to its current state.
Joint research with Naohi helped me foster my understanding in complexity and
proof theory. I am very grateful for numerous enlightening discussions.
My gratitude goes also to all my friends who still remember me, even after

all these years of excusing myself from social events. I am also thankful for the
discussions of the highest grade with Manu.

Last but not least, I am very indebted to my family for their ongoing support,
and for providing an environment which allowed me to focus on my studies. I
am particularly grateful to my wife, for her continuous support in all aspects, for
her listened to my nagging, for the pleasant distractions, and for her feedback
on the presentation of this thesis. It goes without saying that she had to endure
a lot during the compilation of this thesis.

I gratefully acknowledge the financial support by FWF (Austrian Science Fund)
and the University of Innsbruck. This work was supported via the FWF projects
P20133 and I608-N18, as well as the grant 2011/2/Mip7 from the University of
Innsbruck.

Contents

1. Introduction 1

2. Preliminaries 5
2.1. Sets, Relations and Orders . 5
2.2. Complexity Theory . 7

2.2.1. Turing Machines . 8
2.2.2. Register Machines . 11

2.3. Term Rewriting . 13
2.3.1. Rewriting as Computational Model 16
2.3.2. Complexity Analysis of Rewrite Systems 19
2.3.3. Termination Analysis of Rewrite Systems 20

I. Closing the Gap 25

3. Introduction 27

4. Term Graph Rewriting 31
4.1. Term Graphs . 31

4.1.1. Term Graph Morphisms 35
4.1.2. Positions and Sharing . 37
4.1.3. Canonical Term Graphs 39

4.2. Term Graph Rewriting Systems 40
4.3. Simulating Term Rewriting by Graph Rewriting 44

5. The Adequacy Theorem 51
5.1. Restricted Folding and Unfolding 52
5.2. Adequacy for Full Rewriting . 58
5.3. Adequacy for Innermost Rewriting 59

6. An Implementation of Graph Rewriting 65
6.1. An Upper Bound on Sizes of Reducts 65
6.2. Implementing a Graph Rewriting Reduction 66

7. The Polynomial Invariance Theorem 79

II. Order-Theoretic Characterisation of Complexity Classes 83

8. Introduction 85

i

9. The Small Polynomial Path Order 89
9.1. Small Polynomial Path Orders are Sound 95

9.1.1. Small Polynomial Path Order on Sequences 96
9.1.2. Predicative Embedding 103
9.1.3. Putting Things Together 108

9.2. Small Polynomial Path Orders are Complete 109
9.3. Parameter Substitution . 113
9.4. A Tight Characterisation . 115

9.4.1. Soundness . 117
9.4.2. Completeness . 122

10.The Exponential Path Order 127
10.1. Exponential Path Orders are Sound 128

10.1.1. Exponential Polynomial Path Order on Sequences 129
10.1.2. Predicative Embedding 132
10.1.3. Putting Things Together 133

10.2. Exponential Path Orders are Complete 134

III. Automated Runtime Complexity Analysis 139

11.Introduction 141

12.The Tyrolean Complexity Tool 145
12.1. Web Interface . 145
12.2. Command-Line Interface . 146

12.2.1. Proof Search Strategy Format 147
12.2.2. Configuration . 148

12.3. Interactive Interface . 151

13.The Combination Framework Underlying TCT 155

14.Complexity Processors in TCT 161
14.1. Suiting Reduction Orders to Complexity 163

14.1.1. Complexity Pairs in TCT 167
14.2. Relative Decomposition . 170

14.2.1. Relative Decomposition in TCT 171
14.3. Small Polynomial Path Orders as Complexity Pairs 172

14.3.1. Small Polynomial Path Orders in TCT 177
14.4. Dependency Pairs for Complexity Analysis 177

14.4.1. Dependency Pair Complexity Problems 178
14.4.2. Weak Dependency Pairs 180
14.4.3. Dependency Tuples . 182
14.4.4. Reduction Pairs . 186
14.4.5. Derivation Trees . 187
14.4.6. Dependency Graphs for Complexity Analysis 189
14.4.7. Dependency Pairs in TCT 190

14.5. Syntactic Simplifications . 192
14.5.1. Usable Rules . 192
14.5.2. Removing of Weak Suffixes in the DG 194
14.5.3. Predecessor Estimation 195
14.5.4. Simplifying Right-hand Sides 197
14.5.5. Simplifications In TCT . 199

14.6. Dependency Graph Decomposition 201
14.6.1. Dependency Graph Decomposition in TCT 209

14.7. Small Polynomial Path Orders and Dependency Pairs 211

15.Experimental Evaluation 217

16.Conclusion 223

Chapter 1.

Introduction

Over the years, computer software has become more and more sophisticated. To
produce robust software, this degree of sophistication needs to be reflected in
verification techniques. Limited hardware, or in general limited computational
resources, render complexity analysis a central topic in software verification.
This form of verification is, even nowadays, often carried out manually. In
order to automate this kind of analysis in a broad setting, a universal model
of computation is required that is abstract enough to model the myriads of
programming languages. At the same time, this formalism needs to be amenable
to an automatic complexity analysis. Rooted in equational reasoning, term
rewriting constitutes a powerful computational model. Rewriting is not only
extensively applied in theorem proving [67], but underlies also much of declarative
and functional programming. This work is concerned with the complexity analysis
in this setting, with a strong focus on automation.
A term rewrite system (TRS for short) is a collection of directed equations,

so called rewrite rules. Computation in this model is performed by successively
applying rewrite rules from left to right. The runtime complexity of a rewrite
system, which relates the sizes of the inputs to the maximal number of rewrite
steps performed, forms a natural cost model for rewrite systems. Runtime
complexity analysis can be seen as a refinement to termination analysis. And as
already observed by Hofbauer and Lautemann [42], a proof of termination proves
more than just the absence of infinite reductions. In many cases, a proof implies
also an upper bound on the maximal length of reductions, that is, it induces
a certain bound on the runtime complexity of the analysed rewrite system.
Early research in this line [42, 41, 24] was mainly concerned with a quantitative
comparison of the strength of different termination techniques. More recent work
in this area takes a complementary view, viz, suiting termination techniques so
that (asymptotically) precise bounds on the runtime complexity can be inferred.
The seminal paper by Bonfante et al. [23] gives an early account on taming a
termination technique so that the induced complexity is polynomial. Since then,
a wealth of techniques have been introduced specifically to establish polynomial
complexity bounds, see [59] for an overview.
With this work we provide three major contributions to the automated poly-

nomial runtime complexity analysis of rewrite systems.

Polynomial Invariance Theorem: Polynomial runtime complexity analysis is
motivated by Cobham’s thesis, which identifies feasible computations with those
that can be performed in polynomial time, measured in the input sizes. One may

1

1 Introduction

wonder however, in which sense a bound on the runtime complexity of a rewrite
system relates to the intrinsic computational complexity of the operations defined
by the analysed rewrite system. This question is in particular pressing as a single
rewrite step, which is attributed one time unit, is not an atomic operations.
Instead, in unitary time rewrite systems are capable of copying arbitrary large
objects. For this reason, it seems that the unitary cost model of rewriting is not
polynomially invariant in general to the notion of cost on a conservative models
of computation, for instance the Turing machine. In this work we reason that
this issue is just a representation problem. Our polynomial invariance theorem
states that, provided we use a representation of terms which can take sharing
into account, any algorithm defined by a (terminating) rewrite system admits
an implementations on a Turing machine, and this Turing machine runs in time
that is polynomially related to the sizes of the input terms and the runtime
complexity of the rewrite system. In particular, it follows that if a rewrite system
defines a function and the runtime complexity is polynomially bounded, then
this function is computable in polynomial time on a Turing machine.

Small Polynomial Path Orders: We introduce a novel termination techniques,
the small polynomial path order (sPOP? for short). This order constitutes a
restriction of the recursive path order with product status where data tiering, in
the form of Bellantoni and Cook principle of predicative recursion [21], is imposed
on compatible rewrite systems. This order delineates a class of (constructor)
rewrite systems, the class of predicative recursive TRSs, that is, the class of TRSs
compatible with sPOP?. The distinct feature of predicative recursive TRSs is
that their innermost runtime complexity, i.e., the runtime complexity under call-
by-value semantics, is bounded by a polynomial function. In particular, predictive
recursive TRSs thus define only polytime computable functions. Conversely, any
polytime computable function is definable with such a predicative recursive TRS.
In total, the class of predicative recursive TRSs thus characterise the class of
polytime computable functions. Hence the small polynomial path order gives a
novel characterisation of the polytime computable functions. This order-theoretic
characterisation is entirely resource free, and thus our work is closely related to
similar studies in the field of implicit computational complexity (ICC for short).

On the other hand our research entails a new criteria to automatically establish
polynomial runtime complexity of a given TRS. We remark that the constraints
imposed by sPOP? are purely syntactic and easily verifiable, in a fully automatic
setting: For any given TRS, it can be efficiently checked if it falls into the class
of predicative recursive TRSs. Should this check succeed, we get an asymptotic
bound on the runtime complexity directly from the parameters of the order. It
should perhaps be emphasised that compatibility of a TRS with sPOP? implies
termination and thus our complexity analysis technique does not presuppose
termination.
This line of research is not restricted to polytime computation. In this work

we also define an extension of small polynomial path orders, the exponential path
order (EPO? for short). This order delineates the class of predicative nested
recursive TRSs, that constitute an extension of predicative recursive TRSs. We

2

show that this class of TRSs admit an (innermost) runtime complexity that is
bounded by an exponential, and moreover this class characterises exactly the
exponential time computable functions.

Automated Runtime Complexity Analysis: The body of the literature pro-
vides a wealth of powerful and techniques for the automated runtime complexity
analysis of rewrite systems [59]. Motivated by the theoretical advances, we
have implemented a vast part of this theoretical body in a dedicated complexity
analysers for rewrite systems, the Tyrolean Complexity Tool (TCT for short). In
this work we present the theoretical framework underlying TCT. We adapt various
known techniques to this framework. Noteworthy, we present a generalisation of
complexity pairs [79]. We also adapt small polynomial path orders, argument
filterings to increase the intensionality of the order. We prove correctness of the
dependency pair approaches described in [38] and for innermost rewriting in [63]
in our setting. Beside some obvious simplification techniques, we also present a
novel transformation technique, called dependency graph decomposition. This
technique is inspired by cycle analysis [35]. Its unique feature is that this com-
plexity preserving transformation translates the input not only in syntactically,
but also computationally simpler, sub-problems.

Outline. In the next Chapter we introduce notions and notations used through-
out this work. The remainder of this work is then divided into three parts, in
accordance to the categorisation of our contributions above.

In Part I, which consists of Chapters 3–7, we close the gap between the runtime
complexity of rewrite systems and conventional cost models. The main results of
this part, the invariance theorems for deterministic and non-deterministic time,
are presented in Chapter 7.
Part II, which consists of Chapters 8–10, records our endeavour on order-

theoretic characterisations. Chapter 9 deals with small polynomial path orders,
in Chapter 10 is concerned with exponential path orders.

Part III consists of Chapters 11–15. This part covers our work on the automa-
tion of complexity analysis for rewrite systems. We conclude in Chapter 16.

3

Chapter 2.

Preliminaries

In this chapter we fix notions and notations used in this thesis. The next section
is concerned with sets, relations, and orders. In Section 2.2 we recall basic
notions from complexity theory, and in Section 2.3 we review definitions and
notations for term rewriting.

2.1. Sets, Relations and Orders

Throughout this thesis, we denote by N the set of natural numbers N :=
{0, 1, 2, . . . }, by R the set of reals and by R+ the set of non-negative reals
R+ := {x ∈ R | x > 0}. Given sets A1, . . . , An (for some n ∈ N), we denote by
A1 × · · · ×An the cartesian product

A1 × · · · ×An := {(a1, . . . , an) | ai ∈ Ai for all i = 1, . . . , n} .

For A1 = · · · = An we abbreviate this product by An. For any set A, we denote
by P(A) the powerset P(A) := {A′ | A ⊆ A}. A set of subsets {A1, . . . , An} of
A is called a partition of A if the sets Ai (i = 1, . . . , n) are pairwise disjoint and
A =

⋃n
i=1Ai.

Given n sets Ai (i = 1, . . . , n), an n-ary relation R over A1 × · · · × An is a
subset of A1 × · · · × An. In the special case n = 2, the relation R is called a
binary relation, if R ⊆ A× A it is also called a binary relation over the set A.
For a binary relation R, we frequently write a R b instead of (a, b) ∈ R.

If f ⊆ A×B constitutes a function, i.e., for every a ∈ A there exists at most
one b ∈ B with (a, b) ∈ f , we denote this by f : A→ B. Functions are usually
denoted by small letters f, g, For a function f : A→ B, we denote by f(a)
the value b ∈ B with (a, b) ∈ f if defined. If f(a) is defined for all a ∈ A we call
f total (on A), otherwise it is called partial. To compare partial functions we
use Kleene equality : two partial functions f, g : A→ B are equal, in notation
f =k g, if for all a ∈ A either f(a) and g(a) are defined and f(a) = g(a), or
both f(a) and g(a) are undefined. We write f >k g if for all a ∈ A with f(a)
defined, f(a) >k g(a) with g(b) defined holds. Then f =k g if and only if f >k g
and g >k f .

For two binary relations R ⊆ A×B and S ⊆ B×C we denote by R ◦ S ⊆ A×C
the composition of R and S:

R ◦ S := {(a, c) | ∃b ∈ B. a R b and b S c} .

5

2 Preliminaries

Let R be a binary relation over A. For n ∈ N we denote by Rn the n-fold
composition of R, i.e., R0 := idA and Rn+1 := R ◦ Rn, where idA denotes the
identity relation {(a, a) | a ∈ A} over A.

Definition 2.1. A binary relation R over the set A is called

- (ir)reflexive if (not) a R a holds for all a ∈ A;

- symmetric if a R b implies b R a for all a, b ∈ A;

- transitive if a R b and b R c implies a R c for all a, b, c ∈ A;

- well-founded if there exists no infinite chain a0, a1, . . . (ai ∈ A) with
ai R ai+1 for all i ∈ N.

- finitely branching if for all elements a ∈ A, the set {b | a R b with b ∈ A}
is finite.

Definition 2.2. Let R be a binary relation over the set A. The reflexive closure
of R, that is, the least reflexive binary relation that contains R, is denoted by
R=. The transitive closure of R, that is, the least transitive binary relation that
contains R, is denoted by R+. The transitive and reflexive closure R∗ of R is
defined as the smallest transitive and reflexive binary relation that contains R.

Definition 2.3. A binary relation ≈ on a set A is an equivalence relation if
it is reflexive, symmetric and transitive. For a ∈ A, we denote by [a]≈ the
≈-equivalence class of a, i.e., [a]≈ := {b ∈ A | a ≈ b}.

Definition 2.4.
(1) A (non-strict) partial order > on a set A is a reflexive, anti-symmetric

and transitive relation. The set A equipped with a partial order, (A,>) is
called a partially ordered set .

(2) A proper order on a set A is an irreflexive and transitive binary relation
over A.

(3) A pre-order on A, also called quasi-order , is a reflexive and transitive
binary relation over A.

Every pre-order % induces a proper order � and an equivalence relation ≈.

Definition 2.5. Let % be a quasi-order, and let � := % \- and ≈ := % ∩-.
We call � the proper order, and ≈ the equivalence contained in %.

Observe that by definition % = � ∪≈. Conversely, the union of a proper order
� and equivalence ≈ does not constitute a quasi-order in general. However,
whenever the compatibility condition

≈ ◦ � ◦ ≈ ⊆ � , (2.1)

is satisfied, then indeed � ∪ ≈ is a quasi-order, with � the contained proper
order, and ≈ the contained equivalence.
A multiset (also sometimes called bag) is a collection in which elements are

allowed to occur more than once. Multisets M are given as functions from A to
the natural numbers, and M(a) denotes the number of occurrences of a in M .

6

2.2 Complexity Theory

Definition 2.6. LetA be a set. A (finite) multiset over A is a functionM : A→
N such that the set {a ∈ A |M(a) 6= 0} is finite. The set of finite multisets over
A is denoted byM(A).

We use set-like notation also for multisets, and {{a1, . . . , an}} to denote multisets
with (possibly repeated) elements a1, . . . , an. For instance, {{1, 2, 2}} denotes
the multiset M with M(1) = 1, M(2) = 2 and M(a) = 0 otherwise. Abusing
notation, we overload the usual set operations ∈,∪,∩ and \ to operations on
multisets, extended in the obvious way.

Definition 2.7 (Multiset Extension). Let � denote a proper order on a set A.
The multiset extension of � is a binary relation �mul onM(A) defined as follows:
M1 �mul M2 if M2 = (M1 \X)] Y for some multisets X, y ∈M(A) that satisfy

- ∅ 6= X ⊆M1; and

- for all y ∈ Y there is an x ∈ X such that x � y.

We extend this definition to quasi-orders as follows. Let < denote a quasi-
order, and let � and ≈ denote the proper order and equivalence contained in <.
Define the extension A of � to equivalence classes such that [a]≈ A [b]≈ if and
only if a � b.
We define the strict multiset extension �mul of < as M1 �mul M2 if and only

if [M1]≈ Amul [M2]≈. Further, the weak multiset extension <mul of < is given by
M1 <mul M2 if and only if [M1]≈ Amul [M2]≈ or [M1]≈ = [M2]≈ holds.

Observe that since � and ≈ satisfy the compatibility condition, A is well defined.
If the order < is a quasi-order on A then �mul form a proper order, and <mul a
quasi-order, onM(A), cf. [33].

2.2. Complexity Theory

In this section, we introduce the essential notions and notations related to
computability and complexity theory. Mostly, we follow the presentation of
Papadimitriou [65].

Definition 2.8 (Alphabet, Word, Language). A finite set Σ is also called an
alphabet, elements of this set are called the letters of Σ. A finite sequence a1 · · · ak
of letters is called a word over Σ, the empty word (where k = 0) is denoted by ε.
The set of all words over Σ is denoted by W(Σ). A set of words is also called a
language.

Words are usually denoted by u, v, w, possibly followed by subscripts. We always
use Σ to denote an alphabet. We denote by uv the concatenation of words
u, v ∈W(Σ). Note that concatenation is associative, with the empty word ε the
neutral element. We denote by |w| the length k of the word w = a1 · · · ak.

Definition 2.9. Let g : N→ R+ be a function.

7

2 Preliminaries

(1) The set O(g) contains all functions f : N→ R+ such that for some n0 ∈ N
and constant c ∈ R+, for all n > n0 we have

f(n) 6 c · g(n) .

(2) The set Ω(g) contains all functions f : N→ R+ such that for some n0 ∈ N
and constant c ∈ R+, for all n > n0 we have

c · g(n) 6 f(n) .

If f ∈ O(g) we say that f is asymptotically bounded from above by g, conversely,
if f ∈ Ω(g) we say that f is asymptotically bounded from below by g.

2.2.1. Turing Machines

We consider Turing machines with k > 2 working tapes, where the first tape
denotes a dedicated read-only input, and the last tape a dedicated write-only
output tape.

Definition 2.10. For k > 2, a k-string Turing machine (TM for short) with
input and output tape is a quadruple (K,Σ,∆, s) where

- K denotes a finite set of states of M ; and

- Σ is the alphabet of M , containing two special symbols t (the blank) and
B (the left end marker); and

- ∆ ⊆ (K×Σk)×
(
(K∪{a, r})×(Σ× {←,→,−})k

)
is the transition relation

ofM , where a and r are called the accepting and rejecting state respectively,
and ←,→ and − denote the cursor direction left, right and stay ; and

- s ∈ K the start state of M .

Suppose (
(p, (a1, . . . , ak)), (p

′, (a′1, d1), . . . , (a′k, dk))
)
∈ ∆ .

Then the machine M can move, if in state p and the letter ai (i = 1, . . . , k) is
written on the ith tape under the cursor, to state p′, overwriting ai by a′i and
moving the ith cursor according to direction di for i = 1, . . . , k. We put the usual
restrictions on the transition relation. We require

- for all i = 1, . . . , k, if ai = B then a′i = B and di =→, i.e., cursors cannot
overwrite the left-end marker and have to move right in this case;

- a′1 = a1 and if a1 = t then di =←, i.e., the TM M can neither overwrite
nor leave the input stored on the first tape, the input tape;

- dk 6=←, i.e., the TM M can only proceed the cursor to the right on the
last tape, the output tape.

8

2.2 Complexity Theory

We say that M is a deterministic Turing machine (DTM for short) if ∆ is a
function

∆ : (K × Σk)→
(
(K ∪ {a, r})× (Σ× {←,→,−})k

)
.

Otherwise, it is called a nondeterministic Turing machine (NTM for short).

Definition 2.11. A configuration of a k-string TM M = (K,Σ,∆, s) is a tuple

(p, w1, u1, . . . , wk, uk) ∈ K ×W(Σ)2·k ,

where p ∈ K denotes the state of the configuration, and for all i = 1, . . . , k, wi
denotes the content to the left of the ith cursor, including the symbol scanned by
the cursor, and correspondingly ui the tape content to the right of this cursor.

We say that the configuration (p, w1, u1, . . . , wk, uk) with p 6∈ {a, r} yields the
configuration (p′, w′1, u

′
1, . . . , w

′
k, u
′
k), in notation

(p, w1, u1, . . . , wk, uk)→M (p′, w′1, u
′
1, . . . , w

′
k, u
′
k) ,

if the following conditions are satisfied. For all i ∈ 1, . . . , k, let ai denote the last
symbol in wi, i.e., the symbol under the ith cursor, and suppose that(

(p, (a1, . . . , ak)), (p
′, (a′1, d1), . . . , (a′k, dk))

)
∈ ∆ .

Then for i = 1, . . . , k we have the following:

- If di =←, then w′i is wi with ai omitted from its end, and u′i is ui with a
′
i

attached in the beginning.

- If di = →, then w′i is wi with the last symbol ai replaced by a′i and the
first symbol of ui appended to the right (t if ui is empty), and u′i is ui
with the first symbol removed if non-empty.

- If di = − then w′i is wi with the last symbol ai replaced by a′i and u
′
i is ui.

The relation→M is also called the one step transition relation of M . A sequence
(s,B, u, ε, . . . , ε)→M c1 →M c2 →M · · · is called a run of M on input u.

Definition 2.12. Let M = (K,Σ,∆, s) denote a k-string TM. We say that M
accepts u ∈ W(Σ) if there exist a (finite) run of M on input u ending in the
accepting state a. The TM M rejects u ∈ W(Σ) if all runs of M on input u
are finite and end in the reject state r. The TM M decides a language L, in
notation L = L(M), if it accepts all words u ∈W(Σ) and rejects otherwise.

In the following, we give semantics to Turing machines. For the nondetermin-
istic case we adopt the notion of function problem associated with a relation R.

Definition 2.13 (Function Problem). Let R ⊆ A×B denote a binary relation.
The function problem FR associated with R is defined as follows: given u ∈ A
find some v such that (u, v) ∈ R holds if v exists; otherwise reject the input.

9

2 Preliminaries

Definition 2.14 (Computation by TM). Let R denote a binary relation on
W(Σ). We say that a TM M computes the function problem FR if on any input
u ∈ LR, there exists for some v ∈W(Σ) with (u, v) ∈ R an accepting run

(s,B, u, ε, . . . , ε)→`
M (a, w1, u1, . . . , wk, uk) ,

such that for v = wkuk, i.e., v is written on the output tape. Further, for u 6∈ LR,
the TM M rejects its input.

Note that if M is deterministic, then R is a (partial) function. In this case we
also say that M computes the function R.

Definition 2.15 (Runtime of TM). For a k-string TM M = (K,Σ,∆, s) we
define the runtime complexity function rcM : N→ N by

rcM(n) := max{` | ∃u. (s,B, u, ε, . . . , ε)→`
M (q, w1, u1, . . . , wk, uk)

and |u| 6 n} .

Let S : N→ N be a number-theoretic function. If rcM(n) 6 S(n) for all n ∈ N
then we say that the TM M operates in time S(n). If a TM M operates in time
S(m) and computes the function problem F then we simply say thatM computes
F in time S(n). Vice versa, we say that a function problem F is computable in
(deterministic) time S(n) if there exists a (deterministic) Turing machine that
computes F and runs in time S(n). If S is a polynomial (linear, quadratic,. . .)
function, we also say that F is computable in (linear, quadratic,. . .) polynomial
time. Of particular interest for this work are the following classes of function
problems.

Definition 2.16 (Polytime Computable Functions and Function Problems).
(1) We denote by FP the class of polytime computable functions, i.e., the

class of functions computable in polynomial time on deterministic Turing
machines.

(2) We denote by FNP the class of polytime computable function problems, i.e.,
the class of function problems computable in polynomial time on Turing
machines.

(3) We denote by FEXP the class of of exponential time computable functions,
i.e., the class of functions computable in time 2p(n) on deterministic Turing
machines, for a polynomial p(n) ∈ O(nk) with k ∈ N.

Hence FP is the restriction of FNP if we consider only function problems that
can be computed on deterministic machines. The above mentioned classes are
closed under the following notion of reduction.

Definition 2.17 (Polytime Reduction). We say that a function problem F re-
duces to a function problem G if there exist functions r, s, computable on Turing
machines operating in time polynomial in the input, such that for any correct
input x to F , r(x) is a correct input to G. Furthermore, if z is a correct output
of G on s(x), then s(z) is a correct output of F on input x.

10

2.2 Complexity Theory

Our definition of FNP departs from the one given by Papadimitriou’s [65,
Chapter 10], where FNP is defined in terms of polynomially balanced and
polytime decidable relations associated with the class NP. Proposition 2.19
clarifies that this departure is only cosmetic. Here, a binary relation R on W(Σ)
is called polynomially balanced if for all (u, v) ∈ R we have |v| ∈ p(|u|) for some
polynomial function p. Further, the relation R is called polytime decidable if
(u, v) ∈ R is decided by a DTM M operating in polynomial time. We use the
following characterisation of NP, compare [65, Chapter 9].

Proposition 2.18. For a binary relation R on words, denote by LR := {u |
(u, v) ∈ R for some v} the (input) language associated with R.

NP = {LR | LR is language associated with polynomially
decidable and polynomially balanced relation R} .

Proposition 2.19. The class FNP corresponds to the class of function problems
associated with a polynomially balanced and polytime decidable relation R whose
associated language LR is in NP.

Proof. First consider F ∈ FNP, and letM be a nondeterministic Turing machine
that computes the function problem F in polynomial time. Define the following
relation R: (u, v) ∈ R if and only if v is the encoding of an accepting run of
M on input x. For this encoding it is sufficient to encode a successful sequence
of configurations. Since M operates in polynomial time, the length of any
computation, and also the size of each configuration, is polynomially bounded.
It follows that R is polynomially balanced. Since it can be checked in linear
time in |v| that v encodes an accepting run of M on input v, R is polytime
decidable. Thus Proposition 2.18 yields that the language LR associated with R
is in NP, and hence the function problem FR associated with R, which computes
an accepting runs v of M on input u, is in FNP.

Since FNP is closed under reductions, it now suffices to notice that F reduces
to FR. To see this, employ the following reduction: the function s is simply the
identity function; the polytime computable function r extracts the result of M
on input u from the accepting run v computed by FR on input u.
For the inverse direction, let R be the polynomially balanced and polytime

decidable relation underlying whose associated language LR is in NP. Consider
(u, v) ∈ R. Then on input u, an NTM N can simply guess the output v in
polynomial time, and use the DTM M witnessing polytime decidability of R
to see if (u, v) ∈ R holds. We conclude that the function problem FR with R
belongs to FNP. �

2.2.2. Register Machines

In this thesis, we are considering register machines (RM for short) over words
W(Σ) close to the initially proposed notion due to Shepherdson and Sturgis [71].

Definition 2.20. A register machine (RM for short) with k registers is a triple
M = (R,Σ, P) where

11

2 Preliminaries

- R = {r1, . . . , rk} denotes a finite set of registers; and

- Σ denotes the alphabet of M ; and

- P = I1, . . . , Il is a finite sequences of labeled instructions.

An instruction can be one of the following, for a ∈ Σ, r ∈ R and j ∈ {1, . . . , l+1}.

(1) Append instruction A(a)(r); or

(2) Delete instruction D(r); or

(3) Conditional jump instruction J (a)(r)[j]; or

(4) Copy instruction C(r, r′).

Informally, the effect of these operations can be stated as follows. Let 〈r〉
refer to the content of register r ∈ R. The append instruction A(a)(r) places
a ∈ Σ on the left end of 〈r〉. The delete instruction D(r) removes the left-most
character from 〈r〉, if 〈r〉 is not empty. The jump instruction J (a)(r)[j] performs
a jump to instruction Ij , if the left-most character of 〈r〉 is a. By convention
l+ 1 denotes a dedicated halting label, hence if j = l+ 1 the machine will simply
halt. Finally, the copy instruction C(r, r′) overwrites 〈r′〉 by 〈r〉.

Definition 2.21. A configuration of a RM M = (R,Σ, P) with k registers and
instructions P = I1, . . . , Il is a tuple (j, w1, . . . , wk) ∈W(Σ)× N where

- j ∈ {1, . . . , l + 1} denotes the label of the current instruction in P =
I1, . . . , Il, or the halting label l + 1; and

- wi denotes the content of the ith register (i = 1, . . . , k).

We say that the configuration (j, w1, . . . , wk) yields configuration (j′, w′1, . . . , w
′
k),

in notation
(j, w1, . . . , wk)→M (j′, w′1, . . . , w

′
k) ,

if j ∈ {1, . . . , l} and the following conditions are satisfied:

(1) if Ij = J (a)(ri)[j
′′] and wi = av then j′ = j′′ and otherwise j′ = j; and

(2) for i = 1, . . . , k, the words w′i are given as follows:

w′i :=

awi if Ij = A(a)(ri),
ε if Ij = D(ri) and wi = ε,
v if Ij = D(ri) and wi = av with a ∈ Σ,
wi otherwise.

Remark. Our definition departs from [71] in the following respects. Unlike
in [71], we suppose that the set of registers is finite. Due to the absence of memory
indirection instructions, this simplification does not impose any restriction on
register machines. The instructions 2.20(1)–2.20(3) correspond to the minimal
instruction set given in [71, Section 6], with the difference that in the append
instruction appends to the right instead of to the left. The additional copy
instruction (4) added from the extended instruction set of [71, Section 2] ensures
that copying is an atomic operation.

12

2.3 Term Rewriting

The next definition gives semantics to register machines. By convention, we
assume n dedicated input registers (which unlike for TMs can in the course of
evaluation be modified), and the last register is a dedicated output register. Note
that register machines as defined here act deterministically, every configuration
yields at most one next configuration.

Definition 2.22 (Computation by RM). LetM = (R,Σ, P) denote a RM with
k registers and l instructions. We say that M computes the (partial) function
fM : W(Σ)n →W(Σ) with n 6 k defined as follows:

fM (u1, . . . , un) := vk :⇔ (u1, . . . , un,~ε, 1)→`
M (v1, . . . , vk, l + 1) .

The first n registers are also called the input registers, and the final register the
output register.

We adopt a unit cost measure for register machines. As for Turing machines
each transition accounts for one step in time.

Definition 2.23 (Runtime of RM). For a RM M = (R,Σ, P), we define the
runtime complexity function rcM : N→ N by

rcM(n) := max{` | ∃u1, . . . , un. (u1, . . . , un,~ε, 1)→`
M (v1, . . . , vk, l)

and
n∑
i=1

|ui| 6 m} .

Again we say that for a RMM , if rcM(n) 6 S(n) for all n ∈ N thenM operates
in time S(n). If M operates in time S(n) and computes the function f then
we say that M computes f in time S(n). The class of polytime computable
functions FP is quite robust with respect to the underlying computational model.
In particular register machines and k-string Turing machines can simulate each
other within polynomial overhead, see for instance the book of Jones [46].

Proposition 2.24. The following classes of functions are equivalent:

(1) The class of functions computable by a deterministic Turing machine
running in polynomial time; and

(2) The class of functions computable by a Register machine running in poly-
nomial time.

Note that we silently assumed here an encoding of input vectors u1, . . . , un to
register machines as input word u1; . . . ;un to Turing machines, and vice versa.

2.3. Term Rewriting

We assume modest familiarity with the basics of (first-order) term rewriting. See
the book of Baader and Nipkow [16] for an introduction to rewriting.

13

2 Preliminaries

Definition 2.25 (Signature). Let F0,F1, . . . be a family of sets. Then F :=⋃
k∈NFk is a signature. For each f ∈ F , we call f a function symbol . If f ∈ Fk,

then we say that f is of arity k, or k-ary for brevity. If f has more than one
arity, i.e., it occurs in Fk and F l for k 6= l, then f is called variadic, otherwise it
is called non-variadic. The signature F is called variadic if it contains at least
one variadic function symbol, otherwise F is called non-variadic.

If not mentioned otherwise, we assume the signature to be finite and non-variadic.
We sometimes write f/k ∈ F to indicate that the arity of f is k in F . If not
stated otherwise, f, g, h, . . . denote function symbols.

Definition 2.26 (Terms). Let V denote a countably infinite set of variables
disjoint from the signature F . The set of terms over F and V is denoted by
T (F ,V). It is defined as the smallest set satisfying the following conditions:

(1) if x ∈ V, then x ∈ T (F ,V); and

(2) if f/k ∈ F and ti ∈ T (F ,V) for all i = 1, . . . , k then f(t1, . . . , tk) ∈
T (F ,V).

Throughout this thesis, we fix a signature F and variables V that satisfy the
conditions of Definition 2.26. If not mentioned otherwise, x, y, z, possibly followed
by subscripts, denote variables, and s, t, . . . , possibly followed by subscripts,
denote terms. For term t, n ∈ N and f ∈ f/1 we also write fn(t) for the term
f(· · · f(t) · · ·) with n occurrences of the unary symbol f outside t. For a term
f(t1, . . . , tn), the function symbol f is called the root of f(t1, . . . , tn). A term t
is ground if it does not contain variables. We abbreviate the set of all ground
terms over a signature F by T (F).

Definition 2.27 (Size, Depth). Let t ∈ T (F ,V). We define the size |t| of t
recursively by

|t| :=

{
1 if t is a variable,
1 +

∑k
i=1|ti| if t = f(t1, . . . , tk).

We define the depth dp(t) of t recursively as

dp(t) :=

{
0 if t is a variable or a constant,
1 + maxki=1 dp(ti) if t = f(t1, . . . , tk) otherwise.

Definition 2.28 (Positions). A position is a finite sequence of positive natural
numbers.

(1) The set Pos(t) of all positions in t ∈ T (F ,V) is inductively defined as
follows:

Pos(t) :=

{
{ε} if t ∈ V,
{ε} ∪ {i·p | p ∈ Pos(ti) and i = 1, . . . , k} if t = f(t1, . . . , tk) .

Here ε denotes the empty position, and p·q the concatenation of positions
p and q.

14

2.3 Term Rewriting

(2) We say that a position p is above a position q if there exists a position r
such that p·r = q. If p is above q we also say that q is below r, and we
write p 6 q. We write p < q if p 6 q and p 6= q. Positions p and q are
called parallel, in notation p || q, if neither p 6 q nor q 6 r holds.

Definition 2.29 (Subterm, Subterm Relation).

(1) Let t ∈ T (F ,V). The sub-term of t at position p ∈ Pos(t) is denoted by
t|p and defined by

t|p :=

{
t if p = ε,
ti|q if p = i·q.

(2) We define the sub-term relation E on T (F ,V) such that s E t holds if
(i) s = t, or (ii) t = f(t1, . . . , tk) and s E ti for some i = 1, . . . , k. We
define s C t if s E t and s 6= t, and call C the strict sub-term relation.

Note that s E t holds iff s = t|p for some position p ∈ Pos(t). In the case s E t
(s C t) we call s a (proper) sub-term of t. We denote by D and B the converse
of E and C respectively.

Definition 2.30 (Substitution). A substitution σ is a finite mapping from V
into T (F ,V). We also denote by σ the homomorphic extension of σ to terms:

σ(t) :=

{
σ(t) if t is a variable
f(σ(t1), . . . , σ(tk)) if t = f(t1, . . . , tk).

If not mentioned otherwise, σ, τ denote substitutions. We write tσ instead of
σ(t). If for two terms s and t we have s = tσ for some substitution σ, then
s is called an instance of t. The terms s and t are unifiable if there exists a
substitution σ with sσ = tσ.
Consider a fresh constant symbol � 6∈ F , named hole. Terms that contain

holes are called contexts.

Definition 2.31 (Context). We call an element C ∈ T (F ∪{�},V) with n > 1
occurrences of � an n-holed context. Let p1, . . . , pn denote all positions in Pos(C)
such that C|pi = �, sorted in lexicographic order. For terms t1, . . . , tn, we denote
by C[t1, . . . , tn] the term obtained by replacing the holes at position pi with ti.

We also call the context � the empty context. For a one-holed context C and
term t, we also write C[t]p where p indicates the (unique) position of the hole �
in p.

Definition 2.32 (Closure under Substitutions, Contexts). A binary relation R
on T (F ,V) is closed under substitutions if whenever s R t holds then sσ R tσ
holds for any substitution σ. The relation R is closed under contexts if s R t
implies C[s] R C[t] for all one-holed contexts C over F and V. If R is closed
under substitutions and contexts then it is also called a rewrite relation.

Definition 2.33 (Rewrite Rule, Term Rewrite System, Defined Symbols).

15

2 Preliminaries

(1) A rewrite rule over the signature F and variables V is a pair (l, r) ⊆
T (F ,V)2, in notation l→ r, such that l is not a variable and all variables
in r occur also in l. Here l is called the left-hand, and r the right-hand side
of l→ r.

(2) A term rewrite system (TRS for short) R over F and V is a set of rewrite
rules over F and V.

(3) If f(l1, . . . , ln)→ r ∈ R then f is called a defined symbol of R. The set of
all defined symbols of R is denoted by DR.

To distinguish function symbols from variables, we draw in examples function
symbols always in serif font.
The rewrite relation of R is the least extension of R that is closed under

contexts and substitutions. It can be defined directly as follows

Definition 2.34 (Rewrite Relation). For terms s, t ∈ T (F ,V) we define s −→R
t if there exists a (one-holed) context C, substitution σ and rewrite rule l→ r ∈ R
such that s = C[lσ]p and t = C[rσ]. The relation −→R is also called the rewrite
relation of R. The position p is called the rewrite position, the term lσ a redex
in s.

If not mentioned otherwise, R,S, . . . , possibly followed by subscripts, denote
finite rewrite systems over the signature F and variables V . In order to indicate
the rewrite rule l → r and rewrite position p involved in a step s −→R t we
sometimes write s −→R,l→r,p t.

Definition 2.35. A term t ∈ T (F ,V) is called a normal form with respect to
a relation → on terms if t→ s does not hold for any term s. The set of all such
normal forms is denoted by NF(→). For a TRS R over F and V , we abbreviate
NF(R) := NF(−→R) and call NF(R) the normal forms of R.

In this thesis, we will sometimes adopt call-by-value semantics.

Definition 2.36 (Innermost Rewrite Relation). Let R be a TRS over F and V .
For terms s, t ∈ T (F ,V) we define s i−→R t if there exists a (one-holed) context
C, substitution σ and rewrite rule l → r ∈ R such that s = C[lσ], t = C[rσ]
and the redex lσ is argument normalised , i.e., all proper sub-terms of lσ are R
normal forms. The relation i−→R is also called the innermost rewrite relation of
R.

2.3.1. Rewriting as Computational Model

To give semantics to rewrite systems, we suppose an a priori separation of the
signature F into defined symbols D and constructors C.

Definition 2.37 (Values, Basic Terms). Let D ⊆ F be a set of defined symbols,
and C ⊆ F be a set of constructors, such that {D, C} forms a partition of F .

(1) Elements from T (C) are called values;

16

2.3 Term Rewriting

(2) The set Tb(D] C) of basic terms over defined symbols D and constructors
C is the least set of terms f(v1, . . . , vk) with f/k ∈ D and vi ∈ T (C) for
all i = 1, . . . , k.

If not mentioned otherwise, we use u, v, w, possibly followed by subscripts for
values. We suppose C contains at least one constant, thus T (C) 6= ∅. A (finite)
computation of f ∈ D on input values v1, . . . , vk is given by a rewrite sequence

f(v1, . . . , vk) = t0 −→R t1 −→R · · · −→R t` = w .

If the above computation ends in a value, i.e., w ∈ T (C), we also say that f
computes on input v1, . . . , vn in ` steps the value w. Term rewrite systems are
inherently non-deterministic. In general, a computation of f(v1, . . . , vk) is not
unique since there might be more than one choice of a rewrite rule and rewrite
position to reduce a given term ti.

Definition 2.38 (Terminating, Confluent, Complete). A TRS R is called

- terminating if the rewrite relation −→R is well-founded;

- confluent if for every pair of terms u, v with u ∗
R←− s −→∗R v for some term

s there is a common reduct t of u and v: u −→∗R t ∗R←− v;

- complete if it is terminating and confluent.

Completeness of R ensures determinism in the input output behaviour of R.
Since R is terminating, reduction of a term t under any strategy will eventually
hit some normal form, which by confluence is even unique. Of course the length
of reductions might differ considerably when reducing a term t under different
reduction strategies.
To account for nondeterministic computation, we capture semantics of R by

assigning to each n-ary defined symbol f/k ∈ D a relation JfKR that maps
input arguments (v1, . . . , vk) ∈ T (C)k to computed values w. A finite set N of
non-accepting patterns is used to distinguish meaningful outputs w from outputs
that should not be considered part of the computation. A value w is accepting
with respect to N if no p ∈ N and no substitution σ exists, such that pσ = w
holds.

Definition 2.39 (Computation by Rewriting). Let R be a TRS and let N be
a set of non-accepting patterns. For each f/k ∈ D the relation JfKR,N ⊆
T (C)k × T (C) defined by f in R is given by

((v1, . . . , vk), w) ∈ JfKR,N :⇔ f(v1, . . . , vk) −→!
R w and w ∈ T (C) is accepting .

We say that R computes the function problem associated with JfKR,N .

The assertion that for values w, w is accepting amounts to our notion of accepting
run of a TRS R. When N = ∅, i.e., when all values are accepting, we simply
write J·KR instead of J·KR,N . When no confusion can arise we may also drop the
reference to R. If R is confluent, then JfKR,N is in fact a function from T (C)k

17

2 Preliminaries

to T (C). In this case we also say that R computes the function JfKR,N . Note
that even JfKR can be partial, either because R is not terminating, or because
the normal form w as above is not a value.
Both termination and confluence are undecidable properties in general. Nev-

ertheless, the techniques developed in this thesis will often imply termination.
The following conditions give a natural and decidable, although very strong,
condition on rewrite systems that implies confluence. Call a bijective substitution
σ : V → V a renaming. Then a rewrite rule l′ → r′ is called a variant of l→ r if
there exists a renaming σ such that l′ = lσ and r′ = rσ.

Definition 2.40 (Left-Linear, Non-Overlapping, Orthogonal). Let R denote a
TRS. Then R is called

(1) left-linear if left-hand sides are linear, that is, every variable occurs at
most once in the term;

(2) non-overlapping if R does not give rise to overlaps. Here an overlap is a
triple 〈l1 → r1, p, l2 → r2〉 satisfying

- l1 → r1 and l2 → r2 are variants of rules from R without common
variables,

- l1|p 6∈ V,

- l1|p and l2 are unifiable, and

- if p = ε then l1 → r1 and l2 → r2 are not variants;

(3) orthogonal , if it is left-linear and non-overlapping.

Proposition 2.41. Every orthogonal TRS R is confluent, in particular JfKR is
a partial function from T (C)k to T (C) for every f ∈ D.

In this thesis, we also consider a nicely behaved sub-class of TRSs. For the lack
of a better name we call TRSs from this class ML-like, as we impose the usual
restriction1 from functional programming languages in the spirit of ML [57].

Definition 2.42 (Constructor TRS, Completely Defined, ML-like). Let R de-
note a TRS. Then R is called

(1) a constructor TRS if left-hand sides of rules in R are constructor-based,
where a term f(s1, . . . , sn) is constructor-based if f ∈ D and si ∈ T (C,V)
for all i = 1, . . . n.

(2) completely defined, if every defined symbol f ∈ D is completely defined
with respect to R. Here f ∈ D is called completely defined if it does not
occur in ground normal forms of R.

(3) ML-like, if it is a completely defined, orthogonal constructor TRS.

1ML does not require that functions are completely defined, i.e., pattern matches cover all
cases. Rather, this is considered good programming practice.

18

2.3 Term Rewriting

The set of ML-like TRSs constitutes a deterministic computational model that
respects our separation of data and computation, as imposed by the separation
of defined and constructor symbols. The following observation is immediate from
the definition.

Proposition 2.43. Let R be an ML-like TRS. Then normal forms coincide
with values: NF(R) = T (C). In particular, if R is terminating then JfKR
constitutes a total function for every f ∈ D.

The requirement that an ML-like TRS is completely defined is not a severe
restriction, using a constant ⊥ ∈ C, any constructor TRS can be extended by
sufficiently many rules f(l1, . . . , ln)→ ⊥ so that f is completely defined, without
modifying semantics.

2.3.2. Complexity Analysis of Rewrite Systems

Hofbauer and Lautemann proposed first to assess the complexity of a given
TRS as the maximal length of derivation sequences, the derivation height. More
precisely the derivational complexity function relates the derivation height with
the size of the starting term [42]. This notion is frequently used to assess the
complexity and the strength of termination techniques, a line of research that
has been widely explored [41, 78, 58, 60].

Definition 2.44 (Derivation Height). The derivation height dh(t,→) of t ∈
T (F ,V) with respect to a binary relation → on terms is defined as

dh(t,→) := max{` | ∃t1, . . . , t`. t = t0 → t1 → · · · → tl} .

Example 2.45. Consider the TRS Rdouble consisting of the following two rules:

1 : double(0)→ 0 2 : double(s(x))→ s(s(double(x))) .

For n ∈ N, let n := sn(0). The TRS Rdouble computes the function

JdoubleKR : T ({0, s})→ T ({0, s})
n 7→ 2 · n ,

that is, it doubles natural numbers given in unary notation. Note that the
length of every computation of double(n) is linear in n. To be more precise, we
have dh(double(n),−→R) = n+ 1. On the other hand, for arbitrary terms t, the
length of derivations starting from t is bounded from below by an exponential,
as witnessed by the family of terms doublen(1), for all n ∈ N. C

In order to account for the fact that computations start only from basic terms,
Hirokawa and Moser proposed later [38] to study the runtime complexity function,
a variation of the derivational complexity function that takes only derivations of
basic terms into account. Following Hirokawa and Moser we study (primarily)
the runtime complexity function of TRSs. We will justify this cost model in the
next part.

19

2 Preliminaries

Definition 2.46. For a set T ⊆ T (F ,V) and n ∈ N, let cp(n, T,→) denote the
derivation height of terms up to size n, that is

cp(n, T,→) := max{dh(t,→) | ∃t ∈ T and |t| 6 n} .

Let R denote a TRS.

(1) The derivational complexity function dcR(n) : N→ N of R is defined as

dcR(n) := cp(n, T (F),−→R) .

(2) The runtime complexity function rcR(n) : N→ N of R is defined as

rcR(n) := cp(n, Tb(D] C),−→R) .

(3) The derivational complexity function dciR and runtime complexity func-
tions of R are obtained from above by replacing the rewrite relation −→R
by the innermost rewrite relation i−→R.

Note that the derivation height of a term t with respect to a relation→ is defined
whenever→ is finitely branching and terminating. Since −→R is finitely branching
whenever R is finite, the (innermost) derivational and runtime complexity are
well-defined wheneverR is finite and terminating. Suppose dcR, rcR, dciR or rciR
are asymptotically bounded from above by a linear, quadratic,. . . , polynomial
function. Then we simply say that the (innermost) derivational or runtime
complexity of R is linear, quadratic,. . . , or polynomial.

Proposition 2.47. Let R denote a terminating TRS. Then the following rela-
tionship holds for all n ∈ N.

rciR(n)

rcR(n)

dciR(n)

dcR(n).
6 6

6 6

2.3.3. Termination Analysis of Rewrite Systems

Termination analysis is a well established research area in rewriting [16, 75, 33].
Rewriting forms a Turing complete model of computation, cf. for instance [16,
Section 5], and termination is in general undecidable. Nevertheless, a wealth of
powerful, although incomplete or undecidable, techniques exist to show termina-
tion of rewrite systems. Prominent in rewriting is the use of reduction orders.

Definition 2.48 (Reduction Order, Compatibility).

(1) A proper order on terms that is also a rewrite relation is called a rewrite
order ;

(2) A reduction order is a well-founded rewrite order.

20

2.3 Term Rewriting

Note that −→R ⊆ � for reduction orders �, and thus termination, can be proven
by orienting rules from left to right. This motivates the following definition.

Definition 2.49 (Compatible). We say that the TRS R is compatible with an
order � on terms if rules are oriented from left to right: l � r for all rules
l→ r ∈ R.

Reduction orders characterise termination of rewrite systems in the following
sense.

Proposition 2.50. A TRS R is terminating if and only if there exists a reduc-
tion order � which is compatible with R.

Proof.

⇒ For a terminating TRS R, the relation −→+
R gives a reduction order com-

patible with R.

⇐ Suppose � is a reduction order compatible with R. Then by closure under
context and substitutions we have −→R ⊆ �. Hence an infinite rewrite
sequence

t0 −→R t1 −→R t2 −→R · · · ,

translates to an infinite descent

t0 � t1 � t2 � · · · ,

contradicting that � is well-founded. �

Consider a TRS R compatible with a reduction order �. The proof illustrates
that the maximal length of derivations is bounded by the maximal length of a �
descending sequence. Hence such orders can in principle be used to assess the
complexity of a rewrite system.

Recursive Path Orders

Recursive path orders (RPOs for short) [29, 47] are in particular interesting for
automation, as they provide a purely syntactic termination criterion.

Definition 2.51. A quasi-precedence Á (or simply precedence) is a quasi-order
on F .

We extend equivalence ∼ underlying a precedence Á to terms by identifying
equivalent symbols.

Definition 2.52. Let ∼ be an equivalence on F . We define term equivalence ≈
induced by ∼ inductively as follows: s ≈ t if one of the following alternatives
hold:

(1) s = t; or

(2) s = f(s1, . . . , sk), t = g(t1, . . . , tl) with f ∼ g and si ≈ ti holds for all
i = 1, . . . , k.

21

2 Preliminaries

The following definition of RPO is taken from Steinbach [73], and uses a
dedicated status function τ .

Definition 2.53. A status function on F is a function τ : F → {mul, lex}. If
τ(f) = mul we say that f has multiset status, for τ(f) = lex we say that f has
lexicographic status. The status function agrees with a precedence Á if f ∼ g
implies τ(f) = τ(g) for all f, g ∈ F .

Definition 2.54 (Recursive Path Order). Let Á denote a quasi-precedence on
F , with underlying proper order ą and equivalence ∼, and let τ denote a status
function on F . Then s ąrpo,τ t for terms s, t ∈ T (F ,V) with s = f(s1, . . . , sk) if
one of the following alternatives hold.

(1) si Árpo,τ t for some i ∈ {1, . . . , k}.

(2) t = g(t1, . . . , tl), s ąrpo,τ tj for all j = 1, . . . , l and either

- f ą g; or

- f ∼ g and 〈s1, . . . , sk〉 ą
τ(f)
rpo,τ 〈t1, . . . , tl〉.

Here s Árpo,τ t denotes that either s ≈ t or s ąrpo,τ t holds. In the last clause,
ą
τ(f)
rpo,τ is used for the extension of ąrpo,τ to sequences as given by the status τ(f).

We define

- 〈s1, . . . , sk〉 ąmul
rpo,τ 〈t1, . . . , tk〉 if{{s1, . . . , sk}} (ąrpo,τ)mul{{t1, . . . , tk}} holds;

and

- 〈s1, . . . , sk〉 ąlex
rpo,τ 〈t1, . . . , tl〉 if there exists j ∈ {1, . . . ,min(k, l)} such

that

– si ≈ ti holds for all i < j;

– and sj ąrpo,τ tj holds.

When every symbol in F admits a lexicographic status, i.e., τ(f) = lex for
all f ∈ F , we denote the order ąrpo,τ also by ąlpo and call ąlpo a lexicographic
path order (LPO for short). Conversely, when every symbol admits a multiset
status we denote the order ąrpo,τ by ąmpo and call ąmpo a multiset path order
(MPO for short). In case the precedence Á is a proper order, ąlpo corresponds
to Kamin and Levy’s lexicographic path order [47], and ąmpo to the multiset
path order of Dershowitz and Manna [29]. It is not difficult to prove that ąrpo,τ

is a rewrite order. Whenever the strict part ą underlying the precedence Á

is well-founded, ąrpo,τ is well-founded and constitutes thus a reduction order,
provided the signature is non-variadic. The following proposition forms a special
case of [33, Theorem 4.38].

Proposition 2.55. Let Á denote a quasi-precedence on a finite but possibly
variadic signature F , and let τ denote a status function on F that agrees with
Á.

(1) ąrpo,τ is a rewrite order; and

22

2.3 Term Rewriting

(2) suppose that whenever f ∈ F is variadic then τ(f) = mul. Then ąrpo,τ is
well-founded on T (F ,V).

Corollary 2.56. Suppose that R is compatible with an instance of ąrpo,τ such
that τ and Á satisfy the side-conditions of Proposition 2.55. Then R is termi-
nating.

If the above corollary applies we also say that R is ąrpo,τ terminating. A program
as first suggested by Hofbauer and Lautemann is to classify the strength of such
orders based on the bound induced by a compatible reduction order on the
derivation height of terms. Following results are due to Hofbauer and Weiermann
respectively.

Proposition 2.57 ([41] and [78]). Let R denote a TRS.

(1) If R is terminating by ąmpo then dcR(n) is bounded by a primitive recursive
function.

(2) If R is terminating by ąlpo then dcR(n) is bounded by a multiple recursive
function.

For the notion of primitive and multiple recursive function we kindly refer the
reader to a standard text book on recursion theory, for instance [68]. Important
for our concern is that the bounding functions can grow very fast, and that both
results are optimal in the sense that in general the established bounds are tight.

The Interpretation Method

Another popular instance of reduction order is given by the interpretation of
terms into a carrier A equipped with a well founded order �. Termination of a
TRS R is established if the provided interpretation embeds the rewrite relation
−→R into �.

Definition 2.58 (F -algebra). An F-algebra A for a signature F is a set A
equipped with operations fA : An → A for every n-ary function symbol f ∈ F .
The set A is called the carrier of A. A mapping from V to A is called an
assignment (into A). We inductively define the interpretation of a term t under
assignment α as follows:

[α]A(t) :=

{
α(t) if t is a variable
fA([α]A(t1), . . . , [α]A(tk)) if t = f(t1, . . . , tk).

Definition 2.59 (Monotone F -algebra).
(1) A monotone F-algebra (A,�) consists of an F-algebra A and a proper

order � on the carrier A of A such that every operation fA : An → A in
A is monotone in all its coordinates with respect to �, that is, for every
f ∈ F we have

fA(a1, . . . , ai, . . . , ak) � fA(a1, . . . , b, . . . , ak) ,

for all i = 1, . . . , k and a1, . . . , ak, b ∈ A, whenever ai � b.
We call the F-algebra (A,�) well-founded if � is well-founded.

23

2 Preliminaries

(2) For a monotone F -algebra (A,�) we define the relation �A on terms such
that

s �A t :⇐⇒ [α]A(s) � [α]A(s) .

(3) We say that a TRS R is compatible with a monotone F-algebra (A,�) if
it is compatible with �A.

Note that for any monotone F-algebra (A,�), the order �A gives a rewrite
relation, hence a reduction order if �A is well-founded.

Proposition 2.60 ([16]). A TRS R is terminating if and only if there exists a
well-founded monotone F-algebra which is compatible with R.

For proving termination of rewrite systems with the interpretation method as
given by the proposition, one often resorts to polynomial interpretations [51, 26].

Definition 2.61 (Polynomial Interpretation). A monotone F -algebra (A,�) is
called a polynomial interpretation if

- the carrier of A is N; and

- the proper order � is the standard order > on N; and

- the operations fA are polynomial functions.

We abbreviate a polynomial interpretation (A, >) by A. No confusion can arise
from this as > is fixed. As for recursive path orders, the polynomial interpretation
method is restricted. This can be shown for instance by analysing the induced
derivational complexity. The following proposition is due to Lautemann and
Hofbauer.

Proposition 2.62 ([42]). If R is compatible with a polynomial interpretation,
then dcR(n) is bounded by a function in 22O(n).

More recently, also matrix interpretations are used to define termination orders,
see [32] but also [43].

Definition 2.63 (Matrix Interpretation). We call a monotone F -algebra (A,�)
a matrix interpretation if

(1) the carrier of A is Nd;

(2) the proper order compares vectors

(x1, x2, . . . , xd) � (y1, y2, . . . , yd) :⇔ x1 > x2 ∧ x2 > y2 ∧ · · · ∧ xd > xd ,

for the standard order > on N; and

(3) the operations fA are interpreted by linear functions of the form

fA : (~x1, . . . , ~xk) 7→ F1 · ~x1 + · · ·+ Fk · ~xk + f ,

for (column) vectors of variables ~x1, . . . , ~xk, matrices Fi (i = 1, . . . , k) of
size d× d and f a vector over N. Moreover, for any i (i ∈ {1, . . . , k}) the
top left entry (Fi)1,1 is positive.

24

Part I.

Closing the Gap

25

Chapter 3.

Introduction

Term rewriting forms an abstract model of computation that is Turing com-
plete [16]. More precisely, any function computed by a Turing machine can be
computed by a rewrite system, under the semantics imposed in Definition 2.39.
The runtime complexity of a rewrite system forms a natural cost model in this
setting. One may wonder however, if the runtime complexity of a TRS R is really
related to the intrinsic complexity of the problem solved by R. Van Embde Boas
articulated in his invariance thesis [22] that a time cost model is reasonable if it
is polynomially related to the standard notion of time on a conventional abstract
model of computation, the Turing machine. The main result of this part, the
invariance theorems for rewriting (Theorem 7.2 and Theorem 7.5), confirm that
the runtime complexity forms a reasonable cost model for rewriting.

Although effectively computable, a single rewrite step is not an atomic opera-
tion. In particular, a single rewrite step can involve the duplication of arbitrary
large objects. As a consequence, the runtime complexity is a priori not an
invariant cost model. Consider the following example.

Example 3.1. The orthogonal TRS Rbtree is given by the following rules:

btree(n)→ f(n, leaf) f(0, t)→ t f(s(n), t)→ f(n, c(t, t)) .

The runtime complexity of Rbtree is linear, since the size of the first argument
decreases in each recursion step. Let n denote the representation of n ∈ N as
numeral build from the constructors 0 and s. The function JbtreeKRbtree

produces
on input n a binary tree of height n, i.e., a result whose size is exponential in
the size of the input. C

This final tree cannot even be written down in polynomial time. At first sight
there appears to be a gap between the runtime complexity of Rbtree, and the
actual cost of an implementation of the function computed by Rbtree. And if one
sticks to an explicit, linear representation of terms, then indeed this gap persists.
In our understanding, the issue illustrated by Rbtree is only a representation
problem. To close this gap, we resort to a compact encoding of terms which
allows us to take sharing into account.
To this end, we employ term graph rewriting (graph rewriting for short) as

an intermediate machinery. This is common practice in the implementation
of term rewriting languages [69]. A graph rewrite system (GRS for short) is
like a term rewrite system, but operates on term graphs. Term graphs can be
understood as terms, where sharing of common sub-terms is allowed. Duplication

27

3 Introduction

is always resolved by sharing in this setting. To illustrate this, the TRS Rbtree is
formulated as the following GRS Gbtree.

Example 3.2. The GRS Gbtree consists of the following three rules:

btree

n

→ f

n leaf

f

0 t

→ t f

s

n

t

→ f

n c

t

C

Apart from the representation of left- and right-hand sides as term graphs, the
GRS Gbtree differs from the TRS Rbtree only in the treatment of the variable t
in the right-hand side of the last rule. Whereas the corresponding rewrite rule
duplicates the tree given as t, the GRS Gbtree introduces two pointers instead.
Reducing the term graph that corresponds to btree(n) yields the term graph

c

c
...
c

leaf

n ,

which encodes exactly the normal form of btree(n). The Gbtree simulates Rbtree

in a step wise manner. In this sense, the GRS Gbtree provides a sound implemen-
tation for Rbtree. This implementation is also effective. A single graph rewrite
step is effectively computable. Moreover, the output and intermediate graphs
are sufficiently small.

In general, plain graph rewriting does not yield a complete implementation of
term rewriting. On the one hand, sharing common sub-terms disallows certain
term rewriting sequences, namely those where the shared sub-terms are rewritten
differently. On the other hand, graph rewriting employs a fine grained matching
mechanism that takes the sharing structure into account. In particular, the
matching mechanism of graph rewriting employs a form of pointer equality,
whereas matching in term rewriting relies on structural equality.

Completeness can be recovered by adding mechanisms for folding (also known
as collapsing) and unfolding (also known as copying) to the graph rewrite relation.
This has been observed quite early, see for instance Plump’s survey [66]. Graph
rewriting is often propagated as an efficient implementation of term rewriting.
Surprisingly, this correspondence has never been analysed from a complexity
related perspective.
As a first step towards an effective implementation of term rewriting, we

re-investigate adequacy of graph rewriting for term rewriting. To avoid ineffec-
tiveness of the implementation, we define small step approximations of folding

28

and unfolding. Our adequacy theorem states that extending the graph rewriting
relation by these operations results in a sound and complete implementation of
term rewriting. As a second step, we show that this implementation is effective.
More precise, the cost of a reduction sequence on graphs is polynomially related
to the size of the start graph and the length of reductions.
Putting things together, we establish a polynomial relationship between the

runtime complexity of a TRS R, and the cost of R-reductions on graphs (Theo-
rem 7.1). The provided implementation witnesses that the intrinsic computational
complexity of a function computed by R is polynomially related to the runtime
complexity of R (Theorem 7.2). Noteworthy, non of our reasoning relies on
any particular evaluation strategy. This allows us to capture non-deterministic
computations, as defined by non-confluent TRSs (Theorem 7.5).

Related Work. Adequacy of graph rewriting has been studied under different
aspects in the literature, cf. Plump’s [66] survey for an introduction to the topic.
Nowadays it is also treated in standard textbooks on rewriting [75, 64]. Here we
only mention the paper by Barendregt et al. [19], which gives a first account on
a sound and complete implementation of term rewriting through graph rewriting.
We essentially follow the notion of graph rewriting as defined there. Our notion
of adequacy is taken from Kenneway et al. [48], where graph rewriting is shown
to provide an adequate implementation of orthogonal term rewrite systems (even
in the infinitary setting).
This work is closely related to the work of Dal Lago and Martini [28], and

Accattoli and Dal Lago [1] on the invariance of the unitary cost model for the
λ-calculus. As in rewriting, a single reduction step in the λ-calculus can duplicate
arbitrary data. Unsurprisingly, essentially the same approach is used to tackle
this problem, namely, sharing of common sub-expressions. In [1] λ-calculus
under head reduction semantics is investigated. Sharing is integrated by means
of an explicit substitution calculus. In [28], λ-reductions under weak semantics,
i.e., where reduction can take place only outside of lambdas, are implemented
by orthogonal term rewrite systems in a step-wise manner. As a by-product,
the invariance of the unitary cost measure for orthogonal rewrite systems is
proven. Similar to here, this is done by way of a graph rewriting implementation.
Compare also [27] where this invariance result is presented independently, for
innermost and outermost rewriting. We extend upon this result. Our invariance
theorems require neither a restriction on the rewrite system, nor any particular
evaluation strategy.

Outline. This part presents a unified account of the authors contributions on
work published together with Moser [13, 12]. In [13] we have studied adequacy
with respect to innermost rewriting, which requires collapsing in the general
case. This result has been extended to rewriting without imposing a rewriting
strategy in [12]. The latter paper is essentially an extension of [13] that also
integrates collapsing.

In the next chapter we introduce notions and notations related to term graph
rewriting. Also, we show that the employed formalisation of graph rewriting

29

3 Introduction

provides the basis for a sound implementation of term rewriting. In Chapter 5
we make precise our notion of adequacy of graph rewriting for term rewriting.
We introduce restricted folding and unfolding relations. By integrating these into
the standard graph rewrite relation, we obtain our adequacy theorem for full
rewriting. We also present a refined adequacy theorem for innermost rewriting.
Noteworthy, this theorem does not rely on unfolding, which we exploit in the
actual implementation. In Chapter 6 we then show that the graph reductions
employed in the adequacy theorems can be effectively implemented.
In Chapter 7 we finally put things together. Theorem 7.2 provides our

deterministic invariance theorem for complete TRSs, in Theorem 7.5 we formulate
the invariance theorem for the general case.

30

Chapter 4.

Term Graph Rewriting

4.1. Term Graphs

We introduce the central concepts and notions of term graph rewriting used here.
See the survey of Plump [66] for an introduction, or [75] which is notationally
closer to the present work. Plump represents term graphs based on hypergraphs.
In contrast, we mostly follow the notion of term graphs from Barendregt et al, [19]
which is rooted in the notion of graph rewriting due to Staples [72]. Here directed
graphs, with an implicitly imposed order on outgoing edges, are used to denote
terms. This order allows us to distinguish graphs representations of terms with
permuted arguments, like f(a, b) and f(b, a).

Definition 4.1 (Directed and Ordered Graph). Let N be a countable infinite
set of nodes, and let L denote a set of labels. A directed and ordered graph G
with nodes in N and labels in L is a triple (NG, succG, labG) involving:

(1) a finite set NG ⊆ N , the nodes of G; and

(2) a function succ : NG → N∗G, associating with each node an ordered se-
quence of successors; and

(3) a function labG : NG → L that associates with each node its label.

For brevity we call a directed and ordered graph G simply graph. Typically
the set of labels L is clear from context and not explicitly mentioned. If not
mentioned otherwise, we denote by G,H graphs, nodes are denoted by u, v, w,
possibly extended by subscripts. We also write u ∈ G instead of u ∈ NG. When
we draw graphs, a directed edge will go from u to each node in succ(u), where
the left-to-right ordering of the source of the edge will correspond to the ordering
in succ(u). We indicate the label lab(u) to the right of the node u. If the node
itself is unimportant, we simply write the label lab(u) instead u.

Example 4.2. Consider the graph G1 = (NG1 , succG1
, labG1) with labels L =

{c,⊥} where NG1 = { 1 , 2 , 3 }, successors are given as succG1
(1) = [2 , 3]

and succG1
(2) = succG1

(3) = [], and labels are given as labG1(1) = c and
labG1(2) = labG1(3) = ⊥. Then G1 is drawn as

1

2 3

c

⊥ ⊥

or simply c

⊥ ⊥

. C

31

4 Term Graph Rewriting

The following definition introduces standard notions on graphs.

Definition 4.3 (Size, Path, Rooted, Acyclic). Let G = (NG, succG, labG) de-
note a graph.

(1) The size |G| of G refers to the number of nodes in G, i.e., |G| := NG;

(2) Consider u ∈ G with succG(u) = [u1, . . . , uk]. For i = 1, . . . , k, we set
succiG(u) := ui and call ui the ith successor of u. When it is more conve-
nient, we also write u i−⇀G ui.

(3) For u, v ∈ G, we define u ⇀G v if for some i, u i−⇀G v holds and say
that there is an edge from u to v in G. A non-empty sequence of nodes
u1, . . . , un+1 (n ∈ N) with

u1 ⇀G · · ·⇀G un+1 ,

is called a path from u1 to un+1 in G (of length n). We also say that un+1

is reachable from u1 in G.

(4) The graph G is called rooted if there exists a unique node u such that
every other node in G is reachable from u. This unique node u is called
the root of G and denoted by rt(G).

(5) A graph G is called cyclic if u ⇀+
G u holds for some node u ∈ G, otherwise

G is called acyclic.

In the following, we usually consider only rooted and acyclic graphs. Following
notions apply to such graphs.

Definition 4.4 (Depth, Below, Above). Let G = (NG, succG, labG) denote a
rooted and acyclic graph.

(1) The depth dp(G) of G is the length of the longest path in G. Necessarily
this path starts in rt(G).

(2) Suppose there is a path from u ∈ G to v ∈ G. Then u is also called above
v, and conversely v is called below u, in S. If u 6= v then we also call u
strictly above v, and v strictly below u respectively.

Definition 4.5 (Sub-Graph, Graph Union, Redirection). Consider two graphs
G = (NG, succG, labG) and H = (NH , succH , labH).

(1) We write G�u for the sub-graph of G reachable from u ∈ G, i.e., G�u :=
(N ′, succ′, lab′) where N ′ = {v | u ⇀+

G v} and succ′, lab′ are succ and lab
restricted to the domain N ′.

(2) Let u, v ∈ G be two distinct nodes of G. We denote by G[v ← u] the graph
obtained by redirecting all edges going to u to the node v. More precise

32

4.1 Term Graphs

G[v ← u] := (NG[v←u], succG[v←u], labG[v←u]) where

NG[v←u] :=NG

succiG[v←u](w) :=

{
v if w = u,
w otherwise.

labG[v←u](w) := labG(w) .

For a sequence of nodes ~u = u1, . . . , un ∈ G and ~v = v1, . . . , vn ∈ G we use
G[~v ← ~u] as an abbreviation for ((G[v1 ← u1])[v2 ← u2] . . .)[vn ← un].

(3) We denote by G⊕H the (left-biased) union of G and H, defined by

G⊕H := (NG ∪NH , succG ⊕ succH , labG ⊕ labH) .

Here, for f ∈ {succ, lab}, fG ⊕ fH is given by

(fG ⊕ fH)(u) :=

{
fG(u) if u ∈ NG, and
fH(u) if u ∈ NH .

Definition 4.6 (Term Graph). Let F denote a signature and let V be a set
of variables. A term graph over F and V is an acyclic and rooted graph
S = (N, succ, lab) with labels F ∪ V that satisfies for all nodes u ∈ S the
following conditions:

(1) if lab(u) ∈ F is a k-ary function symbol then succ(u) = [u1, . . . , uk],

(2) if lab(u) ∈ V then succ(u) = [].

The set of all term graphs over F and V with nodes in N is denoted by GN (F ,V).

Usually the set of nodes is not important, in this case we also write G(F ,V)
for GN (F ,V). Below S, T, . . . and L,R, possibly followed by subscripts, always
denote term graphs.
In Barendregt et al. [19], a partial labeling function with codomain in F is

used, variables are expressed by unlabeled nodes. In contrast, we use a total
labeling function. This allows us to define the unfolding of a graph to a term as
follows. Note that since term graphs are acyclic, the unfolding is well-defined.

Definition 4.7 (Unfolding). We define the function U : G(F ,V)→ T (F ,V) as
follows.

U(S) :=

{
x if lab(rt(S)) = x ∈ V
f(U(S�u1), . . . ,U(S�uk)) if lab(rt(S)) = f ∈ F .

Here we suppose succ(rt(S)) = [u1, . . . , uk]. We say that the term graph S
unfolds to the term U(S), or conversely that U(S) is the unfolding of S.

Although unfolding is surjective, due to sharing it is not injective in general.

33

4 Term Graph Rewriting

Example 4.8. Following four term graphs S1, S2, S3 and S4, all unfold to the
term s = f(g(x, x), h(y, y)).

f

g h

x x y y

S1

f

g h

x y y

S2

f

g h

x x y

S3

f

g h

x y

S4

.

The term graph S1 exploits no sharing, similar to the term s it is simply a tree.
The term graphs S2 and S3 are obtained from S1 by collapsing two nodes, the
nodes labeled by x and y respectively, to a single node. Likewise, the term graph
S4 can be obtained from S2 and S3 by further collapsing nodes. The term graph
S4 is maximally shared, no further sharing can be introduced. It constitutes thus
the most compact representation of s. C

Let l ∈ F ∪ V . If labS(u) = l then u is also called an l-node in S. This notion
is extended from labels to sets of labels in the obvious way.

Definition 4.9 (Variable Nodes, Function Symbol Nodes). Let S ∈ G(F ,V).
We denote by Var(S) ⊆ NS the set of all V-nodes in S. Dual, the set Fun(S)
denotes the set of all F-nodes in S.

On term graphs, the following induction principles are justified.

Definition 4.10 (Structural Induction on Term Graphs). Let S denote a term
graph and let P be a predicate on nodes.

- Base Case: Show that property P holds in all u ∈ Var(S).

- Inductive Step: Show that property P holds in all u ∈ Fun(S). The
induction hypothesis (IH) states that property P holds for all nodes in
v ∈ S with u ⇀S v.

It follows that property P holds in all nodes u ∈ S.

Definition 4.11 (Induction on the Depth). Let S denote a term graph and let
P be a predicate on nodes.

- Base Case: Show that property P holds for rt(S).

- Inductive Step: Show that property P holds in all u ∈ S with u 6= rt(S).
The induction hypothesis (IH) states that property P holds for all nodes
in v with v ⇀S u.

It follows that property P holds in all nodes u ∈ S.

34

4.1 Term Graphs

4.1.1. Term Graph Morphisms

In the literature [66, 19, 17], sharing is usually captured in by an order � on
term graphs: S � T if T is obtained from S by collapsing one or more nodes,
or equivalently, S � T if there exists a term graph morphism that embeds S
into T . We follow [17] and generalise the concept of term graph morphism to
∆-morphisms. These allow the treatment of both sharing and matching.

Definition 4.12 (∆-morphism). Let S and T be two term graphs, and let
∆ ⊆ F ∪ V denote a set of labels. A function m : NS → NT is called morphic
in u ∈ S if

(1) labS(u) = labT (m(u)); and (labeling condition)

(2) if u i−⇀S v then m(u) i−⇀S m(v) for all appropriate i.
(successor condition)

A ∆-morphism from S to T , denoted as m : S →∆ T , is a mapping m : NS →
NS that satisfies m(rt(S)) = rt(T) and that is morphic in all nodes u ∈ S with
labS(u) 6∈ ∆.

When ∆ is clear from context we call a ∆-morphism m : S →∆ T simply a
morphism. By m : N → N we denote the extension of m : S →∆ T to all nodes
N , given by m(u) := m(u) if u ∈ S, and m(u) := u otherwise. The morphism
condition on node u can be visualised as follows.

u

u1 un. . .

v

v1 vn. . .

` `m

m m

Sharing is addressed by ∅-morphisms as follows.

Definition 4.13 (Folding, Unfolding). We define S < T if there exists a mor-
phism m : S →∅ T . If S < T holds we also say that S folds (or collapses) to T ,
dual, we say that T unfolds to S. If S < T and T < S holds then S and T are
isomorphic, in notation S ∼= T . We define S � T if S < T and not S ∼= T .

We sometimes also write S <m T , S �m T or S ∼=m T to indicate the underlying
morphism m : S →∅ T . We denote by 4 and ≺ the inverse of < and �
respectively.

Example 4.14 (Continued from Example 4.8). Reconsider the term graphs S1,
S2, S3 and S4 depicted in Example 4.8. We have

S1

S2 S3

S4

≺ �

≺�

�

35

4 Term Graph Rewriting

Note that S2 and S3 are incomparable, that is, neither S2 < S3 nor S3 < S2

holds. C

Throughout the following, we will tacitly assume that the relation < enjoys
the following properties.

Lemma 4.15. Let S and T be term graphs.

(1) If S <m T then m is surjective.

(2) If S ∼=m T then m is bijective.

(3) If S �m T then m is not injective.

Proof. For the first assertion one shows that every u ∈ S is in the domain of m,
by induction on the depth of S. In the base case m(rt(S)) = rt(T), the inductive
step follows directly from the successor condition.
For the second assertion, consider S <m1 T and T <m2 S. By (1) both

functions m1 : NS → NT and m2 : NT → NS are surjective. It thus suffices to
show that m1 and m2 are inverses of each other. By induction on the depth
of S we prove m2(m1(u)) = u for all nodes u ∈ S. For u = rt(S) this is
immediate from the definition. Consider the inductive step where u i−⇀S v.
Hence u = m2(m1(u)) i−⇀S m2(m1(v)) by induction hypothesis and successor
conditions of m1 and m2. Since the ith successor v of u is unique, we conclude
v = m2(m1(v)).
The third assertion follows from the former two. �

As a consequence of the next lemma, � defines a proper and ∼= an equivalence
on G(F ,V).

Lemma 4.16. The relation < is a preorder on G(F ,V).

Proof. Obviously < is reflexive using the identity morphism idS : S →∅ S. To
show transitivity, consider term graphs S, T and U such that S <m1 T and
T <m2 U . Set m := m2 ◦ m1 and let u ∈ S. Observe

labS(u) = labT (m1(u)) (labeling condition on m1)
= labU (m2(m1(u))) (labeling condition on m2)
= labU (m(u))

and thus m enjoys the labeling condition in u. Suppose now u i−⇀S v for
some i ∈ N node v ∈ S. Then the successor conditions of m1 on u give
m1(u) i−⇀T m1(v) similar we obtain m2(m1(u)) i−⇀U m2(m1(v)). So m enjoys
the successor condition on u, in total we obtain that m is morphic in all u ∈ S.
As further m(rt(S)) = m2(m1(rt(S))) = m2(rt(T)) = rt(U) by the assumptions,
we conclude S <m U . �

The morphism conditions underlying < ensure that comparable term graphs
are equal up to sharing, in the sense that they denote the same term.

Lemma 4.17. If S <m T then U(S) = U(T) holds.

Proof. The lemma follows by structural induction on S.

36

4.1 Term Graphs

4.1.2. Positions and Sharing

We introduce positions in the context of term graphs.

Definition 4.18 (Positions in Term Graphs, Addressing). The set of positions
PosS(u) of a node u ∈ S is defined inductively as

PosS(u) :=

{
{ε} if u = rt(S), and
{p·i | ∃v ∈ S. v i−⇀S u and p ∈ PosS(v)} otherwise.

The set of all positions in S is Pos(S) :=
⋃
u∈S PosS(u). We say that the

position p addresses the node u with p ∈ PosS(u).

Note that set PosS(u) contains at least one element, moreover a standard
induction reveals that PosS(u) and PosS(v) are disjoint for all nodes u 6= v
in S. As a consequence, the node addressed by p is unique. Justified by this
observation, we will use positions p ∈ PosS(u) in notation for u. For instance,
when more convenient we write S�p for the sub-graph S�u at node u addressed
by p in S. No confusion can arise from this.

Lemma 4.19. Let S ∈ G(F ,V) and let s be the unfolding of S.

(1) We have Pos(S) = Pos(s), and moreover

(2) for any node u ∈ S and position p ∈ PosS(u), we have U(S�u) = s|p.

Proof. The lemma follows by a straight forward induction. �

By Lemma 4.17, if S � T holds then S and T unfold to the same term. The
above lemma strengthens this observation to U(S�p) = U(T �p) for all positions
p ∈ Pos(S) (or p ∈ Pos(T)).

Definition 4.20 (Shared Node, Unshared Node). Let S ∈ G(F ,V). We call a
node u ∈ S shared if PosS(u) is not singleton, otherwise the node u is called
unshared .

Consider a term graph S that unfolds to the term s. The above definition is
guided by the observation that for a node u ∈ S, the sub-graph S�u represents
exactly the sub-terms at positions PosS(u) in the unfolding s. The term graph
S admits the least degree of sharing when PosS(u) is singleton for every node
u ∈ S. In this case S is simply a tree. The most space efficient representation
of s is given by S when equal sub-terms are represented by a single node. We
call such graphs fully collapsed . Fully collapsed term graphs are minimal in the
order � [66].

Definition 4.21 (Shared Node, Tree, Fully Collapsed). Let S ∈ GN (F ,V) be
a term graph.

(1) The term graph S is called a tree if no node u ∈ S is shared. We denote
by MN (F ,V) ⊆ GN (F ,V) the set of all trees.

37

4 Term Graph Rewriting

(2) The term graph S is called fully collapsed if U(S�u) = U(S�v) implies u = v
for all nodes u, v ∈ S. We denote by ON (F ,V) ⊆ GN (F ,V) set of all fully
collapsed term graphs.

(3) We say that a term t ∈ T (F ,V) is shared in S if there is a shared node
u ∈ S such that the sub-graph S�u unfolds to t. For a set of terms
T ⊆ T (F ,V), we denote by ♦TN (F ,V) ⊆ GN (F ,V) the set of term graphs
sharing only terms t ∈ T .

Usually we drop the reference to N in MN (F ,V), ON (F ,V) and ♦TN (F ,V), if
not important or clear from context. Notice that independent on T , ♦T (F ,V)
contains all trees, i.e., M(F ,V) ⊆ ♦T (F ,V). Of particular interest later will
be the set ♦V(F ,V) and ♦NF(R)(F ,V), for some TRS R. In ♦V(F ,V), only
variables can be shared, nodes labeled by a function symbol are never shared.
In ♦NF(R)(F ,V), only normal forms of R can be shared, or dual, R-reducible
terms must be represented by nodes that are not shared.
The next lemma verifies that < properly accounts for sharing.

Lemma 4.22. Let S and T be term graphs. The following two statements are
equivalent.

(1) It holds that S <m T .

(2) The functionm : NS → NT satisfies PosS(u) ⊆ PosT (m(u)) and labS(u) =
labT (m(u)) for all nodes u ∈ S.

Proof. Consider first the direction from (1) to (2), suppose S <m T . Note that
labS(u) = labT (m(u)) follows from the labeling condition that holds on all nodes
u ∈ S. We show that for all u ∈ S, if p ∈ PosS(u) then p ∈ PosT (m(u)). The
proof is by induction on the depth of S. The property holds for rt(S) since
m(rt(S)) = rt(T) and PosT (rt(T)) = {ε} = PosS(rt(S)). For the inductive step,
consider u i−⇀S ui. Let p = q·i ∈ PosS(ui) and thus by definition q ∈ PosS(u).
By induction hypothesis we have q ∈ PosT (m(u)), and the successor condition
on u gives m(u) m−⇀T (ui), hence p ∈ PosT (m(ui)).
For the direction (2) to (1) consider m : NS → NT satisfying the properties

stated in (2). The condition that PosS(rt(S)) = {ε} ⊆ PosS(m(rt(S))) implies
m(rt(S)) = rt(S). Since by assumption m satisfies the labeling condition in
all u ∈ S, S <m T holds if m satisfies the successor condition in all u ∈ S.
Consider u i−⇀S v for appropriate i and node v ∈ S. Hence there is a position
p ∈ PosS(u) such that pi ∈ PosS(v). By assumption p ∈ PosT (m(u)) and
likewise pi ∈ PosS(m(v)). By definition we conclude m(u) i−⇀T m(v). �

As a consequence, isomorphic term graphs are equal up to renaming of nodes.

Lemma 4.23. Let S and T be term graphs. The following two statements are
equivalent.

(1) It holds that S ∼= T .

38

4.1 Term Graphs

(2) The functionm : NS → NT satisfies PosS(u) = PosT (m(u)) and labS(u) =
labT (m(u)) for all nodes u ∈ S.

Proof. Suppose S ∼=m T . Using Lemma 4.15 we thus have S <m T and T <m−1

T where m−1 denotes the inverse of the bijection m. We conclude the lemma by
applying Lemma 4.22 twice. �

4.1.3. Canonical Term Graphs

Isomorphic term graphs do not collapse to the same object. This is a mere
artefact of our representation as labeled and ordered graphs. To remove this
artefact, we introducing a canonical form of term graphs. This avoids reasoning
up to isomorphism below. The following definition is taken from Plump [66].

Definition 4.24 (Canonical Term Graphs). A term graph S is called canonical
if u = PosS(u) for all nodes u ∈ S. The set of all canonical term graphs is
denoted by GC(F ,V). For a term graph S ∈ GN (F ,V), we define the canonical
term graph

C(S) = (NC(S), succC(S), labC(S)) ,

of S where

NC(S) = {PosS(u) | u ∈ NS} ,
labC(S)(PosS(u)) = labS(u) for u ∈ S,

succiC(S)(PosS(u)) = PosS(succiS(u)) for u ∈ S and appropriate i.

The canonical term graph C(S) is well-defined as for pairwise different nodes
u, v ∈ S, the set of positions in S is disjoint. We emphasise that by definition u
is shared if it is not singleton. The next lemma confirms our intention.

Lemma 4.25. Following properties hold for all term graphs S and T .

(1) C(S) is canonical.

(2) S ∼= C(S).

(3) If S ∼= T if and only if C(S) = C(T).

Proof. The first assertion follows by a standard induction on the depth of
S. For the second assertion, observe that the function PosS : NS → NC(S)

satisfies PosS(u) = PosC(S)(PosS(u)) and labS(u) = labC(S)(PosS(u)). By
Lemma 4.23, it thus defines an isomorphism between S and C(S). For the third
assertion, suppose S ∼=m T . By Lemma 4.23 we have PosS(u) = PosT (m(u))
and labS(u) = labT (m(u)) for all u ∈ S. A standard induction on the depth of u
gives that C(S) and C(T) coincide. For the converse direction, observe that by the
first assertion from the assumption C(S) = C(T) we have S ∼= C(S) = C(T) ∼= T ,
conclusively S ∼= T as ∼= is an equivalence. �

39

4 Term Graph Rewriting

4.2. Term Graph Rewriting Systems

We arrive at the definition of term graph rewriting, or graph rewriting for short.

Definition 4.26 (Graph Rewrite Rule and Graph Rewrite System).

(1) A graph rewrite rule over the signature F and variables V is a triple (G, l, r)
where G is a graph (with labels F ∪ V) and l, r ∈ G are nodes such that
L := G�l ∈ G(F ,V) and R := G�r ∈ G(F ,V). Further, the following
conditions have to hold.

(i) the root l of L is not a V-node,
(ii) Var(R) ⊆ Var(L) holds, i.e., all variable nodes of R appear also in L,

and

(iii) each variable is represented by a single node: if labG(u) = labG(v) ∈ V
then u = v.

The term graphs L and R are called the left- and right-hand side of the
rule (G, l, r). If no confusion can arise the graph rewrite rule (G, l, r) is
denoted by L→ R.

(2) A graph rewrite system (GRS for short) G is a set of graph rewrite rules.

The restrictions (i) and (ii) in the definition of graph rewrite rule translate to
the usual restriction on term rewrite rules. Restriction (iii) is required for the
morphism based notion of matching underlying term graph rewriting. Specifically,
it will assure that variables are consistently mapped to equal sub-graphs.

Example 4.27 (Continued from Example 3.2). The GRS Gbtree consists of the
three graph rewrite rules (G1, 1 , 3), (G2, 1 , 3) and (G3, 1 , 5), defined by

1

2

3

4

G1 = btree

n

f

leaf

1

2 3

G2 = f

0 t

1

2

3

5

6

4

G3 = f

s

n

f

c

t

.

Using the notation Li → Ri (i = 1, 2, 3) results in the presentation of Gbtree given
in Example 3.2. C

As in Bahr [17] we define a notion of pre-reduction steps on term graphs
G(F ,V). The graph rewrite relation −−→G is then obtained as the projection of
pre-reduction steps to canonical term graphs.

Definition 4.28 (Matching Morphism and Redex). Let L → R be a graph
rewrite rule.

(1) We say that L matches a term graph S ∈ G(F ,V) if there is a morphism
m : L→V S that suspends the morphism condition on variable nodes. The
morphism m : L→V S is also called the matching morphism.

40

4.2 Term Graph Rewriting Systems

(2) If m : L→V S�u holds we say that m matches L in S at node u ∈ S. The
pair 〈L→ R,m〉 is called a redex in S, and the node u ∈ S the redex node.

Example 4.29 (Continued from Example 4.27). The following depicts a match-
ing morphism m : L3 →V S�b .

a

b

c

d

e

f

g

1

2

3

4

S =

L3 =

c

f

s

s

0

c

⊥

f

s

n

t

m

m

m

m

.

Hence 〈L3 → R3,m〉 is a redex in S, with respect to the graph rewrite rule
L3 → R3 from Example 4.27. Observe that the redex node in S, viz the node b ,
is given by m(rt(L3)). C

Once a redex 〈L → R,m〉 in S has been identified, we wish to replace the
matched left-hand side L by the instantiated right-hand side of the considered
graph rewrite rule L→ R. Instantiation of the right-hand side is covered by the
next definition.

Definition 4.30 (Application of Matching Morphism). Let S be a term graph
and let L → R be a graph rewrite rule such that NR ∩ NS = ∅. Suppose
〈L → R,m〉 is a redex in S, with redex node u ∈ S. We denote by mS(R)
the application of the matching morphism m : L→V S�u to R, obtained by
redirecting nodes from R to S according to the morphism m:

mS(R) := (R⊕ S)[m(v1), . . . ,m(vn)← v1, . . . , vn]�m(rt(R)) ,

where {v1, . . . , vn} := NR ∩NL are the nodes appearing both in R and L.

Note that the graph mS(R) is by definition rooted. The side condition that
nodes in R and S are disjoint ensures that mS(R) is acyclic, and thus a term
graph.

Example 4.31 (Continued from Example 4.29). Reconsider the matching mor-
phism m : L3 →V S�b from Example 4.29. The set of nodes common to L3 and
L4 is given by { 3 , 4 }. The term graph mS(R3) is obtained by (i) redirecting
edges going to 3 to m(3) = d , redirecting edges going to 4 to m(4) = f and

41

4 Term Graph Rewriting

(ii) removing nodes inaccessible from the root of R3.

a

b

c

d

e

f

g

5

3 6

4

c

f

s

s

0

c

⊥

f

n c

t

5

d

e

6

f

g

f

s

0

c

c

⊥

.

(R3 ⊕ S)[d , f ← 3 , 4] mS(R3)

Definition 4.32 (Sub-graph Replacement). Let S and T be two term graph
and u ∈ S be a node. We define

S[T]u :=

{
T if u = rt(S)

(S ⊕ T)[rt(T)← u]�rt(S) otherwise,

to denote the replacement of the sub-graph S�u by T in S.

For a position p addressing u ∈ S, we also write S[T]p instead of S[T]u. Notice
that when labS(v) = labT (v) and succS(v) = succT (v) holds for all v ∈ NS ∩NT ,
i.e., S�v = T �v holds for common nodes v, then S[T]u is again a term graph. Term
graphs S and T that obey this condition are called properly sharing. Observe
that by construction, S and mS(R) are always properly sharing.

Example 4.33 (Continued from Example 4.31). Reconsider the term graph S
from Example 4.29 and the term graph mS(R3) constructed in Example 4.31.
The term graph S[mS(R3)] b is constructed in the following two steps.

a

b

c

d

e

5

6

f

g

c

f

s

s

0

f

c

c

⊥

a

5

d

e

6

f

g

c

f

s

0

c

c

⊥

.

(S ⊕mS(R3))[5 ← b] S[mS(R3)] b

Definition 4.34 (Pre-Reduction Step). Let S be a term graph and let L→ R
be a graph rewrite rule such that NR ∩NS = ∅. Suppose 〈L→ R,m〉 is a redex
in S, with redex node u ∈ S. Then S reduces to T := S[mS(R)]u at redex node
u with rule L→ R, in notation S ↪→L→R,u T .

42

4.2 Term Graph Rewriting Systems

Example 4.35 (Continued from Example 4.31). By combining Example 4.29, Ex-
ample 4.33 and Example 4.31 we obtain that the graph rewrite rule L3 → R3

depicted in Example 4.27 gives rise to the following pre-reduction step.

a

b

c

d

e

f

g

S = c

f

s

s

0

c

⊥

↪→
L3→R3, b

a

5

d

e

6

f

g

= Tc

f

s

0

c

c

⊥

.

The following lemma states that for isomorphic term graphs S and S′, pre-
reduction steps coincide up to renaming of nodes. Justified by this observation,
we define the graph rewrite relation −−→G as the projection of ↪→G to canonical
term graphs.

Lemma 4.36. If S ↪→L→R,u T then for any isomorphic term graph S′ ∼=i S
with NR ∩NS′ = ∅, S′ ↪→L→R,u′ T

′ holds for T ′ ∼= T and u′ ∈ S′.

Proof. Consider isomorphic term graphs S′ ∼=i S such that S ↪→L→R,i(u) T holds
with redex 〈L → R,m〉, where by definition T = S[mS(R)]i(u). Define the
morphism m′ := m ◦ i. A standard induction on L shows that 〈L → R,m′〉
defines a redex in S′, with redex node u. By the side-condition NR ∩NS′ = ∅
we have thus S′ ↪→L→R, T

′ for the term graph T ′ = S′[m′S′(R)]u.
Denote by j : NT ′ → NT the function such that for all v ∈ T ′, j(v) := i(v)

if v ∈ S′, and j(v) := v if v ∈ R. Then it can be shown that j is bijective and
defines an isomorphism T ′ ∼=j T . �

Definition 4.37 (Graph Rewrite Relation). Let G be a GRS. We define

S −−→L→R,u T :⇐⇒ S′ ↪→L→R,u′ T
′

for some term graphs S = C(S′) and T = C(T ′) and u = PosS′(u
′). The node u

is called the redex node of the step S −−→L→R,u T .
We set S −−→G T if S −−→L→R,u T holds for some rule L→ R ∈ G and node

u ∈ S. The relation −−→G is called the graph rewrite relation induced by G. We
also write S −−→G,u T or S −−→G,p T where p ∈ u ∈ S to indicate the redex node
or a position p that addresses u in S respectively. In this case we also say that
S is G-reducible at node u, or position p.

As a consequence of Lemma 4.25 we have

S −−→G,u T ⇐⇒ S ∼= S′ ↪→G,u′ T ′ ∼= T

for some term graphs S′, T ′. We emphasise that the redex node u = PosS′(u
′)

in S is the image of the morphism underlying S′ ∼= S, compare Lemma 4.25(2).

43

4 Term Graph Rewriting

Example 4.38 (Continued from Example 4.35). Witnessed by the pre-reduction
step S ↪→

L3→R3, b
T depicted in Example 4.35, we have

c

f

s

s

0

c

⊥

−−→Gbtree,{1,2}
c

f

s

0

c

c

⊥

.

4.3. Simulating Term Rewriting by Graph Rewriting

In this section we show that our formalisation of graph rewriting provides a
sound implementation of term rewriting.

Definition 4.39 (Unfolding of Graph Rewrite Systems). For a graph rewrite
system G we define its unfolding as

U(G) := {U(L→ R) | L→ R ∈ G} ,

where U(L → R) := U(L) → U(R) denotes the unfolding of the graph rewrite
rule L→ R.

Example 4.40 (Continued from Example 3.2). The GRS Gbtree depicted in Ex-
ample 3.2 is the unfolding of the TRS Rbtree from Example 3.1. C

As a first step towards our soundness result, we show that the morphism based
matching mechanism provides a sound implementation of the substitution based
matching underlying term rewriting.

Definition 4.41 (Induced Substitution). Let L→ R be a rewrite rule and let
S be a term graph connected by a matching morphism m : L→V S. Then m
induces a substitution σm as follows: σm(x) := U(S�m(ux)) for all variables x
occurring in L.

Notice that the induced substitution is well defined as each variable x ∈ V
occurring in the left-hand side L is represented by a unique node, compare
clause (i) in Definition 4.26. The following example illustrates the construction
of the induced substitution.

44

4.3 Simulating Term Rewriting by Graph Rewriting

Example 4.42 (Continued from Example 4.29). Consider the following matching
morphism

f

s

s

0

c

⊥

f

s

n

t

m

m

m

m

.

The induced substitution is given by σm(n) := s(0) and σm(t) := c(⊥,⊥). C

Lemma 4.43. Let L→ R be a graph rewrite rule and S be term graphs connected
by a matching morphism m : L→V S. Then U(L)σm = U(S) for the induced
substitution σm.

Proof. To prove this one shows the stronger statement U(L�u)σm = U(S�m(u))
for all u ∈ L by structural induction on L. Using m(rt(L)) = rt(S), the lemma
follows. �

Lemma 4.44. Let L → R be a graph rewrite rule and let S be a term graph
such that NR ∩NS = ∅. Suppose there is a matching morphism m : L→V S.
Then U(R)σm = U(mS(R)), for σm the substitution induced by m.

Proof. Using that nodes in S and R are disjoint, one can verify that a path

rt(R) = u0
i1−⇀R u1

i2−⇀R · · ·
in−⇀R un+1 ,

translates to a path

m(rt(R)) = m(u0)
i1−⇀mS(R) m(u1)

i2−⇀mS(R) · · ·
in−⇀mS(R) m(un+1) ,

where m denotes the extension of m to all nodes. This observation follows by a
standard induction on the length n of the path.
To prove the lemma, we now prove the stronger statement U(R�u)σm =

U(mS(R)�m(u)) for all nodes u ∈ R. The proof is by induction on the depth of R.
We distinguish two cases. Suppose first u ∈ NL. In this case m(u) = m(u), and
U(R�u)σm = U(L�u)σm = U(S�m(u)) holds due to Lemma 4.43. By the initial
observation, and since S and R are disjoint, we have U(S�m(u)) = U(mS(R)�m(u))
as desired.

Otherwise u 6∈ NL and u is not a variable node. Suppose labR(u) = f ∈ F and
succR(u) = [u1, . . . , uk]. Using the above observation we have succmS(R)(m(u)) =

[m(u1), . . . ,m(uk)], since also labmS(R)(u) = labR(u) holds, we conclude by
induction hypothesis

U(R�u)σm = f(U(R�u1), . . . ,U(R�uk))

= f(U(mS(R)�m(u1)), . . . ,U(mS(R)�m(uk)))

= U(mS(R)�m(u)) . �

45

4 Term Graph Rewriting

Lemma 4.45. Let S and T be two properly sharing term graphs. Then

U(S[T]u) = C[U(T), . . . ,U(T)] ,

where C = U(S[�]u). Here � is also used to denote a term graph that unfolds to
the empty context, where we suppose that single node does not occur in S.

Proof. If u = rt(S) then the lemma follows by definition, so suppose u 6= rt(S).
For all v ∈ S, abbreviate

vT :=

{
rt(T) if v = u,

v otherwise,
v� :=

{
rt(�) if v = u,

v otherwise.

Thus we can write

S[T]u = (S ⊕ T)[uT ← u]�rt(S)

S[�]u = (S ⊕�)[u� ← u]�rt(S) .

For all v with v� ∈ S[�]u, define the context Cv := U(S[�]u�v�). We show

Cv[U(T)] = U(S[T]u�vT) for all v� ∈ S[�]u .

Here U(T) denotes a sequence of terms U(T) of appropriate length. From this,
the lemma follows by taking rt(S) for v. First consider the case u = v, where
vT = rt(T) and v� = rt(�). Employing that S and T are properly sharing, we
see that Cv = � and S[T]u�rt(T) = T . The claim follows for this case. Hence
consider the remaining case u 6= v, where vT = v = v� by definition. We proceed
by structural induction on S[�]u. In the base case v is a variable node where in
particular rt(S) ⇀∗S v, thus we even have that

S[�]u�v� = S[�]u�v = S[T]u�v = S[T]u�vT ,

holds as desired. For the inductive step, suppose labS[�]u(v) = f ∈ F and
succS[�]u

(v) = [v�
1 , . . . , v

�
k]. Using again rt(S) ⇀∗S v and the identity vT = v =

v�, we see labS[T]u(v) = f and succS[T]u
(v) = [vT1 , . . . , v

T
k]. Using the induction

hypothesis we conclude

Cv[U(T)] = f(Cv1(U(T)), . . . , Cv1(U(T)))

= f(U(S[T]u�vT1), . . . ,U(S[T]u�vTk))

= U(S[T]u�vT) . �

Putting Lemma 4.43, Lemma 4.44 and Lemma 4.45 together, we obtain our
simulation result.

Lemma 4.46. Suppose S −−→L→R,u T for S, T ∈ GC(F ,V) and node u ∈ S.
Then

U(S) = C[lσ] −→n
l→r C[rσ] = U(T) ,

where C is an n-holed context, with holes exactly at position u = {p1, . . . , pn},
and l→ r = U(L→ R).

46

4.3 Simulating Term Rewriting by Graph Rewriting

Proof. Suppose S −−→L→R,u T , thus there exists graphs S′, T ′ where C(S′) = S
and C(T ′) = T such that S′ ↪→L→R,u′ T

′ for the node u′ ∈ S with u = PosS′(u
′).

Let 〈L→ R,m〉 denote the redex in S′. Define the context C := U(S′[�]u′). We
have C|p = � exactly for p ∈ PosS′(u) = {p1, . . . , pn} as required by the lemma.
Note that S′ and S′�u′ are trivially properly sharing. Thus

U(S′) = U(S′[S′�u′]u′)

= C[U(S′�u′), . . . ,U(S′�u′)] by Lemma 4.45
= C[lσm, . . . , lσm] by Lemma 4.43,

for the substitution σm induces by m. Using that S′ and mS(R) are properly
sharing, and that by assumption S′ ↪→L→R,u′ T

′ we have NR ∩ NS′ = ∅. We
obtain

U(T) = S′[mS(R)]u′

= C[U(mS(R)), . . . ,U(mS(R))] by Lemma 4.45
= C[rσm, . . . , rσm] by Lemma 4.44 .

In total, U(S′) = C[lσm] −→n
l→r C[rσm] = U(T ′) holds. The lemma follows

from this by applying Lemma 4.25(2) and Lemma 4.17 twice. �

Let G be a GRS, and denote by R its unfolding. In total we obtain that any
reduction

S0 −−→G S1 −−→G · · · −−→G S` ,

implements a term rewriting sequence

U(S0) −→+
R U(S1) −→+

R · · · −→
+
R U(S`) .

In this sense, graph rewriting provides a sound implementation of term rewriting.
In graph rewriting we cannot avoid sharing. As a consequence, graph rewriting
does not constitute a complete implementation in general. We clarify this in the
next example.

Example 4.47. Consider the GRS Gf given by the three rules

f

x

→ c

x

c

a b

→ > a → b .

The unfolding Rf is given by the rule

f(x)→ c(x, x) c(a, b)→ > a→ b ,

and admits the following two normalising derivations

f(a) −→Rf
c(a, a) −→Rf

c(a, b) −→Rf
c(b, b) ,

f(a) −→Rf
c(a, a) −→Rf

c(a, b) −→Rf
> ,

47

4 Term Graph Rewriting

starting from f(a). Whereas Gf can simulate the former reduction, by contracting
both redexes in c(a, a) simultaneously, that is,

f

a

−−→Gf
c

a

−−→Gf
c

b

,

Gf cannot simulate the second Rf reduction. C

Another obstacle that destroys completeness is that the matching mechanism
takes also sharing into account. More precise, the inverse direction of Lemma 4.43
does not hold in general. This is clarified in the next example.

Example 4.48. Consider the GRS Gh consisting of the graph rewrite rules

h

x

→ eq

x a

eq

x

→ > ,

that unfolds to the TRS Rh given by the rules

h(x)→ eq(x, a) eq(x, x)→ > .

The TRS Rh admits the derivation

h(a) −→Rh
eq(a, a) −→Rh

> .

The GRS Gh can simulate the first step,

h

a

−−→Gh
eq

a a

,

but then the derivation gets stuck because the obtained term graph is a normal
form, in particular there exists no matching morphism from the left-hand side

eq

x

to eq

a a

.

Notice that the morphism conditions would require that the x-node is simultane-
ously mapped to both a nodes. C

The problem indicated in the second example arises when the intended redex
admits more sharing than the corresponding left-hand side L. We can overcome
this problem by either requiring that L is a tree, or that S is fully collapsed.

48

4.3 Simulating Term Rewriting by Graph Rewriting

Lemma 4.49. Consider terms l, s ∈ T (F ,V) such that lσ = s for some substi-
tution σ. Let L, S ∈ G(F ,V) be term graphs that unfold to l and s respectively:
U(L) = l and U(S) = s. Then there exists a matching morphism m : L→V S,
if (i) L ∈ M(F ,V), or (ii) S ∈ O(F ,V).

Proof. We prove the lemma by structural induction on l. If l = x is a variable,
then L consists by assumption of a single node ux with labL(ux) = x ∈ V.
Define m(ux) := rt(S) and m : L→V S holds as desired. For the inductive
step, suppose l = f(l1, . . . , lk) and hence s = f(l1σ, . . . , lkσ). For i = 1, . . . , k,
denote by Li and Si the direct sub-graphs of L and S respectively. By induction
hypothesis, mi : Li →V Si exist for i = 1, . . . , k.
We claim that if u ∈ NLi ∩ NLj then mi(u) = mj(u). For the case (i) L ∈
M(F ,V), this is clear as nodes in Li and Lj are disjoint for pairwise different
i, j = 1, . . . , k. Consider the case (ii) S ∈ O(F ,V), and consider arbitrary
u ∈ NLi ∩ NLj . Let p ∈ PosLi(u) and q ∈ PosLj (u). Using the matching
morphism mi : Li →V Si we see by Lemma 4.22 that p ∈ PosSi(mi(u)) so in
particular liσ|p = U(Si�mi(u)) = U(S�mi(u)), where the first equality follows by
Lemma 4.19 and the second follows since Si is a sub-graph of S. By identical
reasoning we obtain ljσ|q = U(S�mj(u)). Since Li�u = Lj�u by assumption, we
have li|pσ = lj |qσ using Lemma 4.19 twice. Thus

U(S�mi(u)) = liσ|p = li|pσ = lj |qσ = ljσ|q = U(S�mj(u)) .

As by assumption S ∈ O(F ,V) we obtain that mi(u) = mj(u).
Define the function m : NL → NS such that: for all u ∈ L, m(u) := m(rt(S))

if u = rt(L); otherwise m(u) := mi(u) if u ∈ Li. As mi(u) = mj(u) for shared
nodes u appearing in Li and Lj , m is unambiguous, in particular m restricted
to nodes in Li results in mi again. Using that mi : Li →V Si for i = 1, . . . , k, it
follows that m defines a matching morphism m : L→V S. �

Note that if L ∈ M(F ,V) for a graph rewrite rule L→ R then by the condition (iii)
in Definition 4.26 the unfolding of L→ R is left-linear.
In Example 4.47 and Example 4.48 we indicated two reasons why graph

rewriting is incomplete. The final lemma of this section confirms that there are
no further surprises hidden.

Lemma 4.50. Let S ∈ GC(F ,V) and let u = {p} be a node in S which is not
shared. If (i) L ∈ M(F ,V) or (ii) S�p ∈ O(F ,V) then the following properties
hold:

(1) if S −−→L→R,p T then U(S) −→U(L→R),p U(T); and

(2) if U(S) −→U(L→R),p t then S −−→L→R,p T for some T ∈ GC(F ,V) with
U(T) = t.

Proof. The first property is an immediate consequence of Lemma 4.46. Consider
the second property. Suppose U(S) = C[U(L)σ] −→U(L→R),p C[U(R)σ] for some
context C and substitution σ. We have S�u = U(S)|p by Lemma 4.19. Using
the assumptions on L or S�p as premises for Lemma 4.49, we see that there

49

4 Term Graph Rewriting

exists a matching morphism m : L→V S�p. Hence 〈L→ R,m〉 is a redex in S
at redex-node u. As a consequence, S −−→L→R,u T holds for some term graph T .
Then Lemma 4.46 gives a substitution σ′ and context C ′, with hole at position
p, such that

U(S) = C ′[U(L)σ′] −→U(L→R) C
′[U(R)σ′] = U(T) .

As C[U(L)σ] = U(S) = C ′[U(L)σ′] where both for C and C ′ the hole is positioned
at p, we conclude that the context C and C ′, as well as the substitutions σ and
σ′ coincide. In particular this gives U(T) = C[U(R)σ] as desired. �

50

Chapter 5.

The Adequacy Theorem

We use following notion of adequacy to relate term rewriting and graph rewriting.

Definition 5.1 (Adequacy). Let G ⊆ GC(F ,V) be a set of canonical term
graphs, and let −−→G ⊆ GC(F ,V)2 and −→R ⊆ T (F ,V)2 be binary relations
on term graphs and terms respectively. Then −−→G is called adequate on G for
−→R if the following conditions are satisfied:

(1) Surjectivity of unfolding on G: for every t ∈ T (F ,V) there exists some
T ∈ G that unfolds to t: U(T) = t.

(2) Closure under reductions of G: if S −−→G T for S ∈ G, then T ∈ G.

(3) Preservation of reductions: if S −−→G T for S ∈ G, then U(S) −→R U(T).

(4) Simulation of reductions: if U(S) −→R t for S ∈ G, then S −−→G T where
U(T) = t.

If there exists a set of graphs G such that the above conditions hold, we simply
say that −−→G is adequate for −→R.

Surjectivity of unfolding ensures that every term has a graph representation
in the restricted set of graphs G, and closure under reductions of G ensures
that graph rewrite steps do not lead outside G. Preservation of reductions
gives a soundness property: graph rewriting reductions on G implement only
term rewrite sequences. On the other hand, simulation of reductions states a
completeness property: every term rewriting derivation is simulated by some
graph rewriting derivation.

Remark. Our notion of adequacy is a refinement of the notion of adequacy
found in Kennaway et al. [48]. In Kennaway et al., the clauses corresponding to
Assertions (3) and (4) relate complete derivations, we relate steps. More severe,
for simulation of reduction requires, Kennaway et al., require only that S −−→∗G U
gives an extension of U(S) −→∗R t, that is, t −→∗R U(U) holds. We depart from this
definition, on the one hand to avoid problems with non-confluent TRSs. On the
other hand, we precisely want to relate the number of steps in both formalisms.

It is well known that by integrating folding and unfolding into the graph rewrite
relation, recovers adequacy [75, 66]. In fact, it is not difficult to proof that −−→G
extended by folding and unfolding is adequate for −→R, even on MC(F ,V). We
have

U(S) −→R U(T) if and only if S < · −−→R ·4 T .

51

5 The Adequacy Theorem

Since S is supposed to be a tree here, the intended redex node in S is unshared,
which addresses the problem indicated in Example 4.47. Folding S before the
reduction step is used to fully collapse the sub-graph of S rooted at the intended
redex-node, which addresses the problem highlighted in Example 4.48. Unfolding
4 is used to translate the reduct back to a tree T . Of course, this way we cannot
hope to achieve our ultimate goal, the efficient implementation of rewriting.

5.1. Restricted Folding and Unfolding

In this work, we take a fresh look at adequacy, from a complexity related point
of view. Our adequacy theorems presented below is based on restricted unfolding
Cp and restricted folding Ip, that allow for a precise control of the resources
copied. These relations are given in Definition 5.6 below. Both relations preserve
term structure. When S Ip T holds then the sub-graph T �p admits strictly more
sharing than S�p. Conversely, when S Cp T holds, nodes above p in T admit
less sharing than nodes above p in S. The relations Cp and Ip are based on
single step approximations Auv of <.

Definition 5.2. Let S, T ∈ GC(F ,V), and let u, v ∈ S be two nodes in S. We
define S wuv T if S <m T for the morphism m identifying only u and v, more
precisely, m(u) = m(v) and m(w) = w for all w ∈ NS \{u, v}. We define S Auv T
if S wuv T and u 6= v.

We write S wv T (S Av T) if there exists u ∈ S such that S wuv T (S Auv T)
holds. We denote by u

vv and u
v@ the inverse of wuv and Auv . Note that wuv = wvu

for all nodes u, v ∈ S, and S wuu T holds if and only if S = T .

Example 5.3. Let v1 = {1}, v2 = {2}, w1 = {1·1, 1·2} and w1 = {2·1, 2·2}. The
following diagram depicts four term graphs which are related by Auv , for nodes
u, v ∈ {v1, v2, w1, w2}.

f

g g

c c
f

g g

c

f

g

c c
f

g

c

w1

w2
@ A v1

v2

A v1
v2

w1

w2
@

C

Recall that for S < T , Pos(S) and Pos(T) coincide. Thus when S Auv T holds,
as a consequence of Lemma 4.22 the nodes u, v ∈ S are collapsed to the node
u ∪ v ∈ T .

52

5.1 Restricted Folding and Unfolding

Lemma 5.4. Let S ∈ GC(F ,V) and let u, v ∈ S be two distinct nodes. Then
there exists a term graph T with S Auv T if and only if (i) labS(u) = labS(v) and
(ii) succS(u) = succS(v).

Proof. Consider first the direction from left to right. Suppose S Auv T and let
m be the morphism underlying Auv , where in particular m(u) = m(v). By the
labeling condition it follows that

labS(u) = labT (m(u)) = labT (m(v)) = labS(v) .

Now pick successors ui and vi such that u i−⇀S ui and v
i−⇀S vi. The successor

condition gives m(u) i−⇀T m(ui) and m(v) i−⇀T m(vi), and hence m(ui) = m(vi).
Since S is acyclic, neither u = ui nor u = vi, and by the definition of m we thus
conclude ui = m(ui) = m(vi) = vi. Overall succS(u) = succS(v) follows.
Finally consider the direction from right to left. Let S be a term graph with

distinct nodes u, v such that labS(u) = labS(v) and succS(u) = succS(v) holds.
We obtain a canonical term graph by identifying nodes u and v in S as follows:

NT := (NS \ {u, v}) ∪ {u ∪ v} ,

labels are derived from S by

labT (w) :=

{
labS(u) = labS(v) if w = u ∪ v,
labS(w) otherwise.

We redirect all edges going to u or v in S to the fresh node u ∪ v, and use the
outgoing edges of u (v respectively) as outgoing edges of u ∪ v.

succiT (w) :=

succiT (u) = succiT (v) if w = u ∪ v,
u ∪ v if succiS(w) = u or succiS(w) = v,
succiS(w) otherwise.

Then T defines a canonical term graph. Define the function m : NS → NT such
that m(u) := u ∪ v =: m(v) and m(w) := w otherwise. Using Lemma 4.22 we
see S <m T , in particular S Auv T holds. �

Note that the relation wu enjoys the following diamond property.

Lemma 5.5. . We have uv · wv ⊆ wv · uv.

Proof. Assume T1
u′
u v S wv′v T2 for some canonical term graphs S, T1 and T2.

The only non-trivial case is T1
u′
u @ S Av

′
v T2 for {u′, u} 6= {v′, v}, where in

particular u′ 6= u and v′ 6= v. Otherwise either T1 = S or T2 = S and the peak
is trivial to join. We analyse two sub-cases.

- Case {u′, u} ∩ {v′, v} = {w}: Without loss of generality, suppose T1
w
u@

S Awv T2 with u 6= v. Using Lemma 5.4 from left to right twice we see
that labS(u) = labS(w) = labS(v) and succiS(u) = succiS(w) = succiS(v)
for all appropriate i. Consider the morphism m1 : S →∅ T1 underlying

53

5 The Adequacy Theorem

S Awu T1. Then m1 satisfies m1(u) = u ∪ w = m1(w) and m1(v) = v since
by assumption u 6= v and w 6= v. The morphism conditions thus give

labT1(u ∪ w) = labT1(m1(u)) by assumption
= labS(u) labeling condition
= labS(v)

= labT1(m1(v)) labeling condition
= labT1(v) , using m1(v) = v.

Similar, for i in range, we have

succiT1(u ∪ w) = succiT1(m1(u)) by assumption

= m1(succiS(u)) successor condition

= m1(succiS(v)) using succiS(u) = succiS(v)

= succiT1(m1(v)) successor condition

= succiT1(v) using m1(v) = v.

Hence succT1(u ∪ w) = succT1(v). Lemma 5.4 thus gives a canonical term
graph U1 such that T1 Au∪wv U1, where we denote the underlying morphism
by m2.

In total we obtain S Awu T1 Au∪wv U1 and S Awv T2 Av∪wu U2 by symmetric
reasoning. Set m := m2 ◦ m1. Comparing Lemma 4.16, we see that
S �m U1. By construction the morphism m exactly identifies the nodes
u, v and w, that is, m(u) = m(v) = m(w) = u ∪ v ∪ w, and m(u′) = m(u)
otherwise. By symmetric reasoning we see S �m U2. By the morphism
conditions imposed by m one finally obtains U1 = U2.

- Case {u′, u} ∩ {v′, v} = ∅: Suppose T1
u′
u @ S Av

′
v T2 where the nodes

u, u′, v and v′ are pairwise distinct. Consider S Au′u T1 with underlying
morphism m1 : S →∅ T1. Note that in the consider case m1(v) = v and
m1(v′) = v′ holds. Hence

labT1(v) = labT1(m1(v)) using m1(v) = v

= labS(v) labeling condition
= labS(v′) by Lemma 5.4
= labT1(m1(v′)) labeling condition
= labT1(v′) , using m1(v′) = v′.

Similar, for i in range, we have

succiT1(v) = succiT1(m1(v)) using m1(v) = v

= m1(succiS(v)) successor condition

= m1(succiS(v′)) by Lemma 5.4

= succiT1(m1(v′)) successor condition

= succiT1(v′) using m(v′) = v′.

54

5.1 Restricted Folding and Unfolding

Hence using Lemma 5.4 again we see S Au′u T1 Av
′
v U1 for some canonical

term graph U1. Symmetrically we have S Av′v T2 Au
′
u U2. One verifies

U1 = U2 exactly as above, which concludes the lemma. �

Definition 5.6. Let S, T ∈ GC(F ,V) be a canonical term graphs and let p be a
position in S.

(1) We say that S folds strictly below p to the term graph T , in notation
S Ip T , if S Auv T for nodes u, v ∈ S strictly below p in S.

(2) The graph S unfolds above p to the term graph T , in notation S Cp T , if
S u
v@ T for some unshared node u ∈ T above p in T , i.e., PosT (u) = {q}

for q 6 p.

Example 5.7. The following depicts an exhausting sequence of unfoldings and
foldings with respect to 2·2. Nodes addressed by this position are underlined
below.

f

f

g g

c c

C2·2 f

f f

g g

c c

C2·2 f

f f

g g g

c c

I2·2 f

f f

g g g

c

Observe that in the final term graph, the node addressed by 2·2 is not shared,
and the sub-graph at position 2·2 is fully collapsed. C

By Lemma 5.5 both relations Ip and Cp enjoy the diamond property. It is not
difficult to see that Ip and Cp are also well founded. The next lemma establishes
precise bounds on the length of descending sequences.

Lemma 5.8. Let S, T ∈ GC(F ,V) and consider a position p ∈ Pos(S).

(1) If S C`p T then ` 6 |p| and |T | 6 |S| + |p|.

(2) If S I`p T then ` 6 |S�p| and |T | 6 |S|.

Proof. We consider the first assertion. Consider a possibly infinite sequence

S0 Cp S1 Cp S2 Cp · · · .

For i ∈ N, define Pi = {u | u ∈ Si with u = {q} is not shared and q 6 p}.
Consider Si Cp Si+1 for arbitrary i ∈ N, we show that Pi ⊂ Pi+1 holds: By

definition we have Si+1 Au Si with u = {q} for some position q 6 p. Clearly
Pi ⊆ Pi+1, but moreover u ∈ Pi+1 whereas u 6∈ Pi. As a consequence,

P0 ⊂ P1 ⊂ P2 ⊂ . . . ,

55

5 The Adequacy Theorem

holds. Since there are at most |p|+ 1 nodes above p that are not shared, i.e., the
size of Pi (i ∈ N) is bounded by |p| + 1, and since P0 contains at least one node
(namely the root), the length of any Cp derivation is bounded by |p|. Using that
each Cp step increases the size of term graphs by one, the first assertion follows.
For the second assertion, we can prove that if

S0 Ip S1 Ip S2 Ip · · · ,

holds, then |Si| > |Si+1|, in particular |Si�p| > |Si+1�p|, holds for all i ∈ N. The
assertion follows. �

Definition 5.9. Let G denote a graph rewrite system. For canonical term
graphs S and T we define

S −−→G T :⇐⇒ S C!
p ·I!

p · −−→G,p T ,

where p ∈ Pos(S). Similar, we set

S −−→G T :⇐⇒ S C!
p · −−→G,p T .

In the next two lemmas we prove that relations Cp and Ip fulfil their intended
purpose.

Lemma 5.10. Let S be a term graph and p a position in S.

(1) If S is Cp-maximal then the node addressed by p is not shared.

(2) If S is Ip-minimal then the sub-graph S�p is fully collapsed, i.e., S�p ∈
O(F ,V).

Proof. We consider first Assertion (1). By way of contradiction, suppose S is
Cp-maximal but the node u ∈ S addressed by positions p is shared. Recall that
in canonical term graphs, nodes coincide with their set of positions, and thus
p ∈ u. We construct T such that S Cp T .

Since u is shared, there exists some position q and i ∈ N such that p = q · i · p′
where {q} ∈ S is an unshared node but a node v = {q · i}] v′ addressed by q·i
is shared (v′ 6= ∅). By construction

{q} i−⇀S {q · i}] v′ ⇀∗S u .

Note that neither v′ nor {q · i} appear as nodes in S. We obtain the canonical
term graph T by unfolding v into two separate nodes {q · i} and v′. Formally we
define T as follows: The nodes of T are

NT := (NS ∪ {v′, {q · i}}) \ {v} .

Nodes are labelled as in S, where the label of v is used for both v′ and {q · i}:

labT (w) :=

{
labS(v) if w = v′ or w = {q · i},
labS(w) otherwise.

56

5.1 Restricted Folding and Unfolding

Finally edges are defined, for appropriate j, as follows:

succjT (w) :=

{q · i} if w = {q} and j = i,
v′ if w 6= {q} and succjS(w) = v,
succjS(v) if w = v′ or w = {q · i},
succjS(w) otherwise.

That is, edges are obtained from S by redirecting all edges w i−⇀S v to either
{q · i} or v′; otherwise edges are kept, where the successors of v are used for both
{q · i} or v′. It is not difficult to verify that for all nodes w ∈ T , PosT (w) = w,
i.e., T is a canonical term graph.
Define the function m : NT → NS by m(v′) := v =: m({q · i}) and m(w) =

w otherwise. Consider a node w ∈ T . The function m satisfies labT (w) =
labS(m(w)). Since w ⊆ m(w) by definition, and since S and T are canonical,
Lemma 4.22 gives T <m S, which by the shape of m can be refined to T A{q·i}v′ S.
And so S Cp T using that q · i 6 p. Contradiction.

Now consider Assertion (2). Suppose S�p is not fully collapsed. We show
that S is not Ip-minimal. By the assumption that S�p is not fully collapsed,
there are distinct nodes u, v ∈ S�p with U(S�u) = U(S�v). Assume without loss
of generality that u is ⇀S-minimal, in the sense that there is no node u′ with
u ⇀+ u′ such that u′ is not fully collapsed.
Clearly labS(u) = labS(v) follows from U(S�u) = U(S�v). Also succS(u) =

succS(v), since otherwise succiS(u) 6= succiS(v) for some i, which contradicts
minimality of u. Lemma 5.4 gives a term graph T with S Auv T . Since u, v are
nodes strictly below p in S, we obtain S Ip T , contradiction. �

Lemma 5.11. For all positions p, the following inclusions hold:

(1) Cp ·Ip = Ip ·Cp; and

(2) Cmp ·Inp = Inp ·Cmp ; and

(3) C!
p ·I!

p = I!
p ·C!

p.

Proof. Consider the first assertion, we show Cp · Ip ⊆ Ip · Cp. Consider the
peak T1

u′
u @ S A

v′
v T2 as induced by T1 Cp S Ip T2. Since v′, v ∈ S are distinct

nodes strictly below p, whereas u′, u ∈ S are distinct nodes above p, v′, v, u′ and
u are all pairwise distinct. The proof of Lemma 5.5 thus gives T1 Av

′
v · u

′
u @ T2,

which implies T1 Ip ·Cp T2 as desired. Dual, one obtains Cp ·Ip ⊇ Ip ·Cp, we
conclude Assertion (1). Assertion (2) holds as n ·m applications of (1) close the
following diagram.

57

5 The Adequacy Theorem

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·C p

· · ·

C p

C p

· · ·

C p

C p

· · ·

C p

C p

· · ·

C p
I
p

· · ·

I
p

I
p

· · ·

I
p

I
p

· · ·

I
p

I
p

· · ·

I
p

S

U

V

T

Finally, consider Assertion (3). We prove C!
p · I!

p ⊆ I!
p · C!

p, the inverse
direction is proven dual. Suppose in the above diagram U C!

p S I
!
p V holds,

we claim U I!
p T C

!
p V holds. For a proof by contradiction, suppose U I!

p T

or T C!
p V does not hold. In the former case, there exists a term graph T ′

with T I!
p T

′. Closing the so constructed peak using Assertion (1) towards
V contradicts the assumption S I!

p V . Likewise if T C!
p V does not hold the

obtained peak contradicts U C!
p S. �

5.2. Adequacy for Full Rewriting

Theorem 5.12 (Adequacy for Full Rewriting). Let G be a graph rewrite system
such that only variable nodes are shared in left-hand sides of G, i.e., L ∈ ♦V(F ,V)
for each rule L→ R ∈ G. Let R := U(G) denote the unfolding of G.

(1) The relation −−→G is adequate on GC(F ,V) for −→R, whenever R is left-
linear.

(2) The relation −−→G is adequate on GC(F ,V) for −→R.

Proof. We prove the four properties of adequacy.

(1) Surjectivity of unfolding on GC(F ,V): Obviously any t ∈ T (F ,V) can
be represented by a tree T : T := (NT , labT , succT) where NT = {{p} |
p ∈ Pos(t)}, and for each {p} ∈ NT , labT ({p}) is given by the symbol
at position p in t, and succiT ({p}) = {p·i} for appropriate i. A standard
induction on T gives U(T) = t as desired.

(2) Closure under reductions: By definition, GC(F ,V) is closed under reduc-
tions.

(3) Preservation of reductions: For Assertion (1) we prove that S −−→G T
implies U(S) i−→R U(T), whenever R is left-linear. For Assertion (2) we
prove that S −−→G T implies U(S) −→R,p U(T).

Consider first Assertion (1), and assume S −−→L→R,p T for some rule
L→ R ∈ G. Thus S C!

p U −−→L→R,p T for some term graph U , where

58

5.3 Adequacy for Innermost Rewriting

Lemma 5.10(1) gives that the node u ∈ U addressed by p is not shared. By
assumption on G only variables are shared in L, since by assumption that
U(L → R) ∈ R is left-linear, it is not difficult to see that L ∈ M(F ,V).
Hence U and L satisfy the preconditions of Lemma 4.50, we conclude
U(U) −→U(L→R),p U(T) by Lemma 4.50(1). Since U(S) = U(U) using
Lemma 4.17 and Cp ⊆ 4, and since U(L → R) ∈ R by definition, we
obtain U(S) −→R U(T) as desired.

Consider now Assertion (2), and assume S C!
p U I!

p V −−→L→R,p T
for some rule L→ R ∈ G, and intermediate canonical graphs U and V .
Then again Lemma 5.10(1) gives that the node u ∈ U addressed by p is
not shared. Using that Ip folds only nodes strictly below p, a standard
induction gives that u ∈ V is addressed by p, moreover it is not shared.
Since by Lemma 5.10(2), V �p ∈ O(F ,V), the preconditions of Lemma 4.50
are met. We conclude U(S) = U(U) = U(V) −→R,p U(T), where the
equalities follow by Lemma 4.17 as above.

(4) Simulation of reductions: Let S ∈ GC(F ,V) be a canonical term graph,
and assume U(S) −→U(L→R),p t for some position p, rule U(L → R) ∈ R
and t ∈ T (F ,V). For Assertion (1) we prove S −−→L→R,p T for some
T ∈ GC(F ,V) that unfolds to t, whenever R is left-linear. For Assertion (2)
we prove S −−→L→R,p T with U(T) = t.

Consider canonical graphs U and V with S C!
p U I

!
p V . By Lemma 5.10(2)

both U and V exist, by Lemma 5.10(1) the node addressed by p is not shared
in U , i.e., u := {p} ∈ U . Observe that U(S) = U(U) by Lemma 4.17, and
hence by assumption U(S) −→U(L→R),p t. Note that L ∈ M(F ,V) when R is
left-linear. Lemma 4.50(2) gives a term graph T such that U −−→L→R,p T
and U(T) = t. Overall we have S −−→L→R,p T as required for Assertion (1).

Now consider the case when R is not necessarily left-linear. Observe
U(S) = U(U) = U(V), hence U(V) −→U(L→R),p t by assumption. Also,
Lemma 5.10(2) gives V �p ∈ O(F ,V). Since Ip collapses nodes strictly
below p only, we obtain that the node addressed by p in V is not shared,
as in the term graph U . We conclude V −−→L→R T for some term graph T
with U(T) = t by Lemma 4.50(2). Overall S C!

p U I
!
p V −−→L→R T , i.e.,

S −−→L→R,p T , as desired. �

5.3. Adequacy for Innermost Rewriting

We now refine the adequacy theorem from full rewriting to innermost rewriting.

Definition 5.13 (Innermost Graph Rewrite Relation). Let G be a GRS. We
define S i−−→G,L→R,u T if S −−→L→R,u T and S is not G-reducible at any node
v strictly below u. We set S i−−→G T if S i−−→G,L→R,u T holds for some graph
rewrite rule L → R ∈ G and node u ∈ S. We call i−−→G the innermost graph
rewrite relation induced by G. We also write S i−−→G,u T or S i−−→G,p T where
p ∈ u ∈ S to indicate the redex node or a position p that addresses u in S
respectively.

59

5 The Adequacy Theorem

Throughout the following, we consider a graph rewrite system G that introduces
sharing only under variable positions in right-hand sides, that is, R ∈ ♦V(F ,V)
for every L → R ∈ G. For such graph rewrite systems, an innermost graph
rewrite step S i−−→G T introduces sharing only on irreducible nodes in T . This
allows us to keep the invariant that only nodes that are irreducible are possibly
shared, rendering the relation Cp superfluous.

Definition 5.14. Let G denote a graph rewrite system. For canonical term
graphs S and T we define

S i−−→G T :⇐⇒ S I!
p · −−→G,p T ,

for some p ∈ Pos(S).

Let S be a term graph. We say that S is R-reducible at position p, if
U(S�p) = lσ for some rule l → r ∈ R. Otherwise S is called R-irreducible at
position p. The set ♦NF(R)

C (F ,V) thus refers to the set of canonical term graphs
where nodes addressed by R-reducible positions are not shared. The adequacy
theorem for innermost rewriting given below states that i−−→G is adequate for
i−→R on ♦NF(R)

C (F ,V), where R denotes the unfolding of G. Central in the proof
of this adequacy theorem is to show that ♦NF(R)

C (F ,V) is closed under under
i−−→G reductions. The next lemma serves as a preparatory step, and shows that
Ip as integrated in i−−→G does not harm this closure property.

Lemma 5.15. Let G be a GRS, let R := U(G) and suppose S ∈ ♦NF(R)
C (F ,V).

If
S I!

p S
′ i−−→G,p T ,

then S′ ∈ ♦NF(R)
C (F ,V). Moreover, S′ is R-irreducible at every position q strictly

below p.

Proof. Consider
S Inp S

′ i−−→L→R,p T ,

where S′ is minimal with respect to Ip. By Lemma 5.10(2), S′�p ∈ OC(F ,V).
Since there is no redex-node below p in S′ by assumption, the contraposition of
Lemma 4.49 gives that every proper sub-graph of S′�p is R-irreducible.
We prove S′ ∈ ♦NF(R)

C (F ,V) by induction on n. By the assumption S ∈
♦NF(R)
C (F ,V) it suffices to consider the inductive step. Suppose S Inp S′′ Ip S′,

by induction hypothesis S′′ ∈ ♦NF(R)
C (F ,V) holds. Then S′′ Av1v2 S

′ for some
nodes v1, v2 ∈ S′′ strictly below position p in S′′. Consider a shared node u ∈ S′.
We have to prove U(S′�u) ∈ NF(R). For u ∈ {v1, v2} this is clear by the first
half of the proof. For u 6∈ {v1, v2} we have that u ∈ S′′ is also shared in S′′. We
conclude from the induction hypothesis, using Lemma 4.17. �

Theorem 5.16 (Adequacy for Innermost Rewriting). Let G be a graph rewrite
system such that only variable nodes are shared in left-hand and right-hand sides
of G, i.e., L ∈ ♦V(F ,V) and R ∈ ♦V(F ,V) for every rule L→ R ∈ G. Let
R := U(G) denote the unfolding of G.

60

5.3 Adequacy for Innermost Rewriting

(1) If R is left-linear, the relation i−−→G is adequate on ♦NF(R)
C (F ,V) for i−→R.

(2) The relation i−−→G is adequate on ♦NF(R)
C (F ,V) for i−→R.

Proof. We prove the four properties of adequacy.

(1) Surjectivity of unfolding on ♦NF(R)
C (F ,V): The set ♦NF(R)

C (F ,V) contains
all trees. The property follows from this as in Theorem 5.12.

(2) Closure under reductions of ♦NF(R)
C (F ,V): As a preparatory step, consider

S i−−→G,p T for term graph S ∈ ♦NF(R)
C (F ,V), but additionally assume

that all sub-graphs of S�p unfold to R normal forms. We show that T ∈
♦NF(R)
C (F ,V). Consider the pre-reduction step U ↪→L→R,p V for L→ R ∈
G underlying C(U) = S i−−→G,p T = C(V). By Lemma 4.25 we have U ∼= S

which gives U ∈ ♦NF(R)(F ,V). To conclude T ∈ ♦NF(R)
C (F ,V), we show

V ∈ ♦NF(R)(F ,V).

Consider first the term graph Rm obtained by applying the matching
morphism m : L→V U�p to the right-hand side R. Let {v1, . . . , vk} :=
NL ∩NR denote the nodes common to left-hand and right-hand side in
L→ R. By assumption, these correspond to the set of variable nodes in
R. We show Rm ∈ ♦NF(R)(F ,V), i.e., for every shared node u ∈ Rm, the
sub-graph Rm�u unfolds to a normal form of R. Recall that

Rm = (R⊕ U)[m(v1), . . . ,m(vk)← v1, . . . , vk]�m(rt(R)) .

Using R ∈ ♦V(F ,V), it is obvious that if u ∈ R then u is not shared in
Rm. Hence suppose u ∈ U , and by definition of Rm the node u occurs in
Rm below a node m(vi) for some variable node vi (i ∈ {1, . . . , k}). So in
particular, the graph Rm�u is a sub-graph of U below the node m(vi) ∈ U .
Since the matching morphism m : L→V U�p maps the variable node vi
to a node strictly below p in U , we see that Rm�u occurs in U strictly
below the rewrite position p. Thus this sub-graph in U corresponds to a
R normal form by the additional assumption on S, due to Lemma 4.19(2).

Now consider V = U [Rm]p. We prove that V ∈ ♦NF(R)(F ,V). It suffices
to consider the case

V = (U ⊕Rm)[u← rt(Rm)]�rt(U) ,

where u denotes the redex-node addressed by p 6= ε in U . Fix a node
v ∈ V . We show that either v is not shared, or the sub-graph V �v unfolds
to a normal form of R.
Suppose first v ∈ Rm. If even v ∈ U holds, then U(Rm�v) = U(U�v) ∈
NF(R) follows as above. Otherwise v ∈ R, and v is unshared in R.
Hence v is also unshared in V since the redex node u is unshared in U .
The latter follows by the assumption U ∈ ♦NF(R)(F ,V), and using that
U(U�u) = U(S�p) 6∈ NF(R) holds as a consequence of Lemma 4.43.

61

5 The Adequacy Theorem

Consider now the remaining case where v ∈ U but v 6∈ Rm. Suppose v is
shared in V . This assumption gives V �v = U�v, as otherwise v is above the
unshared redex node u in U . By construction of Rm and the assumption
u 6∈ Rm, the node v is not reachable in V from a node that also occurs in
Rm. We conclude that the node v is also a shared node in U . Hence the
assumption U ∈ ♦NF(R)(F ,V) gives U(V �v) = U(U�v) ∈ NF(R) as desired.
This concludes the preparatory step.

Suppose now S i−−→G,p T with S ∈ ♦NF(R)
C (F ,V). We consider first the

case where R is left-linear. Then by assumption we even have L ∈ M(F ,V),
for all L→ R ∈ G. As by assumption all proper sub-graphs of S�p are
irreducible, the contraposition of Lemma 4.49 gives that every proper
sub-graph of S�p unfolds to an R normal form. By the preparatory step
we conclude thus T ∈ ♦NF(R)

C (F ,V) as desired.

Finally, suppose S i−−→G T with S ∈ ♦NF(R)
C (F ,V). Then we conclude T ∈

♦NF(R)
C (F ,V) using the preparatory step in combination with Lemma 5.15.

(3) Preservation of reductions: For Assertion (1) we prove that for term
graphs S ∈ ♦NF(R)

C (F ,V), S i−−→G T implies U(S) i−→R U(T), whenever R
is left-linear. For Assertion (2) we prove that if S ∈ ♦NF(R)

C (F ,V), then
S i−−→G T implies U(S) i−→R U(T).
Consider first Assertion (1), and assume S i−−→L→R,p T for L→ R ∈ G for

S ∈ ♦NF(R)
C (F ,V). Lemma 4.43 gives that S is R-reducible at position p,

using that S ∈ ♦NF(R)
C (F ,V) we conclude thus that the node addressed

by p is not shared. If R is left-linear, L ∈ M(F ,V), and U(S) −→R U(T)
follows by Lemma 4.50(1). Consider a position q strictly below p. Since by
assumption S is G-irreducible at q, using L ∈ M(F ,V) the contraposition
of Lemma 4.49 gives that S is R-irreducible at q, that is U(S�q) = U(S)|q ∈
NF(R). We conclude U(S) i−→R U(T).
Consider now S I!

p S
′ i−−→L→R,p T for L→ R ∈ G. Using Lemma 5.10(2)

and Lemma 5.15 to satisfy the assumptions of Lemma 4.50(2), we again
obtain U(S′) −−→G U(T). Since by Lemma 5.15 the term graph S′ is
R-irreducible at every position strictly below p, this can be strengthened
to U(S′) i−→R,p U(T). Lemma 4.17 gives U(S) = U(S′). Summing up,
U(S) i−→R U(T) holds as desired.

(4) Simulation of reductions: Assume U(S) i−→R,p t for S ∈ ♦
NF(R)
C (F ,V),

position p and term t ∈ T (F ,V). For Assertion (1) we prove S i−−→G,p T
for some T ∈ GC(F ,V) that unfolds to t, whenever R is left-linear. For
Assertion (2) we prove S i−−→G,p T with U(T) = t.
By the assumptions, the node addressed by position p in S is not shared.
Consider first the case when R is left-linear. Then S −−→G,p T with
U(T) = t holds by Lemma 4.50(2). Observe that S is not G-reducible at
any position q strictly below p. Suppose otherwise. Then Lemma 4.43
show that term graph S is R-reducible at position q, i.e., U(S�q) 6∈ NF(R).
Using Lemma 4.19 this contradicts U(S) i−→R,p t. Hence S i−−→G T follows.

62

5.3 Adequacy for Innermost Rewriting

For the general case, consider S′ ∈ GC(F ,V) with S I!
p S
′. Then S′ −−→G,p

T with U(T) = t holds by Lemma 4.50(2), if U(S′) = U(S), S′�p ∈ OC(F ,V),
and the node u addressed by p is unshared in S′. The first two requirements
are met using Lemma 4.17 and Lemma 5.10(2) respectively. Observe that
since S is R-reducible at position p and S ∈ ♦NF(R)

C (F ,V), the node
addressed by p is unshared in S. Thus the third requirement follows by
definition of Ip. Using Lemma 4.43, we can strengthen S′ −−→G,p T to
S′ i−−→G,p T . In total we obtain S i−−→G T with U(T) = t. �

63

Chapter 6.

An Implementation of Graph
Rewriting

We now provide an implementation of graph rewrite reductions on Turing
machines, and estimate the complexity of this implementation. As a first step
toward this goal, in the next section we relate sizes of intermediate terms to
the size of starting terms and the length of derivations. In Section 6.2 we then
provide the actual implementation.

6.1. An Upper Bound on Sizes of Reducts

Opposed to term rewriting, graph rewriting induces linear size growth in the
length of derivations.

Lemma 6.1. Let G denote a GRS and let S, T ∈ GC(F ,V) be canonical graphs.
There exists a constant ∆G depending only on G such that, if S −−→G T then
(i) |T | 6 |S| + ∆G and (ii) dp(T) 6 dp(S) + ∆G.

Proof. Set ∆G := {|R| | L→ R ∈ G}. Consider first a pre-reduction step
U ↪→L→R,u V . Then every node v ∈ V occurs either in U or in R, and
consequently |V | 6 |U |+ ∆G and dp(V) 6 dp(U) + ∆G . For the latter inequality
we use that ∆G also binds the depth of R.

The term graphs U and C(U) are isomorphic by Lemma 4.25, that is they are
connected by an bijective morphism. Thus |C(U)| = |U | as well as dp(C(U)) =
dp(U) holds. For the same reason, |C(V)| = |V | and dp(C(V)) = dp(V). By
definition of −−→G the bounds on pre-reduction steps give |T | 6 |S| + ∆G
and dp(T) 6 dp(S) + ∆G for all canonical term graphs S, T ∈ GC(F ,V) with
S −−→G T . �

Using our estimation on the length of restricted folding and unfolding from
Lemma 5.8, we can lift Lemma 6.1 to the relations used in our adequacy theorems,
and below to complete sequences.

Lemma 6.2. Let G denote a GRS and let S, T ∈ GC(F ,V). There exists a
constant ∆G depending only on G such that:

(1) if S −−→ T for −−→ ∈ {−−→G ,−−→G} then |T | 6 |S| + dp(S) + ∆G; and

(2) if S −−→ T for −−→ ∈ { i−−→G , i−−→G} then |T | 6 |S| + ∆G.

65

6 An Implementation of Graph Rewriting

Proof. Consider first the sub-case S −−→G T of Assertion (1), thus for some
position p ∈ Pos(S) and canonical term graphs U, V ∈ GC(F ,V),

S C!
p U I

!
p V −−→L→R,p T .

We obtain

|T | 6 |V | + ∆G by Lemma 6.1
6 |U | + ∆G by Lemma 5.8(2)
6 |S| + |p| + ∆G by Lemma 5.8(1).

As p ∈ Pos(S) corresponds to an (acyclic) path in S, we obtain |p| 6 dp(S),
and conclude the analysed sub-case. The sub-case S −−→G T follows by identical
reasoning. Finally, Assertion (2) follows either directly from Lemma 6.1, or using
additionally Lemma 5.8(2). �

Lemma 6.3. Let G denote a GRS and let S, T ∈ GC(F ,V). There exists a
constant ∆G depending only on G such that:

(1) if S −−→` T for −−→ ∈ {−−→G ,−−→G} then |T | 6 (`+ 1) · |S| + `2 ·∆G; and

(2) if S −−→` T for −−→ ∈ { i−−→G , i−−→G} then |T | 6 |S| + ` ·∆G.

Proof. The only interesting case is Assertion (1), Assertion (2) follows by a
straight forward induction on ` from Lemma 6.2(2). Let −−→ ∈ {−−→G ,−−→G}, we
prove the property by induction on `. The base case follows trivially, so suppose
the lemma holds for `, we establish the lemma for `+ 1. Consider a derivation
S −−→` T −−→ U . By induction hypothesis, |T | 6 (`+1)·|S|+`2 ·∆G . A standard
induction gives dp(T) 6 dp(S) + ` ·∆G , using Lemma 6.1 for the inductive step.
By Lemma 6.2(1) we see |U | 6 |T | + dp(T) + ∆G , and by definition we have
dp(S) 6 |S|. Summing up

|U | 6 |T | + dp(T) + ∆G

6
(
(`+ 1) · |S| + `2 ·∆G

)
+
(
dp(S) + ` ·∆G

)
+ ∆G

6 (`+ 2) · |S| + `2 ·∆G + ` ·∆G + ∆G

6 (`+ 2) · |S| + (`+ 1)2 ·∆G ,

concludes the lemma. �

6.2. Implementing a Graph Rewriting Reduction

We now provide an implementation of graph rewriting on TMs. When we
say computable in time below, we implicitly mean computable in deterministic
time on a k-string TM M as given in Definition 2.10. When not mentioned
otherwise, we suppose that M is deterministic. To allow for a succinct encoding,
we represent a canonical term graph S as an isomorphic term graph U ∈ GN(F ,V)
with nodes in NU = {1, . . . , |S|}. This is justified, as the structure of each node
u ∈ S, i.e., the set of positions addressing u in S, is already implicitly contained

66

6.2 Implementing a Graph Rewriting Reduction

in U . This is witnessed by the function C that translates any such graph U back
to its canonical form S. Term graphs U of this form are called encoding term
graphs (of S) below.
Natural numbers n ∈ N are encoded as binary words pnq. For each function

symbol f ∈ F , we suppose that a corresponding tape-symbols pfq is present.
Further we fix an enumeration of variables, where the ith variable xi is denoted
by i ∈ N, that is, we set pxiq := piq. To represent an encoding term graph U
of a canonical term graph S as word, we use an adjacency list. For each node
u ∈ {1, . . . , |S|} we additionally store the label labU (u), and keep the order on
successors. More precise, the encoding of U is given by a list containing for each
u ∈ U a triple

〈puq, plabS(u)q, [pu1q, . . . , pukq]〉 ,
where succU (u) = [u1, . . . , uk]. Following the terminology of [75], this tuple is
also called the node-specification of u in S. For performance reasons, we suppose
that the node-specification of the root node is distinguished, and hence the root
of U can be determined in linear time by scanning U once.

In the encoding term graph U of S, a single node is stored in space dlog(|S|)e.
For fixed F , the length of succS(u) is bounded from above by a constant. Thus
a single node specification is stored in space c · dlog(|S|)e for c ∈ N depending
only on F . This motivates the following definition.

Definition 6.4 (Representation Size). Let S ∈ GC(F ,V) be a canonical graph.
We define ‖S‖ := dlog(|S|)e · |S|, and call ‖S‖ the representation size of S.

Before we investigate into the computational complexity of reductions, we
prove some auxiliary lemmas. Modifications performed on encoding term graph
below often destroy the property that the set of nodes consists of a continuous
sequence of natural numbers as assumed above. The next lemma gives a quadratic
algorithm that turns such modified graphs into isomorphic encoding term graphs.

Lemma 6.5. The function that maps a graph S ∈ GN (F ,V), given as a list of
node-specifications, to an isomorphic encoding graph S′ is computable in time
quadratic in the size of the input.

Proof. We can define a TM M which traverses over S and replace every en-
countered node u ∈ S by a node m(u). For the so obtained term graph S′, the
function m : NS → {1, . . . , |S|} is a graph morphism witnessing S ∼= S′. The
morphism and the graph S′ can be constructed on the fly. For that, the TM M
uses a dedicated working tape that stores the morphism m as an association
list. Clearly the size of m is linearly bounded in the size of the input graph.
Thus lookup of m(u), if defined, is a linear operation in the size of the input.
If m(u) is undefined, it is initialised by the next natural number not assigned
so far (initially this number is 1). This initialisation can again be performed in
time linear in the size of the input.
It is clear that when the complete graph S has been copied, m gives the

desired morphism, and S′ is an encoding graph. As each lookup in m is a linear
operation, and the total number of lookups is bounded by |S|, overallM operates
in quadratic time. �

67

6 An Implementation of Graph Rewriting

Sometimes it is convenient to have a specific sub-graph of S marked in-place. By
enriching the alphabet underlying the encoding of S, we can keep this marking
stored directly in the node.

Lemma 6.6. For each position p ∈ Pos(S), the sub-graph S�p of S ∈ GC(F ,V)
can be marked in quadratic time in ‖S‖.

Proof. Suppose the TM M holds the graph S and position p on its input tape,
where S is given by its encoding graph, and the position p is given as a list of
binary numbers. The term graph S is first copied to a working tape, where the
marking is performed in-place. The TM M traverses the term graph then in a
depth-first manner, starting from the node addressed by p. For the depth first
traversal, it uses an additional working tape, which holds a stack of nodes not
marked so far. Initially, this stack is populated by the node addressed by p only.
To determine the node addressed by p, it traverses along the path

rt(S)
i1−⇀S u1

i2−⇀S · · ·
in−⇀S un ,

induced by p, i.e., p = i1·i2· · · · in. By scanning through S, the root rt(S) can
be found in time linear in ‖S‖. Also, given ui (i = 1, . . . , n− 1), the node ui+1

can be found in time linear in ‖S‖. As a consequence, the node addressed by p
can be determined in time quadratic in ‖S‖.

Repeatedly, the TM M pops the top node u written on the stack, and pushes
the successors of u on the stack, if u was not marked before. When the stack
is finally empty, the resulting marked term graph is copied to the output-tape.
Note that M performs at most |S�p| 6 ‖S‖ iterations. Consider an iteration
with succS(u) = [u1, . . . , uk] for the top node u on the stack. A single iteration
requires at most k + 1 scans of the graph S. Since k is fixed by the signature,
one iteration takes thus at most time O(‖S‖). As the size of the graph on the
working tape is unmodified, copying to the output tape takes also only time
O(‖S‖). Summing up, M takes overall O(‖S‖2) steps until it halts. �

Lemma 6.7 (Complexity of Matching). Let L, S ∈ GC(F ,V) be two canonical
term graphs.

(1) In time O(|L| · (‖L‖+ ‖S‖)) it can be decided if there exists a matching
morphism m : L→V S;

(2) A matching morphism m : L→V S, if it exists, can be computed under the
same bound.

Proof. For two mapping m1 and m2 from nodes N1 and N2 to nodes in S, the
composition m1 ⊕m2 is given as follows. If m1 and m2 are incompatible in the
sense that m1(u) 6= m2(u) for some u ∈ N1 ∩N2, then m1⊕m2 = ⊥. Otherwise,
m1⊕m2 is a mapping on N1 ∪N2, given by m1⊕m2(u) = m1(u) if u ∈ N1 and
m1 ⊕m2(u) = m2(u) if u ∈ N2. Finally, ⊕ is extended to ⊥ so that ⊥⊕m = ⊥
and m⊕⊥ = ⊥.
We construct a TM M that, starting from the roots of L and S, checks

the morphism conditions recursively. Moreover, the witnessing morphism m

68

6.2 Implementing a Graph Rewriting Reduction

is constructed on the fly. For this, M uses a dedicated working tape in order
to store the constructed morphism m as an association list (or ⊥ respectively).
Initiallym is the empty mapping. The encoding graphs L is copied to a dedicated
working tapes, which in analogy to Lemma 6.6 allows the marking of visited
nodes in L. The TM M simultaneously traverses the copy of L and S, starting
from rt(L) and rt(S). For that it keeps a stack of pairs (u, v) ∈ NL ×NS on a
dedicated working tape, initialised by the pair (prt(L)q, prt(S)q). It then iterates
the following procedure.
The machine M searches the nodes u ∈ L and v ∈ S, for (puq, pvq) the

topmost pair on the stack. It overwrites m by m⊕ {puq 7→ pvq}. If labL(u) ∈ V
or u was already visited, it marks u ∈ L visited. Otherwise the machine checks
labL(u) = labS(v). Should this check fail, the machine overwrites m by ⊥.
Otherwise, it pushes all pairs of successors (puiq, pviq) (where succiL(u) = ui
and succiS(v) = vi) on the stack and repeats.

To see that the TM acts as intended, first suppose ⊥ is written on the working
tape. Then for pairs (puq, pvq) of nodes u ∈ L and v ∈ S on the stack, either
m′⊕{u 7→ v} = ⊥ for some intermediate map m′, or labL(u) 6= labS(v). Observe
that m′ ⊕ {u 7→ v} can be conceived as the combination of a subset of necessary
morphism conditions. Under our assumption, it thus follows that the morphism
conditions are inconsistent, in the former case since u ∈ L should be mapped
to two distinct nodes v and m′(u) = v′. In the latter case the morphism breaks
due to the labeling condition. It follows that the implementation is complete.
Now suppose m 6= ⊥ is written on the working tape. Then by definition of ⊕,
m is a function from NL to NS , i.e., every node u ∈ L is mapped to exactly
one node v ∈ S. By construction, this function obeys the root condition, i.e.,
m(rt(L)) = rt(S), and the morphism conditions for all u ∈ L. The function
m thus constitutes a matching morphism m : L→V S. It follows that the
implementation is sound.
It remains to verify that M runs under the given bound. It is clear that

initialisation causes no harmful overhead. Observe that due to marking of
visited nodes, the number of iterations is bounded by |L|. At each iteration,
M scans through L and S, and possibly modifies the stack and the morphism
m constructed so far. The scan of L and S takes time linear in ‖L‖ + ‖S‖,
and also modification of the stack can be performed under this bound. As
observed before, at any time the constructed morphism m is either ⊥ or a
function from (a subset of) nodes in L to S. Using a reasonable encoding of
lists and tuples, the size of m on the tape is thus asymptotically bounded by
‖m‖ := |L| · (dlog(|L|)e+ dlog(|S|)e). It is not difficult to see that updating m
be done in time O(‖m‖) ⊆ O(‖L‖+ ‖S‖). So overall an iteration is performed
in time O(‖L‖+ ‖S‖), as there are at most |L| iterations the execution time is
thus asymptotically bounded by |L| · (‖L‖+ ‖S‖).

Lemma 6.8 (Complexity of a Rewrite Step). Let S ∈ GC(F ,V), let L → R be
a graph rewrite rule and let p ∈ Pos(S) be a position. If S −−→L→R,p T then T
is computable in time O(‖L‖2 · ‖R‖2 · ‖S‖2).

69

6 An Implementation of Graph Rewriting

Proof. We construct a TM M that given S, p and L → R, computes T with
S −−→L→R,p T , if it exists. The machine will perform a pre-reduction step
S′ ↪→L→R,u T ′, where nodes in S′ are obtained by renaming nodes in S to
m(u) := u+ |R|. This ensures that NS′ ∩NR = ∅. Lemma 4.36 states that S′ is
as good as any other term graph isomorphic to S. An adaption of the renaming
algorithm underlying Lemma 6.5 shows that S′ can be computed from S in time
O((‖S‖+ ‖R‖)2).
By the construction of Lemma 6.6, the TM M can first mark the sub-graph

S′�p in time ‖S′‖2, and uses the machine of Lemma 6.7 to construct a matching
morphism m : L→V S′�p. If this construction fails, that is the rule is not
applicable, the machine stops. The execution time of this step can be bounded
by O(‖L‖2 · ‖S‖2).
Otherwise, the machine appends R to S′, and points all edges going to

v ∈ NL ∩NR to m(v) ∈ S′. Finally, the edges going to the redex-node u ∈ S′
are redirected to the root of R, if u was not the root of S′. Using the marking
algorithm from Lemma 6.6, T ′ is obtained from the constructed graph by marking
the corresponding reachable sub-graph, and removing unmarked nodes. Finally,
the encoding graph of T is written on the output tape, employing Lemma 6.5
on the intermediate graph T ′.
Observe that the encoding length of S′ is bounded by ‖S‖ · ‖R‖, similar T ′

occupies at most O(‖S‖ · ‖R‖) cells on the tape, at any time. Note that the
construction of T ′ involves copying R, and performing |R| redirects, where a
single redirect can be performed in time linear in the encoding length of T ′. By
the estimation on T ′, marking the reachable sub-graph takes time O((‖S‖·‖R‖)2).
Cleanup is again quadratic by Lemma 6.5. Summing up all bounds, we conclude
the lemma. �

Lemma 6.9 (Complexity of Unfolding). Let S ∈ GC(F ,V) and let p ∈ Pos(S)
be a position. A term graph T such that S C!

p T is computable in time O(‖S‖2).

Proof. We construct a TM that given term graph S produces a term graph T
such that S C!

p T in time quadratic in ‖S‖. For that, the machine traverse S
along the path induced by p and introduces a fresh copy for each shared node
encountered along that path. The machine has four working tapes at hand. On
the first tape, the graph S is copied. Nodes in S are padded sufficiently by
leading zero’s, so that successors can be replaced by fresh nodes u 6 2 · |S|. The
graph represented on the first tape is called the current graph, its size will be
bound by O(‖S‖) at any time. On the second tape the position p, encoded as
list of argument positions, is copied. The argument position referred by the
tape-pointer is called current argument position and initially set to the first
position. The third tape holds the current node, initially the root rt(S) of S.
Finally, the remaining tape holds the size of the current graph in binary, the
current size. One easily verifies that these preparatory steps can be done in time
linear in ‖S‖.
The TM now iterates the following procedure, until every argument position

in p was considered. Let v be the current node, let Si the current graph and let i
be the current argument position. The machine keeps the invariant that v is not

70

6.2 Implementing a Graph Rewriting Reduction

shared in Si. First, the node vi with v i−⇀Si vi in Si is determined in time linear in
‖S‖, the current node is replaced by vi. Further, the pointer on the tape holding
p is advanced to the next argument position. Since v is not shared, vi is shared
if and only if vi ∈ succSi(u) for u 6= v. The machine checks whether vi is shared
in the current graph. By the above observation this can be done in time linear
in ‖S‖. If vi is not shared, the machine enters the next iteration. Otherwise,
the node vi is cloned in the following sense. First, the i-th successor vi of v is
replaced by a fresh node u. The fresh node is obtained by increasing the current
node by one, this binary number is used as fresh node u. Further, the node
specification 〈puq, plabSi(vi)q, psuccSi(vi)q〉 is appended to the current graph Si.
Call the resulting graph Si+1. Then Si

u
vi@ Si+1 with PosSi+1(u) = {q} and

q 6 p, i.e., Si Cp Si+1, compare the construction in Lemma 5.10(1).
When the procedure stops, the machine has computed S = S0 Cp S1 Cp

. . . Cp Sn = T . One easily verifies that Sn is Cp-maximal as every considered
node along the path p is not shared. Each iteration takes time linear in ‖S‖.
As as at most |p| 6 |S| iterations have to be performed, we obtain the desired
bound. �

Lemma 6.10 (Complexity of Folding). Let S ∈ GC(F ,V) and let p ∈ Pos(S)
be a position. A term graph T such that S I!

p T is computable in time O(‖S‖2).

Proof. Define the height htU (u) of a node u in a term graph U inductively as
follows: htU (u) := 0 if succU (u) = [] and htU (v) := 1 + maxv∈succU (u) htU (v)
otherwise. We drop the reference to the graph U when referring to the height of
nodes in the analysis of the normalising sequence S I!

p T below. This is justified
as the height of nodes remain stable under A-reductions.

Recall that U Ip V holds if there exist nodes u, v strictly below p with U Auv V .
For u, v given, the graph V is obtained by collapsing two nodes, which is a linear
operation in the size of U . However, finding arbitrary nodes u and v such that
U Auv V involves, in the worst case, a comparison of all pairs of nodes u, v ∈ U .
Since up to linear many A-steps in |S| need to be performed, a straight forward
implementation admits cubic runtime complexity. To achieve a quadratic bound
in the size of the starting graph S, we construct a TM that implements a bottom
up reduction-strategy. For h ∈ N, define U A(h) V if U Ip V , where for the
particular nodes u, v ∈ U with U Auv V , ht(u) = ht(v) = h holds.
Observe also that a sequence U1 A(h1)

U2 A(h2)
U3 can be reordered to

U1 A(h2)
· A(h1)

U3 whenever h1 > h2: The assumption U1 A(h1)
U2 A(h2)

U3

gives a peak U ′2 (h2)
@ U1 A(h1)

U2 when h1 > h2, which can be joined by
U ′2 A(h1)

U3 (h2)
@ U2 due to Lemma 5.5. To see that the peak exists, suppose

U1 Au1v1 U2 Au2v2 U3 holds. Let m be the morphism underlying U1 Au1v1 U2, that
collapses u1, v1. Since m is surjective, we find nodes u′2, v′2 ∈ U1 such that
m(u′2) = u2 and m(v′2) = v2. By the assumption of the heights, u′2 and v′2
are not below u1 or u2. This implies, by the shape of m, that successors of
u2, v2 ∈ U2 coincide with successors of u′2, v′2 ∈ U1. By Lemma 5.4 on U2 Au2v2 U3,
it thus follows that succU1

(u′2) = succU1
(v′2). Similarly, labU1(u′2) = labU1(v′2),

and using Lemma 5.4 from right to left constructs the peak.

71

6 An Implementation of Graph Rewriting

The Turing Machine computes a sequence

S = S0 A
!
(0) S1 A

!
(1) · · · A!

(d) Sd+1 . (6.1)

Observe that U Ip V if and only if U A(h) V for some height h 6 d, where
d := dp(U�p). That is, any Ip sequence can be written as a sequence of A(h)

steps of height h ∈ {0, . . . , d}. Using the above observation that steps can be
permuted, any normalising sequence can be turned into a sequence of steps in
increasing height as above. We conclude that the above sequence is normalising,
i.e., Sd+1 = T . Consider a sub-sequence Sh A!

(h) Sh+1. This derivation is,
without loss of generality, of the form

Sh = Th,1 A
!
u1 · · · A

!
un Th,n+1 = Sh+1 . (6.2)

Here u1, . . . , un are all nodes at height h := ht(u1) = · · · = ht(un).
The TM operates in subsequent stages h = 0, . . . , d. At stage h, the TM com-

putes Sh+1 from Sh, compare Derivation (6.1). This sub-derivation is computed
in accordance to Derivation (6.2).
The TM M uses a dedicated working tape to store the current graph Th,j ,

initially S. The size of this graph is at any time bounded by ‖S‖, as the only
operation we perform on this graph is the deletion of nodes. The current height
is stored on a separate tape, initialised to 0. Further, the node addressed by p
in S is computed by recursion on p in time quadratic in ‖S‖. Afterwards, the
quadratic marking algorithm of Lemma 6.6 is used to mark the sub-graph S�p
in S. Collapsing can only occur in this marked sub-graph. This finishes the
initialisation phase.
The TM M uses the flags deleted, temporary and permanent besides the

sub-term marking on nodes. The node-specifications of deleted nodes are simply
ignored, which allows M to avoid cleanup after each iteration. A node is marked
permanent if its height in the current graph is strictly below the current height.
It follows that a node u ∈ Th,j is at the current height if and only if a successor
is marked permanent. We are ready to give the procedure, suppose the machine
M is at the beginning of stage h:

- Outer Loop. The machine is searching the next node uj (j = 1, . . . , n)
at height h to collapse, compare Derivation (6.2). It keeps the invariant
that previously considered nodes uj′ 6 uj are marked temporary. Then
the first node in the current graph Th,j that is neither marked temporary
nor permanent, but where a successor is marked permanent, qualifies for
uj . In total, uj can thus be determined in size linear in Th,j , that is linear
in ‖S‖. If uj is not found, all nodes at the height h have been considered,
the machine goes into the next stage h+ 1, and marks all temporary nodes
permanent. Otherwise, uj is marked temporary, and M goes to the inner
loop.

- Inner Loop. Let T be the current graph, by Lemma 5.4 T Auj T
′ for some

term graph T ′ if and only if labT (uj) = labT (u′j) and succT (uj) = succT (u′j)
for some node u′j ∈ T . If such a node exists, it can be found by scanning
T a constant number of times, thus in time linear in ‖S‖. If no such node

72

6.2 Implementing a Graph Rewriting Reduction

is found, the loop aborts, otherwise the machine uses the recipe given in
Lemma 5.4 for constructing T ′. For the in-place construction of T ′, the
TM M re-uses the node-specification of uj in the encoding of T for the
fresh node in T ′, and marks the node-specification u′j deleted. Besides this,
the recipe involves only a linear number of redirects in |T |. Clearly T ′ can
thus be constructed in time linear in ‖S‖.

When all stages are completed, the current graph is, as observed in the first
half of the lemma, the Ip-minimal graph S`. The current graph is then written
on the output tape in two stages. During the first stage, the current graph is
traversed from top to bottom, and the node specifications of non-deleted nodes
is written on a separate working tape in time O(‖S‖). The algorithm from
Lemma 6.5 translates this graph into a proper encoding graph, in time quadratic
in ‖S‖.

We now investigate on the computational complexity of the above procedure.
Observe that the outer loop is iterated at most |S�p| 6 |S| times often, over
all stages. This is because at each iteration one unmarked node strictly below
p is marked in the current graph. The total time spent in the outer loop, not
counting the inner loop, can thus be estimated by O(|S| · ‖S‖) ⊆ O(‖S‖2). Each
inner loop involves the construction of exactly one Ip step, using Lemma 5.8(2)
we thus obtain that the inner loop body is executed at most |S�p| times. The
machine M thus spends at most time O(|S�p| · ‖S‖) ⊆ O(‖S‖2) in the inner
loop. Overall, the main procedure, outer and inner loop traversal, thus takes
time O(‖S‖2). As initialisation and finalisation impose only quadratic overhead
in ‖S‖, we conclude the lemma. �

Summing up Lemmas 6.8–6.10, for a fixed rewrite system G, term graph S and
rewrite position p given, a single rewrite step S −−→ T can be performed in time
quadratic in the representation size of S, for −−→ ∈ {−−→G ,−−→G , i−−→G , i−−→G}.
The next lemma establishes that for an unknown rewrite position p, the complex-
ity of computing a rewrite step is at most cubic. The given algorithm essentially
exhaustively checks on all nodes in S if a rewrite step is possible. Depending on
the considered rewrite relation −−→, the situation is slightly more complicated,
as some care has to be taken in order to avoid folding or unfolding on every
position p ∈ Pos(S), whilst retaining completeness of the algorithm.

Lemma 6.11. For every GRS G and −−→ ∈ {−−→G ,−−→G , i−−→G , i−−→G} there
exists a Turing machine M that computes a reduction step S −−→ T for given S
in time O(‖S‖3).

Proof. We consider the four cases for −−→ separately:

- Case −−→ = −−→G : Suppose S −−→L→R,p T holds. Unfolding the definition,
and using Lemma 5.11(3), we have

S I!
p U C

!
p V −−→L→R,p T ,

for some term graphs U, V . For L → R and p given, tacitly employing
Lemma 5.8, we see that by Lemma 6.10, Lemma 6.8 and Lemma 6.9 the
term graph T is computable in time O(‖S‖2).

73

6 An Implementation of Graph Rewriting

We provide a cubic algorithm that finds suitable position p and rule
L → R ∈ G. For each position q ∈ Pos(S), let Uq denote the (unique)
canonical term graph obtained by fully collapsing the sub-graph at position
q, that is, S I!

q Uq holds. We claim S I!
q Uq C

!
q Vq −−→L→R,q T if and only

if Uq is reducible by −−→L→R,q. By Lemma 4.36, it suffices to prove that
Uq�q and Vq�q are isomorphic. Let m be the morphism such that Uq 4m Vq
holds. This morphism defines the identity on all nodes strictly below q. To
see this, observe that m is just the composition of the morphism underlying
the individual Cq steps in Uq C!

q Vq, compare Lemma 4.16. Hence Uq�q
and Vq�q are trivially isomorphic.

In conclusion, a rule L→ R ∈ G and position q can be found by enumerat-
ing all term graphs Uq, and checking if they are −−→L→R,q reducible. We em-
phasise that for u ∈ S, Uq1 = Uq2 for each pair of positions {q1, q2} ⊆ NS(u).
It thus suffices to enumerate Uq for a single position q ∈ Pos(u) for every
u ∈ S.
Guided by this observation, the machine M iterates over all nodes u ∈ S,
extracts a position q ∈ PosS(u) and verifies if Uq is −−→L→R,q reducible
for some L → R ∈ G. If so, a proper rule L → R and position q with
S −−→L→R,q T has been found, otherwise it continues with the next node
in S.

By the above observation, this search is complete. We verify that the
search operates in cubic time in ‖S‖. Note that a position q ∈ PosS(u)
can be constructed by backward traversal from u to the root of S, in time
quadratic in ‖S‖. Under this bound, also Uq can be constructed, and
matched against all rules L→ R ∈ G at position q. Compare Lemma 6.10
and Lemma 6.7. Here we employ that only a constant number of rules
need to be checked. There are at most |S| iterations, hence the overall
bound is given by ‖S‖3. This concludes the case −−→ = −−→.

- Case −−→ = −−→G : The construction of the machine is a simplification of
the above construction, exploiting that S is −−→L→R,q reducible if and only
if it is −−→L→R,q reducible, which implies that a redex can be determined
without the construction of intermediate Cq-maximal graphs Uq.

- Case −−→ = i−−→G : In this case S i−−→G,p T if and only if there is a node
u ∈ S and rule L→ R ∈ G such that S −−→L→R,u T holds, but S −−→G,v T
does not hold for any node v strictly below u in S. Using the machine
of Lemma 6.7, all redex-nodes in S can be marked in time cubic in ‖S‖.
Using this marking, it can be determined in time quadratic in ‖S‖ if
S i−−→L→R,u T holds. If this check is unsuccessful the machine aborts.
Otherwise, the TMM uses the machine of Lemma 6.8 to compute the term
graph T with S i−−→L→R,p T for some p ∈ PosS(u). Note that computing
a position p ∈ PosS(u) incurs only quadratic overhead.

- Case −−→ = i−−→G : The construction is similar to the previous one. The
marking of redex-nodes is however performed with respect to −−→G,q. By
reasoning identical to the case −−→ = −−→, it suffices to check only one

74

6.2 Implementing a Graph Rewriting Reduction

arbitrary position per node. That is, for every node u ∈ S, the TM M
computes one arbitrary position q ∈ Pos(u), and marks the node u if the
term graph Uq, with S I!

q Uq, is −−→G,q reducible. If u is marked, and all
its successors are not marked, then M selects p ∈ PosS(u) and performs
the reduction step S −−→G,p T .
By reasoning identical to above, we obtain that M operates in time
O(‖S‖3). We show that it is correct. For this, we first prove that the
following statements are equivalent.

(1) The node u ∈ S addressed by position p·q ∈ Pos(S) is marked.

(2) U I!
p′ Up′ −−→G,p′ T for some term graph T and p′ ∈ PosS(u).

(3) U I!
p·q Up·q −−→G,p·q T for some term graph T .

(4) U I!
p Up −−→G,p·q T for some term graph T .

The equivalence (1)⇔ (2) follows by construction of M , and correctness of
the implementation of the folding (Lemma 6.10) and matching algorithm
(Lemma 6.7). In the correctness proof of the implementation of −−→G we
have seen that Up′ is isomorphic to Up·q. Hence statement (2) is equivalent
to U I!

p·q Up·q −−→G,p′ T , as {p·q, p′} ⊆ PosS(u). Since the positions p·q
and p′ address the same node in S, these positions address by Lemma 4.22
also the same node in Up·q, compare Lemma 4.22. We conclude (2) ⇔ (3).
Finally, consider statement (3). Since Ip·q ⊆ Ip by definition, and Ip is
confluent (compare Lemma 5.5), we see that without loss of generality,
S I!

p·q Up·q I
!
q Up holds. Using that Up·q is Ip·q minimal, we see that the

morphism m underlying Up·q I!
q Up, i.e., Up·q <m Up, defines the identity

on all nodes below position p·q. That is, the sub-graphs Up·q and Uq at
position p·q are isomorphic. Hence Up is reducible by −−→G,p·q if and only
if Up·q is. This concludes (3) ⇔ (4).

For soundness, suppose that M has selected a position p ∈ PosS(u) for
the reduction step. Thus by construction u is marked, and all nodes v
strictly below p are unmarked. Recall that Pos(S) = Pos(Up) (compare
Lemma 4.17 and Lemma 4.22). By (1) ⇒ (4) (with p = ε) we get that
U I!

p Up −−→G,p T holds. The contraposition of (4) ⇒ (1) on unmarked
v ∈ S gives that for all p·q ∈ Pos(Up), the node addressed by p·q in
Pos(Up) is not G reducible, so indeed S i−−→G,p T holds.

For completeness, suppose S i−−→G,p Tp holds. Thus (4) ⇒ (1) with q = ε
gives that u addressed by p in S is marked. Using the contraposition of
(1) ⇒ (4) we see that the nodes v strictly below u ∈ S are not marked.
Thus M will select a node q ∈ Pos(S), and perform a reduction step as
desired. �

Employing the size approximation given in Lemma 6.3, we now lift Lemma 6.11
to sequences. This constitutes the main result of this section.

Theorem 6.12. Let G be a GRS, and consider −−→ ∈ {−−→G ,−−→G}. Let S ∈
GC(F ,V) be a term graph with dh(S,−−→) = `.

75

6 An Implementation of Graph Rewriting

(1) A specific −−→ normal form of s is computable in deterministic time

O(log(` · |S|)3 · (`4 · |S|3 + `7)) .

(2) Any −−→ normal form of S is computable in non-deterministic time

O(log(` · |S|)2 · (`3 · |S|2 + `5)) .

Proof. We consider first Assertion (1). Suppose dh(S,−−→) = `. We use the
machine M from Lemma 6.8 to compute a normalising rewrite sequence

S = T0 −−→ T1 −−→ · · · −−→G Tl .

Using the size estimation of Lemma 6.3(1) the size of Ti (i = 1, . . . , l) is bounded
by

|Ti| 6 (i+ 1) · |S| + i2 ·∆G ∈ O(` · |S| + `2) ,

where we use that the constant ∆G depends only on the graph rewrite system G.
Using the rewrite algorithm from Lemma 6.11 that is cubic in the representation
size of the given term, each rewrite step Ti −−→ Ti+1 (i = 0, . . . , l − 1) can thus
be performed in time

‖Ti‖3 ∈ O(log(|Ti|)3 · |Ti|3)

∈ O(log(` · |S|)3 · (` · |S| + `2)3)

= O(log(` · |S|)3 · (`3 · |S|3 + `6)) .

As at most l 6 ` steps need to be performed, the theorem follows for this case.
For Assertion (2), consider an arbitrary sequence

S = T0 −−→ T1 −−→ · · · −−→G Tl .

As indicated before in Lemma 6.11, a single rewrite step Ti −−→ Ti+1 (i =
1, . . . , l − 1) can be performed in quadratic time in ‖Ti‖, if the rewrite position
p is known. Nondeterminism allows the TM M to guess any rewrite position p
in Ti in time O(‖Ti‖2). Note that this bound includes the verification that p is
indeed a valid rewrite position. Overall, any rewrite step can thus be performed
in nondeterministic time

O(log(` · |S|)2 · (`2 · |S|2 + `4)) ,

carrying out the estimation as in the deterministic case. The theorem follows.�

Theorem 6.13. Let G be a GRS, and consider −−→ ∈ { i−−→G , i−−→G}. Let S ∈
GC(F ,V) be a term graph with dh(S,−−→) = `.

(1) A specific −−→ normal form of S is computable in deterministic time

O(log(`+ |S|)3 · (` · |S|3 + `4) .

76

6.2 Implementing a Graph Rewriting Reduction

(2) Any −−→ normal form of S is computable in non-deterministic time

O(log(`+ |S|)2 · (` · |S|2 + `3) .

Proof. We follow the proof of Theorem 6.12, but replace Lemma 6.3(1) by
Lemma 6.3(2) which gives

|Ti| ∈ O(`+ |S|) ,

in a normalising sequence

S = T0 −−→ T1 −−→ · · · −−→G Tl .

Using the cubic algorithm from Lemma 6.11 that implements a single rewrite
step and unfolding the definition of representation size, we see that a single
rewrite step Ti −−→ Ti+1 (i = 1, . . . , l − 1) can be performed in time

O(‖Ti‖3) ⊆ O(log(`+ |S|)3 · (|S| + `)3)

= O(log(`+ |S|)3 · (|S|3 + `3)) .

The theorem follows thus from the assumption that l 6 `.
For the nondeterministic case, we use the quadratic non-deterministic algorithm

as in Theorem 6.12(2), in conjunction with the size estimation from Lemma 6.3(2).
This shows that a single rewrite step Ti −−→ Ti+1 (i = 1, . . . , l− 1) is computable
in time

O(‖Ti‖2) ∈ O(log(`+ |S|)2 · (|S|2 + `2)) . �

77

Chapter 7.

The Polynomial Invariance Theorem

We arrive at the central result of this part, the polynomial invariance theorems.
The following intermediate theorem connects our adequacy results with the
implementation of graph rewriting given in Theorem 6.12 and Theorem 6.13.

Theorem 7.1. Let R be a TRS.

(1) There exists a deterministic Turing machine M that, given an innermost
terminating term t, computes a graph representation of a normal form u
of t in time p(|t|, dh(t, i−→R)), where

p(n, `) ∈ O
(
log(`+ n)3 · (` · n3 + `4)

)
.

(2) There exists a non-deterministic Turing machine M that, given a termi-
nating term t, computes a graph representation of any normal form u of t
in time p(|t|, dh(t,−→R)), where

p(n, `) ∈ O
(
log(` · n)2 · (`3 · n2 + `5)

)
.

Proof. Let G be a graph rewrite system that unfolds to R, such that for every
L→ R ∈ G, only variable nodes are shared. It is not difficult to see that G exists.
For the first assertion, consider a term t such that dh(t, i−→R) is defined. Let
T ∈ ♦NF(R)

C (F ,V) be the representation of t as the canonical term graph that is
a tree, hence in particular |t| = |T |. As a consequence of the adequacy theorem
for innermost rewriting, Theorem 5.16(2), we have that dh(T, i−−→G) = dh(t, i−→R)
is defined, and moreover, a maximal reduction

T = T0
i−−→G T1

i−−→G · · · i−−→G Tl = U ,

yields a term graph U which unfolds to a normal form of t. By Theorem 6.13(1),
the graph U is computable from T in time p(|T |, dh(T, i−−→G)) = p(|t|, dh(t, i−→R))
for sufficiently large t. The first assertion follows.

For the second assertion, we proceed as above, but use the adequacy theorem
for full rewriting, Theorem 5.12(2), and the implementation of graph rewriting
given in Theorem 6.12(2), instead. �

Theorem 7.2 (Polynomial Invariance Theorem). Let R be a confluent TRS
with rciR(n) ∈ O(g(n)). Let f ∈ D and let N denote a set of non-accepting
patterns.

79

7 The Polynomial Invariance Theorem

Then there exists a polynomial function p : N×N→ N such that the function
JfKR,N is computable on a deterministic Turing machine in time p(n, g(n)),
where n denotes the sum of the sizes of the input, and

p(n, `) ∈ O
(
log(`+ n)3 · (` · n3 + `4)

)
.

Proof. Suppose R is as given by the Theorem, let f ∈ D and consider a set
non-accepting patterns N . Then by Theorem 7.1(1), for any tuple of arguments
(v1, . . . , vk) ∈ T (C)k, a term graph representation U of a normal form u of
s := f(v1, . . . , vk) is computable in time pr(|s|, g(|s|)), where

pr(n, `) ∈ O
(
log(`+ n)3 · (` · n3 + `4)

)
.

It is not difficult to see that in linear time in the representation size of U it
can be decided if u is a value. Recall that the set of non-accepting patterns N
is finite. Using soundness and completeness of graph based matching for tree
representations of patterns p ∈ N (Lemma 4.43 and Lemma 4.49), by Lemma 6.7
we see that it can be decided in time quadratic in the representation size of U
whether u is accepting. Since U is the result of a i−−→G reduction of length at
most g(|s|), Lemma 6.3(2) allows us to conclude that the accepting condition
for u can be decided in time pa(|s|, g(|s|)) for some

pa(n, `) ∈ O
(
log(`+ n)3 · (` · n3 + `4)

)
.

In total, JfKR,N (v1, . . . , vk) can thus be computed in time pr(|s|, g(|s|)) +

pr(|s|, g(|s|)). Since |s| = 1 +
∑k

i=1|vi| the theorem follows. �

Instantiating the function g by a polynomial or exponential respectively, we
obtain the following corollaries.

Corollary 7.3. Let R be a confluent TRS with rciR(n) ∈ O(nk) for some k ∈ N
with k > 1. Let f ∈ D and let N denote a set of non-accepting patterns.
Then JfKR,N is computable in deterministic time p(n) ∈ O(log(n)3 · n4·k). In

particular, the computed function belongs to FP.

Corollary 7.4. Let R be a confluent TRS with rciR(n) ∈ 2O(nk) for some k ∈ N
with k > 1. Let f ∈ D and let N denote a set of non-accepting patterns.

Then JfKR,N is computable in deterministic time e(n) ∈ 2O(nk). In particular,
the computed function belongs to FEXP.

Theorem 7.5 (Nondeterministic Polynomial Invariance Theorem). Let R be a
TRS with rcR(n) ∈ O(g(n)). Let f ∈ D and let N denote a set of non-accepting
patterns.

Then there exists a polynomial function p : N×N→ N such that the function
problem associated with JfKR,N is computable on a Turing machine in time
p(n, g(n)), where n denotes the sum of the sizes of the input and

p(n, `) ∈ O
(
log(`+ n)3 · (` · n3 + `4)

)
.

80

Proof. The theorem follows as in Theorem 7.2, replacing the application of
Theorem 7.1(1) by Theorem 7.1(2). �

Instantiating the function g by a polynomial p(n) yields by Proposition 2.19 the
following corollary.

Corollary 7.6. Let R be a TRS with rciR(n) ∈ O(nk) for some k ∈ N with
k > 1. Let f ∈ D and let N denote a set of non-accepting patterns.
Then the function problem associated with JfKR,N is computable in time

p(n) ∈ O(log(n)2 · n5·k). In particular, the computed function problem belongs to
FNP.

81

Part II.

Order-Theoretic
Characterisation of
Complexity Classes

83

Chapter 8.

Introduction

In this part we are concerned with order-theoretic characterisations of the class of
polytime and exponential time computable functions. Since our characterisations
are resource free, i.e., without explicit reference to computational resources, this
research is closely connected to the field of implicit computational complexity
(ICC for short). Furthermore, our characterisations have also ramifications in
the automated complexity analysis of rewrite systems.

Our proposed small polynomial path order (sPOP? for short) forms a restric-
tion of the multiset path order. This order embodies Bellantoni and Cook’s
principle of predicative recursion [21] on compatible TRSs. Underlying the notion
of predicative recursion is a separation of function parameters into normal and
safe arguments. Notationally we write

f(t1, . . . , tk; tk+1, . . . , tk+l)

to indicate this separation. Normal arguments are drawn to the left, and safe
arguments to the right of the semicolon. Predicative recursion restricts primitive
recursion by allowing recursion only only normal arguments, whereas only safe
arguments allow substitution of recursive values. Precisely, a new function f
(over binary words) is defined by predicative recursion (aka safe recursion) via
the following three equations, where g, h0 and h1 denote previously defined
functions.

f(ε, ~x; ~y) = g(~x; ~y)

f(zi, ~x; ~y) = hi(z, ~x; ~y, f(z, ~x; ~y)) i = 0, 1 .
(SRN)

The net effect of this separation is that the stepping functions cannot in turn
perform recursion on the value of f(z, ~x; ~y). Bellantoni and Cook thus impose a
purely syntactic restriction on primitive recursion. This restriction is on the one
hand strong enough to exclude definitions of infeasible functions. On the other
hand, it is weak enough to allow the definition of all feasible functions [21].

The small polynomial path order delineates a class of rewrite systems, the class
of predicative recursive constructor TRSs. The (innermost) runtime complexity
of predicative recursive constructor TRSs is bounded by a polynomial function.
This class of TRSs is thus sound for FP: any function computed by a predicative
recursive constructor TRSs is computable on a Turing machine in polynomial
time, in correspondence to Corollary 7.3. We can also show that this class of
rewrite systems is complete for the FP: every polytime computable function is
computed by a TRS from this class. In total, small polynomial path orders yield
an implicit characterisation of the polytime computable functions.

85

8 Introduction

In predicative recursive TRSs, computation is only permitted on safe argument
positions. As a result, the runtime complexity of a predicative TRS R depends
essentially only on the number of recursion performed in a reduction. In contrast
to previous work [54, 11], this allows us to establish a precise correspondence
between the runtime complexity of R and the depth of recursion of R. Here
the depth of recursion essentially amounts to the maximal number of nested
recursive definitions in R.

We extend upon this work by introducing the exponential path order (EPO? for
short). This order is a syntactic extension of sPOP? that replaces the underlying
safe recursion scheme by safe nested recursion [2]. As a result, we obtain a
miniaturisation of the recursive path order with lexicographic status. The
exponential path order order delineates the class of predicative nested recursive
TRSs. We establish that for any predicative nested recursive constructor TRS R,
the innermost runtime complexity function is bounded by an exponential function
e(n) ∈ 2O(nk) (k ∈ N). Essentially relying on the polynomial invariance theorem
and Arai and Eguchi’s work [2], we obtain an order-theoretic characterisation of
the exponential time computable functions.
In total, we present the following contributions in this part.

- We define the small polynomial path order that delineates the class of pred-
icative recursive constructor TRSs. We establish that for any predicative
recursive constructor TRS R, the innermost runtime complexity function
is bounded by a polynomial function of degree d, where d corresponds to
the maximal depth of recursion in R.

- The order sPOP? yields an order-theoretic characterisation of the class
of polytime computable functions. Any function defined by a confluent
predicative recursive constructor TRS is polytime computable. Vice versa,
any polytime computable function is computed by some confluent and
predicative recursive constructor TRS.

- We extend upon sPOP? by integrating parameter substitution in the
predicative recursion scheme. This extension allows us to cover functions
defined by tail-recursion. As by-product we obtain an alternative proof of
closure under parameter substitution of the polytime computable functions.

- If a function is defined by a predicative recursive constructor TRS and
the maximal depth of recursion is d, then the function is implementable
on a Turing machine in time O(log(n) · n4·d), compare Theorem 7.3. We
extend upon this result as follows. Suppose that the functions in the
considered TRS are defined by tail-recursion only. Further, suppose that
constructors are at most unary, i.e., constructors are used to encode words
only. Then these functions are even computable in time O(nd), on register
machines. Vice versa, any function defined by a register machine operating
in time O(nd) is definable as a predicative recursive constructor TRS whose
maximal depth of recursion is d, and which fulfils the above mentioned
restrictions. In total, we obtain a tight characterisation of the functions
computable on register machines in time O(nd), for every d ∈ N.

86

- We extend the definition of sPOP? by integrating safe nested recursion [2].
The resulting order EPO? can handle systems which admit exponential
innermost runtime complexity. This order gives rise to the notion of
predicative nested recursive TRS. Any function defined by a predicative
nested recursive constructor TRS belongs to the class of exponential time
computable function. Vice versa, any exponential time computable function
is definable as a (confluent) predicative nested recursive constructor TRS.
This establishes our order-theoretic characterisation of the exponential
time computable functions.

Related Work. There are several accounts of predicative analysis of recursion
in the (ICC) literature. We mention only those related works which are directly
comparable to our work. See [18] for an overview on ICC.
Notably the clearest connection of our work is to Marion’s light multiset

path order (LMPO for short) [54] and the polynomial path order [11, 6]. Both
orders form a strict extension of the here proposed order sPOP?, but lack
the precision of the latter. Although LMPO characterises FP, the runtime
complexity of compatible TRSs is not polynomially bounded in general. POP?

induces a polynomial bound on the innermost runtime complexity function, but
the obtained complexity certificate is usually very imprecise. In particular, due
to the multiset status underlying POP?, for each d ∈ N one can form a TRS
compatible with POP? that defines only a single function, but whose runtime is
bounded from below by a polynomial of degree d [6].

We have also drawn motivation from [55] which provides a related fine-grained
classification of the polytime computable functions based on an adaption of tiered
recursion [52]. Here, any function defined by strict ramified primitive recursion
is computable in time p(n) ∈ O(nk) on register machines, where k refers to the
maximal tier of an input argument. Notable, the tier corresponds the depth
of recursion, which is also used in the present work as degree of the bounding
polynomial.
In Bonfante et. al. [23] restricted classes of polynomial interpretations are

studied that can be employed to obtain polynomial upper bounds on the runtime
complexity of TRSs. Related to this work is also [61], where triangular matrix
interpretations [32] are shown to induce polynomial bounds on the runtime
complexity function. This work has been carried on by Neurauter et. al. [62, 56]
and also Waldmann [77]. However, it is worth emphasising that these indeed
powerful direct techniques basically employ semantic considerations on the
rewrite systems, which are notoriously difficult to check.

Outline. This part collects the authors contributions of joint work with Eguchi
and Moser. Apart from the tight characterisation of register machine computa-
tions, these results constitute already published work [8, 7]. A journal version
of [8] which includes the tight characterisation has been submitted to the special
issue on ICC of TCS, and is currently under review. Eguchi established that in
Bellantoni and Cook’s class B, the composition scheme can be restricted. From
this, our completeness result of small polynomial path orders is trivial to estab-

87

8 Introduction

lish. This result is rendered in Proposition 9.35. Apart from this proposition,
the results concerning small polynomial path orders constitute the authors own
contributions. The exponential path order constitutes a natural combination
on Eguchi and Arai’s work on a function algebra N for the exponential time
computable functions [2], the corresponding order EPO [31], and Moser and the
authors work on polynomial path orders [11]. Although not contributions of
the author, both the order EPO and also the function algebra N are restated
here, since these play important roles in the soundness and completeness proof
of exponential path orders.

The next chapter is concerned with small polynomial path orders. In Section 9.1
we proof that this order is sound, in the sense that the innermost runtime
complexity of compatible constructor TRSs is bounded by a polynomial function.
In Section 9.2 we then deal with the above mentioned completeness property.
In Section 9.3 we incorporate parameter substitution into the small polynomial
path order, and prove soundness for this extension. The tight correspondence to
register machines is then covered in Section 9.4.

Finally, in Chapter 10 we introduce the exponential path order. Soundness of
this order is proven in Section 10.1, and Section 10.2 covers completeness.

88

Chapter 9.

The Small Polynomial Path Order

As usual for recursive path orders, also sPOP? is parameterised by a prece-
dence Á. For sPOP? we use the precedence in the sense that f ą g denotes
precisely that the function f is defined based on g. Small polynomial path orders
distinguish between recursive symbols, i.e, function symbols that are defined
by recursive means, and non-recursive symbols. This separation is used in the
definition of depth of recursion admitted by a TRS, and allows us to more tightly
estimate the runtime complexity of the analysed TRS. The following definition
clarifies these notions.

Definition 9.1 (Recursive Symbols, Rank, Depth of Recursion, Admissible).
Let R be a TRS with defined symbols in D and constructors in C.

(1) For defined symbol f ∈ D and function symbol g ∈ F we define f �R g if
there exists a rewrite rule f(l1, . . . , ln) → r ∈ R where g occurs in r. In
this case we also say that f is defined based on g in R.

(2) A function symbol f ∈ D is called recursive in R if f �+
R f holds, i.e., f

is defined based on itself. The set of recursive function symbols of R is
denoted by KR.

(3) Let Á denote the pre-order obtained as the least extension of �∗R where
constructors are equivalent, i.e., cÁd and dÁ c for all constructors c, d ∈ C.
The order Á is called the precedence underlying R.

(4) The rank rkÁ(f) of f ∈ F with respect to a precedence Á is given as
follows:

rkÁ(f) := max {0} ∪ {rkÁ(g) | f ą g}+ 1 .

(5) The depth of recursion rdK,Á(f) of f ∈ F with respect to a precedence Á

and a set of recursive symbols K is defined as follows:

rdK,Á(f) :=

{
max {0} ∪ {rdK,Á(g) | f ą g}+ 1 if f ∈ K,
max {0} ∪ {rdK,Á(g) | f ą g} otherwise.

Let Á denote the precedence underlying R. We define rdR(f) := rdKR,Á(f)
for all f ∈ F , and call rdR(f) the depth of recursion of f in R.

89

9 The Small Polynomial Path Order

(6) For recursive symbols K and constructors C, we call a precedence Á

admissible if the underlying equivalence ∼ honours the separation of
recursive symbols and constructors, that is, for all f, g ∈ F with f ∼ g
we have that (i) f ∈ K implies g ∈ K and likewise (ii) f ∈ C implies that
g ∈ C holds.

Observe that the precedence underlying a TRS R is always admissible with
respect to the recursive symbols of R and constructors C. We illustrate the
construction of the induced precedence in the next example.

Example 9.2. Consider the following constructor TRS Rarith that defines + (ad-
dition), × (multiplication) in Peano arithmetic, as well as a function f computing
m×n2 on inputs m,n ∈ N, where naturals are given from constructors 0 and s.

3 : +(0, y)→ y 4 : +(s(x), y)→ s(+(x, y))

5 : ×(0, y)→ 0 6 : ×(s(x), y)→ +(y,×(x, y))

7 : f(x, y)→ +(x,×(y, y)) .

By rule 4, addition is defined based on the successor symbol s and itself, by
rule 5 and 6 multiplication (×) is defined based on the constructor 0, addition
and itself. By rule 7 the defined symbol f is defined based on addition and
multiplications. Hence in total, we have

f �Rarith
+ f �Rarith

×
× �Rarith

0 × �Rarith
+ × �Rarith

×
+�Rarith

s +�Rarith
+ .

The defined symbol f constitutes the only function symbol that is not recursive,
whereas multiplication and addition are (trivially) recursive, that is, KRarith

=
{+,×}. Overall, the precedence induced by Rarith is given by the preorder Á

satisfying
f ą × ą + ą s ∼ 0 . C

To impose the scheme of predicative recursion on compatible TRS, sPOP?

assumes an a priori defined separation of argument positions for each f ∈ F into
normal and safe ones.

Definition 9.3. A safe mapping is a function safe : F → P(N) that asso-
ciates with every n-ary function symbol f the set of safe argument positions
{i1, . . . , im} ⊆ {1, . . . , n}. Argument positions not included in safe(f) are called
normal and collected in nrm(f). For all n-ary constructors c ∈ C we require that
all argument positions are safe, i.e., safe(c) = {1, . . . , n}.

Throughout the following, we fix a safe mapping safe on the signature F . To
avoid notational overhead, we suppose that for each k + l ary function symbol
f ∈ F , the first k argument positions are normal, and the remaining argument
positions are safe, i.e., safe(f) = {k + 1, . . . , k + l}. This allows use to write
terms in predicative!notation

f(s1, . . . , sk; sk+1, . . . , sk+l) ,

90

where separation of safe from normal arguments is directly indicated in terms.

Definition 9.4 (Safe equivalence). Let ∼ denote the equivalence underlying a
precedence Á. We define safe equivalence ≈s on terms s, t ∈ T (F ,V) inductively
as follows: s ≈s t if one of the following alternatives hold:

(1) s = t; or

(2) s = f(s1, . . . , sk; sk+1, . . . , sk+l), t = g(t1, . . . , tk; tk+1, . . . , tk+l) with f ∼
g and si ≈s ti holds for all i = 1, . . . , k + l.

Definition 9.5 (Normal Sub-Term Modulo Equivalence).
(1) We define the relation C/≈ on terms as the relation C · ≈ (or equivalently,

≈ · C · ≈). If s C/≈ t holds then s is called a sub-term of t modulo ≈.

(2) We define nC/≈ ⊆ C/≈ so that s nC/≈ t holds if s is a normal sub-term
modulo ≈ of t, i.e., t = f(t1, . . . , tk; tk+1, . . . , tk+l) and s E/≈ ti for some
normal argument ti of t (i ∈ {1, . . . , k}). The inverse of nC/≈ is denoted by
Bn/≈.

Definition 9.6 (Small Polynomial Path Order). Let Á denote a precedence on
F , with underlying proper order ą and equivalence ∼. Let K ⊆ D denote a
set of recursive function symbols, and fix a safe mapping. Then s ąspop? t for
terms s, t ∈ T (F ,V) with s = f(s1, . . . , sk; sk+1, . . . , sk+l) if one of the following
alternatives hold.

(1) si Áspop? t for some argument si of s (i ∈ {1, . . . , k + l}); or

(2) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ą g and the following
holds:

- s Bn/≈ tj for all normal arguments t1, . . . , tm; and

- s ąspop? tj for all safe arguments tm+1, . . . , tm+n; and

- t contains at most one function symbols g with f ∼ g; or

(3) f, g ∈ K, t = g(t1, . . . , tk; tk+1, . . . , tk+l) where f ∼ g and the following
holds:

- 〈s1, . . . , sk〉 ąspop? 〈t1, . . . , tk〉; and
- 〈sk+1, . . . , sk+l〉Áspop? 〈tk+1, . . . , tk+l〉.

Here sÁspop? t denotes that either s ≈s t or s ąspop? t holds. In the last clause
we use ąspop? also for the extension of ąspop? to products: 〈s1, . . . , sn〉 Áspop?

〈t1, . . . , tn〉 means si Áspop? ti for all i = 1, . . . , n, and 〈s1, . . . , sn〉 ąspop?

〈t1, . . . , tn〉 indicates that additionally si0 ąspop? ti0 holds for at least one
i0 ∈ {1, . . . , n}.

Definition 9.7 (Predicative Recursive TRS). We call a TRS R predicative re-
cursive (of degree d) if R is compatible with an instance of sPOP? and the
maximal depth of recursion rdR(f) of f ∈ F is d. Here compatibility means
that l ąspop? r holds for all rules l→ r, where the precedence Á and recursive
symbols K underlying the definition ąspop? correspond to the ones given by the
rewrite system R, compare Definition 9.1.

91

9 The Small Polynomial Path Order

Theorem 9.8. Suppose R is a predicative recursive constructor TRS of degree
d. Then the innermost derivation height of any basic term f(~u;~v) is bounded by
a polynomial of degree rdR(f) in the sum of the depths of normal arguments ~u.
In particular, the innermost runtime function rciR is bounded by a polynomial
function of degree d.

The admittedly technical proof is postponed to the next section.

Remark. We remark that the decision problem, which asks if a TRS is com-
patible with an RPO, is NP complete [50]. On the other hand, one can checks
if a given TRS is a constructor TRS, and constructs a compatible order ąspop? ,
in deterministic polynomial time. Here, one essentially uses that the precedence
is pre-determined. This removes the choice between clauses ą

〈2〉
spop? and ą

〈3〉
spop? .

Before we continue, we want to motivate the order ąspop? informally, and through
various examples. We use ą

〈i〉
spop? to refer to the ith case in Definition 9.6, in

particular we write s ą
〈i〉
spop? t if s ąspop? t follows by case ą

〈i〉
spop? . A similar

notation will be employed for the consecutively defined orders.
Consider a rule l → r ∈ R from a predicative recursive constructor TRS R.

The case ą
〈1〉
spop? is standard in recursive path orders, here it is the only case that

allows the comparison of constructor terms.
The case ą

〈2〉
spop? imposes a restricted composition scheme on predicative recur-

sive TRSs. The order constraints on normal argument positions ensure that in
an application of the rule l→ r, only normal arguments of l are passed to normal
arguments in r. This fulfils two purposes. First of all, it keeps the predicative
separation intact. But also, its ensures that under normal argument positions
in r no further function calls are introduced. This prohibits for instance the
orientation of the rule

g(x;)→ h(r(x;), s(x;);) ,

since the resulting constraint g(x;) Bn/≈ r(x;) cannot be satisfied. Precisely this
restriction allows us to bind the complexity of compatible TRSs in the depth of
recursion only. The last restriction put onto ą

〈2〉
spop? is used to prohibit multiple

recursive calls. For instance, the rule

e(s(;x);)→ c(; e(x;), e(x;)) ,

which gives rise to exponentially long reductions, cannot be oriented.
The clause ą

〈3〉
spop? is used to handle recursive calls in right-hand sides, and is

therefor only applicable to recursive symbols. Beside enforcing that recursion
parameters are non-increasing, the order constraints dictate that at least one
normal argument is decreasing. The recursion scheme imposed on compatible
TRSs is more general than predicative recursion. Still, as in predicative recursion,
the number of recursions depends only on normal arguments.

Example 9.9 (Continued from Example 9.2). Recall that the precedence under-
lying Rarith is given by

f ą × ą + ą s ∼ 0 ,

92

and that KRarith
= {×,+}. The degree of recursion of Rarith is equal to 2.

Consider the safe mapping given by

safe(+) = {2} safe(×) = ∅ safe(f) = ∅ safe(s) = {1} safe(0) = ∅ .

We show that the constructor TRS Rarith depicted in Example 9.2 is predicative
recursive. The case ą

〈1〉
spop? allows the treatment of projections as in rules 3 and

5: +(0; y) ą
〈1〉
spop? y holds as y ≈ y, likewise ×(0, y;) ą

〈1〉
spop? 0 using 0 ≈ 0.

Consider the rule
7 : f(x, y;)→ +(x;×(y, y;)) .

It is oriented by ą
〈2〉
spop? only. Using f ą × and twice f(x, y;) Bn/≈ y we obtain

f(x, y;) ą
〈2〉
spop? ×(y, y;). Using that also f ą + and f(x, y;) Bn/≈ x hold, we obtain

f(x, y;) ą
〈2〉
spop? +(x;×(y, y;)). Observe that the order constraints propagate that

both arguments to f are normal.
Using additionally ą

〈3〉
spop? , we can orient the remaining rules 4 and 6 that define

the recursion case of addition and multiplication respectively. We exemplify this
on the rule

6 : ×(s(;x), y;)→ +(y;×(x, y;)) .

One application of ą
〈2〉
spop? simplifies the orientation of rule 6 to +(s(;x), y;) Bn/≈ y

and ×(s(;x), y;) ąspop? ×(x, y;). The former constraint is satisfied by definition.
Since × is recursive, using ą

〈3〉
spop? the latter constraint reduces to 〈s(;x), y〉 ąspop?

〈x, y〉, which holds as s(;x) ą
〈1〉
spop? x and y ≈s y, and the trivial constraint

〈〉Áspop? 〈〉.
Note that any other partitioning of argument positions of multiplication

invalidates the orientation of rule 6. The sub-constraint×(s(;x), y) ąspop? ×(x, y)
requires that at least the first argument position of times is normal, the sub-
constraint ×(s(;x), y;) Bn/≈ y, which propagates that y is a recursion parameter
of addition, enforces that also the second argument position of × is normal.

By Theorem 9.8 we obtain that addition admits linear, and multiplication as
well as f admits quadratic innermost runtime complexity. Overall the innermost
runtime complexity of Rarith is quadratic. C

The following examples clarifies the need for data tiering.

Example 9.10 (Continued from Example 9.9). Consider the extension of Rarith

by the two rules

8 : exp(0, y)→ s(; 0) 9 : exp(s(;x), y)→ ×(y, exp(x, y);) ,

that express exponentiation yx. This definition of the exponential function cannot
be formulated with Bellantoni and Cook’s scheme SRN, since the recursive
result exp(x, y) is substituted as recursion parameter to multiplication. In our
setting, orientation of the rule 9 reduces to exp(s(;x), y) Bn/≈ exp(x, y), and thus
the extended rewrite system is not predicative recursive. C

The next example is negative, in the sense that the considered TRSs admits
polynomial runtime complexity, but fails to be compatible with sPOP?.

93

9 The Small Polynomial Path Order

Example 9.11 (Continued from Example 9.10). Consider the TRS Rarith where
the rule 6 is replaced by the rule

6a : ×(s(;x), y;)→ +(×(x, y;); y) .

The resulting system admits polynomial runtime complexity. On the other hand,
Theorem 9.8 is inapplicable since the system is not predicative recursive. C

The next two examples stress that the restriction to innermost reductions, as
well as constructor TRSs, is essential for the correctness of Theorem 9.8.

Example 9.12. Consider the constructor TRS Rdup given by the following rules:

10 : btree(0;)→ leaf 11 : dup(; t)→ c(t, t)

12 : btree(s(;n);)→ dup(; btree(n)) ,

that computes a binary tree of height n on input sn(; 0), compare Example 3.1
on page 27 that gives a tail-recursive definition. Observe that Rdup ⊆ ąspop?

using that btree ą dup ą c ∼ leaf and the safe mapping as indicated in the
rules. Theorem 9.8 thus implies that the innermost runtime complexity of Rdup

is polynomial. On the other hand, Rdup admits exponentially long outermost
reductions. C

Example 9.13. Consider the TRS Rnc given by the rules

13 : f(n;)→ h(; gs(n;)) 14 : gs(0;)→ 0

15 : h(; g(;n))→ c(; h(;n), h(;n)) 16 : gs(s(;n);)→ g(; gs(n;))

17 : g(;⊥)→ c(; h(;⊥), h(;⊥)) ,

where we suppose that the only constructors are ⊥, 0 and s. Rule 17 is used to
define the symbol g, and to properly set up the precedence. The rules 14 and 16

are used to translate a tower sn(; 0) to gn(; 0), using rule 13 we thus obtain a
family of reductions

f(sn(; 0);) i−→Rnc
h(; gs(sn(; 0);)) i−→∗Rnc

h(; gn(; 0)) ,

for n ∈ N. It is not difficult to see that the derivation height of the final term
h(; gn(; 0)) with respect to i−→Rnc

grows exponentially in n due to rule 15, and
so the innermost runtime complexity of Rnc is bounded by an exponential from
below.
On the other hand, this system is compatible with sPOP?. Note that prece-

dence Á induced by Rnc satisfies in particular

f ą gs ą g ą h ą c .

Using this precedence, and the safe mapping as indicated in the rules, it is not
difficult to see that Rnc is compatible with a polynomial path order. Observe
that for rule 15 we exploit that g is defined, hence one can show g(;m) ąspop?

c(; h(;m), h(;m)) and therefore h(; g(;m)) ą
〈1〉
spop? c(; h(;m), h(;m)) holds. Note

that due to rule 17, Rnc is not a constructor TRS as demanded in Theorem 9.8.C

94

9.1 Small Polynomial Path Orders are Sound

We emphasise that the bound provided in Theorem 9.8 is tight in the sense
that for any d ∈ N we can define a predicative TRS Rd of degree d with innermost
runtime complexity in Ω(nd). This is clarified in the following example.

Example 9.14. We define a family of TRSs Rd (d ∈ N) inductively as follows:
R0 := {f0(x;)→ a} and Rd+1 extends Rd by the rules

fd+1(x;)→ gd+1(x, x;) gd+1(s(;x), y;)→ b(; fd(y;), gd+1(x, y;)) .

Let d ∈ N. It is easy to see that Rd is predicative recursive where the underlying
precedence fulfils

fd ą gd ą fd−1 ą gd−1 ą · · · ą f0 ą a ∼ b .

As only gi (i = 1, . . . , d) are recursive, the recursion depth of Rd is d. By
Theorem 9.8, the runtime complexity thus lies in O(nd). But also the runtime
complexity of Rd is in Ω(nd): For d = 0 this is immediate. Otherwise, consider
the term fd+1(sn(; a);) (n ∈ N) which reduces to gd+1(sn(; a), sn(; a);) in one
step. As the latter iterates fd(sn(a)) for n times, the lower bound is established
by inductive reasoning. C

Finally we note that the order ąspop? is blind on constructors, in particular
ąspop? collapses to the sub-term relation (modulo equivalence) on values. This
is a consequence of the following lemma, which holds in particular when the
quasi-precedence Á is instantiated by the precedence underlying a predicative
recursive TRS.

Lemma 9.15. Let s ∈ T (C,V) be a constructor term and let Á denote an
admissible precedence. Let ≈ denote the equivalence on terms given by the
equivalence underlying Á.

(1) If s ≈ t then t ∈ T (C,V);

(2) If s ąspop? t then s B/≈ t, in particular t ∈ T (C,V).

Proof. The first assertion follows by standard induction on s, using the assump-
tions on ∼. For the second assertion, consider terms s ∈ T (C,V) and t with
s ąspop? t. Observe that since s contains only constructors, s ąspop? t follows
exclusively from ą

〈1〉
spop? , and hence s B/≈ t holds. We conclude t ∈ T (C,V) from

the first assertion. �

9.1. Small Polynomial Path Orders are Sound

In this section prove Theorem 9.8. By the polynomial invariance theorem we
then obtain that the functions computed by a (confluent) predicative recursive
constructor TRSs are polytime computable. Suppose R is a predicative recursive
constructor TRS of degree d. Our proof makes use of a variety of ingredients.
As a first step, we introduce an auxiliary order ąK,`, the small polynomial path
order on sequences. Although this auxiliary order is admittedly technical, it is

95

9 The Small Polynomial Path Order

easier to reason about its induced complexity. We then define the predicative
interpretation IR which embeds R reductions into ąK,`, compare Figure 9.1.
Consequently the derivation height of any term s is bounded by the length of
ąK,` descending sequences starting from IR(s), which in turn can be bounded
sufficiently whenever s is basic (cf. Theorem 9.24).

s

IR(s)

s1

IR(s1)

. . .

. . .

s`

IR(s`)

i−→R

ąK,`

i−→R

ąK,`

i−→R

ąK,`

Figure 9.1.: Predicative Embedding of i−→R into ąK,`.

9.1.1. Small Polynomial Path Order on Sequences

The small polynomial path order on sequences constitutes a miniaturisation of
the path order for FP as put forward in [4]. To formalise sequences of terms, we
use an auxiliary variadic function symbol ◦. Here variadic means that the arity
of ◦ is finite but arbitrary.

Definition 9.16 (Sequences of Terms). Let ◦ 6∈ F be a fresh variadic function
symbol. A term t ∈ T (F ∪ {◦},V) is called a sequence if it is of the form
◦(t1, . . . , tk) for ti ∈ T (F ,V) (i = 1, . . . , k). The set of all sequences is denoted
by T ?(F ,V).

We always write [t1, . . . , tk] for ◦(t1, . . . , tk), and if we write f(t1, . . . , tk) then
we implicitly assume f 6= ◦. We denote by a, b, . . . elements of T (F ∪ {◦},V),
and we use s, t, . . . to denote terms from T (F ,V). Abusing set-notation, we
write t ∈ [t1, . . . , tk] if t = ti for some i ∈ {1, . . . , k}. We denote by a ++ b
the concatenation of sequences. To avoid notational overhead we overload
concatenation to both terms and sequences.

Definition 9.17 (Concatenation of Sequences). For a, b ∈ T (F ,V) ∪ T ?(F ,V)
we set

a ++ b := [s1 · · · sk t1 · · · tl] ,

where [s1, . . . , sk] = lift(a) and [t1, . . . , tl] = lift(b). Here lift is defined so that
lift(t) = [t] for t ∈ T (F ,V), and otherwise lift(a) = a for a ∈ T ?(F ,V).

We extend the equivalence ≈ on terms given in Definition 2.52 to an equivalence
on sequences in the obvious way.

Definition 9.18. We define [s1, . . . , sk] ≈ [t1, . . . , tk] if si ≈ ti holds for all
argument positions i = 1, . . . , k.

Following the spirit of finite approximations of recursive path orders by Buch-
holz [24], the polynomial path orders on sequence is parameterised in a natural
number `, which is used to control the width of sequences. The second parameter
K refers to a set of recursive symbols.

96

9.1 Small Polynomial Path Orders are Sound

Definition 9.19. Let Á denote a quasi-precedence on F , with underlying proper
order ą and equivalence ∼. Let ` ∈ N with ` > 1 and K ⊆ F be a set
of function symbols. Then a ąK,` b holds for terms or sequences of terms
a, b ∈ T (F ,V) ∪ T ?(F ,V) if one of the following alternatives hold.

(1) a = f(s1, . . . , sk), b = g(t1, . . . , tl) with f ą g and the following conditions
hold:

- f(s1, . . . , sk) B/≈ tj for all j = 1, . . . , l; and

- l 6 `; or

(2) a = f(s1, . . . , sk), b = g(t1, . . . , tk) with f ∼ g and the following conditions
hold:

- f, g ∈ K; and
- 〈s1, . . . , sk〉 B/≈ 〈t1, . . . , tk〉; or

(3) a = f(s1, . . . , sk), b = [t1, . . . , tl] and the following conditions hold:

- f(s1, . . . , sk) ąK,` tj for all j = 1, . . . , l; and

- there is at most one occurrence of a symbol g in b with f ∼ g; and
- l 6 `.

(4) a = [s1, . . . , sk], b = [t1, . . . , tl] and there exists terms or sequences bi
(i = 1, . . . , k) such that:

- [t1, . . . , tl] = b1 ++ · · · ++ bk; and

- 〈s1, . . . , sk〉 ąK,` 〈b1, . . . , bk〉.

We denote by aÁK,` b that either a ≈ b or a ąK,` b holds. We use B/≈ and ąK,`
also for their extension to products: 〈a1, . . . , ak〉 B/≈ 〈b1, . . . , bk〉 if ai D/≈ bi
for all i = 1, . . . , k, and ai0 B/≈ ai0 for at least one i0 ∈ {1, . . . , k}; likewise
〈a1, . . . , ak〉 ąK,` 〈b1, . . . , bk〉 if ai ÁK,` bi for all i = 1, . . . , n, and ai0 ąK,` ai0 for
at least one i0 ∈ {1, . . . , k}.

The following lemma collects frequently used properties of ąK,`.

Lemma 9.20. Let ` > 1 and K ⊆ F . The order ąK,` satisfies the following
properties:

(1) ąK,` ⊆ ąK,`+1; and

(2) ≈ ·ąK,` ⊆ ąK,` and ąK,` · ≈ ⊆ ąK,`; and

(3) for all a, b, c1, c2 ∈ T (F ,V) ∪ T ?(F ,V),

a ąK,` b =⇒ c1 ++ a ++ c2 ąK,` c1 ++ b ++ c2 .

Proof. Properties (1) follows by definition, and Property (2) by a standard
induction on the definition of ąK,`. To prove the last property, suppose a ąK,` b

97

9 The Small Polynomial Path Order

holds. Set [u1, . . . , uk] := lift(c1) and [v1, . . . , vl] := lift(c2), and observe that by
the overloading of ++ we have

c1 = u1 ++ · · · ++ uk and c2 = v1 ++ · · · ++ vl .

If a = f(s1, . . . , sm) is a term, then by assumption f(s1, . . . , sm) ąK,` b we have

〈u1, . . . , uk, f(s1, . . . , sm), v1, . . . , vl〉 ąK,` 〈u1, . . . , uk, b, v1, . . . , vl〉 ,

and thus
c1 ++ f(s1, . . . , sm) ++ c2 ą

〈4〉
K,` c1 ++ b ++ c2 ,

holds as desired. Otherwise a = [s1, . . . , sm], and the assumption can be strength-
ened to a ą

〈4〉
K,` b. By definition b = b1 ++ · · · ++ bm for some terms or sequences

bj (j = 1, . . . ,m) with

〈s1, . . . , sm〉 ąK,` 〈b1, . . . , bm〉 .

From this we obtain

〈u1, . . . , uk, s1, . . . , sm, v1, . . . , vl〉 ąK,` 〈u1, . . . , uk, b1, . . . , bm, v1, . . . , vl〉 .

Hence again the property follows by one application of ą
〈4〉
K,`. �

Lemma 9.21. Let ` > 1 and K ⊆ F , and let Á be a quasi-precedence.

(1) The order ąK,` is finitely branching; and

(2) The order ąK,` is well-founded.

Proof. We consider the first assertion. We need to prove that for all a ∈
T (F ,V) ∪ T ?(F ,V), the set {b | a ąK,` b} is finite. Fix a and suppose a ąK,` b
holds. Consider first the case that a = f(s1, . . . , sk) is a term. If b ∈ T (F ,V)
then f(s1, . . . , sk) ą

〈1〉
K,` b or f(s1, . . . , sk) ą

〈2〉
K,` b holds. In both cases we see, by

the order constraints on arguments, that the depth of b is bounded by the depth
of f(s1, . . . , sk) say d. Similar, for b = [t1, . . . , tl] we obtain that the depth of all
terms tj (j = 1, . . . , l) is bounded by the depth of f(s1, . . . , sk). Since there are
only finitely many terms of depth d, and for the case b = [t1, . . . , tl] the length l
is bounded by `, we conclude the case for all terms a. Finally consider the case
a = [s1, . . . , sk]. Then [s1, . . . , sk] ąK,` b implies that b = b1 ++ · · · ++ bk, with
si ÁK,` bi for all i = 1, . . . , k. Using that ≈ preserves the depth, we conclude
as above that the set {bi | si ÁK,` bi} is finite. As b can only be decomposed
into terms or sequences bi (i = 1, . . . , k) with b = b1 ++ · · · ++ bk, the claim also
follows for this case.

To prove the second assertion, let Á◦ be the extension of Á to F ∪ {◦} so that
the variadic list symbol ◦ is minimal in Á◦. Then by induction on the definition
of ąK,` one can show that ąK,` ⊆ ą◦mpo holds for the multiset path order ą◦mpo

induced by the quasi-precedence ą◦. Since B/≈ is included in ą◦mpo, the only
non-trivial case is [s1, . . . , sk] ą

〈4〉
K,` [t1, . . . , tl], where [t1, . . . , tl] = b1 ++ · · · ++ bk

and
〈s1, . . . , sk〉 ąK,` 〈b1, . . . , bk〉 .

98

9.1 Small Polynomial Path Orders are Sound

Fix i ∈ {1, . . . , k}. If bi ∈ T (F ,V) then si ÁK,` bi, otherwise si ą
〈3〉
K,` bi with

b = [u1, . . . , um] and thus si ąK,` uj for all u = 1, . . . ,m. As at least one of the
inequalities is strict, using the induction hypothesis it is not difficult to conclude

{{s1, . . . , sk}} ą◦mpo{{t1, . . . , tl}} ,

and consequently [s1, . . . , sk] ą◦mpo [t1, . . . , tl] holds.
Since ą◦mpo is well-founded even on variadic signatures by Proposition 2.55,

the second assertion follows from this. �

As a consequence of Lemma 9.21, the following function GK,` is well-defined.

Definition 9.22. Let ` > 1 andK ⊆ F . We define GK,` : T (F ,V)∪T ?(F ,V)→
N by

GK,`(a) := max{ l | ∃a1, . . . , al. a ąK,` a1 ąK,` · · · ąK,` al} .

Note that if a ąK,` b then GK,`(a) > GK,`(b) holds. Furthermore, as a
consequence of Lemma 9.20(2) we obtain that if a ≈ b then GK,`(a) = GK,`(b)
holds. Hence a ÁK,` b implies GK,`(a) > GK,`(b), a fact that we use frequently
below.
In the remaining of this section, we prove that GK,`(a) is bounded by a

polynomial in the depth of its argument.

Lemma 9.23. Let ` > 1 and K ⊆ F . For all sequences [t1, . . . , tk] ∈ T ?(F ,V)
we have

GK,`([t1, . . . , tk]) =

k∑
i=1

GK,`(ti) .

Proof. Let [t1, . . . , tk] ∈ T ?(F ,V). As a consequence of Lemma 9.20(3),

GK,`(a ++ b) > GK,`(a) + GK,`(b) ,

holds for all a, b ∈ T (F ,V) ∪ T ?(F ,V). Hence in particular

GK,`([t1, . . . , tk]) = GK,`(t1 ++ · · · ++ tk) >
k∑
i=1

GK,`(ti) .

To show the inverse direction, we proceed by induction on GK,`([t1, . . . , tk]),
which is justified by Lemma 9.21. The base case GK,`(a) = 0 follows trivially.
For the induction step, we show that for all b ∈ T (F ,V) ∪ T ?(F ,V),

[t1, . . . , tk] ąK,` b =⇒ GK,`(b) <
k∑
i=1

GK,`(ti) .

This implies GK,`([t1, . . . , tk]) 6
∑k

i=1 GK,`(ti) as desired. Suppose a ąK,` b,
which by definition of ąK,` refines to a ą

〈4〉
K,` b. Hence there exists terms or

sequences bi (i = 1, . . . , k) such that b = b1 ++ · · · ++ bk and

〈t1, . . . , tk〉 ąK,` 〈b1, . . . , bk〉 ,

99

9 The Small Polynomial Path Order

holds. As a consequence, GK,`(bi) 6 GK,`(ti) holds for all i = 1, . . . , k, where for
at least one i0 ∈ {1, . . . , k} we even have GK,`(bi0) < GK,`(si0). Using that

GK,`(bi) 6 GK,`(b) < GK,`([t1, . . . , tk]) for all i = 1, . . . , k,

induction hypothesis is applicable to b and all bi (i ∈ {1, . . . , k}). Summing up
we obtain

GK,`(b) =
∑
s∈b

GK,`(s) =
k∑
i=1

∑
s∈bi

GK,`(s) =
k∑
i=1

GK,`(bi) <
k∑
i=1

GK,`(ti) . �

Theorem 9.24. Let ` > 1 and K ⊆ F . For each f ∈ F , there exists a function
pf (n) ∈ O(nd) for d := rdK,Á(f) such that

GK,`(f(t1, . . . , tk)) 6 pf
(∑k

i=1 dp(ti)
)
,

for all terms t1, . . . , tk ∈ T (F ,V).

Proof. For all d ∈ N, define the function cd : N→ N as follows:

cd(r) :=

{
1 if r 6 1, and
cd(r − 1) · `d+1 + 1 otherwise .

We show that for all terms s = f(s1, . . . , sk) and b ∈ T (F ,V) ∪ T ?(F ,V)

f(s1, . . . , sk) ąK,` b =⇒ GK,`(b) < crd(f)(rk(f)) ·
(
2 +

∑k
i=1 dp(si)

)rd(f) ,

where rdK,Á is abbreviated by rd. In the proof, we employ induction on rk(f)

and side induction on
∑k

i=1 dp(ti). Suppose f(s1, . . . , sk) ąK,` b holds.
Consider the base case rk(f) = 1, i.e., f is minimal with respect to ą. If f 6∈ K

or
∑k

i=1 dp(si) = 0 then these restrictions imply that f(s1, . . . , sk) ąK,` b can
only hold when b is a sequence, in particular b = []. Then GK,`(b) = 0 and the
theorem holds. So suppose f ∈ K. We consider two sub-cases: (i) b ∈ T (F ,V),
and (ii) b ∈ T ?(F ,V). For (i), by assumption f(s1, . . . , sk) ą

〈2〉
K,` g(t1, . . . , tk)

holds for b = g(t1, . . . , tk) with f ∼ g. Using the order constraints

〈s1, . . . , sk〉 B/≈ 〈t1, . . . , tk〉 ,

we see that
∑k

i=1 dp(ti) <
∑k

i=1 dp(si) holds. Thus the side induction hypothesis
is applicable on g(t1, . . . , tk). Moreover, using that g ∈ K by the order constraints
and that Á is transitive, we obtain rd(g) = rd(f) = 1 and likewise rk(g) = rk(f) =
1. Summing up, we conclude

GK,`(b) 6 crd(g)(rk(g)) ·
(
2 +

k∑
i=1

dp(ti)
)

< crd(f)(rk(f)) ·
(
2 +

k∑
i=1

dp(si)
)

100

9.1 Small Polynomial Path Orders are Sound

In the second sub-case by assumption b = [t1, . . . , tl] for some terms tj (j =
1, . . . , l) and thus f(s1, . . . , sk) ą

〈3〉
K,` [t1, . . . , tl]. The order constraints require

f(s1, . . . , sk) ąK,` tj for all j = 1, . . . , l with at most one occurrence of g with
f ∼ g in some tj0 (j0 ∈ {1, . . . , l}). The latter implies l 6 1 in the considered case.
For suppose otherwise, hence f(s1, . . . , sk) ą

〈1〉
K,` sj for at least one j ∈ {1, . . . , l}.

This however contradicts the assumption of the base case that f is minimal in
the precedence. The only non-trivial case is thus l = 1, which we conclude by
the sub-case (i), but additionally employing Lemma 9.23. This concludes the
base case rk(f) = 1.

We now prove the inductive case rk(f) > 1. We perform case analysis on the
last rule that concludes f(s1, . . . , sk) ąK,` b.

- Case f(s1, . . . , sk) ą
〈1〉
K,` g(t1, . . . , tl): Hence f(s1, . . . , sk) B/≈ tj holds for

all j = 1, . . . , l, and thus

dp(tj) 6
k

max
i=1

dp(si) 6
k∑
i=1

dp(si) for all j = 1, . . . , l .

Using that l 6 ` and also f ą g under the assumption, we can use the
induction hypothesis to conclude

GK,`(g(t1, . . . , tl)) 6 crd(g)(rk(g)) ·
(
2 +

l∑
j=1

dp(tj)
)rd(g)

6 crd(g)(rk(g)) ·
(
2 +

l∑
j=1

k∑
i=1

dp(si)
)rd(g)

6 crd(g)(rk(g)) ·
(
2 + ` ·

k∑
i=1

dp(si)
)rd(g)

6 crd(g)(rk(g)) · `rd(g) ·
(
2 +

k∑
i=1

dp(si)
)rd(g) .

As f ą g, by definition rd(g) 6 rd(f) and rk(g) < rk(f). Hence

crd(g)(rk(g)) · `rd(g) < crd(f)+1(rk(f)− 1) · `rd(f) + 1 = crd(f)(rk(f))

and we conclude the theorem for this case.

- Case f(s1, . . . , sk) ą
〈2〉
K,` g(t1, . . . , tk): Under these assumptions we have

f ∼ g, and 〈s1, . . . , sk〉 B/≈ 〈t1, . . . , tk〉 which implies
∑l

i=1 dp(tj) <∑k
i=1 dp(si). Hence by induction hypothesis of the side induction we

101

9 The Small Polynomial Path Order

conclude

GK,`(g(t1, . . . , tk)) 6 crd(g)(rk(g)) ·
(
2 +

k∑
j=1

dp(tj)
)rd(g)

6 crd(g)(rk(g)) ·
(
1 +

k∑
j=1

dp(sj)
)rd(g)

< crd(f)(rk(f)) ·
(
2 +

k∑
j=1

dp(sj)
)rd(f) .

In the last equation we employed rk(f) = rk(g) and likewise rd(f) =
rd(g) 6= 0, which holds as f ∼ g and f, g ∈ K.

- Case f(s1, . . . , sk) ą
〈3〉
K,` [t1, . . . , tl]: We consider two sub-cases. First

suppose f 6∈ K, and fix j ∈ {1, . . . , l}. In this case we can strengthen the
order constraints to f(s1, . . . , sk) ą

〈1〉
K,` tj . As f ∈ K, for all g ∈ F with

f ą g, rk(g) 6 rk(f) − 1 and rd(g) 6 rk(f) hold. By substituting these
bounds in the sub-case f(s1, . . . , sk) ą

〈1〉
K,` g(t1, . . . , tl) we see

GK,`(tj) 6 crd(f)(rk(f)− 1) · `rd(f) ·
(
2 +

k∑
i=1

dp(si)
)rd(f) .

As by the order constraints l 6 `, by Lemma 9.23 we thus obtain

GK,`([t1, . . . , tl]) =
l∑

j=1

GK,`(tj)

6 ` ·
(

crd(f)(rk(f)− 1) · `rd(f) ·
(
2 +

k∑
i=1

dp(si)
)rd(f)

)
< crd(f)(rk(f)) ·

(
2 +

k∑
i=1

dp(si)
)rd(f) .

This concludes the case f 6∈ K.

Now suppose f ∈ K. The order constraints give one j0 ∈ {1, . . . , l} with
f(s1, . . . , sk) ą

〈1〉
K,` tj0 or f(s1, . . . , sk) ą

〈2〉
K,` tj0 , but f(s1, . . . , sk) ą

〈1〉
K,` tj

for all j ∈ {1, . . . , l} \ {j0}.

Consider first an element tj with j 6= j0. Since f ∈ K, whenever f ą g
then rk(g) 6 rk(f)− 1 and rd(g) 6 rk(f)− 1 hold. Hence by substituting
these bound in the corresponding sub-case above we get

GK,`(tj) 6 crd(f)−1(rk(f) − 1) · `rd(f)−1 ·
(
2 +

k∑
i=1

dp(si)
)rd(f)−1 .

102

9.1 Small Polynomial Path Orders are Sound

Similar,

GK,`(tj0) 6 crd(f)−1(rk(f)− 1) · `rd(f)−1 ·
(
2 +

k∑
i=1

dp(si)
)rd(f)−1

+ crd(f)(rk(f)) ·
(
1 +

k∑
i=1

dp(si)
)rd(f) .

Here the expression in the first line covers the case f(s1, . . . , sk) ą
〈1〉
K,`

tj0 as before. The expression in the second line accounts for the case
f(s1, . . . , sk) ą

〈2〉
K,` tj0 , and is obtained exactly as in the corresponding

sub-case above. Summing up, using Lemma 9.23 and l 6 ` we conclude

GK,`([t1, . . . , tl])

=

l∑
j=1

GK,`(tj)

6 ` ·
(

crd(f)−1(rk(f)− 1) · `rd(f)−1 ·
(
2 +

k∑
i=1

dp(si)
)rd(f)−1

)
+ crd(f)(rk(f)) ·

(
1 +

k∑
i=1

dp(si)
)rd(f)

< crd(f)(rk(f)) ·
(
2 +

k∑
i=1

dp(si)
)rd(f)−1

+ crd(f)(rk(f)) ·
(
1 +

k∑
i=1

dp(si)
)rd(f)

6 crd(f)(rk(f)) ·
(
2 +

k∑
i=1

dp(si)
)rd(f) . �

9.1.2. Predicative Embedding

Let R denote a predicative recursive constructor TRS. We now establish the
predicative embedding as depicted in Figure 9.1 on page 96. The predicative
interpretation IR that we use in this embedding separates safe from normal
arguments, resulting in a sequences of normalised terms.

Definition 9.25.
(1) For each f ∈ F , let fn denote a fresh function symbol. For G ⊆ F , we

define the extension of G to normalised symbols by

Gn := G ∪
{
fn/k | f ∈ G, nrm(f) = {i1, . . . , ik}

}
.

(2) A term t ∈ T (Fn,V) is called normalised if it is of the form t = fn(t1, . . . , tk)
for ti ∈ T (F ,V) (i = 1, . . . , k). The set of all normalised terms is denoted
by Tn(F ,V).

103

9 The Small Polynomial Path Order

(3) We denote by T ?n (F ,V) the set of sequences [t1, . . . , tk] ∈ T ?(Fn,V) with
ti ∈ Tn(F ,V) for all i = 1, . . . , k.

The interpretation IR maps a reducible term f(s1, . . . , sk; sk+1, . . . , sk+l) to

[fn(s1, . . . , sk)] ++ ak+1 ++ · · · ++ ak+l ,

where fn is a fresh function symbol, and the sequences ai (i = k + 1, . . . , k + l)
result from interpreting the safe arguments sk+1, . . . , sk+l. Irreducible terms are
simply deleted, i.e., interpreted as an empty sequence. This idea of deleting
normal forms goes back to a note by Arai and Moser [3] and simplifies reasoning
significantly.

The set of irreducible terms is denoted by N below, and kept abstract. Only
in the final theorem we will instantiate N by the set of normal forms NF(R) of
the considered TRS R. This abstraction allows us to reuse the embedding in a
variation of the order that we discuss in Section 14.3.

Definition 9.26 (Predicative Interpretation). Let N ⊆ T (F ,V) denote a set
of terms. We define the predicative interpretation IN : T (F ,V)→ T ?n (F ,V), as
follows:

IN (t) :=

{
[] if t ∈ N ,
[fn(t1, . . . , tk)] ++ I (tk+1) ++ · · · ++ I (tk+l) if t 6∈ N .

For the second case we suppose t = f(t1, . . . , tk; tk+1, . . . , tk+l). For a rewrite
system R, we set IR := INF(R).

To avoid notational overhead, we introduce the following restriction of the
rewrite relation −→R.

Definition 9.27. Let N be a set of terms, and let R denote a TRS. We define
s N−→R t if there exists a context C, substitution σ : V → N and rule l→ r such
that s = C[lσ], t = C[tσ] and lσ 6∈ N .

Observe that when R is a constructor TRS, the relation NF(R)−−−−→R is identical
to i−→R. In any predicative recursive constructor TRS R, computation is only
permitted on safe arguments. We capture this observation in the set NR of
terms, defined as follows. Again NF(R) is abstracted by a set of terms N .

Definition 9.28. LetN ∈ T (F) be a set of ground term. We defineNN ⊆ T (F)
as the least set such that:

(1) N ⊆ NN ; and

(2) if f/k + l ∈ F , s1, . . . , sk ∈ N and sk+1, . . . , sk+l ∈ NN then

f(t1, . . . , tk; tk+1, . . . , tk+l) ∈ NN .

For a TRS R, we denote by NR the set of terms NNF for NF the set of ground
normal forms of R.

104

9.1 Small Polynomial Path Orders are Sound

Call the set N ⊆ T (F) closed under constructor contexts, if whenever t ∈ N
and C ∈ T (C ∪ {�}) also C[t] ∈ N holds. The set N is closed under sub-terms
if whenever t ∈ N , then s ∈ N for all sub-term s E t. The next lemma shows
that these two closure properties are sufficient conditions for the set NN to be
closed under reductions with respect to N−→R. In particular, this implies that
NR is closed under i−→R, since the set of ground normal forms of R satisfies both
closure properties.

Lemma 9.29. Let N ⊆ T (F) be a set of ground terms that is closed under
constructor contexts and sub-terms. Let l = f(l1, . . . , lm; lm+1, . . . , lm+n) ∈
T (F ,V) be a constructor based term, and suppose l ąspop? r holds, where the
precedence underlying ąspop? is admissible. Then

s ∈ NN and s N−→{l→r} t =⇒ t ∈ NN .

Proof. Consider terms s ∈ NN and t ∈ T (F) such that s = C[lσ] N−→R C[rσ] = t
holds for a context C and substitution σ : V → N . We prove t ∈ NN by
induction on the context C under the assumptions of the lemma.
The proof of the base case C = � is by induction on the definition of ąspop? .

Consider first the case l ą
〈1〉
spop? r. Then li ąspop? r for some argument position

i ∈ {1, . . . ,m + n}. Using that li ∈ T (C,V) is a constructor term we have
r ∈ T (C,V) by Lemma 9.15, since N is closed under constructor contexts it
follows that rσ ∈ N ⊆ NN holds. For the remaining cases we can suppose
that r = g(r1, . . . , rm′ ; rm′+1, . . . , rm′+n′). Consider first l ą

〈2〉
spop? r. As the

definition yields for each normal argument rj of r (j = 1, . . . ,m′) some normal
argument lij of l (ij ∈ {1, . . . ,m}) with lij D/≈ rj , we conclude rj ∈ T (C,V) and
thus rjσ ∈ N . For the remaining safe arguments rj (j = m′ + 1, . . . ,m′ + n′)
induction hypothesis yields rjσ ∈ NN , and hence by Definition we get rσ ∈ NN .
Consider finally the case l ą

〈3〉
spop? r. Using that l is constructor based, the order

constraints together with Lemma 9.15 and assumptions on N yield rjσ ∈ N for
all arguments rj of r (j = 1, . . . ,m′ + n′) as in the first sub-case. By definition
we obtain rj ∈ NN for safe arguments of r, and so rσ ∈ NN . This concludes the
base case.
Consider now the inductive step

s = f(s1, . . . , si, . . . , sk)
N−→{l→r} f(s1, . . . , ti, . . . , sk) ,

with si N−→{l→r} ti. Since N is closed under sub-terms, and si N−→{l→r} ti requires
lσ 6∈ N for the substitution σ underlying this step, we see that the rewrite
position i is a safe argument position of f , hence for s ∈ NN we have si ∈ NN .
Thus by induction hypothesis ti ∈ NN and so t ∈ NN , using again i ∈ safe(f).�

Suppose N is a set that is closed under constructor contexts and sub-terms.
We now show that every reduction

t0
N−→R t1 N−→R · · · N−→R tl ,

for t0 ∈ NN can be embedded into ąK,`, i.e.,

IN (t0) ąK,` IN (t1) ąK,` · · · ąK,` IN (tl) ,

105

9 The Small Polynomial Path Order

holds for ` the maximal size of a right-hand side in R. In particular, for the
special case N = NF(R) this establishes the predicative embedding of innermost
reductions from basic terms t0. In the embedding, we use as precedence the
projection of the precedence Á underlying R to the normalised signature Fn,
defined as follows.

Definition 9.30 (Normalised Quasi-precedence). Let Á be the precedence in-
duced by R. We define the normalised quasi-precedence w on Fn such that for
all f, g ∈ F ,

fn w gn :⇐⇒ f Á g and f w g :⇐⇒ f Á g .

Let v be the inverse of w. We denote by A the strict order w \v, and by ∼ the
equivalence w ∩v. By ≈ we denote the extension of ∼ to Tn(F ,V). Since the
precedence w collapses to Á if restricted to F , no confusion can arise from this.
As a preparatory step, the next lemma considers root steps only. The full

predicative embedding is then provided Lemma 9.32.

Lemma 9.31. Let N ⊆ T (F) be a set of ground terms that is closed under con-
structor contexts and sub-terms, and s = f(s1, . . . , sk; sk+1, . . . , sk+l) ∈ T (F ,V)
be a constructor based term. Let ąspop? denote an instance of a polynomial path
order as induced by an admissible precedence Á and a set of recursive function
symbols K. Then for all t ∈ T (F ,V) and substitutions σ : V → N ,

s ąspop? t =⇒ IN (sσ) AKn,|t| IN (tσ) .

Proof. Fix a constructor based term s = f(s1, . . . , sk; sk+1, . . . , sk+l) and sub-
stitutions σ : V → N . Abbreviate ` := |t|. We first show that for all terms t,

s ąspop? t =⇒ fn(s1σ, . . . , skσ) AKn,|t| u for all u ∈ IN (tσ) . (†)

Suppose s ąspop? t holds, the proof is by induction on |t|. The non-trivial case
is when tσ 6∈ N as otherwise IN (tσ) = []. This excludes a priori the case
s ą

〈1〉
spop? t, because then t is a constructor term by Lemma 9.15, and hence

tσ ∈ N assumption on N . Suppose thus t = g(t1, . . . , tm; tm+1, . . . , tm+n) for
some g ∈ F and terms tj (j = 1, . . . ,m+n), where either s ą

〈2〉
spop? t or s ą

〈3〉
spop? t

holds. By definition,

IN (tσ) = [gn(t1σ, . . . , tmσ)] ++ IN (tm+1σ) ++ · · · ++ IN (tm+nσ) .

To prove the implication (†), consider first the element u = gn(t1σ, . . . , tmσ) ∈
IN (tσ). When s ą

〈2〉
spop? t holds we can prove

fn(s1σ, . . . , skσ) A〈1〉Kn,|t|
gn(t1σ, . . . , tmσ) ,

as follows.

- By the order constraint f ą g we obtain fn A gn.

106

9.1 Small Polynomial Path Orders are Sound

- Fix a normal argument position j ∈ {1, . . . ,m} of g. The assumption
s ą

〈2〉
spop? t gives s B

n/≈ tj . Hence there exists a normal argument position
i ∈ {1, . . . , k} of f with si D/≈ tj , and hence siσ D/≈ tjσ holds. In total,

fn(s1σ, . . . , skσ) B/≈ tjσ for all j = 1, . . . ,m.

- Trivially m 6 |t|.

When s ą
〈3〉
spop? t holds then m = k and we can prove

fn(s1σ, . . . , skσ) A〈2〉Kn,|t|
gn(t1σ, . . . , tkσ) ,

as follows.

- We have fn ∼ gn as f ∼ g, hence also fn, gn ∈ Kn by admissibility of the
precedence.

- The assumption s ą
〈3〉
spop? t gives 〈s1, . . . , sk〉 ąspop? 〈t1, . . . , tk〉. Using

that s is constructor based, we can satisfy the precondition si ∈ T (C,V)
(i = 1, . . . , k) of Lemma 9.15, and see that 〈s1, . . . , sk〉 B/≈ 〈t1, . . . , tk〉
holds. Hence

〈s1σ, . . . , skσ〉 B/≈ 〈t1σ, . . . , tkσ〉 ,

follows.

This concludes the case u = gn(t1σ, . . . , tmσ).
Now consider the remaining elements u ∈ IN (tσ), u 6= gn(t1σ, . . . , tmσ). Fix

u ∈ IN (tσ). Then u occurs in the interpretation of a safe argument of tσ by
definition of the interpretation, say u ∈ IN (tjσ) for some j ∈ {m+1, . . . ,m+n}.
One verifies that s ąspop? tj holds: in the case s ą

〈2〉
spop? t we have s ąspop? tj

by definition; otherwise s ą
〈2〉
spop? t holds and we even obtain s ą

〈1〉
spop? tj . As

|tj | < |t|, by induction hypothesis we have fn(s1σ, . . . , skσ) AKn,|tj | u, and
thus fn(s1σ, . . . , smσ) AKn,|t| u using Lemma 9.20(1). Overall, we conclude the
implication (†).
Fix t ∈ T (F ,V) with s ąspop? t. We return to the main proof, and show

that fn(s1σ, . . . , smσ) A〈3〉Kn,|t|
IN (tσ) holds, from which the lemma follows by one

application of A〈4〉Kn,|t|
.

- The implication (†) and assumption s ąspop? t gives fn(l1σ, . . . , lmσ) AKn,|t|
u for all elements u ∈ IN (tσ).

- There exists at most one occurrence of a function symbol gn with fn ∼ gn

in IN (tσ):

By induction on the definition of ąspop? we first show that t contains at
most one occurrence of g with f ∼ g. If s ą

〈1〉
spop? t then t ∈ T (C,V) by

Lemma 9.15 and since s is constructor based. As defined symbols are not
equivalent to constructors in the admissible precedence Á, the property
follows. If s ą

〈2〉
spop? t, the claim follows by induction hypothesis and the

final restriction. Finally, suppose s ą
〈1〉
spop? t holds. Then t is constructor

107

9 The Small Polynomial Path Order

based, again using Lemma 9.15 on the order constraints of arguments. The
property follows for this final case.

For a proof by contradiction, suppose now there are at least two distinct
occurrences of function symbols equivalent to fn in IN (tσ), say gn and hn.
Unfolding the recursive definition of IN , we obtain that there exist two
distinct occurrences of g and h in tσ. Since xσ ∈ N and thus IN (xσ) = [],
these occurrences even exist in t. Note that by definition of w, the
assumption that fn ∼ gn ∼ hn gives f ∼ g ∼ h. As we have seen above,
this however contradicts s ąspop? t.

- The length of IN (tσ) is bounded by |t|. This can be shown by a standard
induction on t, using in the base case x ∈ V that IN (xσ) = [] by the
assumption on σ. �

Lemma 9.32. Let N ⊆ T (F) be a set of ground terms that is closed under
constructor contexts and sub-terms. Let l = f(l1, . . . , lm; lm+1, . . . , lm+n) ∈
T (F ,V) be a constructor based term, and suppose l ąspop? r holds, where the
precedence underlying ąspop? is admissible. Then

s ∈ NN and s N−→{l→r} t =⇒ IN (s) AKn,|r| IN (t) .

Proof. Let s ∈ NN and consider a rewrite step s N−→{l→r} t. The base case is
covered by Lemma 9.31, hence consider a rewrite step below the root. Since
s ∈ NN , in Lemma 9.29 we already observed that this step is of the form

s = f(s1, . . . , sm; sm+1, . . . , si, . . . , sm+n)
N−→{l→r} f(s1, . . . , sm; sm+1, . . . , ti, . . . , sm+n) = t ,

where si N−→{l→r} ti. The non-trivial case is when t 6∈ N , otherwise IN (t) = [].
Using the induction hypothesis IN (si) AKn,` IN (ti) and Lemma 9.20(3) we
obtain

IN (s) = fn(s1, . . . , sm) ++ IN (sm+1) ++ · · · ++ IN (si) ++ · · · ++ IN (sm+n)
ąK,` fn(s1, . . . , sm) ++ IN (sm+1) ++ · · · ++ IN (ti) ++ · · · ++ IN (sm+n)

= IN (t) ,

as desired. �

9.1.3. Putting Things Together

We finally arrive at the correctness proof of sPOP?.

Proof of Theorem 9.8. Let R denote a predicative recursive constructor TRS
over the signature F . We have to prove that for every f ∈ F there exists a
polynomial pf of degree rdR(f) such that the innermost derivation height of
f(~u;~v) for values ~u,~v is bounded by a pf (n), where n refers to the sum of the
depths of normal arguments ~u.
Define ` := max{|r| | l→ r ∈ R}. Consider a derivation

f(~u;~v) i−→R t1 i−→R · · · i−→R tm ,

108

9.2 Small Polynomial Path Orders are Complete

which can be written as

f(~u;~v) NF(R)−−−−→R t1 NF(R)−−−−→R · · · NF(R)−−−−→R tm .

Observe f(~u;~v) ∈ NR, hence by Lemma 9.29 it follows that ti ∈ NR for all
i = 1, . . . ,m. As a consequence of Lemma 9.32, using Lemma 9.20(1), we obtain

IR(f(~u;~v)) = [fn(~u)] AKn,` IR(t1) · · · AKn,` IR(tm) .

So in particular the length m is bounded by the length of AKn,` descending
sequences starting from [fn(~u)], i.e., m 6 GK,`([fn(~u)]) = GK,`(fn(~u)). Here the
equality is given by Lemma 9.23. A standard induction proves that rdR(f) =
rdK,Á(f) = rdKn,w(f), and thus for pf we can choose the polynomial as provided
in Theorem 9.24. �

As a consequence of Theorem 9.8 and the polynomial invariance theorem, or
more precise its Corollary 7.3, we obtain the following result.

Corollary 9.33 (Soundness). Let R be a confluent (or orthogonal) and predica-
tive recursive constructor TRS. Then every function defined by R is computable
in polynomial time, on a deterministic Turing machine.

Note that this result relies on sharing as discussed in the first part of this
thesis, the corollary does not hold in general using an explicit encoding of terms.

9.2. Small Polynomial Path Orders are Complete

As a final step to our order-theoretic characterisation of FP we prove that
any function f ∈ FP is expressible as a confluent, even orthogonal, predicative
recursive constructor TRSRf . Towards this goal, we employ a recursion theoretic
characterisation BW of FP.

Definition 9.34. The class BW is inductively defined as follows. For k, l ∈ N,
we denote by Bk,lW the sub-class with k normal and l safe arguments. Let
~x := x1, . . . , xk, ~y := y1, . . . , yl denote pairwise distinct variables, and let k, l
range over N. The class BW is defined as the least class of functions over binary
words W(B) that:

(1) BW contains the initial functions S0, S1, P , I
k,l
j for k, l ∈ N and all

j ∈ {1, . . . , k + l}, C and O. These functions are defined by the following
equations.

Si(;x) = xi (for i = 0, 1)
P (; ε) = ε

P (;xi) = x (for i = 0, 1)

Ik,lj (~x; ~y) = xj (for all j = 1, . . . , k)

Ik,lj (~x; ~y) = yj−k (for all j = k + 1, . . . , l + k)

C(; ε, y, z1, z2) = y

C(;xi, y, z1, z2) = zi (for i = 0, 1)
O(~x; ~y) = ε .

109

9 The Small Polynomial Path Order

(2) BW is closed under weak safe composition (WSC), that is, f ∈ BW where

f(~x; ~y) = g(xi1 , . . . , xim ;h1(~x; ~y), . . . , hn(~x; ~y)) ,

for previously defined functions g ∈ Bm,nW and h1, . . . , hn ∈ Bk,lW ;

(3) BW is closed under safe recursion on notation (SRN), that is, f ∈ BW
where

f(ε, ~x; ~y) = g(~x; ~y)

f(zi, ~x; ~y) = hi(z, ~x; ~y, f(z, ~x; ~y)) (for i = 0, 1)

for previously defined functions g ∈ Bk,lW and h0, h1 ∈ Bk+1,l+1
W .

Remark. This class BW is obtained by restricting the composition scheme
underlying Bellantoni and Cook’s class B to weak safe composition. Unlike here,
Bellantoni and Cook allow the definition of a function f by safe composition
given by the equation

f(~x; ~y) = g(h1(~x; ~y), . . . , hm(~x; ~y);hm+1(~x; ~y), . . . , hm+n(~x; ~y)) , (SC)

for functions g, and h1, . . . , hm+n already defined in B.

It thus follows that our class BW is included in B and thus defines only polytime
computable functions. Concerning the converse inclusion, the following theorem
states that the class BW is large enough to capture all the polytime computable
functions [21].

Proposition 9.35 (Eguchi [9]). Every polynomial time computable function be-
longs to Bk,0W for some k ∈ N.

One can show this fact by following the proof of Theorem 3.7 in [37], where the
unary variant of BW is defined and the inclusion corresponding to Proposition 9.35
is shown. We refrain from duplicating this technical proof here.

We use this proposition for the completeness result of polynomial path orders.
As an intermediate step, following the program of Cichon and Weiermann [25],
we extract from the class BW a term rewriting characterisation of the polytime
computable functions. Beckmann and Weiermann [20] already gave a term
rewriting characterisation RB of Bellantoni and Cook’s class B. We present here
a modification of RB that accounts for our modified composition scheme.

Definition 9.36 (Term Rewriting Characterisation RBW). For each k, l ∈ N
the set of function symbols Fk,lBW with k normal and l safe argument positions is
the least set of function symbols such that:

(1) ε ∈ F0,0
BW , s0, s1 ∈ F0,1

BW are the only constructors; and

(2) S0, S1 ∈ F0,1
BW , P ∈ F0,1

BW , C ∈ F0,4
BW , Ok,l ∈ Fk,lBW and for all j = 1, . . . , k+ l,

Ik,lj ∈ F
k,l
BW ; and

110

9.2 Small Polynomial Path Orders are Complete

(3) if g ∈ Fm,nBW , ~h := h1, . . . , hn ∈ Fk,lBW and 1 6 i1 6 · · · 6 im 6 k then
WSC[g, i1, . . . , im,~h] ∈ Fk,lBW ; and

(4) if g ∈ Fk,lBW and h0, h1 ∈ Fk+1,l+1
BW then SRN[g, h0, h1] ∈ Fk+1,l

BW .

The predicative signature is given by FBW :=
⋃
k,l∈NF

k,l
BW .

Let ~x := x1, . . . , xk, ~y := y1, . . . , yl denote pairwise distinct variables and k, l
range over N. The schema of rewrite rules RBW is defined as the least set of
rules such that:

(1) RBW contains the following rules defining initial functions:

Si(;x)→ si(;x) (for i = 0, 1)
P(; ε)→ ε

P(;xi)→ x (for i = 0, 1)

Ik,lj (~x; ~y)→ xj (for all j = 1, . . . , k)

Ik,lj (~x; ~y)→ yj−k (for all j = k + 1, . . . , l + k)

C(; ε, y, z1, z2)→ y

C(;xi, y, z1, z2)→ zi (for i = 0, 1)
O(~x; ~y)→ ε .

(2) For WSC[g, i1, . . . , im,~h] ∈ Fk,lBW the schema RBW contains the rule

WSC[g, i1, . . . , im,~h](~x; ~y)→ g(xi1 , . . . , xim ; h1(~x; ~y), . . . , hn(~x; ~y)) ,

(3) For SRN[g, h0, h1] ∈ Fk+1,l
BW the schema RBW contains the rules

SRN[g, h0, h1](ε, ~x; ~y)→ g(~x; ~y)

SRN[g, h0, h1](zi, ~x; ~y)→ hi(z, ~x; ~y, SRN[g, h0, h1](z, ~x; ~y)) (for i = 0, 1).

Remark. We emphasise that the schema RB is dupped infeasible in [20]. Indeed
RB admits an exponential lower bound on the derivation height if one considers
full rewriting. This holds due to the possible duplication of redexes as illustrated
in Example 9.12. The same observation carries over to our schema RBW . How-
ever, this should be understood as a miss-configuration of the evaluation strategy,
rather than a defect of the rewrite system. Indeed, in our completeness argument
below, we exploit that RBW is predicative recursive. Thus the innermost runtime
complexity is polynomial, as expected.

Lemma 9.37. For each function f ∈ BW , there exists a finite restriction Rf (
RBW such that Rf computes f .

Proof. The rewrite schema RBW is obtained by introducing for each defining
equation in BW a separate rewrite rule. Hence for f ∈ BW , we can take as
Rf (RBW the set of rewrite rules that correspond to the equations involved in
the definition of f . This set of rules is finite by the inductive construction of
BW . A standard induction gives that Rf computes the function f . �

111

9 The Small Polynomial Path Order

Theorem 9.38 (Completeness). For every f ∈ BW there exists an orthogonal,
and predicative recursive constructor TRS Rf of degree d. Here d equals the
maximal number of nested applications of SRN in the definition of f .

Proof. Consider f ∈ BW . Take the finite restrictionRf (RBW from Lemma 9.37
that computes f . Obviously Rf is an orthogonal constructor TRS. Let ąspop?

denote the small polynomial path order, as induced by the (strict) precedence Á

underlying Rf , and the safe mapping as indicated in the rules. By induction on
the definition of f , we show (i) Rf ⊆ ąspop? , and (ii) that the recursion depth
d of the maximal symbol in Rf corresponds to the maximal number of nested
applications of SRN in the definition of f .
The base case that f is an initial function of BW is trivial, we consider the

inductive step where we distinguish two cases. First suppose f is defined by
weak safe composition based on g and ~h, i.e.,

f(~x; ~y) = g(xi1 , . . . , xim ;h1(~x; ~y), . . . , hn(~x; ~y)) .

Abbreviate f := WSC[g, i1, . . . , im, h1, . . . , hn] and consider the rewrite rule

f(~x; ~y)→ g(xi1 , . . . , xim ; h1(~x; ~y), . . . , hn(~x; ~y)) ∈ Rf .

As f ą g, and f ą hj for all j = 1, . . . , n, with n + 1 applications of ą
〈2〉
spop?

and using f(~x; ~y) ą
〈1〉
spop? yi (yi ∈ ~y), the above rule is oriented by ąspop? . By

induction hypothesis, the remaining rewrite rules in Rf that define g and ~h are
compatible with ąspop? , hence Rf ⊆ ąspop? holds for this case. Note that since
f is not recursive, rdRf (f) equals the maximal recursion depth of g, h1, . . . , hn,
and thus (ii) follows directly from induction hypothesis.

Finally consider the case when f is defined by safe recursion on notation with
g, h0, and h1, i.e.,

f(ε, ~x; ~y) = g(~x; ~y)

f(zi, ~x; ~y) = hi(z, ~x; ~y, f(z, ~x; ~y)) (for i = 0, 1).

Abbreviate f := SRN[g, h0, h1], and consider the rewrite rules

f(ε, ~x; ~y)→ g(~x; ~y)

f(si(; z), ~x; ~y)→ hi(z, ~x; ~y, f(z, ~x; ~y)) (for i = 0, 1),

defining f. Using f ą g the first rule can be oriented by ąspop? . For the remaining
rules, observe 〈si(; z), ~x〉 ąspop? 〈z, ~x〉 and trivially 〈~y〉Áspop? 〈~y〉 hold. Hence

f(si(; z), ~x; ~y) ą
〈3〉
spop? f(z, ~x; ~y) ,

and orientation of the remaining two recursion rules follows by one application
of ą

〈2〉
spop? . Hence Rf is predicative recursive, using the induction hypothesis on

g, h0 and h1. For (ii), observe that

rdRf (f) = max{rdRf (h) | f ą h}+ 1 = max{rdRf (g), rdRf (h0), rdRf (h1)}+ 1 ,

where the first equality follows by definition of the depth of recursion, and the
second equality follows by construction of Rf . Using induction hypothesis on g,
h0 and h1 we conclude (ii). �

112

9.3 Parameter Substitution

Corollary 9.39. The following class of functions are equivalent:

(1) The class of functions computed by confluent (or orthogonal), and predica-
tive recursive constructor TRS.

(2) The class of functions computable in polynomial time on a deterministic
Turing machine.

Proof. The correspondence holds by Corollary 9.33, Proposition 9.35 and Theo-
rem 9.38. �

9.3. Parameter Substitution

Bellantoni already observed that the class B defined in [21] is closed under safe
recursion on notation with parameter substitution. Here a function f is defined
from functions g, h0, h1 and ~p by

f(ε, ~x; ~y) = g(~x; ~y)
f(zi, ~x; ~y) = hi(z, ~x; ~y, f(z, ~x; ~p(z, ~x; ~y))) (i = 0, 1) . (SRNPS)

We introduce small polynomial path order with parameter substitution (sPOP?
PS

for short), that extends clause ą
〈3〉
spop∗ps

to account for the schema (SRNPS).

Definition 9.40. Let Á denote a precedence on F , with underlying proper
order ą and equivalence ∼. Let K ⊆ D denote a set of recursive function
symbols, and fix a safe mapping. Then s ąspop∗ps

t for terms s, t ∈ T (F ,V) with
s = f(s1, . . . , sk; sk+1, . . . , sk+l) if one of the following alternatives hold.

(1) si Áspop? t for some argument si of s (i ∈ {1, . . . , k + l}); or

(2) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ą g and the following
holds:

- s Bn/≈ tj for all normal arguments t1, . . . , tm; and

- s ąspop∗ps
tj for all safe arguments tm+1, . . . , tm+n; and

- t contains at most one function symbols g with f ∼ g; or

(3) f, g ∈ K, t = g(t1, . . . , tk; tk+1, . . . , tk+l) where f ∼ g and the following
holds:

- 〈s1, . . . , sk〉 ąspop∗ps
〈t1, . . . , tk〉; and

- s ąspop∗ps
tj for all safe arguments tj ;

- the safe arguments tj (j = k+ 1, . . . , k+ l) contain no symbols g with
f ∼ g.

Here sÁspop? t denotes that either s ≈s t or s ąspop∗ps
t holds. In the last clause

we use ąspop∗ps
also for the extension of ąspop∗ps

to products.

We adapt the notion of predicative recursive TRS of degree d to sPOP?
PS

in the obvious way. Parameter substitution strictly extends the analytic power
of sPOP?. In particular, sPOP? can handle tail-recursion as in the following
example.

113

9 The Small Polynomial Path Order

Example 9.41. The TRS Rrev consisting of the three rules

18 : rev′([]; ys)→ ys 19 : rev′(x :: xs; ys)→ rev′(xs;x :: ys)

20 : rev(xs;)→ rev′(xs; []) ,

reverses lists formed from the constructors [] and (::). Then Rrev is compatible
with ąspop∗ps

, but due to the last rule not with ąspop? . C

As a consequence of Theorem 9.43 below, the innermost runtime of Rrev is
inferred to be linear. The next lemma establishes that the predicative embedding
remains intact under the modified definition.

Lemma 9.42. Let N ⊆ T (F) be a set of ground terms that is closed under
constructor contexts and sub-terms. Let l = f(l1, . . . , lm; lm+1, . . . , lm+n) ∈
T (F ,V) be a constructor based term, and suppose l ąspop? r holds, where the
precedence underlying ąspop? is admissible. Suppose s ∈ NN and s N−→{l→r} t
holds. Then

(1) t ∈ NN ; and

(2) IN (s) AKn,` IN (t).

Proof. The first property follows exactly as in Lemma 9.29. Note that here
only order constraints on normal arguments are required, and these constraints
coincide in ąspop? and ąspop∗ps

.
For the second property, consider a substitution σ : V → N . Following the

pattern of the proof of Lemma 9.31, one establishes

l ąspop∗ps
r =⇒ fn(l1σ, . . . , lmσ) AKn,|r| u for all u ∈ IN (rσ) , (‡)

by induction on |r|. Again the only interesting case is when rσ 6∈ N . Then t =
g(r1, . . . , rm′ ; rm′+1, . . . , rm′+n′) for some g ∈ F and terms rj (j = 1, . . . ,m′+n′),
and

IN (rσ) = [gn(r1σ, . . . , rm′σ)] ++ IN (rm′+1σ) ++ · · · ++ IN (rm′+n′σ) .

Exactly as in Lemma 9.31 one obtains fn(l1σ, . . . , lmσ) AKn,|r| gn(r1σ, . . . , rm′σ),
as only order constraints on normal arguments in r are required here. Hence
consider u ∈ IN (tσ), u 6= gn(r1σ, . . . , rm′σ). In the new case l ą

〈2〉
spop∗ps

r, we have
l ąspop? rj for all safe arguments rj of r. In contrast to the proof of Lemma 9.31,
we can establish (‡) here directly from the induction hypothesis. Using this
preparatory step, we obtain fn(l1σ, . . . , rmσ) A〈3〉Kn,|t|

IN (rσ). Crucially here, we
still have that l ąspop∗ps

r implies that there exists at most one function symbol g
with g ∼ f in r, due to the extra side conditions imposed on ą

〈3〉
spop∗ps

.

We obtain IN (lσ) A〈4〉Kn,|t|
IN (lσ) as desired. Closure under contexts of this

embedding then follows exactly as in Lemma 9.32. This concludes the second
assertion. �

114

9.4 A Tight Characterisation

Theorem 9.43. Suppose R is a predicative recursive constructor TRS of degree
d (with respect to Definition 9.40). Then the innermost derivation height of any
basic term f(~u;~v) is bounded by a polynomial of degree rdR(f) in the sum of the
depths of normal arguments ~u. In particular, the innermost runtime function
rciR is bounded by a polynomial of degree d.

Proof. The proof of the theorem follows by reasoning exactly as in Theorem 9.8,
replacing the application of Lemma 9.29 and Lemma 9.32 by Lemma 9.42(1)
and Lemma 9.42(2) respectively. �

Using Corollary 7.3 we obtain soundness of the order for the class of polytime
computable functions.

Corollary 9.44 (Soundness). Let R be a confluent (or orthogonal) and predica-
tive recursive constructor TRS. Then every function defined by R is computable
in polynomial time, on a deterministic Turing machine.

By Theorem 9.38, predicative recursive TRSs are complete for the polytime
computable functions. This holds also for the extended definition of small
polynomial path orders given in Definition 9.40. Using the above soundness
theorem, we thus obtain following characterisation.

Corollary 9.45. The following class of functions are equivalent:

(1) The class of functions computed by confluent (or orthogonal), and predica-
tive recursive constructor TRS, with respect to Definition 9.40.

(2) The class of functions computable in polynomial time on a deterministic
Turing machine.

9.4. A Tight Characterisation

The adequacy theorem in conjunction Theorem 9.43 yields that the function f
computed by an orthogonal predicative recursive constructor TRS of degree d is
computable in time O(log(n)·n4·d) on a Turing machine. This often overestimates
the intrinsic complexity of f considerable.

In this section we show that for a syntactically restricted class of predicative
recursive TRSs R, if the degree of recursion is d, then the functions computed by
R can be computed in time O(nd) on register machines. Our primary motivation
for using register machines here is that the built-in copying instruction is charged
unit cost. Vice versa, we show that every function f computable in time O(nd)
on a register machine is computable by such a predicative recursive TRS R of
degree d.
In [10] we have already shown that ML-like predicative recursive TRS R of

degree d (with respect to >pop∗) can be computed in time p(n) ∈ O(nd) on RMs,
provided that constructors are monadic and no parameter substitution is used.
Here a constructor is monadic if its arity is at most one. The latter restriction
is used to avoid encoding overhead, as values T (C) can be directly stored in
registers as strings. In principle it is not difficult to show that predicative

115

9 The Small Polynomial Path Order

recursive TRSs of degree d can also simulate computations of RMs that operate
in time p(n) ∈ O(nd). The corresponding predicative recursive TRS Rf can be
constructed as follows. A constructor c is used to encode configurations of M as
terms. It is straight forward to formulate the one-step transition relation →M

by a predicative recursive TRS RM0 of degree 0, in the sense that

M(; c(i, w1, . . . , wn)) −→M c(i′, w′1, . . . , w
′
n) ,

holds if and only if

(i, w1, . . . , wn)→M (i′, w′1, . . . , w
′
n) ,

holds. See Theorem 9.53 for such a construction. The TRS Rf is obtained by
extending RM0 with d recursive definitions that iterate p(n) times the one-step
transition relation of M . Hence this predicative recursive TRS Rf of degree d
computes the final configuration of M on any input ~u, from which the result of
f(~u) can be extracted.
Although conceptually similar, the actual construction carried out below is

slightly more involved. To get rid of the auxiliary non-monadic constructor c used
for building configurations, we store the components of the configuration directly
as safe arguments in the iterator. In order to modify these safe arguments, we
require parameter substitution. To retain our tight soundness result in this
setting, we restrict the class of considered rewrite systems to tail-recursive TRSs.
The latter restriction avoids the need of a stack, or similar construction, in the
implementation on register machines.

Definition 9.46 (Tail-Recursive). We say that a TRS R is tail-recursive, if
for every rule f(~u;~v) → r ∈ R, if g with g ∼ f occurs in r then g occurs at
the root position in r. The TRS R is predicative tail-recursive (of degree d),
if it is tail-recursive and predicative recursive (of degree d), with respect to
Definition 9.40.

For instance, the TRS Rrev from Example 9.41 is a predicative tail-recursive
TRS. The main result of this section states.

Theorem 9.47. For each d ∈ N, the following class of functions are equivalent:

(1) The class of functions computed by ML-like predicative tail-recursive TRSs
of degree d, using only monadic constructors.

(2) The class of functions computable on register machines operating in time
p(n) ∈ O(nd).

Proof. This theorem is a consequence of Theorem 9.52 and Theorem 9.53, which
are proven in the subsequent two sections. �

From an intensional perspective the restriction to tail-recursion is severe. We
remark that if we disallow parameter substitution, but allow tuples as values,
the restriction to tail-recursive TRSs can be lifted, provided we impose a typing
regime on analysed TRSs that prohibits nesting of tuples. In other words,

116

9.4 A Tight Characterisation

we would have to modify our computational model to account for multi-valued
functions, as for instance in [55]. An easy adaption of [10] recovers then soundness
under these assumptions, whilst retaining completeness. We feel however that
such a typing regime would introduce a rather ad-hoc flavor to our formulation
of computation by TRSs.
By folklore, every function can be transformed into a tail-recursive function.

By the observation below Theorem 9.47, the introduced overhead is at most
polynomial. Still at present it seems that such a transformation is not directly
applicable to generalise Theorem 9.47 to non-tail recursion with parameter
substitution. The imposed overhead seems just too high.
In the following, we suppose that the set of constructors C is monadic. We

use ~u,~v and ~w for sequences of constructor terms, and if they are not used
in rules then we suppose that they are ground, i.e., values. Denote by ΣC
the signature that contains for each c ∈ C a dedicated letter c ∈ ΣC . The
value c1(c2(. . . cl−1(cl) . . .)) can be encoded as a word c1, . . . , cl ∈W(ΣC). Vice
versa, for an alphabet Σ, denote by CΣ the set of constructors that contains
ε ∈ C and for each letter c ∈ Σ a unary constructor c ∈ C. Then each word
c1, . . . , cl ∈W(Σ) can be encoded as a value c1(c2(. . . cl(ε) . . .)) ∈ T (CΣ). Having
this correspondence in mind, we henceforth confuse words and values, avoiding
notational overhead.

9.4.1. Soundness

Fix an ML-like TRS that is predicative tail-recursive R, and denote by Á

the precedence underlying R. We now show that the functions JfKR (f ∈ D)
computed by R can be implemented on a RM Mf operating in time O(nd), for
d the depth of recursion rdR(f) of f . To ease presentation, we first consider the
sub-case where R is simple.

Definition 9.48 (Simple). A rule f(~ln; ~ls) → r is called simple if r is a con-
structor term or r = g(~rg;h1(~ln; ~ls), . . . , hk(~ln; ~ls)), where g ∈ F and all function
symbols hi (i = 1, . . . , k) are defined symbols. A TRS R is called simple if all
its rules are simple.

Lemma 9.49. If R is simple, then for every f ∈ D, the function JfKR is
computable on a register machine operating in time p(n), where p(n) is some
polynomial function of degree rdR(f).

Proof. For a sequence of values ~w, abbreviate by |~w| the sum of sizes of elements
from ~w. For each defined symbol f in R with k normal and l safe arguments,
we define a corresponding RM Mf with input registers ~xf = xf1 , . . . , x

f
k+l and

output register zf . On input ~u = u1, . . . , uk and ~v = v1, . . . , vl the RMs Mf run
in time

cf · |~u|rdR(f) + kf ,

where cf and kf are constants depending only on f .
To simplify the presentation, we first suppose that the precedence of R is strict

on defined symbols, i.e., f ∼ g for f, g ∈ D implies f = g. The construction is

117

9 The Small Polynomial Path Order

by induction on the rank rkÁ(f) of f , the bound is proven by induction on the
rank of f and side induction on |~u|. Suppose the input registers ~xf hold the
values ~u,~v.

First observe that Mf is able to determine, in constant time depending only
on R, the rewrite rule applicable to f(~u;~v). Note that this rule is unique and
exists, as R is by assumption orthogonal and completely defined. Since there are
only a constant number of rules in R, it suffice to realise that the time required
for pattern matching depends only on R. Suppose we want to match f(~u;~v)
against the left hand-side f(~ln; ~ls) → r ∈ R. Due to linearity, Mf can match
the arguments ~u,~v against ~ln, ~ls sequentially. For this, the RM Mf copies each
argument in ~u,~v to a temporary register, and matches this value against the
corresponding argument li ∈ ~ln, ~ls using a constant number of jump and delete
instructions.
Once the applicable rewrite rule has been identified, say after km ∈ N steps,

the RM Mf can proceed according to its right-hand side as follows. If f(~u;~v)
rewrites in one step to a value, say w, then w = C[xσ] for some constructor
context C and substitution σ : V → T (C). Then some input register xi ∈ ~xf
holds the word C ′[xσ]. In this case Mf can provide the result w in register zf
using one copy instruction C(xi, zf), a constant number of delete instructions
D(zf) to delete C ′, i.e., zf holds afterwards xσ, and a constant number of
appropriate instructions to append the context C. Thus zf holds after a constant
number of steps the word C[xσ] and trivially the theorem follows. Hence suppose
f(~u;~v) does not rewrite to a value in one step. Since R is simple

f(~u;~v) i−→R g(w1, . . . , wm;h1(~u;~v), . . . , hn(~u;~v)) where h1, . . . , hn ∈ D .

As R is predicative recursive, f ą hj holds for all j = 1, . . . , n, and also either
f ą g or f = g holds (recall our assumption that Á is strict on defined symbols).
In both cases, order constraints on normal arguments give f(~u;~v) Bn/≈ wi
(i = 1, . . . ,m), i.e., some input register holds a super-term of wi. As in the
case where the reduct was a value, the RM Rf can prepare the arguments wi
in dedicated registers xgi for all i = 1, . . . ,m in constant time. By induction
hypothesis, there exist RMs Mhj (j = 1, . . . , n) that on input registers ~xhj
initialised by ~u,~v, compute the value of JhjKR(~u;~v) in time chi + |~v|rdR(hi) + khi .
The RM Mf can use these machines as sub-procedures in order to compute the
safe arguments given to h. For suitable chosen constants ch as well as kh, by
induction hypothesis this requires at most

n∑
i=1

(chi · |~u|
rdR(hi) + khi) + k1 6 ch · |~u|d + kh ,

computation steps. Here, the constant k1 accounts for setting up the stage and
d := max{rdR(h1), . . . , rdR(hn)} 6 rdR(f) denotes the maximal recursion depth
of the defined symbols hi. The interesting case is now when g ∈ D, otherwise
g is a monadic constructor and Mf finishes the computation by copying the
computed argument to the output register zf , and appending the corresponding
letter for g to this output. We analyse the cases f ą g and f = g for g ∈ D
independently.

118

9.4 A Tight Characterisation

If f ą g then the RMMf can use a machineMg given by induction hypothesis
that computes

JfKR(~u;~v) = JgKR(w1, . . . , wm; Jh1KR(~u;~v), . . . , JhnKR(~u;~v)) ,

in time cg · |~w|rdR(g) + kg for ~w := w1, . . . , wm, using the previously computed
values JhiKR(~u;~v) (i = 1, . . . , n). In the considered case the rule is orientable by
ą
〈2〉
spop∗ps

, by the imposed order constraints on normal arguments w1, . . . , wm, we
see |wi| 6 max{|uj | | uj ∈ ~u} for all i = 1, . . . ,m. Consequently |w| 6 m · |~u|,
and hence computing JfKR(~u;~v) for JhiKR(~u;~v) (i = 1, . . . , n) given takes time

cg · |~w|rdR(g) + kg 6 cg · (m · |~u|)rdR(g) + kg .

Recall that km ∈ N accounts for the time required for pattern matching. Summing
up everything, the procedure finishes in time

km +
(
cg · (m · |~u|)rdR(g) + kg

)
+
(
ch · |~u|d + kh

)
.

Observe that by definition d 6 rdR(f) and rdR(g) 6 rdR(f). Since m is bounded
by the arity of g, it is not difficult to see that we can find sufficiently high
constants cf , kf ∈ N depending only on R such that cf · |~u|rdR(f) + kf dominates
the above expression.
Otherwise f = g, hence f is recursive. In this case the rule is orientable by

ą
〈3〉
spop∗ps

. From the order constraint 〈~u〉 ąspop∗ps
〈~w〉 on normal arguments it is not

difficult to derive |~w| < |~u|. Recall d = max{rdR(h1), . . . , rdR(hn)} < rdR(f)
since f is recursive. Using the side induction hypothesis we conclude that
Mf finishes in time cf · |~w|rdR(f) + kf . Without loss of generality, suppose
kh + km + ch 6 cf . Overall the execution time is bounded by

km +
(
ch · |~u|d + kh

)
+
(
cf · |~w|rdR(f) + kf

)
6 (ch + kh + km) · |~u|d + cf · |~w|rdR(f) + kf using 1 6 |~u|
6 cf · (|~u|d + |~w|rdR(f)) + kf as kh + km + ch 6 cf

6 cf · |~u|rdR(f) + kf as |~u| > |~w| and rdR(f) > d,

as desired. We conclude this final case.
To lift the assumption on the precedence, suppose {f1, . . . , f`} is the set of

all function symbols equivalent to f ∈ D, i.e., f1, . . . , f` are defined by mutual
recursion. Since this class is finite, one can store i (for i = 1, . . . , `) in a dedicated
register of Mf , say r. Although more tedious, it is not difficult to see that the
above construction can then be altered, so that Mf computes f〈r〉(~u;~v) on input
~u,~v. �

We now remove the restriction that R is simple. For this we define the binary
relation on constructor TRSs that transforms R into a simple TRS, retaining
the assumptions on R.

119

9 The Small Polynomial Path Order

Definition 9.50. Let h1, . . . , hk be fresh symbols not appearing in F . Then

R] {f(~uf ;~vf)→ g(~ug; t1, . . . , tk)}
 R∪ {f(~uf ;~vf)→ g(~ug;h1(~uf ;~vf), . . . , hk(~uf ;~vf))}

∪ {hi(~uf ;~vf)→ ti | i = 1, . . . , k} ,

provided the transformed rule f(~uf ;~vf)→ g(~ug; t1, . . . , tk) is not already simple.

The relation enjoys the following properties.

Lemma 9.51.

(1) The relation is well-founded.

(2) Let R be an orthogonal, predicative tail-recursive constructor TRS of degree
d that uses only monadic constructors. If R S then S enjoys the these
mentioned properties too.

(3) If R S then i−→R ⊆ i−→+
S .

Proof. Let ‖R‖ denote the sum of the sizes of right-hand sides in non-simple
rules in R. It is not difficult to see that an infinite chain R1 R2 · · ·
would translate into an infinite descend ‖R1‖ > ‖R2‖ > · · · , and thus is
well-founded.

Consider the second property. Suppose R S with R satisfying all mentioned
properties. Then trivially S is an orthogonal and tail-recursive constructor TRS.
To see that S is predicative recursive with recursion depth d, let

f(~uf ;~vf)→ g(~ug; t1, . . . , tk) ,

denote the rule which is replaced by

f(~uf ;~vf)→ g(~ug;h1(~uf ;~vf), . . . , hk(~uf ;~vf))

hi(~uf ;~vf)→ ti (i = 1, . . . , k).

Let Á denote the precedence underlying R, and w the precedence underlying
S. Note that whereas f is defined based on h for all symbols h occurring in ti in
R, i.e., f �R g, in S the symbol f is indirectly defined based on h via the fresh
symbol hi, i.e., f �S hi �S h holds for all h occurring in ti (i = 1, . . . , k). As
otherwise �R and �S coincide, by definition w is the least extension of Á such
that f A hi A h holds for all h occurring in ti (i = 1, . . . , k), where A denotes
the strict order induced by w. As the freshly introduced symbols hi are not
recursive, from this we obtain that the recursion depth of every symbol h ∈ F is
preserved, i.e. rdR(h) = rdS(h).
It remains to verify that S is oriented by the order Aspop∗ps

. Since Á ⊆ w,
and as a consequence ąspop∗ps

⊆ wspop∗ps
, it suffices to show that the orientation

f(~uf ;~vf) ąspop∗ps
g(~ug; t1, . . . , tk) of the replaced rule implies

f(~uf ;~vf) Aspop∗ps
g(~ug;h1(~uf ;~vf), . . . , hk(~uf ;~vf)) (9.1)

hi(~uf ;~vf) Aspop∗ps
ti (i = 1, . . . , k) . (9.2)

120

9.4 A Tight Characterisation

We perform case analysis on the assumption. Suppose first f(~uf ;~vf) ą
〈1〉
spop∗ps

g(~ug; t1, . . . , tk) holds. Note that since R is a constructor TRS, g is a con-
structor in the considered case. In particular g admits only safe argument
positions, and thus f(~uf ;~vf) A〈2〉spop∗ps

g(~ug;h1(~uf ;~vf), . . . , hk(~uf ;~vf)) holds us-
ing f(~uf ;~vf) A〈2〉spop∗ps

hi(~uf ;~vf) for all i = 1, . . . , k. This concludes (9.1). The
assumptions give f(~uf ;~vf) B/≈ ti for all i = 1, . . . , k by Lemma 9.15(2), thus
trivially hi(~uf ;~vf) A〈1〉spop∗ps

ti holds and we conclude (9.2).

Finally suppose that f(~uf ;~vf) ąspop∗ps
g(~ug; t1, . . . , tk) follows by ą

〈2〉
spop∗ps

or
ą
〈3〉
spop∗ps

. Using the order constraint f(~uf ;~vf) ąspop∗ps
hi(~uf ;~vf) for all i = 1, . . . , k,

we see that (9.1) follows by A〈2〉spop∗ps
or A〈3〉spop∗ps

respectively. For equation (9.2),
observe that since R is tail-recursive, the assumption gives f(~uf ;~vf) ąspop∗ps

ti

(i = 1, . . . , k) using only applications of ą
〈1〉
spop∗ps

and ą
〈2〉
spop∗ps

. Repeating these
proofs, but employing hi A g instead of f ą g, yields a proof of (9.2). This
finishes the proof of Assertion (2).
For the final property, suppose R S and consider a rewrite step

C[f(~ufσ;~vfσ)] i−→R C[g(~ugσ; t1σ, . . . , tkσ)] ,

using the transformed rule f(~uf ;~vf)→ g(~ug; t1, . . . , tk) ∈ R. Then

C[f(~ufσ;~vfσ)] i−→S C[g(~ugσ;h1(~ufσ;~vfσ), . . . , hk(~ufσ;~vfσ))]
i−→k
S C[g(~ugσ; t1σ, . . . , tkσ)] ,

simulates the considered step. Here we employ that ~ufσ,~vfσ ∈ T (F ,V) are
normal forms of R, since the symbols h1, . . . , hk are supposed to be fresh, the
arguments ~ufσ and ~vfσ are also normal forms of S. This proves i−→R ⊆ i−→+

S . �

Theorem 9.52. Let R denote an ML-like predicative tail-recursive TRSs of
degree d, using only monadic constructors. For every f ∈ D, the function JfKR
is computable on a register machine operating in time p(n), where p(n) is some
polynomial function of degree rdR(f).

Proof. Let f be a defined function symbol from R. Let S be a -normal form
of our analysed TRS R. Note that by Lemma 9.51(1), S is well-defined and
moreover it is simple by construction. By Lemma 9.51(2) and assumption on
R, the simple TRS S is an orthogonal, predicative tail-recursive constructor
TRS of degree d that uses only monadic constructors. In particular, S computes
the function JfKR by Lemma 9.51(3). Hence all requirements of Lemma 9.49
are met, except that in S the auxiliary function symbols h introduced by
are not completely defined. Inspecting the proof of Lemma 9.49, we see that
the only place where this is required is in the matching algorithm, so that for
the intermediate computation of JhKR(~u;~v) exactly one applicable rewrite rule
can be found. This property is retained in the implementation of JfKR through
S, and thus we can use the machine defined in Lemma 9.49 on S in order to
compute JfKR under the given bound. �

121

9 The Small Polynomial Path Order

9.4.2. Completeness

We now prove the inverse direction: given a RM M which computes a function f
in time p(n) ∈ O(nd), we construct an ML-like predicative tail-recursive TRS of
degree d that computes f . For a sequence of functions symbols ~f = f1, . . . , fk+l

with exactly k normal and l safe arguments denote by ~f 〈n〉(~s;~t) the n-fold parallel
composition of ~f on terms ~s,~t, given by ~f 〈0〉(~s;~t) := ~s;~t and

~f 〈n+1〉(~s;~t) :=

f1(~f 〈n〉(~s;~t)), . . . , fk(~f
〈n〉(~s;~t)); fk+1(~f 〈n〉(~s;~t)), . . . , fk+l(~f

〈n〉(~s;~t)) .

By a standard induction one verifies that ~f 〈n+m〉(~s;~t) = ~f 〈n〉(~f 〈m〉(~s;~t)) holds
for all n,m ∈ N. We use

~f
〈n+1〉
i (~s;~t) := fi(~f

〈n〉
i (~s;~t)) ,

to refer to the ith element (i = 1, . . . , k+ l) in the sequence ~f 〈n+1〉(~s;~t). Further,
we denote by ~f (~s;~t) the special case

~f 〈1〉(~s;~t) = f1(~s;~t), . . . , fk(~s;~t); fk+1(~s;~t), . . . , fk+l(~s;~t) .

The next theorem shows our completeness result.

Theorem 9.53. Consider a function f which is computable in time p(n) for
p(n) ∈ O(nd) and d > 1 on a register machine. Then f is computed by an
ML-like tail-recursive TRS R of degree d. In particular R uses only monadic
constructors.

Proof. Let M = (R,Σ, P) be a RM with registers R = {r1, . . . , rm} and instruc-
tions P = I1, . . . , Il that computes the function f with k input registers in time
p(n) 6 c · |n|d + e, for c, e ∈ N.

For each c ∈ Σ, let c be a unary constructor symbol, and let ε denote a constant
that represents the empty word ε, which allows us to represent words W(Σ) as
values over these constructors. As before, we confuse values with words to avoid
notational overhead. For j = 1, . . . , l + 1, let j denote a distinct constant. These
constants are used to denote the labels of the program P , including the dedicated
halting label l+ 1. The proof follows the outline given in the introduction of this
section, where we use a TRS RM0 to simulate the one-step transition relation of
M by a TRS RM0 . Unlike the sketched definition of RM0 , we introduce a family
of defined symbols ~M := M0, . . . ,Mm. Here the intention is that whenever

(j, v1, . . . , vm)→M (j′, v′1, . . . , v
′
m) ,

holds, then the term Mi(j, v1, . . . , vm) reduces to the (i+ 1)th component of the
configuration (j′, v′1, . . . , v

′
m).

The symbols ~M are defined in the TRS RM0 which contains for i = 1, . . . ,m
and each j = 1, . . . , l the following rules, depending on the jth instruction Ij .
Let r1, . . . , rm denote pairwise distinct variables.

122

9.4 A Tight Characterisation

(1) If Ij = A(a)(ri′), then RM0 contains the rule

Mi(; j, r1, . . . , ri, . . . , rm)→ a(ri) if i = i′,
Mi(; j, r1, . . . , ri, . . . , rm)→ ri if i 6= i′.

(2) If Ij = D(ri′), then RM0 contains the rule(s)

Mi(; j, r1, . . . , ε, . . . , rm)→ ε if i = i′,
Mi(; j, r1, . . . , a(ri), . . . , rm)→ ri if i = i′ for all a ∈ Σ,

Mi(; j, r1, . . . , ri, . . . , rm)→ ri if i 6= i′.

(3) If Ij = J (a)(ri′)[j
′], then RM0 contains the rule

Mi(; j, r1, . . . , ri, . . . , rm)→ ri .

(4) If Ij = C(ri1 , ri2), then RM0 contains the rule

Mi(; j, r1, . . . , ri, . . . , rm)→ ri1 if i = i2,
Mi(; j, r1, . . . , ri, . . . , rm)→ ri if i 6= i2.

Further, for each j = 1, . . . , l, the TRS RM0 contains the following rules that
compute the next instruction label:

(1) If Ij = J (a)(ri)[j
′], then RM0 contains the rules

M0(; j, r1, . . . , ε, . . . , rm)→ j+1

M0(; j, r1, . . . , a(ri), . . . , rm)→ j′

M0(; j, r1, . . . , b(ri), . . . , rm)→ j+1 for all b ∈ Σ, b 6= a.

(2) If Ij is any other instruction, then RM0 contains the rule

M0(; j, r1, . . . , ri, . . . , rm)→ j+1 .

Finally, the TRS RM0 contains the rules

M0(; l+1, r1, . . . , a(ri), . . . , rm)→ l+1

Mi(; l+1, r1, . . . , a(ri), . . . , rm)→ l+1 for i = 1, . . . ,m.

This completes the definition of RM0 . Note that RM0 is ML-like by definition. By
case analysis one verifies that RM0 accounts for the one-step transition relation
→M as indicated above. Using this, a standard induction gives that whenever

(1, w1, . . . , wk,~ε)→`
M (j, v1, . . . , vm) ,

then
~M〈`〉m (; 1, w1, . . . , wk,~ε)

i−→∗RM0 vm , (9.3)

123

9 The Small Polynomial Path Order

holds. AsM runs in time c·|~w|d+e, the latter reduction computes f(w1, . . . , wk),
i.e., f(w1, . . . , wk) = vm, provided ` > c · |~w|d + e.

The TRS Rf is an extension of RM0 , that defines a k-ary function f such that

f(w1, . . . , wk;) i−→∗RM0
~M〈`〉m (; 1, w1, . . . , wk,~ε) for some ` > c · |~w|d + e, (9.4)

The definition of f relies on auxiliary function symbols fri with 2 · k normal and
m+1 safe arguments, for r = 1, . . . , d and i = 0, . . . ,m, where r reflects the depth
of recursion of fri . The first 2 · k argument hold the recursion parameters and a
copy of them, and as for Mi the safe arguments are used to hold the contents of
a configuration. Let ~x := x1, . . . , xk, ~y := y1, . . . , yk and ~z := z0, . . . , zm denote
pairwise distinct variables. We define Rf as the extension of RM0 by the following
rules, where r = 1, . . . , d, j = 1, . . . , k and a ∈ Σ.

f(~x;)→ ~M〈e〉m (; fd0 (~x, ~x; 1, ~x,~ε), . . . , fdm(~x, ~x; 1, ~x,~ε))

f0
i (~x, ~y;~z)→ zi

fri (~ε, ~y;~z)→ zi

fri (~ε, a(xj), . . . , xk, ~y;~z)→

fri (~ε, xj , . . . , xk, ~y; ~M〈c〉(; fr−1
0 (~y, ~y;~z), . . . , fr−1

m (~y, ~y;~z))) .

To verify (9.4), we show that for some ` > c · |~u| · |~v|r−1,

fri (~u,~v;~t) i−→∗R ~M
〈`〉
i (;~t) ,

holds for all r = 1, . . . , d, i = 0, . . . ,m, terms ~t and arbitrary words ~u,~v. We
prove the claim by induction on r and side induction on the sum of the sizes of
words ~u. Consider the base case r = 1, we prove f1

i (~u,~v;~t)→ ~M
〈c·|~u|〉
i (;~t) for all

i = 0, . . . ,m. If |~u| = 0 then ~u = ~ε and so we have f1
i (~ε,~v;~t) i−→R ti = ~M

〈0〉
i (;~t)

as desired. In the inductive step of the side induction, |~u| > 0 and hence
~u = ~ε, a(uj), . . . , uk for some j ∈ {1, . . . , k} and a ∈ Σ. Let ~u′ := ~ε, uj , . . . , uk.
Then using the side induction hypothesis we have

f1
i (~u,~v;~t) i−→Rf f1

i (~u′, ~v; ~M〈c〉(;~f0(~v,~v;~t)))

−→m+1
Rf f1

i (~u′, ~v; ~M〈c〉(;~t))

i−→∗Rf ~M
〈c·|~u′|〉
i (; ~M〈c〉(;~t))

= ~M
〈c·(|~u′|+1)〉
i (;~t) .

As |~u′| + 1 = |~u| we conclude the base case.
Consider now the inductive step r > 1. The case |~u| = 0 follows as above,

so suppose again ~u = ~ε, a(uj), . . . , uk for some j ∈ {1, . . . , k}, and let ~u′ :=
~ε, uj , . . . , uk. Then using induction hypothesis and side induction hypothesis we

124

9.4 A Tight Characterisation

conclude

fr+1
i (~u,~v;~t)

i−→Rf fr+1
i (~u′, ~v; ~M〈c〉(;~fr(~v,~v;~t)))

i−→∗Rf fr+1
i (~u′, ~v; ~M〈c〉(; ~M〈`1〉(;~t))) where `1 > c · |~v| · |~v|r−1 = c · |~v|r

i−→∗Rf ~M
〈`2〉
i (; ~M〈c〉(; ~M〈`1〉(;~t))) where `2 > c · |~u′| · |~v|r

= ~M
〈`2+c+`1〉
i (;~t) .

Summing up we have

`2 + c+ `1 > c · (|~u′| · |~v|r + |~v|r) = c · (|~u′| + 1) · |~v|r = c · |~u| · |~v|r ,

as desired. Overall we obtain

f(~w;) i−→Rf ~M
〈e〉
m (; fd0 (~w, ~w; 1, ~w,~ε), . . . , fdm(~w, ~w; 1, ~w,~ε))

i−→+
Rf

~M〈e〉m (; ~M
〈`〉
1 (; 1, w1, . . . , wk,~ε), . . . , ~M

〈`〉
m (; 1, w1, . . . , wk,~ε))

= ~M〈`+e〉m (; 1, w1, . . . , wk,~ε)

where `+ e > c · |~w| · |~w|d−1 + e = c · |~w|d + e, which proves derivation (9.4). By
definition Rf is an ML-like, tail-recursive TRS, in particular JfKR is a function.
Combining this with the observation on derivations (9.3) we conclude that this
TRS implements the function f , more precise, JfKR(w1, . . . , wk) = f(w1, . . . , wk)
holds.
To conclude the theorem, we show that Rf is predicative recursive of degree

d. Observe that the precedence Á of Rf on defined symbols is given by

f ą fd0 , . . . , f
d
m ą · · · ą f0

0 , . . . , f
0
m ą M0, . . . ,Mm ,

where only the symbols fri are recursive in Rf . In particular rdRf (fri) = r for all
r = 0, . . . , d and i = 0, . . . ,m and so the recursion depth of Rf is d. Using the
precedence, it is also not difficult to see that Rf is predicative recursive. The
only non-trivial cases are to show that

f(~x;) ąspop∗ps
~M〈e〉m (; fd0 (~x, ~x; 1, ~x,~ε), . . . , fdm(~x, ~x; 1, ~x,~ε)) , and

fri (~ε, a(xj), . . . , xk, ~y;~z) ąspop∗ps

fri (~ε, xj , . . . , xk, ~y; ~M〈c〉(; fr−1
0 (~y, ~y;~z), . . . , fr−1

m (~y, ~y;~z))) ,

hold for all r = 1, . . . , d, i = 0, . . . ,m and a ∈ Σ. For the orientation of the first
rule, it is straight forward to verify that

f(~x;) ą
〈2〉
spop∗ps

fdi (~x, ~x; 1, ~x,~ε) for all i = 0, . . . ,m,

holds. Using that also f ą Mi holds (i = 0, . . . ,m), iterated application of
ą
〈2〉
spop∗ps

orients the considered rule. Formally, this can be verified by a standard
induction on e. In a similar spirit one can show that

fli(~ε, a(xj), . . . , xk, ~y;~z) ąspop∗ps
~M
〈c〉
i (; fl−1

0 (~y, ~y;~z), . . . , fl−1
m (~y, ~y;~z))

for all i = 0, . . . ,m and l = 1, . . . , d,

125

9 The Small Polynomial Path Order

holds. Using that also 〈~ε, a(xj), . . . , xk, ~y〉 ąspop∗ps
〈~ε, xj , . . . , xk, ~y〉 holds, orienta-

tion of the final rules follows by one application of ą
〈3〉
spop∗ps

. �

126

Chapter 10.

The Exponential Path Order

In this chapter we provide an order theoretic characterisation of the class FEXP.
This work is based on Arai and Eguchi [2] class N , which gives a recursion-
theoretic account of FEXP. Conceptually, the class N extends the class BW
given in Definition 9.34 by safe nested recursion (on notation) (SNRN for
short). This recursion scheme extends safe recursion on notation (SRN). On
the one hand, nested recursive calls are allowed. On the other hand lexicographic
descents on normal arguments are permitted. As an example, the following
equations define a function f by safe nested recursion on notation.

f(ε, ε; z) = g(; z)

f(ε, yj; z) = rε,j(y; z, f(ε, y; z)) (j = 0, 1)

f(xi, ε; z) = ri,ε(x; z, f(x, x; si,ε(x; z, f(x, xi; z)))) (i = 0, 1)

f(xi, yj; z) = ri,j(x, y; z, f(xi, y; si,j(x, y; z, f(x, yj; z)))) (i = 0, 1 and j = 0, 1) .

The following definition introduces the exponential path order ąepo? (EPO?

for short). It is an extension of small polynomial path orders ąspop∗ps
, with two

essential differences. In contrast to clause ą
〈2〉
spop∗ps

, the linearity condition in
clause ą

〈2〉
epo? has been dropped allow multiple recursive calls. Further, in clause

ą
〈3〉
epo? we lift the product comparison on normal arguments to a lexicographic

comparison.

Definition 10.1 (Exponential Path Order). Let Á denote a quasi-precedence
on F , with underlying proper order ą and equivalence ∼. Fix a safe mapping.
Then s ąepo? t for terms s, t ∈ T (F ,V) with s = f(s1, . . . , sk; sk+1, . . . , sk+l) if
one of the following alternatives hold.

(1) si Áepo? t for some argument si of s (i ∈ {1, . . . , k + l}); or

(2) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ą g and the following
holds:

- s Bn/≈ tj for all normal arguments t1, . . . , tm; and

- s ąepo? tj for all safe arguments tm+1, . . . , tm+n; or

(3) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ∼ g and for some j ∈
{1, . . . ,min(l,m)} the following holds:

- si ≈ ti for all i = 1, . . . , j − 1; and

- sj B/≈ tj ; and

127

10 The Exponential Path Order

- s Bn/≈ ti for all i = j + 1, . . . ,m; and

- s ąepo? ti for all j = m+ 1, . . . ,m+ n.

Here sÁepo? t denotes that either s ≈ t or s ąepo? t holds.

Definition 10.2. We call the TRS R predicative nested recursive if R is com-
patible with an instance of EPO?.

Theorem 10.3. Suppose R is a predicative recursive constructor TRS of degree
d. Then the innermost derivation height of any basic term f(~u;~v) is bounded
by an exponential e(n) ∈ 2O(nk), where k ∈ N depends only on the TRS R
and n denotes the sum of the depths of normal arguments ~u. In particular, the
innermost runtime function rciR is bounded by an exponential in 2O(nk).

Example 10.4. The following TRS Rfib is an extension of Example 2.28 from
Steinbach and Kühlers collection of TRSs [74], and encodes the computation of
the nth Fibonacci number, using a nested recursive auxiliary function dfib.

21 : fib(x;)→ dfib(x; 0) 22 : dfib(0; y)→ y

23 : dfib(s(; 0); y)→ s(; ; y) 24 : dfib(s(; s(;x)); y)→ dfib(s(x); dfib(x; y)) .

This TRS is compatible with ąepo? using the induced precedence and safe
mapping as indicated by the rules. Using fib ą dfib as well as fib ą s we can
orient rules 21–23 using ą

〈1〉
epo? and ą

〈2〉
epo? only. For rule 24, observe s(; s(;x)) B/≈

s(;x) holds, and thus dfib(s(; s(;x)); y) ąspop? dfib(s(x); dfib(x; y)) holds by two
applications of ą

〈3〉
epo? followed by one application of ą

〈1〉
epo? .

On the other hand, the rewrite system Rfib is neither compatible with ąspop?

nor ąspop∗ps
, due to the nested call in rule 24. C

Observe that ąepo? is sufficiently large to handle the function f defined by safe
nested recursion above Definition 10.1, when formulated as rewrite system. We
prove this formally later in Section 10.2. The following example stresses that
the restriction to innermost reductions is still essential.

Example 10.5. Consider the TRS Rndup which consists of the following rules.

25 : f(0; y)→ y 26 : dup(; t)→ c(t, t)

27 : f(s(;x); y)→ f(x; dup(; f(x; y))) .

Then Rndup is a predicative nested recursive constructor TRS.
Employing that dh(dup(; t),−→Rndup

) = 1+2·dh(t,−→Rndup
) by rule 26, a standard

induction verifies that dh(f(sn(; 0), t;),−→Rndup
) > 22n−1 · (1 + dh(t,−→Rndup

)) holds
for all n > 1 and terms t, thus the innermost runtime complexity function is not
bounded by an exponential from 2O(nk) for some k ∈ N. C

10.1. Exponential Path Orders are Sound

We now prove Theorem 10.3. In correspondence to the soundness proof of
sPOP?, we introduce an auxiliary order ą` on sequences of terms, that allows
the predicative embedding of the innermost rewrite relation. The maximal length
of ą` sequences can then be used to bind the length of R reductions sufficiently.

128

10.1 Exponential Path Orders are Sound

10.1.1. Exponential Polynomial Path Order on Sequences

The following definition introduces the exponential path order ą` on sequences.
This order constitutes a slight variation of the path order EPO introduced by
Eguchi [31]. Its definition corresponds to Definition 9.19, where the linearity
requirement in clause ą

〈3〉
K,` has been dropped, and clause ą

〈1〉
K,` is modified in

order to account for the lexicographic status underlying ąepo? .

Definition 10.6. Let Á denote a quasi-precedence on F , with underlying proper
order ą and equivalence ∼. Let ` ∈ N with ` > 1. Then a ą` b holds for terms or
sequences of terms a, b ∈ T (F ,V) ∪ T ?(F ,V) if one of the following alternatives
hold.

(1) a = f(s1, . . . , sk), b = g(t1, . . . , tl) with f ą g and the following conditions
hold:

- f(s1, . . . , sk) B/≈ tj for all j = 1, . . . , l; and

- l 6 `; or

(2) a = f(s1, . . . , sk), b = g(t1, . . . , tl) with f ∼ g and there exists some
j ∈ {1, . . . ,min(k, l)} such that the following conditions hold:

- si ≈ ti for all i = 1, . . . , j − 1; and

- sj B/≈ tj ; and

- a Bn/≈ ti for all i = j + 1, . . . ,m; and

- l 6 `; or

(3) a = f(s1, . . . , sk), b = [t1, . . . , tl] and the following conditions hold:

- f(s1, . . . , sk) ą` tj for all j = 1, . . . , l; and

- l 6 `; or

(4) a = [s1, . . . , sk], b = [t1, . . . , tl] and there exists terms or sequences bi
(i = 1, . . . , k) such that:

- [t1, . . . , tl] = b1 ++ · · · ++ bk; and

- 〈s1, . . . , sk〉 ąK,` 〈b1, . . . , bk〉.

We denote by aÁ` b that either a ≈ b or a ą` b holds. Here ą` is also used for its
extension to products: 〈a1, . . . , ak〉 ą` 〈b1, . . . , bk〉 if ai Á` bi for all i = 1, . . . , n,
and ai0 ą` ai0 for at least one i0 ∈ {1, . . . , k}.

Lemma 10.7. Let ` > 1 and let Á be a quasi-precedence.

(1) The order ą` is finitely branching; and

(2) The order ą` is well-founded.

Proof. The first assertion can be shown reasoning identical to Lemma 9.21(1).
To prove the second assertion, let Á◦ be the extension of Á to F ∪{◦} so that the
variadic list symbol ◦ is minimal in Á◦. Then as in Lemma 9.21(2), one can show

129

10 The Exponential Path Order

that ą` ⊆ ą◦rpo,τ for the recursive path order induced by the quasi-precedence
ą◦, and the status function τ that assigns to all f ∈ F a lexicographic, and
to the sequence constructor ◦ a multiset status. This RPO is well-founded by
Proposition 2.55. �

In correspondence to the functions GK,` from Definition 9.22, we define func-
tions H` that assigns to each term or sequence the length of its maximal ą`

descending sequence. By the previous lemma, this function is well-defined.

Definition 10.8. Let ` > 1. We define H` : T (F ,V) ∪ T ?(F ,V)→ N by

H`(a) := max{ l | ∃a1, . . . , al. a ą` a1 ą` · · · ą` al} .

The following two lemmas are direct adaptions of Lemma 9.20 and Lemma 9.23
respectively, and can be proven identical to the corresponding lemmas from
Section 9.1.1.

Lemma 10.9. Let ` > 1. The order ą` satisfies the following properties:

(1) ą` ⊆ ą`+1; and

(2) ≈ ·ą` ⊆ ą` and ą` · ≈ ⊆ ą`; and

(3) for all a, b, c1, c2 ∈ T (F ,V) ∪ T ?(F ,V),

a ą` b =⇒ c1 ++ a ++ c2 ą` c1 ++ b ++ c2 .

Lemma 10.10. Let ` > 1. For all sequences [t1, . . . , tk] ∈ T ?(F ,V) we have

H`([t1, . . . , tk]) =
k∑
i=1

H`(ti) .

The central theorem of this section, established by Eguchi, binds the length of
ą` descending sequences appropriately.

Theorem 10.11 (Eguchi [7]). Let ` > 1. For each f ∈ F , there exists a func-
tion ef (n) ∈ 2O(nd) for some d ∈ N such that

H`(f(t1, . . . , tk)) 6 ef
(∑k

i=1 dp(ti)
)
,

for all terms t1, . . . , tk ∈ T (F ,V).

Proof. To show the theorem, we show the stronger claim that for all s =
f(s1, . . . , sk) and b ∈ T (F ,V) ∪ T ?(F ,V) with f(s1, . . . , sk) ą` b,

H`(b) < (`+ 1)M
`·rkÁ(f)+

∑k
i=1M

` ·−i dp(ti) ,

holds, where M := max{dp(si) | i = 1, . . . , k}+ 1 and n ·− m := max{0, n−m}.
The proof follows by induction on the lexicographic combination of rkÁ(f) and∑k

i=1M
` ·−i dp(ti). In the base case, rkÁ(f) = 1 and

∑k
i=1M

` ·−i dp(ti) = 0. The
latter implies that the arguments s1, . . . , sk are variables or constants. A standard

130

10.1 Exponential Path Orders are Sound

induction refines f(s1, . . . , sk) ą` b to f(s1, . . . , sk) ą
〈3〉
` [], using that in the

considered case neither ą
〈1〉
` nor ą

〈2〉
` are applicable. Hence H`(f(s1, . . . , sk)) = 1

since [] is minimal, the base case follows.
Consider the inductive step. We perform case analysis on the last rule that

concludes f(s1, . . . , sk) ą` b.

- Case f(s1, . . . , sk) ą
〈1〉
` g(t1, . . . , tl): Define

N := max{dp(tj) | j = 1, . . . , l}+ 1 .

Then N 6 M follows from the order constraints f(s1, . . . , sk) B/≈ tj for
j = 1, . . . , l. As therefore also

∑l
j=1N

` ·−j · dp(tj) < M ` we see

N ` · rkÁ(g) +
∑̀
j=1

N ` ·−j · dp(tj) < M ` · rkÁ(g) +M ` 6M ` · rkÁ(f) ,

where in the last inequality we use rkÁ(g) < rkÁ(f) as given from the order
constraint f ą g. Hence we can even conclude

H`(g(t1, . . . , tl)) 6 (`+ 1)N
`·rkÁ(g)+

∑`
j=1N

` ·−j ·dp(tj) < (`+ 1)M
`·rkÁ(f) ,

by induction hypothesis, using again f ą g.

- Case f(s1, . . . , sk) ą
〈2〉
` g(t1, . . . , tl): Define again

N := max{dp(tj) | j = 1, . . . , l}+ 1 .

Observe that the order constraints on arguments give for all j = 1, . . . , l
some i ∈ {1, . . . , k} such that tj E/≈ si, hence dp(tj) 6 dp(si), and thus
overall (i) N 6 M . Since rkÁ(f) = rkÁ(g) in the considered case, we
obtain (ii) N ` · rkÁ(g) 6 M ` · rkÁ(f). Further, the order constraints on
arguments give some j ∈ {1, . . . ,min(k, l)} such that (iii) dp(ti) = dp(si)
for all i = 1, . . . , j − 1, and (iv) dp(tj) < dp(sj) hold. Summing up (i)–(iv)
we obtain

N ` · rkÁ(g) +
∑̀
i=1

N ` ·−i · dp(ti) < M ` · rkÁ(f) +
∑̀
i=1

M ` ·−i · dp(si) .

By induction hypothesis we thus get

H`(g(t1, . . . , tl)) 6 (`+ 1)N
`·rkÁ(g)+

∑`
i=1N

` ·−i·dp(ti)

< (`+ 1)M
`·rkÁ(f)+

∑`
i=1M

` ·−i·dp(si) .

- Case f(s1, . . . , sk) ą
〈3〉
` [t1, . . . , tl]: In this case f(s1, . . . , sk) ą` tj for all

j = 1, . . . , l, where these inequalities follow either by ą
〈1〉
` or ą

〈2〉
` . As we

have shown in the corresponding sub-cases, even

H`(tj) 6 (`+ 1)M
`·rkÁ(f)+

∑`
i=1M

` ·−i·dp(si)−1 for all j = 1, . . . , l,

131

10 The Exponential Path Order

holds. As in this case l 6 `, using this and Lemma 10.10 we obtain

H`([t1, . . . , tl]) 6
l∑

j=1

H`(tj)

6 ` · (`+ 1)M
`·rkÁ(f)+

∑`
i=1M

` ·−i·dp(si)−1

< (`+ 1)M
`·rkÁ(f)+

∑`
i=1M

` ·−i·dp(si) .

This completes the proof of the theorem. �

10.1.2. Predicative Embedding

Let R denote a predicative nested recursive constructor TRS. We now establish
the predicative embedding of rewrite steps into the order ąepo? , using the same
interpretation IR that we have already employed in the soundness proof of
sPOP?.
Recall that NR denotes the set of terms such that normal argument are

normal forms of R, compare Definition 9.28. The next lemma verifies that also
for predicative nested recursive this set is closed under rewriting.

Lemma 10.12. Let R denote a predicative nested recursive constructor TRS.
If s ∈ NR and s i−→R t then t ∈ NR.

Proof. Observe that, f(s1, . . . , sk; sk+1, . . . , sk+l) ąepo? t implies that either t
is a constructor term, or t = g(t1, . . . , tm; tm+1, . . . , tm+n) where all normal
arguments t1, . . . , tm are constructor terms. This can be verified by case analysis
on ąepo? , where in the case ą

〈1〉
epo? we employ that si ąepo? t and si ∈ T (C,V)

implies that also t ∈ T (C,V). In particular for a substitution σ such that
f(s1, . . . , sk; sk+1, . . . , sk+l)σ is argument normalised, we have that tiσ ∈ NF(R)
for all normal arguments ti of t. The lemma then follows by inductive reasoning
as in the corresponding Lemma 9.29. �

Let Á the precedence induced by R. In the following, we write again w for
the quasi-precedence on the normalised signature Fn given in Definition 9.30.
We denote by A the strict order w \ v, by ∼ the equivalence w ∩v and by ≈
we denote the extension of ∼ to normalised terms Tn(F ,V).

The following auxiliary lemma provides the embedding of root-steps.

Lemma 10.13. Let R be a TRS. Let s = f(s1, . . . , sk; sk+1, . . . , sk+l) ∈ T (F ,V)
be a constructor based term and let σ : V → NF(R) be a normalising substitution.
Then for all t ∈ T (F ,V),

s ąepo? t =⇒ IR(sσ) A` IR(tσ) ,

where ` := |t|.

Proof. Fix a constructor based term s = f(s1, . . . , sk; sk+1, . . . , sk+l) let σ and
let a normalising substitution with respect to the TRS R. The proof follows
the proof of corresponding Lemma 9.31 concerning sPOP?. We consider the

132

10.1 Exponential Path Orders are Sound

non-trivial case tσ 6∈ NF(R). This excludes the case s ą
〈1〉
epo? t, as then one

can show that t ∈ T (C,V) holds, which contradicts tσ 6∈ NF(R). Hence either
s ą

〈2〉
epo? t or s ą

〈3〉
epo? t holds. Thus t = g(t1, . . . , tm; tm+1, . . . , tm+n) for some

g ∈ F and terms ti (i = 1, . . . ,m+ n), with

IR(tσ) = [gn(t1σ, . . . , tmσ)] ++ IR(tm+1σ) ++ · · · ++ IR(tm+nσ) .

We first show

s ąspop? t =⇒ fn(s1σ, . . . , skσ) AKn,|t| u for all u ∈ IR(tσ) . (†)

For the proof of the implication (†), suppose s ąspop? t holds. Consider first the
element u = gn(t1σ, . . . , tmσ) ∈ IR(tσ). If s ą

〈2〉
epo? t holds, we obtain

fn(s1σ, . . . , skσ) A〈1〉` gn(t1σ, . . . , tmσ) ,

by reasoning identical to the corresponding case in Lemma 9.31. Hence suppose
s ą

〈3〉
epo? t holds. In this case f ∼ g, and thus fn ∼ gn, holds. Moreover, there

exists j ∈ {1, . . . ,min(k,m)} such that (i) si ≈ ti, hence siσ ≈ tiσ for all
i = 1, . . . , j − 1, (ii) sj B/≈ tj hence sjσ B/≈ tjσ, and (iii) s Bn/≈ ti, hence
sσ Bn/≈ tiσ, holds for all i = j + 1, . . . ,m. Since Bn/≈ restricts the sub-term
relation to normal arguments, (iii) translates to fn(s1σ, . . . , skσ) B/≈ tiσ for all
i = j + 1, . . . ,m. As trivially m 6 |t|, this establishes

fn(s1σ, . . . , skσ) A〈2〉` gn(t1σ, . . . , tmσ) .

This concludes the case u = gn(t1σ, . . . , tmσ) ∈ IR(tσ). For u ∈ IR(tσ) not of
this shape, u ∈ IR(tjσ) for some safe argument position of j ∈ {m+1, . . . ,m+n}
of g. In this case we have s ąepo? tj and the claim thus follows by induction
hypothesis. We conclude (†).
Using that as observed in Lemma 9.31 the length of IR(tσ) is bounded by
|t|, from the implication (†) we obtain fn(s1σ, . . . , skσ) A〈3〉` IR(tσ) under the
assumption s ąepo? t, and thus IR(sσ) A〈4〉` IR(tσ) holds as desired. �

Lemma 10.14. Let R denote a predicative recursive constructor TRS and let
` := max{|r| | l→ r ∈ R}. If s ∈ NR and s i−→R t then IR(s) AKn,` IR(t).

Proof. The proof follows in correspondence to Lemma 9.32, by induction on
the rewrite position. The base case is handled by Lemma 10.13. The inductive
step follows by reasoning identical to Lemma 9.32, replacing the application of
Lemma 9.20(3) by Lemma 10.9(3). �

10.1.3. Putting Things Together

Proof of Theorem 10.3. Let R denote a predicative recursive TRS over the
signature F . Define ` := max{|r| | l→ r ∈ R}. We prove that for every f ∈ F ,
the innermost derivation height of f(~u;~v) for values ~u,~v is bounded by ef (n),
where n :=

∑
ui∈~u dp(ui) and ef (n) ∈ 2O(nd) as given by Theorem 10.11.

133

10 The Exponential Path Order

Consider a derivation

f(~u;~v) i−→R t1 i−→R · · · i−→R tl .

Then Lemma 10.14 together with Lemma 10.12 translate this sequence to

[fn(~u)] = IR(f(~u;~v)) A` IR(t1) A` · · · A` IR(tl) ,

hence
l 6 GK,`([fn(~u)]) = GK,`(fn(~u)) 6 ef (n) ,

where the equality follows by Lemma 10.10, and the inequality by Theo-
rem 10.11. �

Corollary 10.15 (Soundness). Let R be a confluent (or orthogonal) and pred-
icative nested recursive constructor TRS. Then every function defined by R is
computable in time 2O(nd) for some d ∈ N on a deterministic Turing machine.

10.2. Exponential Path Orders are Complete

We now show that EPO? is complete for FEXP. The pattern of the proof
follows the completeness proof of small polynomial path orders. To this end we
employ the term rewriting characterisation RN presented in [31] of Arai and
Eguchi’s class N . We first pin down the notion of lexicographic descending
arguments, employed in the safe nested recursion scheme, the schema RN is
then introduced below in Definition 10.17.
Again we make use of constructors ε, s0 and s1 to encode binary words.

Denote by Γ the alphabet {ε, 0, 1}. Define the type τ(u) ∈ Γ of values u ∈
T ({ε, s0, s1}) such that τ(ε) := ε, and τ(si(u)) := i for i = 0, 1. We also
use τ for its homomorphic extension to sequences of terms. Inversely, for
type w = i1, . . . , ik ∈ Γk and terms ~u = u1, . . . , uk we write sw(~u) for the
sequence si1(;u1), . . . , sik(;uk), where sε(ui) denotes ε. In correspondence to
the exemplified definition of the function f defined by safe nested recursion on
notation on page 127, in the schema RN recursive parameters are determined
by the status τ(u1), . . . , τ(uk) of the recursion arguments u1, . . . , uk only. This
is formalised in the definition of >klex-function.

Definition 10.16 (Lexicographic Descending Argument,>k
lex-function).

Consider the constructors C = {ε, s0, s1}.

(1) For constructor terms u1, . . . , uk ∈ T (C,V) and v1, . . . , vk ∈ T (C,V), we
define

u1, . . . , uk >
k
lex v1, . . . , vk ,

if there exists j ∈ {1, . . . , k} such that for all i = 1, . . . , k the following
conditions hold:

(i) ui = vi if i < j;

(ii) uj = s0(vj) or uj = s1(vj); and

134

10.2 Exponential Path Orders are Complete

(iii) ui′ = vi if i > j for some i′ ∈ {1, . . . , k}.

(2) Consider a function

p : {1, . . . , k} × Γk → {1, . . . , k} × {id, prec} .

Here prec and id denote the predecessor and identity function on values
T ({ε, s0, s1}) respectively, where prec is defined such that prec(ε) := ε and
otherwise prec(si(;u)) := u. Based on (j, f) ∈ {1, . . . , k}×{id, prec} define
the function Jk(j,f) : T (C,V)k → T (C,V) such that Jk(j,f)(u1, . . . , uk) :=

f(uj).

The function p is called a >klex-function if for all ~u := u1, . . . , uk ∈ T (C,V)
we have

~u 6= ~ε =⇒ ~u >klex Jkp(1,τ(~u))(~u), . . . , Jkp(k,τ(~u))(~u) .

Definition 10.17 (Term Rewriting Characterisation RN [31]). For each k, l ∈
N the set of function symbols Fk,lN with k normal and l safe argument positions
is the least set of function symbols such that

(1) ε ∈ F0,0
N , s0, s1 ∈ F0,1

N are the only constructors; and

(2) S0,S1 ∈ F0,1
N , P ∈ F0,1

N , C ∈ F0,4
N , Ok,l ∈ Fk,lN and for all j = 1, . . . , k + l,

Ik,lj ∈ F
k,l
N ; and

(3) if h ∈ Fm,nN , ~h = h1, . . . , hn ∈ Fk,lN and 1 6 i1 6 · · · 6 im 6 k then
WSC[g, i1, . . . , im,~h] ∈ Fk,lN ; and

(4) For all >k′lex-functions p1, p2, p3, g ∈ Fk,lN and rw,~sw,~tw ∈ Fk
′+k,l+1
N also

SNRNp1,p2,p3

[
g, rw,~sw,~tw (w ∈ Γk

′

6=~ε)
]
∈ Fk

′+k,l
N .

Here and below Γk
′

6=~ε is used to abbreviate Γk
′ \ {ε, . . . , ε}.

We set FN :=
⋃
k,l∈NF

k,l
N .

Let ~x := x1, . . . , xk, ~y := y1, . . . , yl and ~z := z1, . . . , zk′ denote pairwise distinct
variables. The schema of rewrite rules RN is defined as the least set of rules
such that:

(1) RN contains the following rules defining initial functions:

Si(;x)→ si(;x) (for i = 0, 1)
P(; ε)→ ε

P(;xi)→ x (for i = 0, 1)

Ik,lj (~x; ~y)→ xj (for all j = 1, . . . , k)

Ik,lj (~x; ~y)→ yj−k (for all j = k + 1, . . . , l + k)

C(; ε, y, z1, z2)→ y

C(;xi, y, z1, z2)→ zi (for i = 0, 1)
O(~x; ~y)→ ε .

135

10 The Exponential Path Order

(2) For f := WSC[g, i1, . . . , im,~h] ∈ Fk,lN the schema RN contains the rule

f(~x; ~y)→ g(xi1 , . . . , xim ; h1(~x; ~y), . . . , hn(~x; ~y)) ,

(3) For f := SNRNp1,p2,p3

[
g, rw,~sw,~tw (w ∈ Γk

′

6=~ε)
]
∈ Fk

′+k,l
N the schema RN

contains the rules

f(~ε, ~x; ~y)→ g(~x; ~y)

f(sw(;~z), ~x; ~y)→ rw(~vw,1, ~x; ~y, f(~vw,1, ~x;~sw(~vw,2, ~x; ~y, a))) (w ∈ Γk
′

6=~ε)

{a 7→ f(~vw,2, ~x;~tw(~vw,3, ~x; ~y, f(~vw,3, ~x; ~y)))} ,

where a is a fresh variable and ~vw,i := Jpi(1,w)(sw(;~z)), . . . , Jpi(k′,w)(sw(;~z)) for
i = 1, 2, 3.

Proposition 10.18 ([31]). For each f ∈ FEXP, there exists a finite restriction
Rf (RN such that Rf computes f .

Proof. The schema RN is obtained by introducing a rewrite rule for each defining
equations in the class N , which defines exactly the functions FEXP, compare [2].
Hence for f ∈ FEXP, we can take as Rf (RBW the set of rewrite rules that
correspond to the equations involved in the definition of f in FEXP. �

We arrive at the completeness result.

Theorem 10.19 (Completeness). For every f ∈ FEXP there exists a finite,
orthogonal, and predicative nested recursive constructor TRS Rf .
Proof. Consider f ∈ FEXP, and let Rf (RBW denote the TRS given by
Proposition 10.18. It remains to verify that Rf is predicative nested recursive.
For this, let ąepo? denote the exponential path order as induced by the (strict)
precedence Á underlying Rf , and the safe mapping as indicated in the rules.
We show Rf ⊆ ąepo? by induction on the definition of f . As ąspop? ⊆ ąepo? ,
reusing the proof of Theorem 9.38 it suffices to consider the inductive step for
the new case where f is defined by safe nested recursion on notation. For this
case, consider

f := SNRNp1,p2,p3

[
g, rw,~sw,~tw (w ∈ Γk

′

6=~ε)
]
,

with defining rewrite rules

f(~ε, ~x; ~y)→ g(~x; ~y)

f(sw(;~z), ~x; ~y)→ rw(~vw,1, ~x; ~y, f(~vw,1, ~x;~sw(~vw,2, ~x; ~y, a))) (w ∈ Γk
′

6=~ε)

{a 7→ f(~vw,2, ~x;~tw(~vw,3, ~x; ~y, f(~vw,3, ~x; ~y)))} ,

where ~vw,i := Jpi(1,w)(sw(;~z)), . . . , Jpi(k′,w)(sw(;~z)) for i = 1, 2, 3. By induction
hypothesis, Rf is predicative nested recursive if these rewrite rules are also
oriented by ąepo? . Orientation of the first rule follows by ą

〈2〉
epo? , to show that

remaining rules are oriented, fix w = w1, . . . , wk ∈ Γk
′

6=~ε. Consider the recursive
parameters v1, . . . , vk := ~vw,3. As p3 is a >k′lex-function, it follows that

sw(; z) = sw1(; z1), . . . , swk(; zk) >
k′
lex v1, . . . , vk ,

holds, thus there exists j ∈ {1, . . . , k} satisfying the following properties:

136

10.2 Exponential Path Orders are Complete

(1) swi(; zi) = vi, thus swi(; zi) ≈ vi, if i < j;

(2) swj (; zj) = swj (vj) for wj ∈ {0, 1}, thus swj (; zj) B/≈ vj ;

(3) swi′ (; zi′) = vi and thus f(sw(;~z), ~x; ~y) Bn/≈ vi, if i > j for some i′ ∈
{1, . . . , k}.

Using that also f(sw(;~z), ~x; ~y) Bn/≈ x and f(sw(;~z), ~x; ~y) ą
〈1〉
epo? y holds for all

x ∈ ~x and y ∈ ~y respectively, we obtain

f(sw(;~z), ~x; ~y) ą
〈3〉
epo? f(~vw, ~x; ~y) .

Consider now ti ∈ ~tw, where by definition f ą ti. As by the properties (1)–(3)
also f(sw(;~z), ~x; ~y) B/≈ vi (i = 1, . . . , k) holds we conclude

f(sw(;~z), ~x; ~y) ą
〈3〉
epo? ti(~vw,3, ~x; ~y, f(~vw,3, ~x; ~y)) .

Repeating these steps, using that p1 and p2 are >k′lex-functions the rule can finally
be oriented. As w ∈ Γk

′

6=~ε was arbitrary, this completes the proof. �

Corollary 10.20. The following class of functions are equivalent:

(1) The class of functions computed by confluent (or orthogonal), and predica-
tive nested recursive constructor TRS.

(2) The class of functions computable in time e(n) ∈ 2O(nk) (k ∈ N) on a
deterministic Turing machine.

Proof. The correspondence holds by Theorem 10.15 and Theorem 10.19. �

137

Part III.

Automated Runtime
Complexity Analysis

139

Chapter 11.

Introduction

Hofbauer and Lautemann [42] motivated the study of the derivational complexity
mainly as a measure to quantify the strength of a termination technique. In
the previous part we have taken a complementary view, viz, the introduction of
termination technique suited for the complexity analysis of rewrite systems, with
an emphasis to infer feasible bounds. This idea is not novel. The seminal paper
by Bonfante et al. [23] gives an early account on taming a termination technique
so that the induced complexity is polynomial. Since then, a wealth of techniques
have been introduced specifically to establish polynomial complexity bounds.
Techniques range from direct methods, called also base techniques below,

to transformation techniques. Polynomial path orders are instances of direct
methods, once applied they establish directly a bound on the complexity of
the analysed TRS. The dependency pair method [5] is a prominent instance
of a transformation technique, and is used nowadays in the majority of the
competitive termination provers. In particular its systematic study and the
formulation of the dependency pair framework [76] significantly improved the
ability to automatically prove termination in rewriting. In essence, this method
models the call structure in a TRS as a set of syntactically restricted rewrite
rules, the dependency pairs. Strong normalisation of these dependency pairs,
relative to the original rewrite rules, certifies termination of the input system. It
is well established that the DP method is unsuitable for complexity analysis, in
the sense that the complexity of the obtained dependency pair system does not
reflect the complexity of the analysed TRS [70, 60]. Hirokawa and Moser recover
the situation with the introduction of weak dependency pairs [38, 40]. Weak
dependency pairs can effectively be applied for polynomial runtime complexity
analysis, both for full and innermost rewriting. Noschinski et al. [63] developed a
variation of weak dependency pairs, called dependency tuples, that is in particular
effective if one is interested in the innermost runtime complexity analysis.
These adaptions allow us to utilise a wealth of termination techniques that

work on dependency pairs. For instance, (safe) reduction pairs [38, 40], various
rule transformations [63], or usable rules [38] become available for the automated
runtime complexity analysis of TRSs. Some very effective methods have been
introduced specifically for complexity analysis in the context of dependency pairs.
For instance, path analysis [39] decomposes the analysed rewrite relation into
simpler ones, by treating paths through the dependency graph independently.
Knowledge propagation [63] is another complexity technique relying on depen-
dency graph analysis. This method allows one to propagate bounds for specific
rules along the dependency graph. Besides these, various minor simplifications

141

11 Introduction

are implemented in tools, mostly relying on dependency graph analysis.
Motivated not only by these theoretical advances, but also by the annual

international termination competition1 which features four dedicated complexity
categories since 2008, we have designed a fully automated complexity analyser
for term rewrite systems, the Tyrolean Complexity Tool (TCT for short). TCT
is open-source, released under the GNU Lesser General Public License (LGPL)
Version 3, and available from

http://cl-informatik.uibk.ac.at/software/tct/ .

Central in TCT are the notions of complexity problem (problem for short) and
complexity processor (processor for short). Here, a problem essentially consists
of a (finite) representation of a rewrite relation together with a set of starting
terms. A processor represents a complexity technique in our framework. It
dictates how to transform a problem into sub-problems (if any), and how to
relate the complexity of the obtained sub-problems to the complexity of the input
problem. A complexity proof in our framework is then nothing more than the
object obtained by repeated application of processors starting from a canonical
complexity problem.

Given a rewrite system, our tool TCT is capable of searching for such a complex-
ity proof without further assistance from the user. Noteworthy, TCT can analyse
both runtime and derivational complexity of rewrite systems. It also features
dedicated support for innermost rewriting. Our tool TCT makes use of a majority
of the techniques introduced for polynomial complexity analysis, formulated as
complexity processors in our framework. Besides this fully automatic mode, TCT
can also operate in a semi-automatic mode, through the provided interactive
interface.

Related Tools. Our tool is in development since 2008. It started out as an
extension to the powerful termination prover TTT2 [49].2 The current version 2.0 of
TCT constitutes a complete re-implementation separate from TTT2. Nevertheless,
version 2.0 inherits many of the design choices from the termination tool TTT2.
In particular, the underlying notion of complexity problem can be conceived as
an extension to the notion of termination problem found in TTT2. Noteworthy,
also our notion of proof search strategy is rooted in the one of TTT2.

TCT is not the only tool that can investigate complexity properties of rewrite
systems.

AProVE: The closed source termination prover AProVE3 features powerful sup-
port for analysing the innermost runtime complexity of TRSs. In particular,
dependency tuples were established by the AProVE team. In its current
state, the tool AProVE lacks support both for full rewriting and derivational
complexity.

1http://www.termination-portal.org/wiki/Termination_Competition/.
2Available from http://cl-informatik.uibk.ac.at/software/ttt2/.
3http://aprove.informatik.rwth-aachen.de/.

142

http://cl-informatik.uibk.ac.at/software/tct/
http://www.termination-portal.org/wiki/Termination_Competition
http://cl-informatik.uibk.ac.at/software/ttt2/
http://aprove.informatik.rwth-aachen.de/

CaT: The open source complexity tool CaT4 constitutes a tiny wrapper around the
termination prover TTT2. In this implementation, termination techniques
are suitably restricted so that feasible bounds on terminating TRSs can
be inferred. The tool CaT features support for derivational and runtime
complexity analysis. It does however not feature dedicated complexity
techniques, like the aforementioned adaptions of dependency pairs. The
theoretical basis [79] of CaT influenced this work significantly.

Matchbox/Poly: The tool Matchbox/Poly5 is open source tool, and can verify
polynomially bounded derivational complexity in a completely automatic
way. Notably, Matchbox/Poly demonstrated first that the advanced au-
tomata techniques [77] for inferring polynomial bounds from matrix inter-
pretation termination proofs can be implemented efficiently. This criterion
forms in TCT maybe the most powerful base-technique currently.

RaML Hoffmann et al. [44, 45] provide an automatic multivariate amortised
cost analysis of Resource Aware ML programs. This analysis exploits
typing, and extends earlier results on amortised cost analysis. Notably it
is parametric in the investigated resource, besides the number of execution
steps it allows for instance the analysis of heap space usage.

Outline. This part collects the authors contributions of joint work Moser
on TCT [15] and its underlying theoretical framework [14]. Besides a more
elaborate treatment of the topic, we also integrate argument filterings into small
polynomial path orders, which has not been covered before. The tool TCT was
developed by Andreas Schnabl, Georg Moser and the author. This work covers
the authors contributions on this tool. As an exception, we also briefly mention
the implementations of the polynomial and matrix interpretation in Section 14.1,
which are due to Schnabl. The first implementation of dependency pairs and
dependency graphs (compare Section 14.4) can also be attributed to Schnabl.

In the next chapter we start with a very brief overview on the implementation
of TCT, the main part of this chapter is concerned with the user interface of our
tool. In Chapter 13 we then introduce the theoretical framework underlying
TCT. Focusing on (innermost) runtime complexity analysis, in Chapter 14 we
then establish a unified account on a majority of the techniques implemented in
TCT, by formalising these as processors in our framework. On the one hand this
account covers previously established techniques, notably complexity pairs as
studied in [79] and safe reduction pairs [38] respective (Section 14.1), the relative
combination technique for such orders as initially proposed in [79] (Section 14.2),
weak dependency pairs from [38] and dependency tuples from [63] (Section 14.4).
On the other hand, we also study novel techniques, viz, aforementioned combina-
tion of argument filterings with small polynomial path orders (Section 14.3 and
Section 14.7), various simplification techniques (Section 14.5) and dependency
graph decomposition (Section 14.5).

We conclude this part in Chapter 15 with our experimental evaluation of TCT.
4Available from http://cl-informatik.uibk.ac.at/software/cat/.
5Available from http://dfa.imn.htwk-leipzig.de/matchbox/poly/.

143

http://cl-informatik.uibk.ac.at/software/cat/
http://dfa.imn.htwk-leipzig.de/matchbox/poly

Chapter 12.

The Tyrolean Complexity Tool

Our tool is implemented in the strongly typed, lazy functional programming
language Haskell1 and compiles on the Glasgow Haskell Compiler2 on GNU/Linux.

In its current form, TCT features 23 techniques for runtime and/or derivational
complexity analysis. The sources consist of about 13,000 lines of code, and
additionally 4,000 lines of documentation. Out of the 73 modules, 43 modules
are dedicated to the implementation of the various techniques (roughly 56 % of
the code), the remaining modules provide the core of TCT and utilities.

We have developed the following Haskell libraries which are used by TCT. These
are separately available from the TCT homepage.3

- qlogic provides facilities for dealing with propositional logic, and consists
of approximately 3,100 lines of code. Notably it defines an interface to
SAT-solvers, including routines to efficiently translate Boolean formulas
to conjunctive normal form. Also, it features support for theories over
natural numbers and integers, implemented by bit-blasting.

- termlib provides term rewriting functionality, and consists of about 2,100
lines of code.

- parfold is a small library that provides folding capabilities over lists of
concurrently evaluated monad actions, a simple but convenient abstraction
to concurrent programming.

In the following, we provide a walk-through on the various user interfaces of
TCT.

12.1. Web Interface

Our web interface, accessible from the TCT homepage, provides a convenient
way to use TCT without the necessity to install the software. The interface is
aimed for simplicity, compare Figure 12.1. For the curious user that wants to
play around with TCT, we also provide a wealth of examples. The web interface
is configured so that by default an upper bound on the runtime complexity of
the given rewrite system is estimated. This behaviour can be modified under

1An open-source product of more than twenty years of cutting-edge research, available
http://haskell.org/.

2The compiler is open-source and available from http://www.haskell.org/ghc/.
3http://cl-informatik.uibk.ac.at/projects/.

145

http://haskell.org/
http://www.haskell.org/ghc/
http://cl-informatik.uibk.ac.at/projects/

12 The Tyrolean Complexity Tool

Figure 12.1.: Web Interface of TCT.

category, where the user can pick from the four different complexity measures
TCT currently supports. On success, an estimated upper bound on the complexity
function is presented to the user, together with a proof script that explains in
considerable detail how the certificate was obtained.
To find a proof in a reasonable amount of time, the different techniques

implemented in TCT need to be combined wisely. This combination depends on
the one hand on the input problem. On the other hand, the combination depends
also on the available hardware. In TCT, proof search is not hard-wired, instead
it is guided by a (proof) search strategy. The interface allows to specify such a
search strategy from a set of pre-defined proof search strategies. Besides the
search strategies employed in recent competitions, the web-interface currently
offers the search strategy RaML. This search strategy is specifically designed for
functional programs given as rewrite systems. Further, a customisable search
strategy allows the explicit inclusion/exclusion of methods.

12.2. Command-Line Interface

The full power of TCT is available through its command-line interface. For
installation instructions we refer the reader to the homepage. Here we want to
briefly outline usage and customisation, comprehensive documentation can be
found online at

http://cl-informatik.uibk.ac.at/software/tct/docs.html .

TCT is run from the command line prompt by typing

$ tct [options] [-s <strategy>] <file> .

146

http://cl-informatik.uibk.ac.at/software/tct/docs.html

12.2 Command-Line Interface

Here [options] specify an optional list of command-line options, <strategy>
specifies optionally a proof search strategy, and <file> the input file. The input
file must adhere either the old TPDB format4 or the new XTC Format5. A
complete list of options can be obtained by typing tct --help. Notable, the
command line switch -a allows to overwrite strategy and start terms, and the
switch -t allows to set a timeout.

12.2.1. Proof Search Strategy Format

The proof search strategy supplied with the -s switch is given as an S-expression
of the form

(<name> [:<argname> <arg>]* [<arg>]*) ,

where outermost parentheses can be dropped. Here <name> refers to the name of
a proof technique, the list [:<argname> <arg>]* can be used to specify named
optional arguments, and the list [<arg>]* gives a possibly empty sequence of
positional arguments. As an example,

best (matrix :degree 2) (timeout 3 (bounds :enrichment match)) ,

provides a valid proof search strategy in TCT. Here best is used to run one or more
search strategies in parallel, in this case the search strategies matrix :degree 2
and timeout 3 (bounds :enrichment match). The input is solved by the
search strategy which produces the tightest upper bound. In total, the search
strategy defined above advises TCT to check for compatibility with a matrix
interpretation [32] that induces a quadratic upper bound, and for three seconds
for match-boundedness [34] of the input problem. Every processor implemented
in TCT, like the processors bound and matrix used above, qualifies as a search
strategy here. Beside these, various combinators are available. In its current
form, TCT provides the following combinators.

- best <strategy> · · · <strategy>: This combinator runs the given strate-
gies in parallel. It proves the given problem with whichever strategy supplies
the least upper bound.

- fastest <strategy> · · · <strategy>: This combinator runs the given
strategies in parallel, and provides the proof of whichever strategy succeeds
first.

- sequentially <strategy> · · · <strategy>: This combinator runs the
given strategies sequentially, until the first strategy succeeds in solving the
problem.

- timeout <secs> <strategy>: This search strategy behaves like the given
strategy, but aborts the computation in case a proof could not be found
after the given number of seconds.

4http://www.lri.fr/~marche/tpdb/format.html.
5http://www.termination-portal.org/wiki/XTC_Format_Specification.

147

http://www.lri.fr/~marche/tpdb/format.html
http://www.termination-portal.org/wiki/XTC_Format_Specification

12 The Tyrolean Complexity Tool

- ite <strategy> <strategy> <strategy>: This combinator implements
conditional branching in the expected way. We have implemented a variety
of processors that check for basic properties that can be used as guard with
this combinator. For instance, the search strategy ite orthogonal st se
proceeds according to the strategy st if the problem is orthogonal, otherwise
it proceeds as determined by se.

- success: This strategy trivially succeeds.

- fail: This strategy always fails.

12.2.2. Configuration

Besides basic options given on the command-line, TCT can be configured by
modifying the configuration file, which resides in ~/.tct/tct.hs by default. This
Haskell source-file defines the actual binary that is run each time TCT is called.
Thus the full expressiveness of Haskell is available. As a downside, it requires also
a working Haskell environment. The minimal configuration shown in Figure 12.2
is generated on the first run of TCT.

import Tct (tct)
import Tct.Configuration
import Tct.Interactive
import Tct.Instances
import qualified Termlib.Repl as TR

main :: IO ()
main = tct config

config :: Config
config = defaultConfig

Figure 12.2.: Initial Configuration of TCT.

This initial configuration consists of a set of convenient imports and the IO
action main together with a configuration record config. The configuration
record passed in main allows one to overwrite various flags of TCT.
Most importantly, through the field strategies, the configuration record

allows the modification of the list of proof search strategies that can be employed.
In Figure 12.3 we depict a modified configuration that defines two new search
strategies, called matrices and withDP. Strategies are added by overwriting the
field strategies with a list of declarations of the form

<code> ::: strategy "<name>" [<parameters-declaration>] .

Here <code> refers to a definition that evaluates to a search strategy. The string
"<name> " together with the optional parameters-declaration specify how this
code is accessible from the command-line. For instance, the first declaration in
Figure 12.3 defines a new search strategy named matrices, which is available
by supplying the option -s "matrices [:start <nat>] <nat>" to the TCT
executable. Here the parameters to matrices are declared by

148

12.2 Command-Line Interface

import Tct (tct)
import Tct.Instances

$..
main :: IO ()
main = tct config

config :: Config
config = defaultConfig { strategies = strategies }

where
strategies =

[matrices ::: strategy "matrices" (optional naturalArg "start" (Nat 1)
:+: naturalArg)

, withDP ::: strategy "withDP"]

matrices (Nat s :+: Nat n) =
fastest [matrix ‘withDimension‘ d ‘withBits‘ bitsForDimension d

| d <- [s..s+n]]
where

bitsForDimension d
| d < 3 = 2
| otherwise = 1

withDP =
(timeout 5 dps <> dts)
>>> try (exhaustively decomposeIndependentSG)
>>> try cleanTail
>>> try usableRules
where

dps = dependencyPairs >>> try usableRules >>> wgOnUsable
dts = dependencyTuples
wgOnUsable = weightgap ‘withDimension‘ 1 ‘wgOn‘ WgOnTrs

Figure 12.3.: Configuration defining search strategies matrices and withDP.

optional naturalArg "start" (Nat 1) :+: naturalArg ,

where the infix operator :+: is used to specify sequences of parameters. As
indicated by the constructor naturalArg, the search strategy matrices expect
two natural numbers as arguments. In contrast to the second parameter, the
first is optional and defaults to the natural number 1.

In Figure 12.3, these parameters are provided to the code of matrices. Using
parameters s and n as supplied on the command-line, the code evaluates to a proof
search strategy that searches for n compatible matrix interpretations of increasing
dimension starting with dimension s, in parallel. Both matrix and fastest,
along with other processors, combinators and modifiers like withDimension and
withBits, are exported by the module Tct.Instances.

The second proof search strategy declared in Figure 12.3 defines a transfor-
mation called withDP. Transformations are search strategies that generate from
the given input problem a possibly empty set of sub-problems, in a complexity-
preserving manner. For every transformation t and search strategy6 s, one can
use the search strategy t >>| s which first applies transformation t and then
solves the resulting sub-problems in accordance to s. Search strategy declarations

6 Prior to Version 1.7, TCT only featured methods that yield a closed complexity proof, and
these methods were simply called processor. To avoid confusion, in the present work we
use the more adequate term search strategy for this notion of processor. What is referred
to as transformation here, reflects the notion of processor as outlined in the introduction.

149

12 The Tyrolean Complexity Tool

perform such a lifting of transformation implicitly, the declaration of withDP for
instance results in a search strategy available as withDP <strategy>. Besides
the combinator >>| and its variation >>||, where the given search strategy s is
applied in parallel on all sub-problems, the module Tct.Instances provides a
wealth of transformation combinators. We briefly discuss basic combinators, a
full list of transformation combinators is available in the online documentation.

- t1 <> t2: This combinator, employed also in withDP, first applies transfor-
mation t1, only if this is unsuccessful it applies transformation t2 on the
input problem instead.

- t1 <||> t2: This is a variation of the above combinator which applies trans-
formations t1 and t2 in parallel, resulting in the sub-problems of whichever
transformation succeeds first. The combinator <||> thus implements a form
of non-deterministic choice.

- t1 >>> t2: The combinator >>> defines composition of transformations, in
the sense that the transformation t1 >>> t2 first applies transformation t1
and then transformation t2 on all resulting sub-problems.

- successive [t1, . . . , tn]: This implements a list-version of >>>.

- try t: Any transformation aborts if it is inapplicable. The combinator
try overrides this behaviour, in the sense that try t behaves exactly like
t should t succeed, otherwise it behaves as an identity.

- force t: The combinator force is dual to try and requires the given
transformation t to abort when t is inapplicable.

- exhaustively t: The combinator exhaustively, defined by

exhaustively t = t >>> try (exhaustively t) ,

applies t in an iterated fashion.

- withProblem f : This combinator passes the currently analysed problem
to the function f which evaluates to a transformation.

- when b t: This combinator only applies transformation t if the given
Boolean is True.

In total, the search strategy withDP defined in Figure 12.3 applies weak
dependency pairs as realised in the definition of dps, or dependency tuples as
realised by dts should the former fail. This transformation is followed by a
sequence of syntactic simplifications, if applicable. We remark the thoughtful
use of try. The transformation dps fails if the weight gap principle cannot be
established on all TRS rules, i.e., rules that are not dependency pairs. The
latter is implemented by the transformation wgOnUsable, and constitutes an
implementation of [40, Theorem 6.5]. We finally point out that an extended
version of the transformation withDP is available in TCT as toDP.

150

12.3 Interactive Interface

12.3. Interactive Interface

TCT features also an interactive interface, TCT-i for short. In this section we
guide the reader through a small interactive session that outlines the main
features, elaborate documentation of this mode is again provided online. This
semi-automatic mode is in particular useful when investigating into tight(er)
complexity bounds, and to crack hard-to-solve problems.

The interactive interface constitutes essentially of a tiny wrapper around ghci,
the interpreter bundled with the Glasgow Haskell compiler. Users familiar with
ghci will note that all features available in ghci are also available in TCT-i. The
interactive interface is started from the command-line by supplying the option
-i to the TCT executable.

TCT-interactive 12.1

$ tct -i
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help

$..
This is version 2.0 of the Tyrolean Complexity Tool.

(c) Martin Avanzini <martin.avanzini@uibk.ac.at>,
Georg Moser <georg.moser@uibk.ac.at>, and
Andreas Schnabl <andreas.schnabl@uibk.ac.at>.

This software is licensed under the GNU Lesser General Public
License, see <http://www.gnu.org/licenses/>.

Don’t know how to start? Type ’help’.
TCT>

The interactive interface maintains a proof state, which consists conceptually
of a list of open problems together with proof information. The command
load "<file>" is used to populate the proof state by the TRS given as argument.

TCT-interactive 12.2 (Continued from Session 12.1)

TCT> load "examples/div.trs"

Current Proof State --

Selected Open Problems:

Strict Trs:
{ -(x, 0()) -> x
, -(s(x), s(y)) -> -(x, y)
, %(0(), s(y)) -> 0()
, %(s(x), s(y)) -> s(%(-(x, y), s(y))) }

StartTerms: basic terms
Strategy: none

--
TCT>

The current state can be inspected at any time by typing the command state.
We note that the rewrite strategy and set of start terms are defined in accordance
to the input file. The commands set[DC|RC|IDC|IRC] provide short-hands to
these accordingly. Alternatively, one can use load[DC|RC|IDC|IRC] "<file>" ,
which override the set rewrite strategy and set of starting terms accordingly.

151

12 The Tyrolean Complexity Tool

The primary means to modify the proof state is the use of the command apply.
This command takes a single argument, a proof search strategy, which is applied
by default on all open problems. The implementations of the various methods
and combinators, as exported by Tct.Instances, qualify as arguments to apply.
Since TCT-i loads the configuration file of TCT, all search strategies declared in
the configuration file are available as top-level bindings, and can thus be used in
conjunction with apply. We can use the previously developed search strategy
withDP to simplify the loaded problem as follows.

TCT-interactive 12.3 (Continued from Session 12.2)

TCT> apply withDP

Problems simplified. Use ’state’ to see the current proof state.

TCT>

The output of apply is intentionally kept short.7 By typing state one can
observe that our initially loaded complexity problem has been replaced by the
problem obtained by our transformation withDP. To see the proof generated
so far, one can use the command proof. Note that as long as the list of open
problems is not empty, this proof is marked as open.

TCT-interactive 12.4 (Continued from Session 12.3)

TCT> proof
1) dp [OPEN]:

We consider the following problem:
Strict Trs:

{ -(x, 0()) -> x
, -(s(x), s(y)) -> -(x, y)
, %(0(), s(y)) -> 0()
, %(s(x), s(y)) -> s(%(-(x, y), s(y))) }

StartTerms: basic terms
Strategy: none

We add the following weak dependency pairs:
Strict DPs:

{ -^#(x, 0()) -> c_1()
, -^#(s(x), s(y)) -> c_2(-^#(x, y))

$..
1.1) Open Problem [OPEN]:

We consider the following problem:
Strict DPs:

{ -^#(x, 0()) -> c_1(x)
, -^#(s(x), s(y)) -> c_2(-^#(x, y))
, %^#(s(x), s(y)) -> c_4(%^#(-(x, y), s(y))) }

Weak Trs:
{ -(x, 0()) -> x
, -(s(x), s(y)) -> -(x, y) }

StartTerms: basic terms
Strategy: none

TCT>

7To override this behaviour and see actions performed, one can use the command
setShowProofs, or alternatively set the field interactiveShowProofs to True in the con-
figuration record of TCT.

152

12.3 Interactive Interface

Once the list of open problem is empty, a complexity bound on the input
problem has been successfully established. We can do so on our running example,
using the matrix processor that we have already used before.

TCT-interactive 12.5 (Continued from Session 12.4)

TCT> apply matrix

Hurray, the problem was solved with certificate YES(O(1),O(n^2)).
Use ’proof’ to show the complete proof.

TCT>

Application of the processor results in a closed proof. This is indicated by
the string YES(O(1),O(n^2)), which follows the convention of the complexity
competition. Here YES indicates that the proof was in principle successful. The
left component O(1) gives an asymptotic lower-bound. The right component
O(n^2) states the computed asymptotic upper bound, which is quadratic in our
example. The produced proof thus verifies that our initial problem, loaded in
Session 12.2, has at most quadratic runtime complexity. We remark that the
runtime complexity of the input TRS is even linear. Inspecting the proof we
see that the imprecision in the certificate was introduced in the last proof step.
Fortunately TCT-i provides a command undo that can be used to revert the effect
of apply. In fact, it reverts any modification on the proof state, except of course
the effect of undo itself. We refine the proof by restricting the induced degree of
the constructed interpretation.

TCT-interactive 12.6 (Continued from Session 12.5)

TCT> undo
Current Proof State --

Selected Open Problems:

Strict DPs:
{ -^#(x, 0()) -> c_1(x)
, -^#(s(x), s(y)) -> c_2(-^#(x, y))
, %^#(s(x), s(y)) -> c_4(%^#(-(x, y), s(y))) }

Weak Trs:
{ -(x, 0()) -> x
, -(s(x), s(y)) -> -(x, y) }

StartTerms: basic terms
Strategy: none

--

TCT> apply $ matrix ‘withDegree‘ Just 1

Hurray, the problem was solved with certificate YES(O(1),O(n^1)).
Use ’proof’ to show the complete proof.

TCT>

Here the function withDegree is used to modify the default parameters as defined
in matrix, compare Section 14.1.8 We finally end up with a closed proof that

8The application operator $ has low, right-associative binding precedence. The backticks
syntax allows to write a binary function in infix notation.

153

12 The Tyrolean Complexity Tool

Figure 12.4.: TCT Major Mode for GNU Emacs.

verifies that our loaded TRS has linear runtime complexity. Using the command
writeProof "<file>" one can write the constructed proof to the given file.

This completes the short tutorial. We remark that for the GNU Emacs9

enthusiast, we have also crafted a small major-mode for TCT-i. This mode is
available in the source distribution of TCT. The mode can be started by typing
M-x tct into GNU Emacs. In addition to the features explained above, the
major-mode provides a refurbished view on the proof state, compare Figure 12.4
which shows an example session. The graph depicted by TCT here is visualised
using the dot tool of the Graphviz toolkit.10

9GNU Emacs is open-source and available from http://www.gnu.org/s/emacs/.
10The toolkit is open-source and available from http://www.graphviz.org/.

154

http://www.gnu.org/s/emacs/
http://www.graphviz.org/

Chapter 13.

The Combination Framework
Underlying TCT

In this chapter we introduce the complexity framework underlying TCT. The
notions introduced here are greatly influenced by the work of Thiemann [76] on
the dependency pair framework for termination analysis.

At the heart of our framework lies the notion of complexity processor, or simply
processor. Recall that in its general form, a complexity processor dictates how
to transform the analysed input problem into (hopefully) simpler sub-problems.
It also relates the complexity of the obtained sub-problems to the complexity of
the input problem. In our framework, such a processor is modeled as a set of
inference rules

` P1 : f1 · · · ` Pn : fn

` P : f
,

over judgements of the form ` P : f . Here P denotes a complexity problem
(problem for short) and f : N → N a bounding function. The validity of a
judgement ` P : f is given when the function f binds the complexity of the
problem P asymptotically.
Conceptually, a complexity problem P consists of a set of starting terms
T together with a relation −→S∪W for TRSs S,W. The complexity function
cpP : N → N of P accounts for the number of applications of rules from S in
derivations starting from terms t ∈ T , measured in the size of t. To model
innermost rewriting in our setting, we resort to the notion of Q-restricted
rewriting [76].

Definition 13.1 (Q-restricted Rewrite Relation, Relative Rewriting).
(1) Let R and Q be two TRSs. We define the Q-restricted rewrite relation

Q−→R such that s Q−→R t if there exists a context C, substitution σ, and rule
f(l1, . . . , ln)→ r ∈ R such that s = C[f(l1σ, . . . , lnσ)], t = C[rσ] and all
arguments liσ (i = 1, . . . , n) are Q normal forms.

(2) We extend, for two TRSs S and W, the notion of Q-restricted rewrite
relation to a relative setting by defining

Q−→S/W := Q−→∗W · Q−→S · Q−→∗W .

We call Q−→R/S the Q-restricted rewrite relation of S relative to W.

Note that for Q = ∅, the relation Q−→R amounts to the rewrite relation of R.
For Q = R we obtain the innermost rewrite relation of R.

155

13 The Combination Framework Underlying TCT

Definition 13.2 (Complexity Problem, Complexity Function).

(1) A complexity problem P (problem for short) is a quadruple (S,W,Q, T),
in notation 〈S/W,Q, T 〉, where S,W,Q are TRSs and T ⊆ T (F) a set of
ground terms.

We call S and W the strict and weak component of P respectively. The
set T is called the set of starting terms of P.

(2) The complexity (function) cpP : N → N of P is defined as the partial
function

cpP(n) := cp(n, T , Q−→S/W) .

Consider a problem P = 〈S/W,Q, T 〉. In the sequel P, possibly followed
by subscripts, always denotes a complexity problem. We always use S and
W, possibly followed by subscripts, for the strict and weak component of a
complexity problem, whereas R refers to a set of rewrite rules that can occur in
both components. We write l→ r ∈ P for l→ r ∈ S ∪W.

Definition 13.3 (P-derivation). Consider a problem P = 〈S/W,Q, T 〉. The
rewrite relation of P is defined as

−→P := Q−→S∪W .

A derivation t −→P t1 −→P · · · is also called a P-derivation (starting from t).

In this work we are mostly concerned with runtime complexity analysis, i.e.,
we consider basic starting terms.

Definition 13.4 (Runtime, Innermost Complexity Problem). Consider a prob-
lem P = 〈S/W,Q, T 〉.

(1) Then P is called a runtime complexity problem if T ⊆ Tb(D] C) holds.
Otherwise it is called a derivational complexity problem.

For a runtime complexity problems P we suppose that the rewrite systems
S and W do not define the constructors C, i.e., defined symbols of S ∪W
are disjoint with C.

(2) The problem P is called an innermost complexity problem if NF(Q) ⊆
NF(S ∪W),

Note that for an innermost complexity problem P as above, the rewrite relation
−→P is included in the innermost rewrite relation of R∪ S.

Definition 13.5 (Canonical Complexity Problems). Let R denote a TRS.

(1) Pdc
R := 〈R/∅,∅, T (F)〉 is called the canonical derivational complexity

problem for R; and

(2) Pdci
R := 〈R/∅,R, T (F)〉 is called the canonical innermost derivational

complexity problem for R; and

156

(3) Prc
R := 〈R/∅,∅, Tb(D] C)〉 is called the canonical runtime complexity

problem; and

(4) Prci
R := 〈R/∅,R, Tb(D] C)〉 is called the canonical innermost runtime

complexity problem for R.

These notions are derived from the following trivial observation.

Lemma 13.6. Let R denote a TRS. Then

(1) dcR(n) =k cpPdc
R

(n); and

(2) dciR(n) =k cpPdci
R

(n); and

(3) rcR(n) =k cpPrc
R

(n); and

(4) rciR(n) =k cpPrci
R

(n).

Proof. We have −→R = ∅−→R = ∅−→R/∅ and similar i−→R = R−→R/∅ for all TRSs
R. The lemma follows by definition. �

Complexity problems are thus expressive enough to reflect derivational and
runtime complexity, for full and innermost rewriting. We could have integrated
support for additional strategies, for instance by allowing the notions of µ-
replacing positions as in context sensitive rewriting [53] or forbidden patterns [36]
in the definition of complexity problem. Such an extension goes beyond this
thesis.
Consider a problem P = 〈S/W,Q, T 〉. If Q−→S/W is terminating and finitely

branching on T , then the complexity function cpP is defined on all inputs, by
König’s Lemma. The following example shows that in the relative setting the
termination property alone does not suffice that cpP is defined on all inputs.

Example 13.7. Consider the problem P1 := 〈S1/W1,∅, T1〉 where

S1 := {g(s(x))→ g(x)} W1 := {f(x)→ f(s(x)), f(x)→ g(x)} ,

and T1 := {f(⊥)}. Note that for all n ∈ N, maximal −→P1
derivations are of the

form
f(⊥) −→∗W1

f(sn(⊥)) −→W1
g(sn(⊥)) −→n

S1 g(⊥) .

Hence f(⊥) −→n
S1/W1

g(⊥) holds for all n ∈ N. Whereas −→S1/W1
is well-founded

on T1, the above family of derivations shows that cpP1
(m) =k dh(f(⊥),−→S1/W1

)
is undefined for m > 2. C

The example exploits that the rewrite relation, although well-founded, is not
finitely branching. The next example shows that even if Q−→S/W is not finitely
branching on T , then cpP can still be defined on all inputs.

Example 13.8 (Continued from Example 13.7). Consider the complexity prob-
lem P2 := 〈S2/W1,∅, T1〉, where S2 := {g(x)→ x}. The complexity function of
P2 is constant, but f(⊥) −→S2/W1

sn(⊥) for all n ∈ N, i.e, −→S2/W1
is not finitely

branching on T1. C

157

13 The Combination Framework Underlying TCT

Definition 13.9 (Judgement, Processor, Proof).

(1) A (complexity) judgement is a statement ` P : f where P is a complexity
problem and f : N→ N. The judgement is valid if cpP is defined on all
inputs, and cpP ∈ O(f).

(2) A complexity processor Proc (processor for short) is an inference rule

` P1 : f1 · · · ` Pn : fn

` P : f
Proc ,

over complexity judgements. The problems P1, . . . ,Pn are called the sub-
problems generated by Proc on P. The processor Proc is sound if ` P : f
is valid whenever the judgements ` P1 : f1, . . . , ` Pn : fn are valid. The
processor is complete if the inverse direction holds.

(3) Let empty denote the axiom ` 〈∅/W,Q, T 〉 : f for all TRSs W and Q,
set of terms T and f : N → N. A complexity proof (proof for short)
of a judgement ` P : f is a deduction using sound processors from
the axiom empty and assumptions ` P1 : f1, . . . , ` Pn : fn, in notation
P1 : f1, . . . ,Pn : fn ` P : f .

We say that a complexity proof is closed if its set of assumptions is empty,
otherwise it is open. We follow the usual convention and annotate side conditions
as premises to inference rules. When the list of premises in a processor

` P1 : f1 · · · ` Pn : fn

` P : f
Proc ,

is empty, i.e., n = 0, we call a processor also a direct processor, otherwise it is
also called a transformation.

Soundness of a processor guarantees our formal system is correct. Completeness
ensures that a deduction gives asymptotically tight bounds.

Theorem 13.10. If there exists a closed complexity proof ` P : f , then the
judgement ` P : f is valid.

Proof. The theorem follows by a standard induction on the size of proofs, ex-
ploiting that the underlying set of processors is sound. �

As we see in the sequel, this formalisation is expressive enough to cover a
majority of the techniques available for the automated complexity analysis. To
justify our design choices, we briefly compare our formulations to previously
established notions.

Related Work. Our notion of complexity problem is a natural extension of
the one established by Zankl and Korp [79] for derivational complexity analysis,
which underlies the complexity tool CaT. Here a complexity problem consists of

158

a relative rewrite relation S/W together with a bounding function f : N→ N.
A processor in this setting is a function

((S1 ∪ S2)/W, f) 7→ (S1/(S2 ∪W), f ′) ,

which can shift rules from the strict component to the weak component. This
processor is sound if f(n) + dc(S1∪S2)/W(n) ∈ O(f ′(n) + dcS1/(S2∪W)(n)) holds.
Here dcS/W is defined in correspondence to the derivational complexity function
of a TRS R, by exchanging the rewrite relation −→R by the relation −→S/W . Our
framework generalises these notions in various aspects. First of all, we have
made the set of starting terms abstract, which allows us to cover the derivational
and runtime complexity of TRSs. We also allow transformations where rules
appearing in the generated sub-problem do not appear in the input problem.
Instances of such transformations are for example the two notions of dependency
pair transformations discussed later. We permit processors to transform the
input problem into more than one sub-problem. Furthermore, we do not require
linear combinations of complexity certificates. Both properties are necessary for
instance in the formulation of dependency graph decomposition.
Similar to our framework is also the framework underlying AProVE [63]. In

the basic setting, a complexity input consists of a triple (D,S,R) for dependency
tuples S ⊆ D (compare Section 14.4) and rewrite rules R. A complexity
proof in this system is given as a sequence of applications of processors. Let
W := D \ S. The complexity of such a problem essentially amounts to the
number of applications of dependency tuples from S in derivations R−→S/W∪R
starting from a suitable set of terms T]b . In our setting, the triple (D,S,R)

can thus be represented as the problem 〈S/W ∪ R,R, T]b 〉. In this sense our
notion of complexity problem is more general, since we do not restrict the strict
component to dependency tuples. This generality is necessary in our setting, since
dependency pairs for complexity are not available for derivational complexity
analysis. Also, for the case of full rewriting the only established dependency pair
transformation, viz, weak dependency pairs from [38], requires us to account
some rewrite rules of the input.

Finally, we note that [63] also propose an extension of their notion of complexity
problem, using an additional component K of known rules. These are rules whose
complexity, in the sense of the number of applications of rules from K in the
considered derivations, has already been assessed. This information can be reused
in the knowledge propagation processor [63], see Section 14.5. Our framework
cannot capture this extension, although we could in principle extend our notion
of complexity problem sufficiently. This of course incurs some complications, as
in each processor the additional component K needs to be treated properly.

159

Chapter 14.

Complexity Processors in TCT

In this section we cover those techniques that are used for (innermost) runtime
complexity analysis in our tool TCT. Most of the discussed methods constitute
adaptions of known techniques [79, 38, 63] to our framework. Throughout the
remaining of this chapter, the following two rewrite systems will serve as running
examples. The first is a small toy example.

Example 14.1. Consider the rewrite system Rmult given by the following four
rules.

28 : 0 + y → y 29 : s(x) + y → s(x+ y)

30 : 0× y → 0 31 : s(x)× y → y + (x× y) .

Let Tmult denote basic terms with defined symbols +,× and constructors s, 0. We
denote by Pmult the canonical runtime complexity problem 〈Rmult/∅,∅, Tmult〉,
and by Pmult-i the innermost runtime complexity 〈Rmult/∅,Rmult, Tmult〉 of
Rmult. C

The runtime complexity analysis of our second TRS RK is significantly more
involved. This example implements Kruskal’s algorithm for computing a spanning
forest of minimal weight for a given graph, compare Figure 14.1.

Let N denote the nodes and E weighted edges of a graph G.

Set F := ∅ and P := {{n} | n ∈ N}.

For all edges e ∈ E, sorted increasingly by their weight, do:

If source and target of e occur in p, q ∈ P respectively, with p 6= q;
Set P := P \ {p, q} ∪ {p ∪ q} and F := F ∪ {e}.

Return F .

Figure 14.1.: Kruskal’s Algorithm.

Example 14.2. In RK, a graph is represented as a value graph(N,E) where N
and E refer to the nodes and edges respectively. We suppose nodes and weights
are given as natural numbers. For simplicity, these are encoded as tally numbers
sn(0). Edges e are given as triples (n,w,m), where the rules

32 : src((n,w,m))→ n 33 : wt((n,w,m))→ w 34 : trg((n,w,m))→ m ,

161

14 Complexity Processors in TCT

provide projections to the source node n, weight w, and target node m. The
following rules contained in RK implement Kruskal’s algorithm.

35 : forest(graph(N,E))→ kruskal(sort(E), [], partitions(N))

36 : partitions([])→ []

37 : partitions(n :: N)→ (n :: []) :: partitions(N)

38 : kruskal([],W, P)→W

39 : kruskal(e :: E,W,P)→ kruskal?(inBlock(e, P), e, E,W,P)

40 : kruskal?(tt, e, E,W,P)→ kruskal(E,W,P)

41 : kruskal?(ff, e, E,W,P)→ kruskal(E, e :: W, join(e, P, []))

42 : inBlock(e, [])→ ff

43 : inBlock(e, p :: P)→ (src(e) ∈ p ∧ trg(e) ∈ p) ∨ inBlock(e, P)

44 : join(e, [], q)→ q :: []

45 : join(e, p :: P, q)→ join?(src(e) ∈ p ∨ trg(e) ∈ p, e, p, P, q)
46 : join?(tt, e, p, P, q)→ join(e, P, p ++ q)

47 : join?(ff, e, p, P, q)→ p :: join(e, P, q) .

The defined symbol forest starts the computation on input graph graph(N,E).
The rules (38)—(41) are used to iterate the loop from Figure 14.1. The rules (42)
and (43) check the condition, and the remaining rules (44)–(47) execute the
body of the conditional. To sort edges according to their weight, the TRS RK

uses the following implementation of insertion sort.

48 : sort([])→ []

49 : sort(e :: E)→ insert(e, sort(E))

50 : insert(e, [])→ e :: []

51 : insert(e, f :: E)→ insert?(wt(e) 6 wt(f), e, f, E)

52 : insert?(tt, e, f, E)→ e :: (f :: E)

53 : insert?(ff, e, f, E)→ f :: insert(e, E) .

For sets, a list representation is employed. Membership and union is defined as
follows.

54 : n ∈ []→ ff 55 : n ∈ (m :: p)→ n = m ∨ n ∈ p
56 : [] ++ q → q 57 : (n :: p) ++ q → n :: (p ++ q) .

Finally, the following rules define standard Boolean operations, and comparisons

162

14.1 Suiting Reduction Orders to Complexity

on natural numbers.

58 : 0 = 0→ tt 59 : s(x) = 0→ ff

60 : 0 = s(y)→ ff 61 : s(x) = s(y)→ x = y ,

62 : 0 6 0→ tt 63 : s(x) 6 0→ ff

64 : 0 6 s(y)→ tt 65 : s(x) 6 s(y)→ x 6 y ,

66 : ff ∧ ff → ff 67 : ff ∧ tt→ ff

68 : tt ∧ ff → ff 69 : tt ∧ tt→ tt ,

70 : ff ∨ ff → ff 71 : ff ∨ tt→ tt

72 : tt ∨ ff → tt 73 : tt ∨ tt→ tt .

We set RK := {(32)—(73)}. Let TK denote the set of basic terms where
constructors and defined symbols coincide with those of RK. The problem
〈RK/∅,RK, TK〉 is the canonical innermost runtime complexity problem of RK.C

14.1. Suiting Reduction Orders to Complexity

Orders have been used quite early for the (automated) complexity analysis of
rewrite systems. The seminal paper by Bonfante et al. [23] gives an early account
on using reduction orders for complexity analysis, in the form of polynomial
interpretations. In [79] pairs of orders (%,�), called complexity pairs, are
employed to estimate the derivational complexity in a relative setting. Safe
reduction pairs [38] constitute a variation of complexity pairs. These are useful
in conjunction with dependency pairs, compare Section 14.4. In the following,
we introduce P-monotone complexity pairs, which provide a unified account of
these notions.
Fix a complexity problem P = 〈S/W,Q, T 〉. Consider a reduction

t = t0
Q−→S/W t1

Q−→S/W t2
Q−→S/W · · · ,

for starting term t ∈ T . Suppose we have shown termination of such sequences
by means of a well founded order � on terms: ti � ti+1 holds for all steps
ti
Q−→S/W ti+1. If there exists a function f : N→ N which binds dh(t,�) in the

size of t ∈ T , then f gives an upper bound on the complexity function of P.
Observe that for instance recursive path orders ąrpo,τ are not finitely-branching.
Thus dh(t,ąrpo,τ) is not necessarily well-defined. Only the restriction of ąrpo,τ to
the rewrite relation is finitely branching, and can thus be used in the reasoning
above. To allow for orders which are not finitely branching, Hirokawa and
Moser [38] propose the notion of G-collapsible order. The following provides an
adaption of this notion.

Definition 14.3 (G-collapsible, Induced Complexity). Let P = 〈S/W,Q, T 〉
denote a complexity problem, consider a proper order � on terms.

163

14 Complexity Processors in TCT

(1) Suppose there exists a mapping G : T (F ,V)→ N such that

s Q−→S/W t and s � t =⇒ G(s) > G(t) ,

holds for all terms s ∈ −→∗P(T). Then � is called G-collapsible on P.
The order � is collapsible with respect to P if there exists a mapping G
such that � is G-collapsible on P.

(2) Consider an order � which is G-collapsible with respect to P. Suppose
that there exists a function f : N→ N such that

G(t) ∈ O(f(|t|)) holds for all t ∈ T .

Then we say that � induces the complexity f on P.

Any reduction order � compatible with R is collapsible with respect to the
canonical complexity problems of R. Usually however, the induced complexity
is far beyond a polynomial function. For the case of RPO or polynomial
interpretations, compare Proposition 2.57 and Proposition 2.62. For polynomial
complexity analysis it is thus necessary to tame these techniques, as we have
done with small polynomial path orders for example. For interpretation methods,
this can be achieved by restricting the form of interpretation functions.

Lemma 14.4. Let P = 〈S/W,Q, T 〉 denote a complexity problem. Let � be an
order that is G-collapsible with respect to P. Suppose

s Q−→S/W t =⇒ s � t ,

holds for all s ∈ −→∗P(T). Then for all terms t ∈ T , dh(t, Q−→S/W) is defined, in
particular dh(t, Q−→S/W) 6 G(t).

Proof. Consider a reduction

t = t0
Q−→S/W t1

Q−→S/W t2
Q−→S/W · · · ,

for t ∈ T . By the assumptions also t = t0 � t1 � t2 � · · · ,holds, and since � is
G-collapsible with respect to P we have

G(t) = G(t0) > G(t1) > G(t2) > · · · .

Since > is well-founded, it follows that any reduction of t ∈ T is not only finite,
but its length is bounded by G(t). �

Consider an order � that induces the complexity f on P . If this order includes
the relation Q−→S/W on terms t ∈ −→∗P(T), the above lemma shows that judgement
` P : f is valid. To check the inclusion, as in [79] we consider a pair of orders

(%,�) on terms. Here % denotes a pre-order on terms, and � an order compatible
with %: % ·�·% ⊆ �. In [79], it is further require that both orders are monotone
and stable under substitutions. In this case, the assertions W ⊆ % and S ⊆ �
imply Q−→S/W ⊆ � as desired.

164

14.1 Suiting Reduction Orders to Complexity

Guided by the observation that monotonicity is required only on argument
positions that can be rewritten in reductions of starting terms, Hirokawa and
Moser [40] propose the use of µ-monotone orders for runtime complexity analysis.
Initially introduced for termination analysis [80] of context sensitive rewrite
systems [53], the parameter µ denotes a replacement map. In the realm of
context sensitive rewriting, this map governs under which argument positions a
rewrite step is allowed. Here the mapping µ is used to designate which arguments
are usable in derivations, i.e., can be reduced. The following constitutes an
adaption of usable replacement maps from rewrite systems [40] to complexity
problems.

Definition 14.5 (Usable Replacement Maps).

(1) A map µ : F → P(N) with µ(f) ⊆ {1, . . . , k} for every f/k ∈ F is called
a usable replacement map on F . The positions µ(f) are called the usable
argument positions of f .

(2) For a term t ∈ T (F ,V), the set Posµ(t) of µ-replacing positions in t is
defined such that

Posµ(t) :=

{
{ε} if t is a variable,
{ε} ∪ {i·p | i ∈ µ(f) and p ∈ Posµ(ti)} if t = f(t1, . . . , tk).

(3) For a binary relation → on terms we denote by Tµ(→) the set of terms t
where sub-terms at non-µ-replacing positions are in normal form: t ∈ Tµ(→)
if for all positions p ∈ Pos(t), if p 6∈ Posµ(t) then t|p ∈ NF(→).

(4) Let P be a complexity problem with starting terms T , and let R denote a
set of rewrite rules. A replacement map µ is called a usable replacement
map for R in P, if −→∗P(T) ⊆ Tµ(Q−→R).

Consider a P derivation of a term t ∈ T , and let µ denote a usable replacement
map for R in P. If a rule l→ r ∈ R is applied in this derivation at position p,
then p is a µ-replacing position in the considered term.

Example 14.6 (Continued from Example 14.1). Consider the Pmult-derivation

2× 1 −→Pmult
1 + (1× 1) −→Pmult

1 + (1 + (0× 1)) −→Pmult
1 + s(0 + (0× 1))

−→Pmult
1 + s(0 + 0) −→Pmult

1 + 1 −→Pmult
s(0 + 1) −→Pmult

2 ,

where redexes are underlined. Here, and also in consecutive examples, we again
use for n ∈ N the notation n for the numeral sn(0). Observe that if addition
occurs in a context, then only under the successor symbol. This holds even
for all reductions of basic terms. The map µ+, defined by µ+(s) = {1} and
µ+(×) = µ+(s) = ∅, thus constitutes a usable replacement map for the addition
rules {28, 29} in Pmult. Since for instance no argument position of addition is
usable in µ+, the second step witnesses that µ+ does not designate a usable
replacement map for the multiplication rules {30, 31} in Pmult. C

165

14 Complexity Processors in TCT

Definition 14.7 (P-monotone, Complexity Pair). Let P = 〈S/W,Q, T 〉 de-
note a complexity problem.

(1) An order � is called µ-monotone if it is monotone on µ-positions, in the
sense that for all function symbols f , if i ∈ µ(f) and si � ti holds then

f(s1, . . . , si, . . . , sn) � f(s1, . . . , ti, . . . , sn) ,

holds.

(2) A complexity pair (%,�) consists of a pre-order % and an order � that
are both closed under substitutions and satisfy % · � ·% ⊆ �.

(3) The complexity pair (%,�) is called P-monotone if

- � is µ-monotone for a usable replacement map µ of S in P; and
- % is τ -monotone for a usable replacement map τ of W in P.

Definition 14.8 (Compatible). We say that a complexity pair (%,�) is com-
patible with a complexity problem P = 〈S/W,Q, T 〉 if W ⊆ % and S ⊆ �
holds.

Lemma 14.9. Let P = 〈S/W,Q, T 〉 be a complexity problem, and R ⊆ S ∪W
denote a set of rewrite rules in P.

(1) Let µ denotes a usable replacement map for R in P, and suppose R is
compatible with a µ-monotone order � that is stable under substitutions.
Then

s Q−→R t =⇒ s � t ,

holds for all s ∈ −→∗P(T).

(2) If (%,�) is a P-monotone complexity pair compatible with P, then

s Q−→S/W t =⇒ s � t ,

holds for all s ∈ −→∗P(T).

Proof. Consider the first assert. Since µ is a usable replacement map for R in
P, it suffices to show the claim for s ∈ Tµ(Q−→R). Suppose s Q−→R,p t, hence
p ∈ Posµ(t). We show that for every prefix q of p, s|q � t|q holds. The proof is
by induction on |p| − |q|. The base case q = p is covered by compatibility and
stability under substitutions. For the inductive step, consider a prefix q·i of p,
where by induction hypothesis s|q·i � t|q·i. Since p ∈ Posµ(s) it is not difficult
to see that i ∈ µ(f). Thus

s|q = f(s1, . . . , s|q·i, . . . , sn) � f(s1, . . . , t|q·i, . . . , sn) = t|q ,

follows by µ-monotonicity of �. From the claim, the lemma is obtained using
q = ε.

166

14.1 Suiting Reduction Orders to Complexity

For the second assertion, consider a Q-restricted relative step

s Q−→∗W · Q−→S · Q−→∗W t ,

for s ∈ −→∗P(T). Using the assumptions on (%,�) and the inclusions W ⊆ %
and S ⊆ � to satisfy the assumptions of the first assertion, we obtain

s %∗ · � · %∗ t .

Hence s � t follows by transitivity of % and the inclusion % · � ·% ⊆ �. �

As immediate consequence of Lemma 14.4 and Lemma 14.9, we obtain the
following processor.

Theorem 14.10 (Complexity Pair Processor). Consider a P-monotone com-
plexity pair (%,�) such that � induces the complexity f on P. The following
processor is sound:

S ⊆ � W ⊆ %
` 〈S/W,Q, T 〉 : f

CP
.

Suppose no restriction is put on starting terms in P . By definition, only the full
replacement map is also a usable replacement map for rewrite rules occurring in
P. In this case, Theorem 14.10 requires that the orders % and � are monotone
in all argument positions, as in [79].

14.1.1. Complexity Pairs in TCT

In order to compute usable argument positions, TCT uses the approximations
given in [40]. The command uargs allows the inspection of the usable argument
positions for all rules appearing in the considered complexity problem.

TCT-interactive 14.1

TCT> load "examples/mult.trs"
Current Proof State --

Selected Open Problems:

Strict Trs:
{ +(0(), y) -> y
, +(s(x), y) -> s(+(x, y))
, *(0(), y) -> 0()
, *(s(x), y) -> +(*(x, y), y) }

StartTerms: basic terms
Strategy: none

--
TCT> [ua] <- uargs

Usable Arguments with respect to Problem 1:
Uargs(+) = {2}, Uargs(s) = {1}

TCT>

In its current form, TCT synthesises P-monotone complexity pairs by con-
structing suitable polynomial and matrix interpretations. As even checking for

167

14 Complexity Processors in TCT

compatibility reduces to Hilbert’s 10th problem, the construction of a compatible
interpretation is a rather difficult task. Our implementation follows the practical
but incomplete approach of Contejean et.al. [26]. Here the order constraints
are translated to Diophantine form. Assuming a fixed bound on coefficients,
these are turned into satisfiability problems through bit-blasting. The obtained
SAT-problem is then solved by relying on the SAT-solver MiniSat [30]. Cf. [70]
for details on the implementation in TCT.
Polynomial and matrix interpretations are available in TCT as processors

poly and matrix respectively. To control the number of bits used to encode
coefficients in the bit-blasting phase, TCT provides the binary operator withBits.
This operator takes an interpretation processor as first, and the desired number
of bits as second argument.

To infer polynomial bounds from these interpretations methods, TCT restricts
the shape of the interpretation functions. For the synthesis of polynomial inter-
pretations, TCT interprets all function symbols by strongly linear interpretation
functions fA of the form

fA(x1, . . . , xk) =

im∑
i=i1

xi + c ,

where 1 6 i1 6 · · · 6 im 6 k and c ∈ N. The interpretation of a term is
thus related linearly to its size. The inferred complexity is linear. For runtime
complexity problems, the restriction of the shape is only put onto constructor
symbols. In this setting, TCT can therefor also handle problems whose complexity
function is not bounded by a linear.
For matrix interpretations, TCT uses either triangular matrices as coeffi-

cients [61], or more sophisticated methods based on algebraic reasoning [62]
or automata techniques [56]. The latter method is the default method used by
TCT. To overwrite this behaviour one can use p ‘withCertBy‘ m where m is
either Triangular, Algebraic, Automaton or Unrestricted. Continuing the
previous session, we can advice TCT to search for a compatible Pmult-monotone
complexity pair, given by a three-dimensional matrix interpretation, as follows.

TCT-interactive 14.2 (Continued from Session 14.1)

TCT> apply $ matrix ‘withDimension‘ 3 ‘withCertBy‘ Algebraic

No Progress :(

On the running example, TCT fails to synthesise a proper interpretation. This
is of no surprise as the linear shape of matrix interpretations fails to express
bounding functions which are non-linear in more than one variable.

To control the precise degree of the polynomial bound induced by a processor
p, one can use p ‘withDegree‘ d for an optional integer d. Here d is either
Nothing or Just i. In the former case, TCT will not put any restrictions on the
processor. In the latter case, it will suitably restrict the constructed order so
that the induced complexity function is a polynomial of degree i.

168

14.1 Suiting Reduction Orders to Complexity

TCT-interactive 14.3 (Continued from Session 14.2)

TCT> apply $ poly ‘withDegree‘ Nothing

Hurray, the problem was solved with certificate YES(?,O(n^4)).
Use ’proof’ to show the complete proof.

TCT has constructed a suitable complexity pair, however the constructed inter-
pretation overestimates the complexity of the considered problem considerably.
Polynomial interpretations that induce a quadratic bound, suitable for our
example, can be used in TCT as follows.

TCT-interactive 14.4 (Continued from Session 14.3)

TCT> undo
$..
TCT> apply $ poly ‘withDegree‘ Just 2

Hurray, the problem was solved with certificate YES(?,O(n^2)).
Use ’proof’ to show the complete proof.

TCT> proof
$..

The following argument positions are considered usable:
Uargs(+) = 2, Uargs(s) = 1

TcT has computed the following constructor-restricted polynomial
interpretation.

[0]() = 1

[+](x1, x2) = 3 + 2*x1 + x2

[s](x1) = 1 + x1

[*](x1, x2) = 1 + 2*x1 + 2*x1*x2 + 2*x1^2

This order satisfies the following order constraints.

[+(0(), x)] = 5 + x
> x
= [x]

[+(s(x), y)] = 5 + 2*x + y
> 4 + 2*x + y
= [s(+(x, y))]

[*(0(), x)] = 5 + 2*x
> 1
= [0()]

[*(s(x), y)] = 5 + 6*x + 2*y + 2*x*y + 2*x^2
> 4 + 2*y + 2*x + 2*x*y + 2*x^2
= [+(y, *(x, y))]

On our second running example, the implementation of Kruskal’s algorithm
given in Example 14.2, TCT does not manage to synthesise a suitable matrix
or polynomial interpretation. For polynomial interpretations, TCT exhausts
4GB of RAM before it eventually aborts. This clearly indicates that for a
powerful complexity analyser, more sophisticated methods are needed. To this
end, we introduce in the next section a transformation technique which can be
used to combine various orders in a single proof.

169

14 Complexity Processors in TCT

14.2. Relative Decomposition

A variation of the complexity pair processor, that iteratively orients disjoint
subsets of S, occurred first in [79]. The following processor constitutes a straight
forward generalisation of [79, Theorem 4.4] to our setting.

Theorem 14.11 (Decompose Processor). The following processor is sound:

` 〈S1/S2 ∪W,Q, T 〉 : f ` 〈S2/S1 ∪W,Q, T 〉 : g
` 〈S1 ∪ S2/W,Q, T 〉 : f + g

decompose .

Here f + g denotes the function h defined by h(n) := f(n) + g(n).

Proof. The lemma follows from the inequality

dh(t, Q−→S1∪S2/W) 6 dh(t, Q−→S1/S2∪W) + dh(t, Q−→S2/S1∪W) .

The decompose processor is a central ingredient for the automated complexity
analysis. All participants of the recent complexity sub-division of the annual
termination competition rely on variations of this processor for the combination
of different proof techniques. In correspondence to the rule removal processor for
termination analysis [76], one can combine Theorem 14.10 and Theorem 14.11.
See [79] and [63] where a similar combination is proposed. This way the synthesis
procedure implementing the complexity pair processor can determine a fitting
partitioning of strict rules. Unlike in the rule removal processor for termination,
for complexity analysis we need to keep the oriented rules in the weak component,
compare [79]. Oriented rules are thus shifted from the strict to the weak
component. This is illustrated by the following example.

Example 14.12 (Continued from Example 14.6). Consider the linear polynomial
interpretation A over N such that 0A = 0, sA(x) = x, x+A y = y and x×A y = 1.
Let P30 := 〈{30}/{28, 29, 31},Rmult, Tb〉 denote the problem that accounts for
the rules 30 : 0 × y → 0 in Pmult. The induced order >A together with the
order >A, defined by s >A t if [α]A(s) > [α]A(t) holds for all assignments α,
forms a P30-monotone complexity pair (>A, >A). Monotonicity can be shown
using the replacement maps given in Example 14.6. The order >A induces linear
complexity on P30. According to Theorem 14.11, the following tree depicts a
complexity proof 〈{28, 29, 31}/{30},∅, Tb〉 : g ` Pmult : n+ g.

{30} ⊆ >A {28, 29, 31} ⊆ >A
` 〈{30}/{28, 29, 31},∅, Tb〉 : n

CP
` 〈{28, 29, 31}/{30},∅, Tb〉 : g

` Pmult : n+ g
dec.

The above complexity proof can now be completed iteratively, on the simpler
problem 〈{28, 29, 31}/{30},∅, Tb〉. Since the complexity of Pmult is quadratic,
one has to use a technique beyond linear polynomial interpretations here.

170

14.2 Relative Decomposition

Theorem 14.13 (Decompose CP Processor). Consider a P1-monotone com-
plexity pair (%,�), for a complexity problem P1 = 〈S1/S2 ∪W,Q, T 〉. Suppose
� induces the complexity f on P1. The following processor is sound:

S1 ⊆ � W ∪ S2 ⊆ % ` 〈S2/S1 ∪W,Q, T 〉 : g
` 〈S1 ∪ S2/W,Q, T 〉 : f + g

decompose CP .

Proof. Immediate consequence of Theorem 14.10 and Theorem 14.11. �

We remark that the decompose processor finds applications beyond its combi-
nation with complexity pairs, cf. Section 14.6.

14.2.1. Relative Decomposition in TCT

Relative decomposition is implemented by the transformations decomposeBy
(Theorem 14.11) and decomposeAnyWith (Theorem 14.13). The former requires
a selector expression as argument, which determines the partitioning of strict
rules from the input problem. The latter takes as argument a complexity pair
processor that should be used in combination with relative decomposition. Selec-
tor expressions are of type SelectorExpression. The module Tct.Interactive
exports a variety of basic selector expressions. More complex expression can be
constructed by means of various combinators. The following session shows the
implementation of Theorem 14.13 on the problem Pmult. The constructed proof
corresponds to the one given in Example 14.12.

TCT-interactive 14.5

TCT> load "examples/mult.trs "
$..
TCT> apply $ decomposeAnyWith (poly ‘withDegree‘ Just 1)

Problems simplified. Use ’state’ to see the current proof state.

TCT> proof
1) decompose (addition) [OPEN]:

We consider the following problem:
Strict Trs:

{ +(0(), x) -> x
, +(s(x), y) -> s(+(x, y))
, *(0(), x) -> 0()
, *(s(x), y) -> +(y, *(x, y)) }

StartTerms: basic terms
Strategy: none

We use the processor ’custom shape polynomial interpretation’ to
orient the following rules strictly.

Trs: { *(0(), x) -> 0() }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

171

14 Complexity Processors in TCT

TCT-interactive 14.6 (Continued from Session 14.5)

Sub-proof:

The following argument positions are considered usable:
Uargs(+) = {2}, Uargs(s) = {1}

TcT has computed the following constructor-restricted polynomial
interpretation.

$..
We return to the main proof.

1.1) Open Problem [OPEN]:

We consider the following problem:

Strict Trs:
{ +(0(), x) -> x
, +(s(x), y) -> s(+(x, y))
, *(s(x), y) -> +(y, *(x, y)) }

Weak Trs: { *(0(), x) -> 0() }
StartTerms: basic terms
Strategy: none

On Kruskal’s algorithm the interpretation method fails even in combination
with relative decomposition. Techniques introduced after the next section will
finally allow us simplify the complexity problem PK.

14.3. Small Polynomial Path Orders as Complexity
Pairs

We now adapt polynomial path orders to our framework. We consider the
more powerful order ąspop∗ps

depicted in Definition 9.40 only. Observe that the
order ąspop∗ps

is in general not closed under contexts. As a consequence, the
pair (ąspop∗ps

,Áspop∗ps
) does not form a P-monotone complexity pair. The main

theorem of this section states that nevertheless the pair (ąspop∗ps
,Áspop∗ps

) can be
used like a complexity pair. Guided by the observation that a µ-monotone order
has to consider only arguments of f included in µ(f), we integrate argument
filterings π into the order.

Definition 14.14 (Argument Filtering).

(1) An argument filtering (for a signature F) is a mapping π that assigns to
every f/k ∈ F an argument position i ∈ {1, . . . , k} or a (possibly empty)
list [i1, . . . , il] of argument positions with 1 6 i1 < · · · < il 6 k. In the
former case π(f) = i we say that π collapses on f , otherwise it is called
non-collapsing on f . Below π always denotes an argument filtering.

(2) For each f ∈ F , let fπ denote a fresh function symbol associated with f .
We define

Fπ := {fπ/l | f ∈ F and π(f) = [i1, . . . , il]} .

The sets Dπ and Cπ denote the defined symbols and constructors in Fπ,
which are given by the restriction of Fπ to symbols fπ associated with
f ∈ D and f ∈ C respectively.

172

14.3 Small Polynomial Path Orders as Complexity Pairs

(3) We denote by π also its extension π : T (F ,V)→ T (Fπ,V) to terms, given
by

π(t) =

t if t is a variable,
π(ti) if t = f(t1, . . . , tk) and π(f) = i,

f(π(ti1), . . . , π(til)) if t = f(t1, . . . , tk) and π(f) = [i1, . . . , il] .

We extend π to sets of rewrite rules:

π(R) := {π(l)→ π(r) | l→ r ∈ R} .

(4) For a usable replacement map µ and argument filtering π, we say that
π agrees with µ if for all function symbols f in the domain of µ, either
(i) π(f) = i and µ(f) ⊆ {i} or otherwise (ii) µ(f) ⊆ π(f) holds.

Definition 14.15 (Polynomial Path Orders and Argument Filterings). Let π
denote an argument filtering over a signature F . For s, t ∈ T (F ,V) we define

s ąπ
spop∗ps

t :⇔ π(s) ąspop∗ps
π(t) and sÁπ

spop∗ps
t :⇔ π(s) Áspop∗ps

π(t) ,

where ąspop∗ps
denotes the small polynomial path order as given by a safe mapping

safe, recursive symbols Kπ ⊆ Dπ and quasi precedence Á over the signature Fπ.
The order Áspop∗ps

denotes the extension of ąspop∗ps
by safe equivalence ≈s on Fπ.

The next theorem provides our first small polynomial path order processor.
We remark that the precondition that π is non-collapsing on defined symbols of
S is essential to bind the complexity as stated in the theorem. This is illustrated
in Example 14.67 in Section 14.7, where we revisit small polynomial path orders
in the context of dependency pairs.

Theorem 14.16. Consider an innermost complexity problem P = 〈S/W,Q, T 〉
where S and W are constructor TRSs. Let µ denote a usable replacement map
for S in P, and let π denote an argument filtering on the symbols in P that
agrees with µ and that is non-collapsing on defined symbols of S. Let Kπ ⊆ Dπ
denote a set of recursive function symbols, and Á an admissible precedence on
Fπ. The following processor is sound, for d := max{0}∪{rdÁ,Kπ(fπ) | fπ ∈ Fπ}.

S ⊆ ąπ
spop∗ps

W ⊆ Áπ
spop∗ps

` 〈S/W,Q, T]〉 : nd
.

Proof. By the assumptions of the processor, we have π(S) ⊆ ąspop∗ps
and π(W) ⊆

Áspop∗ps
. Consider a rewrite rule l→ r ∈ S ∪W such that π is non-collapsing on

the root of l. Then π(l) Áspop? π(r) implies that variables of π(r) are included
in π(l), and thus, π(l)→ π(r) is again a rewrite rule.

Similar to Section 9.1, we use the polynomial path order on sequences to define
a mapping G : T (F ,V) → N that measures the length of Q−→S/W descending
sequences, via predicative interpretations IN . Recall that the parameter N
dictates which terms are deleted in the predicative interpretation. Ideally, we
would like to instantiate N by the images uπ of π on irreducible terms, i.e.,

173

14 Complexity Processors in TCT

uπ = π(u) for u a normal form of −→P . However the set N potentially contains
also images of reducible terms, i.e, sπ ∈ N with sπ = π(s) but s not a normal
form of −→P . As IN (sπ) = [] in this case, one cannot hope for the required
embedding of IN (π(s)) −→P IN (π(t)).
To resolve the issue, we consider reductions where normal forms u which are

not constructor terms are replaced by a constructor ⊥. This gives us a one-to-one
correspondence between values T (C) and irreducible terms, and we can decide
based on π(u) if u should be considered reducible in the interpretation. Call
a term f(s1, . . . , sn) a garbage term if f 6∈ C but f(s1, . . . , sn) ∈ NF(S ∪ W).
Consider the following function (·)⊥ : T (F ,V)→ T (F ,V) defined by

f(s1, . . . , sn)⊥ :=

{
⊥ if f(s1, . . . , sn) is a garbage term,
f(s⊥1 , . . . , s

⊥
n) otherwise.

Here ⊥ is an arbitrary constant from C. Consider the restriction NT (Cπ) of
ground terms over the signature Fπ as given in definition Definition 9.28, where
in particular normal arguments are always values from T (Cπ). Abbreviate NT (Cπ)

by N, IT (Cπ) by I and define

G(t) := GKπ ,`(IT (Cπ)(t)) ,

where ` is the maximal size of a right-hand side in π(S ∪W). The theorem is a
straight forward consequence of the following claim.

Claim. Suppose s ∈ −→∗P(T) with π(s⊥) ∈ N. Then

s Q−→S t =⇒ G(π(s⊥)) > G(π(t⊥)) and π(t⊥) ∈ N ,
s Q−→W t =⇒ G(π(s⊥)) > G(π(t⊥)) and π(t⊥) ∈ N .

Proof of Claim. Let l → r ∈ P, and consider s ∈ −→∗P(T) with π(s⊥) ∈ N.
Suppose s = C[lσ] Q−→P C[rσ] = t with context C and substitution σ : V →
NF(Q). We employ the following observations.

(1) (lσ)⊥ = lσ⊥ where σ⊥(x) := (σ(x))⊥ for all x in the domain of σ.
The equality follows by the assumption that l is constructor based and lσ
is reducible.

(2) π(lσ) = π(l)σπ and π(rσ) = π(r)σπ where σπ(x) := π(σ(x)) for all x in
the domain of σ.
The property follows by a standard induction on l and r respectively.

(3) If π is non-collapsing on the root of l then

π((lσ)⊥) T (Cπ)−−−−→{π(l)→π(r)} π(rσ⊥) ,

where T (Cπ)−−−−→{π(l)→π(r)} denotes the restriction of −→{π(l)→π(r)} as given in
Definition 9.27.
Define σπ,⊥(x) := π(σ⊥(x)) for all x in the domain of σ⊥. Using the
previous two observations we have

π((lσ)⊥) = π(l)σπ,⊥ −→{π(l)→π(r)} π(r)σπ,⊥ = π(rσ⊥) .

174

14.3 Small Polynomial Path Orders as Complexity Pairs

Recall that σ : V → NF(Q) by assumption. Hence in particular for any
x in the domain of σ, we have σ(x) ⊆ NF(S ∪W) as P is an innermost
complexity problem. As a consequence, σ⊥(x) ∈ T (Cπ) by definition, and
thus σπ,⊥(x) ∈ T (Cπ). Since π(l)σπ,⊥ contains a defined symbol, viz, the
root fπ of π(l), we conclude π(l)σπ,⊥ 6∈ T (Cπ). The property follows.

(4) If π collapses the root f of l then π((lσ)⊥) D/≈ π(rσ⊥).
This follows by the order constraints and the assumption that W is a
constructor TRS, compare Lemma 9.15.

(5) If π((lσ)⊥) ∈ T (Cπ) then π((rσ)⊥) ∈ T (Cπ); in any case π((rσ)⊥) ∈ N.
It is not difficult to see that (rσ)⊥ can be obtained from rσ⊥ by replacing
garbage terms t in rσ⊥ by the constructor ⊥.
Consider first the case π((lσ)⊥) ∈ T (Cπ). Then π collapses the root of l. In
this case we already observed π((lσ)⊥) D/≈ π(rσ⊥) and so π(rσ⊥) ∈ T (Cπ).
Thus π((rσ)⊥) ∈ T (Cπ) as desired. Otherwise, suppose π does not collapse
the root of l. Since π(lσ) ∈ N by assumption, the third observation together
with Lemma 9.42(1) gives π(rσ⊥) ∈ N, which implies π((rσ)⊥) ∈ N.

(6) G(π(rσ⊥)) > G(π((rσ)⊥));
Consider the non-trivial case π((rσ)⊥) 6∈ T (Cπ), i.e., I (π((rσ)⊥)) 6= [].
Then

I (π(rσ⊥)) = [gn(t1, . . . , tk)] ++ IN(tk+1) ++ I (tk+l)

I (π((rσ)⊥)) = [gn(t′1, . . . , t
′
k)] ++ IN(t′k+1) ++ I (t′k+l) ,

where the terms t′i (i = 1, . . . , k + l) are obtained from ti by possibly
replacing sub-terms by ⊥ ∈ T (Cπ). Observe that gn(t1, . . . , tk) AKn,`

gn(t′1, . . . , t
′
k) does not necessarily hold, as a garbage term deep in ti

(i ∈ {1, . . . , k}) might be replaced, and thus ti D/≈ t′i does not necessarily
hold as required. Using Theorem 9.24 together with dp(ti) > dp(t′i) for all
i = 1, . . . , k we nevertheless have

GK,`(gn(t1, . . . , tk)) > GK,`(gn(t′1, . . . , t
′
k)) ,

since by a standard induction we also have

GK,`(I (tj)) > GK,`(I (t′j)) for all j = k + 1, . . . , k + l,

summing up using Lemma 9.23 we conclude G(π(rσ⊥)) > G(π((rσ)⊥)).

We return to the proof of the claim, which is by induction on C. In the base
case C = �. We analyse two cases separately:

- Suppose the root of l is collapsed by π. Hence l→ r ∈ W by assumption
on π. Since l is constructor based, it follows that π((lσ)⊥) ∈ T (Cπ), thus
π((rσ)⊥) ∈ T (Cπ) holds by Observation (4). Since π(u) = [] whenever
u ∈ T (Cπ), we obtain G(π((lσ)⊥)) = 0 = π((rσ)⊥) as desired.

175

14 Complexity Processors in TCT

- Suppose the root of l is not collapsed by π. In this case

π((lσ)⊥) T (Cπ)−−−−→π(l)→π(r) π(rσ⊥) ,

holds by Observation (3). Consider first the case l ąπ
spop∗ps

r. Using that
π((lσ)⊥) ∈ N by Lemma 9.42(2) we have I (π((lσ)⊥)) AKn,` I (π(rσ⊥)).
This allows us to conclude G(π((lσ)⊥)) > G(π(rσ⊥)) > G(π((rσ)⊥)) by
Observation (6), and (rσ)⊥ ∈ N by Observations (5).

Otherwise π(l) ≈s π(r) and l→ r 6∈ S. A standard induction on the defi-
nition of ≈s gives I (π(l)σπ,⊥) ≈ I (π(r)σπ,⊥). Since π((lσ)⊥) = π(l)σπ,⊥
and π(rσ⊥) = π(r)σπ,⊥ putting Observations (1) and (2) together, we have
G(π((lσ)⊥)) = G(π(rσ⊥)). We conclude G(π((lσ)⊥)) > G(π((rσ)⊥)) and
(rσ)⊥ ∈ N as in the previous case.

This finishes the base case. Consider now the inductive step

s = f(s1, . . . , si, . . . , sn) Q−→{l→r} f(s1, . . . , ti, . . . , sn) = t ,

with si Q−→{l→r} ti. We consider the non-trivial case that t is not a garbage term,
thus

s⊥ = f(s⊥1 , . . . , s
⊥
i , . . . , s

⊥
n)

t⊥ = f(s⊥1 , . . . , t
⊥
i , . . . , s

⊥
n) .

Note here that s is not garbage, since it is reducible by assumption. If π deletes
the rewrite position i in s, then l→ r 6∈ S by the assumption that π agrees with
the usable replacement map µ of S. Since in this case π(s⊥) = π(t⊥), the claim
follows. Hence suppose π does not delete the rewrite position i.
If π(f) = i, the assertion follows directly from induction hypothesis, hence

suppose π(f) = [i1, . . . , ik] with i ∈ {i1, . . . , ik}. Consider first the case that π
does not collapse on the root of l. Using π(s⊥) ∈ N it follows that the rewrite
position i is a safe argument position of fπ. From this it is not difficult to conclude
π(t⊥) ∈ N as by induction hypothesis π(t⊥i) ∈ N. Using Lemma 9.23 we conclude
G(π(s⊥)) > G(π(t⊥)) from the induction hypothesis G(π(t⊥i)) > G(π(s⊥i)) and
definition of I . Note that if l → r ∈ S, this result can be strengthened to
G(π(s⊥)) > G(π(s⊥)) as desired, using the strengthened induction hypothesis
G(π(s⊥i)) > G(π(t⊥i)). This concludes the case where π does not collapse the root
of l. Now finally suppose that π collapses the root of l. It suffices to consider the
new case that i is a normal argument position. In this case π(s⊥i) ∈ T (Cπ) by the
assumption π(s⊥) ∈ N. As a consequence of Observations (4) and (5), we know
dp(π(s⊥i)) > π(t⊥i), i.e., depths of normal arguments are not increasing. With the
help of Theorem 9.24 and Lemma 9.23 we conclude G(π(s⊥)) > G(π(t⊥)) exactly
as in Observation (6). As the Observations (4) and (5) also give π(t⊥i) ∈ T (Cπ),
we conclude π(t⊥) ∈ N. This finishes the proof of the claim. �

We return to the main proof. Consider a reduction

f(~v) Q−→S/W t1 · · · Q−→S/W tn ,

176

14.4 Dependency Pairs for Complexity Analysis

of a basic term f(~v). By the claim we obtain

G(π(f(~v)⊥)) > G(π(t⊥1)) > · · · > G(π(t⊥n)) ,

using that π(f(~v)⊥) = fπ(π(v1), . . . , π(vk)), Theorem 9.24 and Lemma 9.23 gives
the desired bound in the sum of depths of normal arguments in the filtered term
fπ(π(v1), . . . , π(vk)), hence in the size of f(~v).

14.3.1. Small Polynomial Path Orders in TCT

Small polynomial path orders as used in Theorem 14.16 (and as later ex-
tended in Theorem 14.68 and Theorem 14.69) are implemented by the processor
spopstarPS. To synthesise a suitable precedence, safe mapping and argument
filtering, TCT encodes the order constraints into propositional logic, relying on
the SAT-solver MiniSat to solve these constrains. From a satisfying assignment
TCT can then construct the desired order.

14.4. Dependency Pairs for Complexity Analysis

For termination analysis, it is nowadays standard to transform a termination
problem first into a dependency pair problem, compare [5, 76]. The dependency
pairs DP(R) of a TRS R contain for each call g(t1, . . . , tn) in a right-hand side r
of a rule f(l1, . . . , ln)→ r ∈ R, where g ∈ D, a dependency pair f](l1, . . . , ln)→
g](t1, . . . , tn). The marked symbols f] and g] are dependency pair symbols,
associated with the defined symbols f, g. Termination of R is equivalent to the
absence of dependency pair derivations

f]0(~s0) −→DP(R)/R f
]
1(~s1) −→DP(R)/R f

]
2(~s2) · · · ,

where one can assume that the arguments ~si (i ∈ N) are terms (over the original
signature) that are terminating with respect to R. This transformation opens
the door for a wealth of techniques, for an overview we refer the reader to [76].
Dependency pair derivations track single chains of successive function call,

but forget contexts. To make this technique applicable for runtime complexity
analysis, two variations of dependency pairs have been proposed in the literature.
Weak dependency pairs, introduced by Hirokawa and Moser [38], group parallel
function calls in a rewrite rule into a single dependency pair. Dependency tuples,
due to Noschinski et al. [63], group parallel and nested function calls. The latter
notion is only sound for innermost rewriting, whereas the former notion can
be used to track arbitrary derivation. This generality comes at the expense
of simplicity of the analysis carried out on the generated sub-problem. Here,
one still needs to account for the rewrite steps from the input problem R in
dependency pair derivations.
In the following, we introduce first a notion of dependency pair complexity

problem (DP problem for short). We then consider the above mentioned transfor-
mations of runtime complexity problems to dependency pair complexity problems.
The corresponding processors are given in Theorem 14.24 and Theorem 14.29

177

14 Complexity Processors in TCT

respectively. Neither [38] nor [63] treat relative rewriting. To cover also the case
where the weak component in a complexity problem is not empty, we reprove
the central theorems of [38, 63] here.

14.4.1. Dependency Pair Complexity Problems

A DP problem in our setting is a complexity problem whose strict and weak
component contains also dependency pairs. As in [38, 63] we allow compound
symbols in right hand sides of dependency pairs. The purpose of these symbols
is to group function calls. As for termination, we consider derivations starting
from marked terms only.

Definition 14.17 (Dependency Pairs, Dependency Pair Complexity Problem).
Let F be a signature with defined symbols D.

(1) For each f/k ∈ D, let f] denote a fresh function symbol of arity k, the
dependency pair symbol (of f). The least extension of F to all dependency
pair symbols is denoted by F].
For a term t ∈ T (F ,V) we define the marking of t as

t] :=

{
f](t1, . . . , tk) if t = f(t1, . . . , tk) and f ∈ D,
t otherwise.

For a set T ⊆ T (F ,V), we denote by T] the set of marked terms

T] = {t] | t ∈ T} .

(2) We denote by Com = {c0
0, c

1
0, . . . , c

0
1, c

1
1, . . . , c

0
2, c

1
2, . . . } a countable infinite

signature of constructor symbols, where the arity of cik in Com is k for all
i, k ∈ N. Symbols in Com are called compound symbols.

The identity of compound symbols occurring in terms is of no importance.
This justifies that we write com(t]1, . . . , t

]
k) for terms cik(t]1, . . . , t

]
k) (i ∈ N),

for k = 1 we denote by com(t]) also the term t].

(3) A dependency pair (DP for short) is a rewrite rule l] → com(r]1, . . . , r
]
k)

where l, r1, . . . , rk ∈ T (F ,V).

(4) Let S and W be two TRSs over T (F ,V), and let S] and W] be two sets
of dependency pairs. A dependency pair complexity problem, or simply DP
problem, is a runtime complexity problem P] = 〈S] ∪ S/W] ∪W,Q, T]〉
over marked basic terms T] ⊆ T]b (D] C).

We keep the convention thatR,S,W, . . . are TRSs over T (F ,V), and the marked
version R],S],W], . . . always denote sets of dependency pairs. For each k ∈ N
we write ck for the compound symbol c0

k.

Example 14.18 (Continued from Example 14.1). Consider the dependency pairs

74 : 0 +] y → c0 75 : s(x) +] y → x+] y

76 : 0×] y → c0 77 : s(x)×] y → c2(x+] (x× y), x×] y) .

178

14.4 Dependency Pairs for Complexity Analysis

Let T]mult be the set of marked basic terms with defined symbols +],×] and
constructors s, 0. Then P]mult := 〈{74–77}/Rmult,Rmult, T]mult〉, where Rmult are
the rules for addition and multiplication depicted in Example 14.1, is a DP
problem. We anticipate that the DP problem P]mult reflects the complexity of
the canonical innermost runtime complexity problem Pmult-i of Rmult, compare
Theorem 14.29 below. C

Call an n-holed context C a compound context if it contains only compound
symbols. Consider the P]mult derivation

D : 2×] 1 −→P]mult

c2(1 +] (1× 1),1×] 1)

−→P]mult

c2(1 +] (1 + (0× 1)),1×] 1)

−→P]mult

· · ·

−→P]mult

c2(1 +] 1,1×] 1)

−→2
P]mult

c2(0 +] 1, c2(1 +] (0× 1),0×] 1)) .

Observe that any term in the above sequence can be written as C[t1, . . . , tn]
where C is a maximal compound context, and t1, . . . , tn are terms without
compound symbols. For instance, the last term in this sequence is given as
C[0×]1,1+] (0×1),0×]1] for C := c2(�, c2(�,�)). This holds even in general.
Note that the terms ti (i = 1, . . . , n) are not necessarily marked, as our notion
of dependency pair problem permits collapsing rule l] → x for x a variable. We
capture this observation with the set T]→.

Definition 14.19. The set T]→ is defined as the least set of terms such that

(1) if t ∈ T (F) then t ∈ T]→ and t] ∈ T]→; and

(2) if t1, . . . , tk ∈ T]→ and ck ∈ Com then ck(t1, . . . , tk) ∈ T]→.

The simple observation can now be formalised as follows.

Lemma 14.20. For every TRS R and DPs R], we have −→∗R]∪R(T]→) ⊆ T]→.
In particular, −→∗P](T

]) ⊆ T]→ holds for every DP problem P].

Proof. Let s ∈ T]→, and suppose s −→R]∪R t holds. Then without loss of
generality,

s = C[s1, . . . , si, . . . , sn] −→R]∪R C[s1, . . . , ti, . . . , sn] = t ,

with si −→R]∪R ti for maximal compound context C and possibly marked terms
s1, . . . , sn containing no compound symbols. Since compound symbols occur
only in roots of right-hand sides in R] we see that ti ∈ T]→ and so t ∈ T]→. The
first half of the lemma follows from this by inductive reasoning. From this, the
second half of the lemma follows, using that T] ⊆ T]→, taking R] := S] ∪W]

and R := S ∪W. �

179

14 Complexity Processors in TCT

14.4.2. Weak Dependency Pairs

Definition 14.21 (Weak Dependency Pairs [38]). Let R denote a TRS such
that the defined symbols of R are included in D.

(1) Consider a rule l → C[r1, . . . , rk] in R, where C is a maximal context
containing only constructors. We define

WDP(l→ r) := l] → com(r]1, . . . , r
]
k) ,

and call WDP(l→ r) the weak dependency pair of l→ r.

(2) The weak dependency pairs WDP(R) of a TRS R are given by

WDP(R) := {WDP(l→ r) | l→ r ∈ R} .

Note that the choice of the compound symbols used in WDP(R) is arbitrary.1

Example 14.22 (Continued from Example 14.1). Consider the TRS Rmult given
in Example 14.1. Then WDP(Rmult) consists of the following four rules:

78 : 0 +] y → c0 79 : s(x) +] y → x+] y

80 : 0×] y → c0 81 : s(x)×] y → x+] (x× y) . C

In [38] it is shown that for any term t ∈ T (F ,V),

dh(t,−→R) =k dh(t],−→WDP(R)∪R) .

We extend this result to our setting, where the following lemma serves as a
preparatory step.

Lemma 14.23. Let R and Q be two TRSs, such that the defined symbols of R
are included in D. Then every derivation

t = t0
Q−→R1

t1
Q−→R2

t2
Q−→R3

· · · ,

for basic term t and Ri ⊆ R (i > 1) is simulated step-wise by a derivation

t] = s0
Q−→WDP(R1)∪R1

s1
Q−→WDP(R2)∪R2

s2
Q−→WDP(R3)∪R3

· · · ,

and vice versa.

Proof. For a term s, let P (s) ⊆ Pos(s) be the set of minimal positions p such that
the symbol occurring in s at position p is either a defined symbol or a variable.
Notice that all positions in P (s) are parallel. Call a term u = C[s1, . . . , sn] good
for s if C is a context containing only constructors and compound symbols,
and there exists an injective mapping m : P (s)→ Pos(C) that associates with
every R redex s|p a possibly marked WDP(R)∪R redex u|m(p): for all p ∈ P (s),
m(p) ∈ Pos(C) with C|m(p) = � and u|m(p) = s|p or u|m(p) = (s|p)].

1In our implementation, we have chosen to assign for each rule a fresh compound symbol.

180

14.4 Dependency Pairs for Complexity Analysis

Consider s Q−→l→r,p t for l → r ∈ R, and suppose WDP(l → r) = l] →
com(r]1, . . . , r

]
m). We show that for every term u good for s ∈ T (F ,V), there

exists a term v with
u Q−→{WDP(l→r),l→r} v ,

that is good for t. This establishes the simulation from left to right. Suppose
u = C[s1, . . . , sn] is good for s as witnessed by the mapping m : P (s)→ Pos(C)
and C of the required form. Let p′ be a prefix of the rewrite position p with
p′ ∈ P (s). This position exists, as the root of s|p is defined. Let si = u|m(p′) be
the possible marked occurrence of s|p′ in u. We distinguish three cases.
Consider first the case p′ < p. Then s|p′ Q−→l→r,>ε t|p′ by assumption. The

latter implies

u = C[s1, . . . , si, . . . , sn] Q−→l→r C[s1, . . . , ti, . . . , sn] =: v ,

for si and ti the possibly marked versions of s|p′ and t|p′ respectively. By
assumption p′ ∈ P (s) the root of t|p′ , namely the root of s|p′ , is defined. From
this it is not difficult to see that P (s) = P (t) and m : P (s)→ Pos(C) witnesses
that v is good for t.
Next consider that p′ = p and u|m(p) is not marked. by assumption thus

u|m(p) = lσ for σ a substitution such that arguments of lσ are Q normal forms.
Hence

u = C[s1, . . . , lσ, . . . , sn] Q−→l→r C[s1, . . . , rσ, . . . , sn] =: v .

We claim v is good for t. Let {q1, . . . , qk} = P (rσ) and denote by Cr the context
of rσ with holes at positions P (rσ). Set C ′ := C[�, . . . , Cr[�, . . . ,�], . . . ,�] such
that v = C ′[s1, . . . , (rσ)|q1 , . . . , (rσ)|qk , . . . , sn]. By construction, C ′ contains
only constructors or compound symbols. Exploiting the mapping m : P (s)→
Pos(C) witnessing that u is good for s, it is not difficult to extend this to an
injective function m′ : P (t)→ Pos(C ′) witnessing that v is good for t.
Consider the final case p′ = p but u|m(p) marked. We proceed as above, but

use the reduction

u = C[s1, . . . , si, . . . , sn] Q−→WDP(l→r) C[s1, . . . ,com(r]1σ, . . . , r
]
mσ), . . . , sn] =: v ,

instead. For the context Cr in v, we use the maximal context of the term
com(r]1σ, . . . , r

]
mσ) which contains only compound symbols or constructors. To

see that v is good for t, one then uses that r1σ, . . . , rmσ contain all maximal
occurrences of sub-terms of s|p which are variables or have a defined root symbol.
This completes the proof of the direction from left to right.

For the direction from right to left, consider a term u = C[s1, . . . , sn] where
C is a compound context, and si (i = 1, . . . , n) denote possibly marked terms
without compound symbols. Call a term s ∈ T (F ,V) good for u if s is obtained
from u by unmarking symbols, and replacing C with a context consisting only
of constructors. By case analysis on u Q−→

WDP(R])∪R v, it can be verified that
for any such u if s is good for u, then there exists a term t with s Q−→R t that is
good for v. Since the starting term t] is trivially of the considered shape, the
simulation follows. �

181

14 Complexity Processors in TCT

Theorem 14.24 (Weak Dependency Pair Processor). Let P = 〈S/W,Q, T 〉
denote a runtime complexity problem. The following processor is sound and
complete.

` 〈WDP(S) ∪ S/WDP(W) ∪W,Q, T]〉 : f
` 〈S/W,Q, T 〉 : f

WDP .

Proof. Set P] := 〈WDP(S) ∪ S/WDP(W) ∪ W,Q, T]〉. Suppose first cpP] ∈
O(f(n)). Lemma 14.23 shows that every −→P reduction of t ∈ T is simulated
by a corresponding −→P] reduction starting from t] ∈ T]. For the application of
Lemma 14.23, notice that since P is a runtime complexity problem, neither S
nor W define constructors, i.e., DS ∪ DW ⊆ D. Observe that every Q−→S step in
the considered derivation is simulated by a Q−→WDP(S)∪S step. We thus obtain
cpP ∈ O(f(n)). This proves soundness, completeness is obtained dual. �

Observe that the generated sub-problem is a DP complexity problem as given
by Definition 14.17. Notice also that when the input is an innermost complexity
problem, then so is the obtained DP problem.

Example 14.25 (Continued from Example 14.1 and 14.22). Reconsider the TRS
Rmult given in Example 14.1, together with WDP(Rmult) depicted in Exam-
ple 14.22. According to the weak dependency pair processor, the inference

` 〈WDP(Rmult) ∪Rmult/∅,∅, T]mult〉 : n
2

` 〈Rmult/∅,∅, Tmult〉 : n2 WDP .

is sound and complete. C

The change in signature often makes the generated sub-problem easier to analyse.
In particular, the generated sub-problem is amendable to many of the processors
suited for dependency pair problems introduced below.

14.4.3. Dependency Tuples

Consider a DP problem of the form 〈S]/W] ∪W,Q, T]〉. The analysis of this
problem requires only an estimation of applications of DPs, which are applied in
compound contexts only. This property makes the analysis considerably simpler.
Some processors tailored for DP problems are even sound only in this setting, for
instance (safe) reduction pairs (cf. Definition 14.32 below) and various syntactic
simplifications proposed in Section 14.5.

In contrast to weak dependency pairs, dependency tuples [63] allow the trans-
lation of an innermost runtime complexity problem directly into a DP problem
of this simpler form. This however comes at the expense of completeness. Also,
a more complicated set of dependency pairs is required.

Definition 14.26 (Dependency Tuples [63]). Let R denote a TRS such that
the defined symbols of R are included in D.

182

14.4 Dependency Pairs for Complexity Analysis

(1) Consider a rule l→ r in R, and let r1, . . . , rk denote all sub-terms of the
right-hand side whose root symbol is in D. We define

DT(l→ r) := l] → com(r]1, . . . , r
]
k) ,

and call DT(l→ r) the dependency tuple of l→ r.

(2) The dependency tuples DT(R) of a TRS R are given by

DT(R) := {DT(l→ r) | l→ r ∈ R} .

Example 14.27 (Continued from Example 14.18). The four DPs (74)–(77) de-
picted in Example 14.18 constitute the dependency tuples of Rmult from Exam-
ple 14.1. C

The central theorem of [63] states that dependency tuples are sound for
innermost runtime complexity analysis. We extend this result to a relative
setting.

Lemma 14.28. Let R and Q be two TRSs, such that the defined symbols of R
are included in D, and such that NF(Q) ⊆ NF(R). Then every derivation

t = t0
Q−→R1

t1
Q−→R2

t2
Q−→R3

· · · ,

for basic term t and Ri ⊆ R (i > 1) is simulated step-wise by a derivation

t] = s0
Q−→DT(R1)∪R1

s1
Q−→DT(R2)∪R2

s2
Q−→DT(R3)∪R3

· · · .

Proof. The proof follows the pattern of the proof of Lemma 14.23. Define P (s) as
the restriction of Pos(s) to redexes in s, more precise let P (s) collect all positions
p which satisfy s|p Q−→R u for some term u. Call a term u = C[s1, . . . , sn] good
for s if C is a context containing only constructors and compound symbols, and
there exists an injective function m : P (s)→ Pos(C) such that u|m(p) = (s|p)]
for every position p ∈ Pos(s) holds. For terms t, let PosD(t) ⊆ Pos(t) denote
the set of all positions p such that the root of the sub-term r|p is a defined
symbol from D.
Consider a rewrite step s = C[lσ] Q−→l→r,p C[rσ] = t for position p, context

C, substitution σ and rewrite rule l → r ∈ R. Observe that P (t) ⊆ (P (s) \
{p}) ∪ {p·q | q ∈ PosD(r)}. This holds as the substitution σ maps variables to
NF(Q) ⊆ NF(R).

We now show that if u = C[s1, . . . , sn] is good for s, then u Q−→DT(R)/R v holds

for some term v good for t. Set l] → com(r]1, . . . , r
]
n) := DT(l→ r). Using that

p ∈ P (s),

u = C[s1, . . . , l
]σ, . . . , sn] Q−→DT(l→r) C[s1, . . . ,com(r]1σ, . . . , r

]
mσ), . . . , sn] =: v′ ,

holds, where

C ′ = C[�, . . . ,com(�, . . . ,�), . . . ,�] , and

v′ = C ′[s1, . . . , r
]
1σ, . . . , r

]
mσ, . . . , sn] .

183

14 Complexity Processors in TCT

We verify that v′ Q−→∗R v for some v good for t. Recall that by the observation
on P (t), every position q ∈ P (t) \ P (s) can be decomposed into positions p and
qi ∈ PosD(r) with q = p·qi such that r|qi = ri for i = 1, . . . ,m. Let q′i denote
the position of the occurrence r]i in the right-hand side com(r]1, . . . , r

]
m), and set

m(q) := m(p)·q′i. Note that the resulting function is an injective function from
P (t) to Pos(C ′). By construction we have v′|m(q) = r]iσ = (t|q)] for all positions
q = p·qi ∈ P (t) \ P (s). For q not of this shape we have q ∈ P (s) \ {p} by the
observation on P (t). Hence either (s|q)] = (t|q)] or otherwise s|q 6= t|q and the
assumption q 6= p gives q < p. It follows that (t|q)] Q−→∗l→r,>ε (t|q)]. Rewriting in
v′ all terms v′|m(q) = (s|q)] with q ∈ P (s) \ {p} to (t|q)] gives the desired term v
good for t. �

Theorem 14.29 (Dependency Tuple Processor). Let P = 〈S/W,Q, T 〉 denote
an innermost runtime complexity problem. The following processor is sound.

` 〈DT(S)/DT(W) ∪ S ∪W,Q, T]〉 : f
` 〈S/W,Q, T 〉 : f

DT .

Proof. The theorem follows by reasoning identical to Theorem 14.24, using
Lemma 14.28. �

We emphasise that forW = ∅, Theorem 14.29 corresponds to [63, Theorem 10].
The following example clarifies that the restriction to innermost rewriting is
necessary.

Example 14.30 (Continued from Example 9.12). Reconsider the rewrite system
Rdup given in Example 9.12 on page 94, which served as a counter example to
soundness of small polynomial path orders for full rewriting. This TRS admits
exponential long outermost reductions, obtained by successively duplicating
redexes. The dependency tuples DT(Rdup) are given by the three rules

82 : btree](0)→ c0 83 : dup](; t)→ c0

84 : btree](s(n))→ c2(dup](btree(n)), btree](n)) .

It is not difficult to see that in a DT(Rdup) ∪ Rdup derivation starting from
btree](n) (n ∈ N), the overall number of applications of a dependency pair is
bounded linearly in n, i.e., the judgement ` 〈DT(Rdup)/Rdup,∅, T]b 〉 : n holds.
Permitting the inference

` 〈DT(Rdup)/Rdup,∅, T]b 〉 : n
` 〈Rdup/∅,∅, Tb〉 : n

would allow us to wrongly deduce that the runtime complexity of Rdup is linear.C

Example 14.31 (Continued from Example 14.2). The following inference starts
the proof of quadratic innermost runtime complexity of the TRS RK given in

184

14.4 Dependency Pairs for Complexity Analysis

Example 14.2. We transform its canonical innermost complexity problem into a
DP problem using dependency tuples (Theorem 14.29).

` 〈S]K/RK,RK, T]K〉 : n
2

` 〈RK/∅,RK, TK〉 : n2 DT .

Here S]K := DT(RK) consists of the following rules.

85 : src]((n,w,m))→ c0 86 : wt]((n,w,m))→ c0 87 : trg]((n,w,m))→ c0

88 : forest](graph(N,E))→ c3(kruskal](sort(E), [], partitions(N)),

sort](E), partitions](N))

89 : partitions]([])→ c0

90 : partitions](n :: N)→ partitions](N)

91 : kruskal]([],W, P)→ c0

92 : kruskal](e :: E,W,P)→ c2(kruskal?](inBlock(e, P), e, E,W,P),

inBlock](e, P))

93 : kruskal?](tt, e, E,W,P)→ kruskal](E,W,P)

94 : kruskal?](ff, e, E,W,P)→ c2(kruskal](E, e :: W, join(e, P, [])),

join](e, P, []))

95 : inBlock](e, [])→ c0

96 : inBlock](e, p :: P)→ c7((src(e) ∈ p ∧ trg(e) ∈ p) ∨] inBlock(e, P),

src(e) ∈ p ∧] trg(e) ∈ p, src(e) ∈] p,
trg(e) ∈] p, src](e), trg(e)], inBlock](e, P))

97 : join](e, [], q)→ c0

98 : join](e, p :: P, q)→ c6(join?](src(e) ∈ p ∨ trg(e) ∈ p, e, p, P, q),
src(e) ∈ p ∨] trg(e) ∈ p, src(e) ∈] p,
trg(e) ∈] p, src](e), trg(e)])

99 : join?](tt, e, p, P, q)→ c2(join](e, P, p ++ q), p ++] q)

100 : join?](ff, e, p, P, q)→ join](e, P, q)

101 : sort]([])→ c0

102 : sort](e :: E)→ c2(insert](e, sort(E)), sort](E))

103 : insert](e, [])→ c0

104 : insert](e, f :: E)→ c4(insert?](wt(e) 6 wt(f), e, f, E),

wt(e) 6] wt(f),wt](e),wt](f))

105 : insert?](tt, e, f, E)→ c0

106 : insert?](ff, e, f, E)→ insert](e, E)

107 : n ∈] []→ c0

185

14 Complexity Processors in TCT

108 : n ∈] (m :: p)→ c3(n = m ∨] n ∈ p, n =] m,n ∈] p)
109 : [] ++] q → c0

110 : (n :: p) ++] q → p ++] q

111 : 0 =] 0→ c0 112 : s(x) =] 0→ c0

113 : 0 =] s(y)→ c0 114 : s(x) =] s(y)→ x =] y

115 : 0 6] 0→ c0 116 : s(x) 6] 0→ c0

117 : 0 6] s(y)→ c0 118 : s(x) 6] s(y)→ x 6] y

119 : ff ∧] ff → c0 120 : ff ∧] tt→ c0

121 : tt ∧] ff → c0 122 : tt ∧] tt→ c0

123 : ff ∨] ff → c0 124 : ff ∨] tt→ c0

125 : tt ∨] ff → c0 126 : tt ∨] tt→ c0 . C

14.4.4. Reduction Pairs

Reduction pairs were introduced in the context of termination analysis [5].
Safe reduction pairs [38], aka com-monotone reduction pairs [63], constitute a
variation that accounts for compound symbols in complexity problems.

Definition 14.32 (Safe Reduction Pair [38]). A reduction pair (%,�) consists
of a rewrite preorder % and a compatible well-founded order � which is closed
under substitutions. Here compatibility means that the inclusion % · � ·% ⊆ �
holds.
The reduction pair (%,�) is called safe if the order � is monotone in all

coordinates on compound symbols, i.e., for every ck ∈ Com

ck(s1, . . . , si, . . . , sk) � ck(s1, . . . , t, . . . , sk) ,

for all i = 1, . . . , k and terms s1, . . . , sk, t, with si � t.

Proposition 14.33 ([38]). Let (%,�) be a safe reduction pair, let S] be a set
of weak dependency pairs and let W be a rewrite system. If S] ⊆ � and W ⊆ %
then dh(t,−→S]/W) 6 f(t) where f : N→ N is the complexity induced by �.

The above proposition refers to the application of safe reduction pairs in the
main theorem of Hirokawa and Moser [38]. Together with the following simple
observation, this proposition is a straight forward consequence of our complexity
pair processor (Theorem 14.10)

Lemma 14.34. Let P] = 〈S]/W] ∪W,Q, T]〉 be a DP problem such that the
strict component contains no rewrite rules.

(1) Suppose µ denotes a usable replacement map for dependency pairs R] in
P]. Then µcom is a usable replacement map for R] in P]. Here µcom
denotes the restriction of µ to compound symbols in the following sense:
µcom(cn) := µ(cn) for all cn ∈ Com, and otherwise µcom(f) := ∅ for
f ∈ F].

186

14.4 Dependency Pairs for Complexity Analysis

(2) If (%,�) denotes a safe reduction pair, then it is also a P-monotone
complexity pair.

Proof. The first assertion is a straight forward consequence of Lemma 14.20.
From this one derives that reduction pairs are P-monotone, and thus the second
assertion holds. �

14.4.5. Derivation Trees

Consider a term t ∈ −→P](T
]), for a DP problem P] with starting terms T].

Then t = C[t1, . . . , tn] ∈ T]→ for some compound context C. Any reduction of
t consists of possibly interleaved, but otherwise independent, reductions of the
terms t1, . . . , tn. To avoid reasoning up to permutations of rewrite steps, we
introduce a notion of derivation tree that disregards the order of parallel steps
under compound contexts.

Definition 14.35 (Hypergraph).

(1) A (directed) hypergraph over labels L is a triple G = (N,E, lab) where N
is a set of nodes, E ⊆ N × P(N) a set of edges, and lab : N ∪ E → L a
labeling function.

For e = 〈u, {v1, . . . , vn}〉 ∈ E we call the node u the source, and nodes
v1, . . . , vn the targets of e.

(2) We denote by −⇀G the successor relation in the hypergraph G, i.e., u −⇀G v
if there exists an edge e = 〈u, {v1, . . . , vn}〉 ∈ E with v ∈ {v1, . . . , vn}.
We set u K−⇀G v for labels K ⊆ L if additionally lab(e) ∈ K holds, and
abbreviate {l}−−⇀G by l−⇀G. If there exists a path u = w1 −⇀G · · · −⇀G wn = v
we say that v is reachable from u in G.

(3) We call a hypergraph G a hypertree (tree for short) if there exists a unique
node u ∈ N , the root of G, such that every v ∈ N is reachable from u by
a unique path.

We keep the convention that every node is the source of at most one edge.

Definition 14.36 (Derivation Tree). Let P] = 〈S] ∪S/W] ∪W,Q, T]〉 denote
a dependency pair problem.

(1) Consider a term t ∈ T](F ,V) ∪ T (F ,V). The set of P] derivation trees
of t, in notation DTreeP](t), is defined as the least set of hypertrees such
that:

(i) T ∈ DTreeP](t) where T consists of a unique node labeled by t.

(ii) Suppose t Q−→{l→r} com(t1, . . . , tn) for l → r ∈ P] and let Ti ∈
DTreeP](ti) for i = 1, . . . , n. Then T ∈ DTreeP](t), where T is a tree
with children Ti (i = 1, . . . , n), the root of T is labeled by t, and the
edge from the root of T to its children is labeled by l→ r.

(2) For a P] derivation tree T we denote by |T |R]∪R the edges labeled by a
rule or dependency pair l→ r ∈ R] ∪R.

187

14 Complexity Processors in TCT

2×] 1

77 : s(x)×] y → c2(y +] (x× y), x×] y)

1 +] (1× 1)

31 : s(x)× y → y + (x× y)

1 +] (1 + (0× 1))

1 +] 1

75 : s(x) +] y → x+] y

0 +] 1

74 : 0 +] y → c0

◦

1×] 1

77 : s(x)×] y → c2(y +] (x× y), x×] y)

1 +] (0× 1)

30 : 0× y → 0

1 +] 0

29 : s(x) +] y → x+] y

0 +] 0

74 : 0 +] y → c0

◦

0×] 1

76 : 0×] y → c0

◦

Figure 14.2.: P]mult derivation tree Tmult of 2×] 1.

Consider a P] derivation tree T . Note that every edge 〈u, {v1, . . . , vn}〉 in
T corresponds to a rewrite steps t Q−→l→r com(t1, . . . , tn), with t and t1, . . . , tn
precisely the label of source u and targets v1, . . . , vn respectively, and l→ r the
label of the considered edge. We also say that l→ r was applied at node u in T .
It is not difficult to lift this correspondence to rewrite sequence of terms t] ∈ T].
This motivates our notion of the size |T |R]∪R of T with respect to R] ∪ R:
|T |R]∪R refers to the number applications of rewrite rules and dependency pairs
l → r ∈ R] ∪ R. This correspondence leads to the characterisation of the
complexity function of DP problems P] given in Lemma 14.38 below. The next
example illustrates this.

Example 14.37 (Continued from Example 14.18). In Figure 14.2 we depict a
P]mult derivation tree Tmult of the term 2 ×] 1. Solid nodes indicate applica-
tions of DPs from the strict component S]mult. Conversely, dashed nodes indicate
applications of weak rules. The dotted lines indicate that we left out some
rewrite steps with respect to Rmult. C

Lemma 14.38. Let P] = 〈S] ∪ S/W] ∪W,Q, T]〉 be a DP problem. Then for
every t ∈ T (F ,V) ∪ T](F ,V), we have

dh(t, Q−→S]∪S/W]∪W) =k max{|T |S]∪S | T is a P]-derivation tree of t} .

In particular,

cpP](n) =k max{|T |S]∪S | T is a P]-derivation tree of t ∈ T] with |t| 6 n} ,

holds.

188

14.4 Dependency Pairs for Complexity Analysis

Proof. We consider the first assertion. Let t ∈ T (F ,V) ∪ T](F ,V), and abbrevi-
ate

s := max{|T |S]∪S | T is a P]-derivation tree of t}
` := dh(t, Q−→S]∪S/W]∪W) ..

We show ` >k s and s >k `. For the first inequality, suppose s is well-defined.
Hence there exists a P] derivation tree T of t with |T |S]∪S = s. A breath first
traversal on T constructs a P] derivation D, such that every application of
l → r ∈ S] ∪ S translates to an application of l → r in D. This derivation D
then witnesses ` >k s.

Inversely, for the second equality one can construct for an arbitrary P] deriva-
tion D starting from t ∈ T] a P] derivation tree T . Every application of a
rule l → r ∈ P] in D translates to a unique edge in T . The construction is
carried out by induction on the length of D. One uses that the final term in this
derivation is of the form C[u1, . . . , un] ∈ T]→ for C a maximal compound context
(compare Lemma 14.20). Note also that for each sub-term ui (i = 1, . . . , n), the
constructed tree T contains a dedicated leaf labeled by ui. This shows s >k `.�

Remark. Our notion of derivation trees is related to the notion of chain tree
given by Noschinski et.al. [63]. Whereas in P] derivation trees each edge corre-
sponds to a single rewrite step, in chain trees an edge corresponds to a dependency
pair step l]σ → com(r]1σ, . . . , r

]
kσ) followed by normalisation of unmarked sub-

terms in the reduct. This notion is of limited use in our setting, as we also want
to account for the normalisation steps in Lemma 14.38.

14.4.6. Dependency Graphs for Complexity Analysis

The notion of dependency graph, a form of call and data flow graph, was initially
proposed for the termination analysis [5]. We adapt this notion to complexity
problems, compare also [39].

Definition 14.39 (Dependency Graph). Let P] = 〈S] ∪S/W] ∪W,Q, T]〉 de-
note a DP problem.

(1) The nodes of the dependency graph (DG for short) G of P] are the depen-
dency pairs from S] ∪W], and there is an arrow labeled by i ∈ N from
s] → com(t]1, . . . , t

]
n) to u] → com(v]1, . . . , v

]
m) if for some substitutions

σ, τ : V → T (F ,V), t]iσ
Q−→∗S∪W u]τ holds.

(2) A graph G is called an approximated dependency graph for P], if it is a
sub-graph of the dependency graph of P] in the following sense. The nodes
of G are the dependency pairs from S]∪W], and whenever there is an arrow
labeled by i ∈ N from s] → com(t]1, . . . , t

]
n) to u] → com(v]1, . . . , v

]
m) in

the dependency graph of P], then this arrow occurs also in G.

The dependency graph is not computable in general, however it is well under-
stood how approximated dependency graphs can be computed [76].

189

14 Complexity Processors in TCT

7776 75 74

2 1

12 1

Figure 14.3.: Dependency Graph of P]mult.

Example 14.40 (Continued from Example 14.18). In Figure 14.3 we depict the
dependency graph of the DP problem P]mult = 〈{74–77}/Rmult,Rmult, T]mult〉,
where the nodes (74)–(77) refer to the DPs given in Example 14.18. C

The dependency graph G indicates in which order dependency pairs can occur
in a derivation tree of P]. To make this intuition precise, we adapt the notion of
DP chain known from termination analysis. Recall that for a derivation tree T ,
−⇀T denotes the successor relation, and R−⇀T its restriction to edges labeled by
l→ r ∈ R.

Definition 14.41 (Dependency Pair Chain). Let T be a derivation tree, and
consider a path

u1
{l1 → r1}−−−−−−⇀T · S ∪W−−−−⇀∗T u2

{l2 → r2}−−−−−−⇀T · S ∪W−−−−⇀∗T · · · ,

for a sequence of dependency pairs C : l1 → r1, l2 → r2, The sequence C is
called a dependency pair chain (in T), or DP chain for brevity.

Example 14.42 (Continued from Example 14.40). Reconsider the P]mult deriva-
tion tree Tmult given in Figure 14.2. This tree gives rise to three maximal chains:
77,75,74; 77,77,75,74 and 77,77,76. C

Lemma 14.43. Every chain in a P] derivation tree is a path in the dependency
graph of the DP problem P].

Proof. Let P] = 〈S] ∪ S/W] ∪W,Q, T]〉 and consider two successive elements
l1 → r1 := s] → com(t]1, . . . , t

]
n) and l2 → r2 := u] → cm(v]1, . . . , v

]
m) in a

dependency pair chain of a P] derivation tree T . Thus there exists nodes
u1, u2, v1, v2 with

u1
l1 → r1−−−−⇀T u2

S ∪W−−−−⇀∗T v1
l2 → r2−−−−⇀T v2 ,

and thus there exists substitutions σ, τ such that u2 is labeled by t]iσ for some
i ∈ {1, . . . , n} and v1 by u]τ . As u2

S ∪W−−−−⇀∗T v1 we have t]iσ
Q−→∗S∪W u]τ by

definition, and thus there is an edge from l1 → r1 to l2 → r2 in the DG of P],
and hence in G. The lemma follows from this. �

14.4.7. Dependency Pairs in TCT

In TCT, the transformation dependencyPairs implements Theorem 14.24.

190

14.4 Dependency Pairs for Complexity Analysis

TCT-interactive 14.7 (Continued from Session 14.5)

TCT> apply dependencyPairs

Problems simplified. Use ’state’ to see the current proof state.

TCT> state
Current Proof State --

Selected Open Problems:

Strict DPs:
{ +^#(0(), x) -> c_1(x)
, +^#(s(x), y) -> c_2(+^#(x, y))
, *^#(s(x), y) -> c_3(+^#(y, *(x, y))) }

Strict Trs:
{ +(0(), x) -> x
, +(s(x), y) -> s(+(x, y))
, *(s(x), y) -> +(y, *(x, y)) }

Weak DPs: { *^#(0(), x) -> c_4() }
Weak Trs: { *(0(), x) -> 0() }
StartTerms: basic terms
Strategy: none

--
TCT>

On the canonical innermost runtime complexity problem of the TRS RK from
Example 14.2, TCT produces the DP problem depicted in Example 14.31 (modulo
renaming of compound symbols) as follow.

TCT-interactive 14.8

TCT> load "examples/kruskal.trs"
$..
TCT> apply dependencyTuples

Problems simplified. Use ’state’ to see the current proof state.

TCT>

Note that TCT does not allow the application of dependency tuples when the
given complexity problem is not an innermost runtime complexity problem. In
general, TCT always takes care that preconditions of processors are taken into
account.
In TCT, we currently employ the dependency graph approximation given by

Thiemann [76, Section 3.1] for Q-restricted rewriting. To inspect the approx-
imated dependency graph, TCT provides the command wdgs (the acronym for
weak dependency graphs) that both displays and returns the list of dependency
graphs of all open problems. To see this information in GNU Emacs when the TCT
major mode is running, issue the command C-c s. This opens a new frame that
visualises the current state, including dependency graphs whenever a DP problem
is present. Compare Figure 14.4 that shows the approximated dependency graph
computed for the running example 〈S]K/RK,RK, T]K〉 loaded in Session 14.8. In
the displayed dependency graph, cycles denote nodes of the dependency graph,
and rectangles visualise the induced congruence, i.e., maximal cycles in the DG.
The directed acyclic graph obtained by identifying nodes with their congruence

191

14 Complexity Processors in TCT

Figure 14.4.: Dependency Graphs in GNU Emacs major mode.

class is also called a congruence dependency graph (CDG for short) [39]. In
correspondence to the command wdgs, TCT provides the command cwdgs which
computes the congruence dependency graphs on open problems.

14.5. Syntactic Simplifications

In this section we introduce a handful of syntactic simplifications. None of the
observations is very deep. Nevertheless the resulting processors are important.
They allow the reduction of a complexity problem to a core set of rules, reflecting
the complexity of the input problem asymptotically.

14.5.1. Usable Rules

In termination analysis it is standard to consider only those rewrite rules that can
occur between applications of dependency pairs, the usable rules. Hirowaka and
Moser [38] have shown that this technique can be safely employed for complexity
analysis. Following definition captures an approximation of usable rules that
looks at defined function symbols.

Definition 14.44 (Usable Rules). Consider a DP problem P] = 〈S] ∪ S/W] ∪
W,Q, T]〉.

192

14.5 Syntactic Simplifications

(1) Let DP] collect be the defined symbols in P], i.e.,

DP] := {f | f(l1, . . . , lk)→ r ∈ P]} .

We define the binary relation Bd on DP] such that f Bd g holds if there
exists a rule or dependency pair f(l1, . . . , lk)→ r ∈ P] such that g ∈ DP]
occurs in r. We say that f depends on g.

(2) The set of usable symbols USP](t) ⊆ DP] of a term t is defined as

USP](t) := {g | f B∗d g for some f ∈ DP] that also occurs t.} .

The notion of usable symbols is extended to sets of terms T by

USP](T) :=
⋃
t∈T
USP](t) .

(3) The usable rules UP](R] ∪R) in P] of R] ∪R are given by

UP](R] ∪R) := {f(l1, . . . , lk)→ r ∈ R] ∪R | f ∈ USP](T])} .

The following auxiliary lemma shows that the usable symbols of starting
terms T] are closed under P] reductions. In particular, this implies that only
usable rules are ever triggered in derivations starting from t ∈ T]. Observe
that the lemma crucially employs that starting terms are constructor based.
This drastically simplifies the proof of soundness, compared to the setting of
termination analysis.

Lemma 14.45. Let P] = 〈S] ∪ S/W] ∪W,Q, T]〉 denote a DP problem. Then

USP](−→∗P](T
])) = USP](T]) .

Proof. The inclusion USP](−→P](T
])) ⊇ USP](T]) follows from the trivial inclu-

sion −→∗P](T
]) ⊇ T]. For the inverse inclusion, consider s ∈ −→P](T

]), hence there
exists t ∈ T] with s −→`

P] t for some ` ∈ N. We show that USP](t) ⊆ USP](s)
by induction on k. The base case ` = 0, i.e., t = s is trivial.

For the inductive step, suppose s −→`
P] t −→P] u holds. Consider g ∈ USP](u),

we show g ∈ USP](t). In the considered case, there exists a symbol h ∈ DP] in
u with hB∗d g. If h occurs also in t then by definition g ∈ USP](t) holds, hence
suppose h does not occur in t. As t −→P] u, there exist a rule f(l1, . . . , lk)→ r ∈
P], substitution σ and context C such that t = C[f(l1σ, . . . , lkσ)] and u = C[rσ].
Since h does not occur in t but in u, it thus occurs in r. Hence f Bd h and using
hB∗d g we obtain again g ∈ USP](t). It follows that USP](u) ⊆ USP](t) holds,
and we conclude by induction hypothesis USP](t) ⊆ USP](s). �

Theorem 14.46 (Usable Rules Processor). Let P] = 〈S] ∪ S/W] ∪W,Q, T]〉
denote a DP problem. The following processor is sound and complete:

` 〈UP](S] ∪ S)/UP](W] ∪W),Q, T]〉 : f
` 〈S] ∪ S/W] ∪W,Q, T]〉 : f

Usable Rules .

193

14 Complexity Processors in TCT

Proof. Consider a derivation

t0 −→P] t1 −→P] t2 −→P] · · · ,

for t0 ∈ T]. Then this derivation is also a derivation with respect to the
generated problem 〈UP](S] ∪ S)/UP](W] ∪ W),Q, T]〉. For this, consider a
rewrite step ti −→P] ti+1 (i ∈ N). Let f(l1, . . . , lk) → r ∈ P] denote the rule
which triggered the rewrite step ti −→P] ti+1 (i ∈ N). Then f ∈ USP](ti),
by Lemma 14.45 it follows that f ∈ USP](T]). By definition, we have that
f(l1, . . . , lk)→ r ∈ UP](S] ∪S) or f(l1, . . . , lk)→ r ∈ UP](W] ∪W) respectively.
This concludes soundness.

As every derivation from t0 ∈ T] with respect to the generated problem is
trivially a P] derivation, we see that the processor is also complete. �

Example 14.47 (Continued from Example 14.31). Consider the dependency pair
problem given in Example 14.31 obtained from the dependency tuple processor.
Then the defined symbols forest, kruskal and kruskal? are not usable with respect
to the considered starting terms. Application of the usable rules processor gives
the following inference.

` 〈S]K/UK,RK, T]K〉 : n
2

` 〈S]K/RK,RK, T]K〉 : n
2

Usable Rules ,

where UK := {36, 37, 42–73}. Hence in total, the six rules {35, 38–41} defining
forest, kruskal and kruskal? are dropped from the weak component. C

14.5.2. Removing of Weak Suffixes in the DG

The leaf removal processor introduced in [63] states that all dependency pairs
that occur as leafs in the DG, that is, dependency pairs that constitute nodes in
the DG without outgoing edges, can be dropped from the input problem. This
processor is sound in the setting of [63] where all dependency pairs occur in the
strict component. Without further restrictions, this processor is unsound in our
setting.

Example 14.48. The following inference is not sound

` 〈∅/{f] → c2(f], g])},∅, {f]}〉 : f
` 〈{g] → c0}/{f] → c2(f], g])},∅, {f]}〉 : f

,

despite the fact that g] → c0 is a leaf in the dependency graph of the input
problem. Observe that the complexity function of the input problem is undefined
for inputs greater than two, whereas the generated problem has trivially constant
complexity. C

Another situation where removal of leafs leads to problems is when our analysis
has to account for ordinary rewrite rules beside dependency pairs. Again this
case is a priori excluded in [63].

194

14.5 Syntactic Simplifications

Example 14.49. Consider the following inference, where f] → g](h) denotes a
leaf in the dependency graph of the input problem.

` 〈{h→ h}/∅,∅, {f]}〉 : f
` 〈{f] → g](h), h→ h}/∅,∅, {f]}〉 : f

,

Then the generated problem has constant complexity, whereas the complexity
function of the input problem is undefined for inputs greater than two. C

What we can do, is to remove dependency pairs from the weak component
that do not trigger rewrite steps with respect to the strict component. Provided
that the strict component of the input problem constitutes of dependency pairs
only, rules amendable for removal can be determined based on the dependency
graph.

Definition 14.50 (Forward Closed). Let G be a dependency graph and let R]
denote a set of dependency pairs. We say that R] is closed under G-successors if
for every edge from s→ t ∈ R] to u→ v in G we have that also u→ v ∈ R].
For a complexity problem P], we call a set of DPs occurring in P] forward

closed if this set is closed under G-successors for the dependency graph G of P].

Theorem 14.51 (Remove Weak Suffixes Processor). Consider a DP problem
P] = 〈S]/W] ∪ W]

l ∪ W,Q, T]〉 where W]
l is forward closed. The following

processor is sound and complete.

` 〈S]/W] ∪W,Q, T]〉 : f

` 〈S]/W] ∪W]
l ∪W,Q, T]〉 : f

Remove Weak Suffixes .

Proof. Let P]g := 〈S]/W] ∪W,Q, T]〉. The processor is trivially complete. To
see that the processor is sound, we show that for every P] derivation tree T
of t] ∈ T], there exists a P]g derivation tree T of t] with |Tg|S] = |T |S] . Hence
soundness follows by Lemma 14.38.

Consider a P] derivation tree T of t]. We define Tg as the derivation tree of t]

that is obtained by removing applications of dependency pairs from W]
l . More

precise, whenever there is an edge e labeled with a DP from W]
l in T , we remove

e and the sub-trees rooted in the target nodes of e. Then by construction Tg
is a P]g derivation tree of t]. Suppose now |T |S] 6= |Tg|S] , i.e., |T |S] > |Tg|S] .
Then Tg misses a sub-tree of T with an edge labeled by a DP l→ r ∈ S]. This
assumption gives rise to a DP chain where l→ r ∈ S] is preceded by a DP from
W]
l , contradicting that W]

l is forward closed, by Lemma 14.43. �

14.5.3. Predecessor Estimation

Noschinski et al. [63] observed that the application of a dependency pair l→ r in
a P] derivation can be estimated in terms of the application of its predecessors
in the dependency graph of P].

195

14 Complexity Processors in TCT

Definition 14.52. Let G be an approximated dependency graph. We denote
by PreG(l→ r) the set of all (direct) predecessors of node l→ r in G. For a set
of dependency pairs R] we set

PreG(R]) :=
⋃

l→r∈R]
PreG(l→ r) .

Then for an approximated dependency graph G of P], we have the following
correspondence between the number of applications of dependency pairs from
R] and PreG(R]).

Lemma 14.53. Let P] = 〈S] ∪ S/W] ∪ W,Q, T]〉 denote a DP problem, let
G be an approximated dependency graph for P], and let l → r ∈ P] denote a
dependency pair. For every P]-derivation tree T ,

|T |R]∪R 6 max{1, |T |(R]\{l→r})∪PreG(l→r)∪R ·K} ,

where K denote the maximal arity of a compound symbol in P].

Proof. Consider the non-trivial case l → r 6∈ PreG(l → r) and let T denote a
P] derivation tree with an edge labeled by l → r ∈ R]. It suffices to verify
|T |{l→r} 6 max{1, |T |PreG(l→r) · K}. By Lemma 14.43 chains of T translate
to paths in G. Thus if l → r is applied in T , then l → r 6∈ PreG(l → r)
gives that either l → r occurs only in the beginning of chains, or is headed
by a dependency pair from PreG(l → r). In the former case |T |{l→r} = 1. In
the latter case, let {u1, . . . , un} collect all sources of l → r edges in T . To
each node ui ∈ {u1, . . . , un} we can identify a unique node pre(ui) such that
pre(ui)

PreG(l→ r)−−−−−−−⇀T · S ∪W−−−−⇀∗T ui. Let {v1, . . . , vm} = {pre(u1), . . . , pre(un)}.
Since S ∪W−−−−⇀T is non-branching, and pre(ui) has at most K successors, it follows
that |T |{l→r} = n 6 K ·m 6 K · |T |PreG(l→r). �

Theorem 14.54 (Predecessor Estimation Processor). Let G denote an approx-
imated dependency graph of the DP problem P] = 〈S]1 ∪ S

]
2 ∪ S/W] ∪W,Q, T]〉.

The following processor is sound:

` 〈PreG(S]1) ∪ S]2 ∪ S/S
]
1 ∪W] ∪W,Q, T]〉 : f

` 〈S]1 ∪ S
]
2 ∪ S/W] ∪W,Q, T]〉 : f

Predecessor Estimation .

Proof. Soundness follows trivially from Lemma 14.53, employing Lemma 14.38.�

We point out that the predecessor estimation processor is an adaption of
knowledge propagation introduced in [63]. The notion of problem from [63] uses
for this processor specifically a dedicated component K mentioned on page 159.
Application of the predecessor estimation processor makes only sense if

PreG(S]1) 6= S]1. On the other hand, it is always safe to take for S]1 a maxi-
mal set of DPs such that PreG(S]1) ⊆ S2.
The combination of Theorem 14.51 and Theorem 14.54 allows us to remove

DPs R] that occur as leafs in the DG G of the input problem, provided PreG(R])
constitutes of dependency pairs that occur in the strict component, as in [63].
This is clarified on our running example.

196

14.5 Syntactic Simplifications

Example 14.55 (Continued from Example 14.47). Observe that the DPs

L] := {85–87, 89, 91, 95, 97, 101, 103, 105, 107, 109, 111–113, 115–117, 119–126}

depicted in Example 14.31 occur as leafs in the dependency graph G of the
complexity problem 〈S]K/UK,RK, T]K〉. Instantiating S

]
1 by L] and S]2 by

S]K \ L
] := {88, 90, 92–94, 96, 98–100, 102, 104, 106, 108, 110, 114, 118} ,

in Theorem 14.54 we can continue the complexity proof of Example 14.47 as
follows.

` 〈(S]K \ L
])/UK,RK, T]K〉 : n

2

` 〈(S]K \ L
])/L] ∪ UK,RK, T]K〉 : n

2
Remove Weak Suffixes

` 〈S]K/UK,RK, T]K〉 : n
2

Predecessor Estimation
.

Observe that we employ PreG(L]) ⊆ S]K \ L
], and that L] is trivially forward

closed in the intermediate problem. C

14.5.4. Simplifying Right-hand Sides

In the proof step given in Example 14.55 we have removed all dependency
pairs defining the dependency pair symbols src], wt] and trg] as well as ∨] and
∧]. Since the strict component of the considered DP problem contains only
dependency pairs, it is safe to remove any calls to these symbols in right-hand
sides. For instance, the dependency pair

96 : inBlock](e, p :: P)→ c7((src(e) ∈ p ∧ trg(e) ∈ p) ∨] inBlock(e, P),

src(e) ∈ p ∧] trg(e) ∈ p, src(e) ∈] p,
trg(e) ∈] p, src](e), trg(e)], inBlock](e, P)) ,

can be simplified to

96s : inBlock](e, p :: P)→ c3(src(e) ∈] p, trg(e) ∈] p, inBlock](e, P)) .

Although this simplification has no effect on the complexity of the considered
problem, it still makes an automated analysis often easier. For instance, as a
result of the transformation the usable rules, and also constraints for complexity
pairs, can get simpler. The next processor provides a formalisation of this idea,
which was first implemented in AProVE [63].

Theorem 14.56 (Simplify Right-hand Sides Processor). Let G denote an ap-
proximated dependency graph of the DP problem P] = 〈S]/W] ∪W,Q, T]〉. For
dependency pairs l] → com(r]1, . . . , r

]
k) ∈ S]∪W], call an argument r]i removable

if there is no outgoing edge from l] → com(r]1, . . . , r
]
k) labeled by i. Define

simpG(l] → com(r]1, . . . , r
]
k)) := l] → com(r]i1 , . . . , r

]
il

) ,

197

14 Complexity Processors in TCT

where {r]i1 , . . . , r
]
il
} ⊆ {r]1, . . . , r

]
k} collects all arguments of the right-hand side

which are not removable. We denote by simpG also its homomorphic extensions
to sets.
The following processor is sound and complete.

` 〈simpG(S])/simpG(W]) ∪W,Q, T]〉 : f
` 〈S]/W] ∪W,Q, T]〉 : f

Simplify RHS .

Proof. Let P]g denote the generated problem 〈simpG(S])/simpG(W])∪W,Q, T]〉.
Consider a P] derivation tree T of t] ∈ T]. Call a sub-tree Ti resulting from

the application of a DP l] → com(r]1, . . . , r
]
k) ∈ S

] ∪W] in T removable, if its
root is labeled by a term r]iσ for some removable argument r]i and substitution
σ. By Lemma 14.43 and the assumption that r]i is removable, Ti contains
no applications of a DP, i.e., |Ti|S] = 0. By deleting all removable sub-trees
of T , and replacing the application of l] → com(r]1, . . . , r

]
k) ∈ S

] ∪ W] by
simpG(l] → com(r]1, . . . , r

]
k)) ∈ simpG(S]) ∪ simpG(W]) we can thus construct a

P]g derivation tree Tg with |Tg|simpG(S]) = |T |S] . This concludes soundness of the
processor, by Lemma 14.38.
Inversely, completeness is shown by constructing from every P]g derivation

tree a P] derivation tree, obtained by replacing applications of simpG(l] →
com(r]1, . . . , r

]
k)) by applications of l] → com(r]1, . . . , r

]
k). �

Example 14.57 (Continued from Example Example 14.55). By Theorem 14.56
the following inference is sound.

` 〈S]Ks/UK,RK, T]K〉 : n
2

` 〈(S]K \ L
])/UK,RK, T]K〉 : n

2
Simplify RHS .

Here S]Ks := simpG((S]K \ L
])) consists of the following dependency pairs.

88 : forest](graph(N,E))→ c3(kruskal](sort(E), [], partitions(N)),

sort](E), partitions](N))

90 : partitions](n :: N)→ partitions](N)

92 : kruskal](e :: E,W,P)→ c2(kruskal?](inBlock(e, P), e, E,W,P),

inBlock](e, P))

93 : kruskal?](tt, e, E,W,P)→ kruskal](E,W,P)

94 : kruskal?](ff, e, E,W,P)→ c2(kruskal](E, e :: W, join(e, P, [])),

join](e, P, []))

96s : inBlock](e, p :: P)→ c3(src(e) ∈] p, trg(e) ∈] p, inBlock](e, P))

98s : join](e, p :: P, q)→ c2(join?](src(e) ∈ p ∨ trg(e) ∈ p, e, p, P, q),
src(e) ∈] p)

99 : join?](tt, e, p, P, q)→ c2(join](e, P, p ++ q), p ++] q)

198

14.5 Syntactic Simplifications

100 : join?](ff, e, p, P, q)→ join](e, P, q)

102 : sort](e :: E)→ c2(insert](e, sort(E)), sort](E))

104s : insert](e, f :: E)→ c2(insert?](wt(e) 6 wt(f), e, f, E),

wt(e) 6] wt(f))

106 : insert?](ff, e, f, E)→ insert](e, E)

108s : n ∈] (m :: p)→ c2(n =] m,n ∈] p)
110 : (n :: p) ++] q → p ++] q

114 : s(x) =] s(y)→ x =] y

118 : s(x) 6] s(y)→ x 6] y .
C

14.5.5. Simplifications In TCT

The processors given in this section are implemented in TCT by the transfor-
mations usableRules (Theorem 14.46), removeWeakSuffix (Theorem 14.51),
simpPEOn (Theorem 14.54) and simpDPRHS (Theorem 14.56).

In order to specify the DPs S]1 in Theorem 14.54, the transformation simpPEOn
takes a selector expression as argument. To avoid that DPs from the weak
component of the input problem reoccur in the strict component of the generated
sub-problem, simpPEOn restrict the selected rules to a set so that predecessors
Pre(S]1) occur in the strict component. The transformation simpPE provides a
short-hand for simpPEOn, and selects per default a maximal subset S]1.
The transformation cleanSuffix, defined as follows, provides a short-hand

for a combination of the mentioned simplifications.

cleanSuffix = force $
try (exhaustively (simpPEOn allSuccsWeak))
>>> try (removeWeakSuffix >>> try (simpDPRHS >>> try usableRules))

Here allSuccsWeak is used to select DPs from the input problem P] whose
successors in the DG occur all in the weak component of P]. As a consequence,
exhaustively (simpPEOn allSuccsWeak) moves DPs that constitute maximal
sub-trees in the DG to the weak component of P]. If such DPs exist, they
are removed from P] by the transformation removeWeakSuffix. If DPs have
been dropped from P], right-hand sides are simplified and usable rules possibly
recomputed. Using the transformation cleanSuffix, TCT is able to reproduce
the proof step depicted in Example 14.57.

TCT-interactive 14.9 (Continued from Session 14.8)

TCT> apply cleanSuffix

Problems simplified. Use ’state’ to see the current proof state.

TCT>

Finally, the transformation p ‘withPEOn‘ se provides a combination of the
relative decomposition processor from Theorem 14.13 and predecessor estimation.

199

14 Complexity Processors in TCT

This transformation attempts to shift rewrite rules, as specified by the selector
expression se, to the weak component. The processor p is used to estimate
the complexity of predecessors of selected rules. This is demonstrated in the
following session. The loaded example motivates knowledge propagation in [63].

TCT-interactive 14.10

TCT> load "examples/ex25.trs"
$..
TCT> apply $ dependencyPairs >>> usableRules

Problems simplified. Use ’state’ to see the current proof state.

TCT> apply $ matrix ‘withDimension‘ 1 ‘withPEOn‘ selAllOf selStricts

Problems simplified. Use ’state’ to see the current proof state.

TCT> proof

1) Weak Dependency Pairs [OPEN]:

$..
1.1) simpPE [OPEN]:

We consider the following problem:

Strict DPs:
{ q^#(x, 0(), s(z)) -> c_1(q^#(x, s(z), s(z)))
, q^#(0(), s(y), s(z)) -> c_2()
, q^#(s(x), s(y), z) -> c_3(q^#(x, y, z)) }

StartTerms: basic terms
Strategy: innermost

We use the processor ’matrix interpretation of dimension 1’ to
orient the following rules strictly.

DPs:
{ 2: q^#(0(), s(y), s(z)) -> c_2()
, 3: q^#(s(x), s(y), z) -> c_3(q^#(x, y, z)) }

Sub-proof:

$..
We return to the main proof. Consider the set of dependency pairs

{ 1: q^#(x, 0(), s(z)) -> c_1(q^#(x, s(z), s(z)))
, 2: q^#(0(), s(y), s(z)) -> c_2()
, 3: q^#(s(x), s(y), z) -> c_3(q^#(x, y, z)) }

Processor ’matrix interpretation of dimension 1’ induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {2,3}. These cover all (indirect) predecessors of dependency
pairs {1,2,3}. These dependency pairs are shifted into the weak component.

1.1.1) Open Problem [OPEN]:

We consider the following problem:
Weak DPs:

{ q^#(x, 0(), s(z)) -> c_1(q^#(x, s(z), s(z)))
, q^#(0(), s(y), s(z)) -> c_2()
, q^#(s(x), s(y), z) -> c_3(q^#(x, y, z)) }

StartTerms: basic terms
Strategy: innermost

$..

200

14.6 Dependency Graph Decomposition

TCT-interactive 14.11 (Continued from Session 14.10)

TCT> apply empty

Hurray, the problem was solved with certificate YES(O(1),O(n^1)).
Use ’proof’ to show the complete proof.

TCT>

Here the selector expression selAllOf selStricts advices TCT to find a proof
that determines the complexity of all rules appearing in the strict component of
the considered problem. We emphasise that the processor matrix alone fails to
orient the depicted DP problem.

14.6. Dependency Graph Decomposition

The simplified DP problem 〈S]Ks/UK,RK, T]K〉 contains roughly half of the rules
from the DP problem 〈S]K/RK,RK, T]K〉. Still, TCT is not able to synthesise
orders that orient all of the remaining dependency pairs, even in an iterated
fashion using the relative decomposition processor. At the time of writing, also
AProVE and TTT2 fail to handle this system. Motivated by the inability to
synthesise suitable orders for larger examples, we introduce a novel technique,
called dependency graph decomposition (DG decomposition for short). The aim
of this transformation technique is to decompose the input problem into several
pieces that are manageable by complexity pairs. Our work on this processor
is also motivated by the fact that we are not aware of a single method that
translates a complexity problem into computationally simpler sub-problems. Any
proof is of the form

` P1 : f1 · · · ` Pn : fn

` P : f
,

with f ∈ O(fi) for some i ∈ {1, . . . , n}. This implies that the maximal bound
one can prove is essentially determined by the strength of the employed base
techniques, viz, complexity pairs. In our experience however, a complexity prover
is seldom able to synthesise a suitable and precise complexity pair that induces
a complexity bound beyond a cubic polynomial.
Before we continue, we want to remark first that relative decomposition, as

given in Theorem 14.11, can be used to decompose the input problem guided by
the dependency graph.

Example 14.58 (Continued from Example 14.57). Consider the DG GKs of the
DP problem 〈S]Ks/UK,RK, T]K〉, depicted in Figure 14.5. As demarcated by the
rectangles in the figure, this graph has three independent sub-graphs. Let
S]K ⊆ S

]
Ks and S]srt ⊆ S

]
Ks denote the set of DPs as indicated in the dependency

graph, and let S]part := {90}. Essentially as an application of the relative
decomposition processor, the DPs S]K, S

]
srt, and S

]
part can be treated completely

201

14 Complexity Processors in TCT

88

92

1

93

1
1

94

1
1

98s

1

99

1
1

100

1
1

110

1

1

96s1

2

108s1

1

2,3

1141

1

102

2

1

104s

106 118

1

1 1 2

1

90

3

1

S]Kk

S]srt

Figure 14.5.: Dependency Graph GKs of DP problem 〈S]Ks/UK,RK, T]K〉.

independently. To this extend, consider the dependency pairs

88s : forest](graph(N,E))→ sort](E)

88k : forest](graph(N,E))→ kruskal](sort(E), [], partitions(N))

88p : forest](graph(N,E))→ partitions](N) ,

which reflect the calls from forest] to sort], kruskal] and partitions] individually.
We reason below that

` P]Kk : n2

...

` P]srt : n2

...

` P]part : n2

...

` 〈S]Ks/UK,RK, T]K〉 : n
2

is a sound inference. The three sub-problems are obtained by considering only
nodes from the three indicated sub-graphs, together with the calls from forest].

P]Kk := 〈S]Kk/{88k} ∪ UK,RK, T]K〉 P]srt := 〈S]srt/{88s} ∪ Usrt,RK, T]K〉

P]part := 〈S]part/{88p},RK, T]K〉 .

Here Usrt := {34, 48–53, 62–65} ⊆ UK. To see this, consider first the following

202

14.6 Dependency Graph Decomposition

intermediate DP problems

P]frst-rel := 〈{88}/S]Kk ∪ S
]
srt ∪ S

]
part ∪ UK,RK, T]K〉

P]srt-rel := 〈S]srt/S
]
Kk ∪ S

]
part ∪ {88} ∪ UK,RK, T]K〉

P]KK-rel := 〈S]Kk/S
]
srt ∪ S

]
part ∪ {88} ∪ UK,RK, T]K〉

P]part-rel := 〈S]part/S
]
Kk ∪ S

]
srt ∪ {88} ∪ UK,RK, T]K〉 .

These problems are obtained from the input problem 〈S]Ks/UK,RK, T]K〉 by moving
dependency pairs from the strict to the weak component, in accordance to the
partitioning of the DG GKs. Note that dependency graphs of these problems
coincide with the DG from GKs. Three applications of relative decomposition
allow us to deduce

` P]KK-rel : n
2

` P]srt-rel : n
2

` P]part-rel : n
2 ` P]frst-rel : n

2

` 〈S]part ∪ {88}/S
]
srt ∪ S

]
Kk ∪ UK,RK, T]K〉 : n

2

` 〈S]srt ∪ S
]
part ∪ {88}/S

]
Kk ∪ UK,RK, T]K〉 : n

2

` 〈S]Ks/UK,RK, T]K〉 : n
2

Consider the intermediate problem P]frst-rel. Note that since the DP 88 has no
incoming edges in the DG, i.e., PreGKs

({88}) = ∅, the complexity function of
P]frst-rel is even constant. We can show this by one application of the predecessor
estimation processor and the axiom empty.

` 〈∅/S]Kk ∪ S
]
srt ∪ S

]
part ∪ {88} ∪ UK,RK, T]K〉 : n

2
empty

` P]frst-rel : n
2

Predecessor Estimation

Consider now the intermediate DP problem P]srt-rel. The DPs S]Kk and S]part

constitute a forward closed set of weak DPs in P]srt-rel. So they can be simply
dropped from P]srt-rel, by Theorem 14.51. As a consequence, the right-hand side
of the DP 88 can be simplified to

88s : forest](graph(N,E))→ sort](E) ,

by Theorem 14.56. Finally, the set of rewrite rules can be narrowed to the usable
rules Usrt, by Theorem 14.46. In total, this proves P]srt : n2 ` P]srt-rel : n

2:

` 〈S]srt/{88s} ∪ Usrt,RK, T]K〉 : n
2

` 〈S]srt/{88s} ∪ UK,RK, T]K〉 : n
2

Usable Rules

` 〈S]srt/{88} ∪ UK,RK, T]K〉 : n
2

Simpl. DP-RHS

` 〈S]srt/S
]
Kk ∪ S

]
part ∪ {88} ∪ UK,RK, T]K〉 : n

2
Remove Weak Suffixes

By identical reasoning, we can prove P]Kk : n2 ` P]KK-rel : n
2, and likewise

P]part : n2 ` P]part-rel : n
2. Putting these proofs together yields the inference

outlined in the beginning of the example. C

203

14 Complexity Processors in TCT

t]

T↑

t]1

T1

t]i

Ti

t]n

Tn

Figure 14.6.: Separation of derivation tree T in upper and lower layer.

This form of decomposition however fails to achieve our second motivation. The
complexity of the input problem is reflected in the complexity of at least one
of the sub-problems. In the example above, the complexity of P]Kk and P]srt is
bounded by a quadratic polynomial from below.
In contrast, dependency graph decomposition seeks to analyse recursive defi-

nitions, as reflected by cycles in the DG, separately. We explain the intuition on
the DP problem P]srt generated in Example 14.58, whose dependency pairs are
given as follows.

88s : forest](graph(N,E))→ sort](E)

102 : sort](e :: E)→ c2(insert](e, sort(E)), sort](E))

104s : insert](e, f :: E)→ c2(insert?](wt(e) 6 wt(f), e, f, E),wt(e) 6] wt(f))

106 : insert?](ff, e, f, E)→ insert](e, E)

118 : s(x) 6] s(y)→ x 6] y .

The complexity of P]srt amounts essentially to the number of applications of a
DP in a derivation from sort](e1 :: · · · :: en :: []). Note that in each recursion
step performed by sort] the length of the given list decreases. The number of
applications of the DP 102 is thus linear in the size of the starting term. It remains
to analyse the complexity of the calls to insert]. Observe that in the ith recursion
step, sort] calls insert] with edge ei and the sorted list sort(ei+1 :: · · · :: en :: []).
Using that sorting does not increase the size of its argument, it is not difficult
to see that the number of applications of a dependency pair in such a call is
bounded linearly in the size of (the weight of) ei and the length of the list
ei+1 :: · · · :: en :: []. Summing up, the complexity of P]srt is thus quadratic. Note
that this bound is asymptotically tight.

Dependency graph decomposition formalises this kind of reasoning. Consider
a DP problem P] = 〈S]u ∪ S]l ∪ S/W

]
u ∪W]

l ∪W,Q, T]〉, whose strict and weak
dependency pairs are partitioned such that S]l ∪ W

]
l is forward closed in P].

Forward closure of S]l ∪W
]
l in P] formalises that S]u ∪W]

u is allowed to trigger
applications of DPs from S]l ∪ W

]
l , but not vice versa. For instance, the set

{104s, 106, 118} forms a forward closed set of DPs in P]srt.
Consider a P] derivation tree T of t] ∈ T]. Then the forward closed set
S]l ∪W

]
l induces a separation of T into two (possibly empty) layers, demarcated

by topmost applications of DPs from S]l ∪W
]
l : the lower layer consists of the

204

14.6 Dependency Graph Decomposition

(maximal) subtrees T1, . . . , Tn of T with a dependency pair l → r ∈ S]l ∪ W
]
l

applied at the root. The upper layer consists of the derivation tree T↑ obtained
from T by removing the sub-trees T1, . . . , Tn. Compare Figure 14.6 that illustrates
this separation.

Note that by construction, T↑ is a 〈S]u∪S/W]
u∪W,Q, T]〉 derivation tree of t].

By forward closure of S]l ∪W
]
l , the P

] derivations trees Ti from the lower layer
are 〈S]l ∪ S/W

]
l ∪W,Q, T]〉 derivation trees of terms t]i. Note that in general,

t]i ∈ T] does not hold. To extend Ti to a derivation tree of t] ∈ T], the DG
decomposition processor uses the dependency pairs sep(S]u ∪W]

u).

Definition 14.59. For a set of DPs R] we define

sep(R]) := {l→ ri | l→ com(r1, . . . , ri, . . . , rk) ∈ R]} .

Example 14.60 (Continued from Example 14.58). Consider the DP problem

P]srt = 〈S]srt/{88s} ∪ Usrt,RK, T]K〉 ,

together with the forward closed set of DPs S]insert := {104s, 106, 118}. Let T
denote a P]srt derivation tree of sort](e1 :: · · · :: en :: []) for edges e1, . . . , en. Then
the nodes labeled by insert](ei, e

′
i+1 :: · · · :: e′n :: []) (for i = 1, . . . , n) demarcate

the upper and lower layer in T . Here e′i+1 :: · · · :: e′n :: [] denotes the (unique)
normal form of sort(ei+1 :: · · · :: en :: []).
The set of DPs sep({88s, 102}) consists of the following three rules.

88s : forest](graph(N,E))→ sort](E)

102a : sort](e :: E)→ insert](e, sort(E))

102b : sort](e :: E)→ sort](E) .

Observe that in combination with Usrt, these can be used to generate the terms
insert](ei, e

′
i+1 :: · · · :: e′n :: []) (i = 1, . . . , n) from the initial term sort](e1 :: · · · ::

en :: []). As a consequence, the complexity problem

P]insert := 〈S]insert/{88s, 102a, 102b} ∪ Usrt,RK, T]K〉 ,

accounts for applications of DPs from S]srt in a sub-tree Ti (i ∈ {1, . . . , n}).
Conversely, the DP problem P]srt = 〈{102}/{88s} ∪ Usrt,RK, T]K〉 accounts for
the application of DPs from S]srt in the upper component T↑. C

The next two technical lemmas formalises the central proof steps carried out
in the soundness proof of the dependency graph processor.

Lemma 14.61. Consider a DP problem P] = 〈S]u∪S]l ∪S/W
]
u∪W]

l ∪W,Q, T]〉.
Let S]l ∪W

]
l be a forward closed set of DPs in P], and let T be a P] derivation

tree T of t] ∈ T]. Consider the maximal sub-trees T1, . . . , Tm of T such that
l→ r ∈ S]l ∪W

]
l is applied at the root, and let T↑ be obtained from T by removing

T1, . . . , Tm. Then

205

14 Complexity Processors in TCT

(1) T↑ is a 〈S]u ∪ S/W]
u ∪W,Q, T]〉 derivation tree of t];

(2) for all i = 1, . . . ,m, there exists a 〈S]l ∪S/W
]
l ∪W ∪ sep(S]u ∪W]

u),Q, T]〉
derivation trees of t], that contains Ti as sub-tree.

Proof. The first assertion follows by definition. For the second, observe that
on the path from the root of T to Ti, by construction only dependency pairs
l → com(r1, . . . , rk) ∈ S]u ∪ W]

u are applied. Replacing these applications by
an application of l→ ri ∈ sep(S]u ∪W]

u) yields a 〈S]u ∪ S]l ∪ S/W
]
u ∪W]

l ∪W ∪
sep(S]u∪W]

u),Q, T]〉 derivation tree of t]. This tree contains Ti as sub-tree. Since
S]l ∪W

]
l is forward closed, Lemma 14.43 yields that Ti contains only applications

of DPs from S]l ∪ W
]
l besides application of rules l → r ∈ S ∪ W. Hence the

constructed tree is even a 〈S]l ∪ S/W
]
l ∪W ∪ sep(S]u ∪W]

u),Q, T]〉 derivation
tree. �

Lemma 14.62. Consider a DP problem P] = 〈S]u∪S]l ∪S/W
]
u∪W]

l ∪W,Q, T]〉.
Let S]l ∪W

]
l be a forward closed set of DPs in P], and let T be a P] derivation tree

T of t] ∈ T]. Let T1, . . . , Tm denote the maximal sub-trees of T with l→ r ∈ R]
applied at the root. There exists a constant ∆ ∈ N depending only on P] such
that m 6 max{1, |T |PreG(R])\R] ·∆}.

Proof. The proof is a slight variation of the proof of Lemma 14.53. Let ∆ be the
maximal arity of a compound symbol from P], and observe that every node in T
has at most ∆ successors. Denote by {u1, . . . , um} the roots of Ti (i = 1, . . . ,m).
The non-trivial case is m > 1. In this case, each path from the root of T to
the nodes ui ∈ {u1, . . . , um} contains at least one node with a DP applied. Let
{v1, . . . , vn} collect such nodes closest to {u1, . . . , um}. In particular, we can
thus associate to every node ui ∈ {u1, . . . , um} a node vi′ ∈ {v1, . . . , vn} and
DP l → r ∈ P] such that vi′ {li → ri}−−−−−⇀T · S ∪W−−−−⇀∗T ui holds. As vi′ has at most
∆ successors and S ∪W−−−−⇀T is non-branching, it follows that m 6 ∆ · n. By
Lemma 14.43, for i = 1, . . . ,m we see li → ri ∈ PreG(R]). As Ti is maximal,
li → ri 6∈ R]. Hence n 6 |T |PreG(R])\R] and the lemma follows. �

Theorem 14.63 (Dependency Graph Decomposition Processor). Consider a
DP problem P] = 〈S]u∪S]l ∪S/W

]
u∪W]

l ∪W,Q, T]〉 together with an approximated
dependency graph G of P].

(1) S]l ∪W
]
l is forward closed in P], and

(2) PreG(S]l ∪W
]
l) ∩W

]
u = ∅.

The following processor is sound.

` 〈S]u ∪ S/W]
u ∪W,Q, T]〉 : f ` 〈S]l ∪ S/W

]
l ∪ sep(S]u ∪W]

u) ∪W,Q, T]〉 : g

` 〈S]u ∪ S]l ∪ S/W
]
u ∪W]

l ∪W,Q, T]〉 : f ∗ g
,

for all bounding functions f and g such that f(n) 6= 0 and g(n) 6= 0 for all n ∈ N.
Here f ∗ g denotes the function h defined by h(n) := f(n) · g(n).

206

14.6 Dependency Graph Decomposition

Proof. Consider a P] derivation tree of t] ∈ T]. We estimate |T |S]u∪S]l ∪S by a
function in O(f ∗ g), tacitly employing Lemma 14.38. Consider the separation
of T as induced by forward closure of S]l ∪ W

]
l into the upper layer T↑, and

lower layer that consists of the derivation trees Ti of t
]
i (i = 1, . . . ,m). By

Lemma 14.61(2) the trees Ti (i = 1, . . . ,m) can be extended to 〈S]l ∪ S/W
]
l ∪

W ∪ sep(S]u ∪W]
u),Q, T]〉 derivation tree T ′i of t

]. In particular, the complexity
of 〈S]l ∪ S/W

]
l ∪W ∪ sep(S]u ∪W]

u),Q, T]〉 binds applications of S]l ∪ S in Ti,
i.e., |Ti|S]l ∪S = |T ′i |S]l ∪S . Hence |Ti|S]l ∪S ∈ O(g(|t]|)) by the second precondition
of the processor. Similar, Lemma 14.61(1) and the first precondition of the
processor gives |T↑|S]u∪S ∈ O(f(|t]|)). By assumption (ii) and Lemma 14.62
we see m 6 max{1, |T |

PreG(S]l ∪W
]
l)\(S]l ∪W

]
l)
} 6 max{1, |T↑|S]u∪S}. Putting these

bounds together we get

|T |S]u∪S]l ∪S = |T↑|S]u∪S +
∑m

i=1|Ti|S]l ∪S
6 |T↑|S]u∪S + max{1, |T↑|S]u∪S} ·maxmi=1|Ti|S]l ∪S
∈ O(f(|t]|)) +O(f(|t]|)) ∗ O(g(|t]|)) = O(f(|t]|) ∗ f(|t]|)) . �

The next example shows that the DP problem P]srt has quadratic complexity,
using Theorem 14.63.

Example 14.64 (Continued from Example 14.60). Consider the DP problem P]srt

from Example 14.58, and let G denote the DG of P]srt. We already observed
that the set DPs S]insert = {104s, 106, 118} is forward closed in P]srt. As no DP
in PreG(S]insert) = {102} occurs in the weak component of P]srt, also the second
precondition of Theorem 14.63 is satisfied, and thus

` 〈{102}/{88s} ∪ Usrt},RK, T]K〉 : n ` P]insert : n

` P]srt : n2

Using simplification of right-hand sides (Theorem 14.56) and usable rules (Theo-
rem 14.46) the judgement ` 〈{102}/{88s}∪Usrt},RK, T]K〉 : n can be reduced to
` 〈{sort](e :: E)→ sort](E)}/{88s},RK, T]K〉 : n. Employing the safe mapping
with safe(sort]) = safe(forest]) = ∅ and the full argument filtering, the judgement
can be shown valid using polynomial path orders (Theorem 14.16). Also, it is
not difficult to define a complexity pair using polynomial interpretation that
proves that the judgement ` P]insert : n is valid, by Theorem 14.10. We conclude
` P]srt : n2 by Theorem 14.63. C

Iterated application of Theorem 14.63 extends to a separate analysis of all
cycles, hence our method is closely connected to cycle analysis as introduced for
termination in [35]. Unlike for cycle analysis, dependency graph decomposition
takes the call-structure between cycles into account. As demonstrated in the
next example, this is essential in the context of complexity analysis.

207

14 Complexity Processors in TCT

Example 14.65. Let P]exp := 〈R]exp/Rexp,Rexp, T]b 〉 where dependency pairs R]exp

are

127 : d](s(x))→ d](x) 128 : e](s(x))→ c2(d](e(x)), e](x)) ,

and the rewrite system Rexp is given by the four rules

129 : d(0)→ 0 130 : d(s(x))→ s(s(d(x))

131 : e(0)→ s(0) 132 : e(s(x))→ d(e(x)) ,

that compute exponentiation on numerals. The following depicts the DG of P]exp.

128 127

2 1

1

A decomposition of the dependency pairs in P]exp into cycles, as in termination
analysis, amounts in our setting to an inference

` 〈{128}/Rexp,Rexp, T]b 〉 : f ` 〈{127}/Rexp,Rexp, T]b 〉 : g

` 〈{127, 128}/Rexp,Rexp, T]b 〉 : h
.

This inference is sound for termination analysis [35]. While the complexity of
〈{127}/Rexp,Rexp, T]b 〉 and 〈{128}/Rexp,Rexp, T]b 〉 is linear, the complexity of
P]exp is exponential. Dependency graph decomposition on the other hand extends
the sub-problem 〈{127}/Rexp,Rexp, T]b 〉 obtained from the lower cycle with the
two DPs

133 : e](s(x))→ d](e(x)) 134 : e](s(x))→ e](x) .

The so obtained sub-problem 〈{127}/{133, 134}∪Rexp,Rexp, T]b 〉 has exponential
complexity. C

Finally we want to remark that DG decomposition can overestimate the
complexity. For this reason it is not always beneficial to exhaustively apply this
processor.

Example 14.66 (Continued from Example 14.64). The set {118} constitutes a
forward closed set of DPs in the DP problem P]insert depicted in Example 14.60.
Consider the two DPs

104a : insert](e, f :: E)→ insert?](wt(e) 6 wt(f), e, f, E)

104b : insert](e, f :: E)→ wt(e) 6] wt(f) .

Then we have

sep({88s, 102a, 102b, 104s, 106}) = {88s, 102a, 102b, 104a, 104b, 106} .

208

14.6 Dependency Graph Decomposition

Applying the DG decomposition processor yields thus sub-problems

〈{104s, 106}/{88s, 102a, 102b} ∪ Usrt,RK, T]K〉 ,

for the upper, and

〈{118}/{88s, 102a, 102b, 104a, 104b, 106} ∪ Usrt,RK, T]K〉 ,

for the lower component. The complexity of both problems is bounded from below
by a linear function. Hence employing DG decomposition, we can only proof a
quadratic upper bound on the complexity of P]insert, whereas the complexity of
P]insert is in fact linear. C

14.6.1. Dependency Graph Decomposition in TCT

Relative decomposition guided by the DG as illustrated in Example 14.58, is
implemented in TCT by the transformation decomposeIndependentSG, which
integrates also the various simplifications defined in the previous section. The
following reproduces exactly the complexity proof given in Example 14.58.

TCT-interactive 14.12 (Continued from Session 14.9)

TCT> apply $ exhaustively decomposeIndependentSG

Problems simplified. Use ’state’ to see the current proof state.

TCT>

Here the combinator exhaustively is necessary as decomposeIndependentSG
uses relative decomposition exactly once.
Theorem 14.63, is implemented in TCT by the transformation decomposeDG.

Per default, TCT chooses as DPs for the upper component a minimal set of DPs
which is (i) backward-closed, (ii) cyclic, and (iii) contains at least one strict DP.
This selection corresponds essentially to the selection of a topmost recursive
definition. On the DP problem P]srt, TCT proceeds exactly as in Example 14.60.
This behaviour can be modified by decomposeDG ‘selectLowerBy‘ se. Here,
the selector expression se indicates which dependency pairs should occur in the
lower component. By extending the selection sufficiently, TCT ensures that the
selected set of DPs is forward closed for the given input problem. The operators
solveUpperWith and solveLowerWith can be used to specify a processor that
should be used to solve the corresponding sub-problem. The following reproduces
the proof given in Example 14.64.

TCT-interactive 14.13 (Continued from Session 14.12)

TCT> select [2]
$..

Selected Open Problems:

Strict DPs:
{ sort^#(::(e, E)) -> c_1(insert^#(e, sort(E)), sort^#(E))
, insert^#(e, ::(f, E)) ->

c_2(insert?^#(<=(wt(e), wt(f)), e, f, E), <=^#(wt(e), wt(f)))
, insert?^#(false(), e, f, E) -> c_3(insert^#(e, E))
, <=^#(s(n), s(m)) -> c_4(<=^#(n, m)) }

Weak DPs: { forest^#(graph(N, E)) -> c_5(sort^#(E)) }
$..

209

14 Complexity Processors in TCT

TCT-interactive 14.14 (Continued from Session 14.13)

Weak Trs:
{ wt(edge(n, w, m)) -> w
, sort([]()) -> []()
, sort(::(e, E)) -> insert(e, sort(E))
, insert(e, []()) -> ::(e, []())
, insert(e, ::(f, E)) -> insert?(<=(wt(e), wt(f)), e, f, E)
, <=(0(), 0()) -> true()
, <=(0(), s(m)) -> true()
, <=(s(n), 0()) -> false()
, <=(s(n), s(m)) -> <=(n, m)
, insert?(true(), e, f, E) -> ::(e, ::(f, E))
, insert?(false(), e, f, E) -> ::(f, insert(e, E)) }

StartTerms: basic terms
Strategy: innermost

--
TCT> apply $ decomposeDG ‘solveUpperWith‘ (cleanSuffix

>>| spopstarPS ‘withDegree‘ Just 1)

Problems simplified. Use ’state’ to see the current proof state.

TCT> apply $ poly ‘withDegree‘ Just 1

Problems simplified. Use ’state’ to see the current proof state.

TCT>

It remains to handle the previously deselected open sub-problems generated
in Session 14.12, viz, the DP problems P]Kk and P]part. Using dependency graph
decomposition to simplify P]Kk, iterated application of polynomial interpretations
together with predecessor estimation allow us to finally conclude quadratic
innermost runtime complexity of the running example RK.

TCT-interactive 14.15 (Continued from Session 14.14)

TCT> select [1..]
$..
TCT> apply $ decomposeDG

Problems simplified. Use ’state’ to see the current proof state.

TCT> apply $ exhaustively $ poly ‘withBits‘ 3 ‘withDegree‘ Just 1
‘withPEOn‘ selAnyOf selStricts

Problems simplified. Use ’state’ to see the current proof state.

TCT> apply empty

Hurray, the problem was solved with certificate YES(O(1),O(n^2)).
Use ’proof’ to show the complete proof.

TCT>

210

14.7 Small Polynomial Path Orders and Dependency Pairs

14.7. Small Polynomial Path Orders and Dependency
Pairs

In Section 14.3 we have shown that small polynomial path orders can be used
together with argument filterings in our framework, provided that the underlying
argument filtering is non-collapsing on symbols defined in the strict component.
The following example shows that this restriction is necessary to derive the
bound given in Theorem 14.16.

Example 14.67. Let m ∈ N. Consider the innermost dependency pair problem
P]2m := 〈S]expm/Wexpm ,Wexpm , {exp]2m(n) | n ∈ N}〉, where S]expm constitutes of
the dependency pairs

135 : exp]2m(x;)→ g]m(x, x; expm(x;))

1360 : g]0(x, y; s(z))→ g]0(x, y; z)

136i : gi
](s(x), y; z)→ c2(; gi−1

](y, y; z), gi
](x, y; z)) (i = 1, . . . ,m)

and the TRS Wexpm is given by the rules

137 : expm(x)→ fm(x, . . . , x; 0)

138 : f0(; y)→ s(; y)

139i : fi(0, x2, . . . , xi; y)→ y (i = 1, . . . ,m)

140i : fi(s(;x1), x2, . . . , xi; y)→ fi(x1, x2, . . . , xi; fi−1(x2, . . . , xi; y))

(i = 1, . . . ,m) .

The complexity of P]2m is bounded from below by a polynomial of degree 2 ·m. To
see this, fix n ∈ N and observe that fi(n1, . . . ,ni; k) reduces to n1 · . . . · ni + k,
hence expm(n) reduces to nm. It is not difficult to construct a P]2m-derivation
tree of gi

](n,n; expm(n)) (i = 1, . . . ,m) that contains (n− 1)i leafs labeled by
g0
](n,n; nm). As the latter term admits ni−1 dependency pair steps, we see that

for i = m a maximal P]2m-derivation of exp]2m(n;) contains (n− 1)m · (nm− 1) ∈
Ω(n2·m) nodes labeled by the DP 1360.
Note that Theorem 14.16 is not applicable, due to the restrictions on the

employed argument filtering. On the other hand, using an admissible precedence
and safe mapping as indicated in the rules, one can show S]expm ⊆ ąπ

spop∗ps

and Wexpm ⊆ Áπ
spop∗ps

with the argument filtering π given by π(g]0) := 3, and

π(f) = [1, . . . , k] for every other symbol f/k occurring in P]2m. C

Consider an innermost DP problems where the strict component consists only
of dependency pairs, and where each compound symbol is a constant or a unary
function symbol. The restriction on compound symbols implies that derivation
trees degenerate to sequences, and excludes the above counter example. And
indeed we can include the considered special case in Theorem 14.16. We validate
this observation in the next theorem. Note that we replace here the assumed
restriction on compound symbols with a slightly weaker restriction on usable
argument positions. The theorem should be considered as an intermediate result.

211

14 Complexity Processors in TCT

In Theorem 14.69 below we then consider the case where neither a restriction is
put on compound symbols nor on the employed argument filtering.

Theorem 14.68. Consider an innermost DP problem P] = 〈S]/W]∪W,Q, T]〉
where S], W] and W are constructor TRSs. Let µ denote a usable replacement
map for S]∪W] in P] such that for every compound symbols ck in P], µ(ck) ⊆ {i}
for some i ∈ {1, . . . , k} holds. Let π denote an argument filtering on the symbols
in P that agrees with µ. Let Kπ ⊆ D]π denote a set of recursive function
symbols, and Á an admissible precedence. The following processor is sound, for
d := max{0} ∪ {rdÁ,Kπ(fπ) | fπ ∈ F]π}.

S] ⊆ ąπ
spop∗ps

W] ∪W ⊆ Áπ
spop∗ps

` 〈S]/W] ∪W,Q, T]〉 : nmax(1,d)
,

Proof. We revise the proof of Theorem 14.16. Consider a P] derivation D of
s] ∈ T]. By Lemma 14.20, this derivation is of the form

D : s] = C0[~t1] −→P] C1[~t1] −→P] C2[~t2] −→P] C3[~t3] . . . ,

where the contexts Ci (i ∈ N) are maximal compound contexts. Consider a
term Ci[~ti] in the above derivation, and call a term t ∈ ~ti a principal term if it
occurs at a usable argument position Posµ(Ci[~ti]) in Ci[~ti]. By the assumption
that every compound symbol has at most one argument position usable for the
dependency pairs S] ∪W], every term Ci[~ti] in the above sequence has at most
one principal term.

As in Theorem 14.16, abbreviate N := NT (Cπ), I := IT (Cπ) and define G(t) :=

GK,`(I (t)) for ` the maximal size of a right-hand side in π(S] ∪W] ∪W). Let
S]nc := {l→ r ∈ S] | π is non-collapsing on the root of l} and set S]c := S] \ S]nc.
For simplicity, suppose first that the terms Ci[~ti] contain no garbage. Observe
that the problem 〈S]nc/S]c ∪ W] ∪ W,Q, T]〉 that accounts for non-collapsed
dependency pairs S]nc satisfies the assumptions of Theorem 14.16. As we have
observed in the proof of the theorem, G(s]) ∈ O(|s|d) gives an upper bound on
the number of applications of S]nc in D. To account also the steps with respect
to S]c, we exploit that ąspop∗ps

collapses to B/≈ on values. As a consequence, in
a step Ci[~ti] Q−→S]c Ci+1[~ti+1] in D the depth of the argument filtered principal

term decreases, i.e., dp(π(ui)) > dp(π(ui+1)) for principal terms ui ∈ ~ti and
ui+1 ∈ ~ti+1. For steps not due to S]c, we exploit that either π(ui) is equivalent to
π(ui+1), or G(π(ui)) > G(π(ui+1)) holds by the claim of Theorem 14.16. Only in
the latter case the depth of the argument filtered principal term might increase,
but only by a constant ∆.

To define a global measure function H on all steps due to S] in P] derivations
starting from T], define the binary relation A∆ on pairs of natural numbers such
that 〈m1,m2〉 A∆ 〈n1, n2〉 if either m1 > n1 and m2 + ∆ > n2 or m1 > n1 and
m2 > n2. Let w∆ denote the reflexive closure of A∆. An easy induction reveals
that the maximal length of A∆-descending sequences starting from 〈n1, n2〉 is
bounded by n1 · (∆ + 1) + n2.

212

14.7 Small Polynomial Path Orders and Dependency Pairs

Let t⊥ denote the term obtained by replacing garbage terms in t by ⊥ ∈ C, as
in the proof of Theorem 14.16. We define

H(t) :=

{
〈G(π(u⊥)), dp(π(u⊥))〉 if u is the principal term in t,
〈0, 0〉 if t has no principal term.

The theorem is a consequence of the following claim.

Claim. Suppose s ∈ −→∗P](T
]) with s ∈ N. Then

s Q−→S] t =⇒ H(s⊥) A∆ H(t⊥) and s Q−→W]∪W t =⇒ H(s⊥) w∆ H(t⊥) ,

where ∆ := max{dp(r) | l→ r ∈ π(S]nc) ∪ π(W]) ∪ π(W)}.

Proof of Claim. Let l→ r ∈ P], and consider s ∈ −→∗P](T) with s ∈ N. Suppose
s = C[~s] Q−→{l→r} C[~t] = t with compound context C and substitution σ : V →
NF(Q).
Observe that if s lacks a principle term, so does t. In this case l → r 6∈ S]

we conclude the claim with H(s) = 〈0, 0〉 = H(t). Also the case where only t
lacks a principle term is trivial. Hence consider the only interesting case when
si
Q−→R ti holds for si ∈ ~s the principle term of s and ti the principle term of t.

We perform case analysis on the applied rewrite rule l→ r ∈ P].
Suppose first that l → r ∈ S] where by assumption π(l) ąπ

spop∗ps
π(r). Then

si = lσ and ti = rσ since l → r is a dependency pair. As in the claim of
Theorem 14.16, if l→ r ∈ S]nc then G(π(s⊥i)) > G(π(t⊥i)) holds, where

π(s⊥i) = π(lσ⊥) T (Cπ)−−−−→{l→r} π(rσ⊥) .

The latter implies that

dp(π(s⊥i)) + ∆ > dp(π(rσ⊥)) > dp(π((rσ)⊥)) = dp(π(t⊥i)) ,

we conclude H(s) A∆ H(t). If on the other hand l → r ∈ S]nc, the claim of
Theorem 14.16 gives only G(π(s⊥i)) > G(π(t⊥i)). Instead we have however

π(s⊥i) = π(lσ⊥) B/≈ π(rσ⊥) ,

and hence dp(π(s⊥i)) > dp(π(rσ⊥)) > dp(π(t⊥i)). Again we see H(s) A∆ H(t).
Consider now l → r ∈ W] ∪ W. If π collapses the root of l, the order

constraints give π(l) D/≈ π(r) by the assumption that l is constructor based. It
is not difficult to verify that in this case the claim holds as above, using a simple
inductive argument for the case l→ r ∈ W. Hence suppose π does not collapse
on the root of l. For this case, we prove by induction on the rewrite position in
si
Q−→{l→r} ti that

〈G(π(s⊥i)), dp(π(s⊥i))〉 w∆ 〈G(π(t⊥i)), dp(π(t⊥i))〉 ,

holds. The base case follows as in the considered case l → r ∈ S] above if
π(l) ąspop∗ps

π(r) holds. For π(l) ≈s π(r), we have G(π((lσ)⊥)) > G(π((rσ)⊥))

213

14 Complexity Processors in TCT

and dp(π((lσ)⊥)) = dp(π(rσ⊥)) > dp(π((rσ)⊥)). thus consider the inductive
step

si = f(u1, . . . , uj , . . . , un) Q−→{l→r} f(u1, . . . , vj , . . . , un) ,

with uj Q−→{l→r} vj , where without loss of generality s⊥i = f(u⊥1 , . . . , u
⊥
j , . . . , u

⊥
n)

and t⊥i = f(u⊥1 , . . . , v
⊥
j , . . . , u

⊥
n) holds. If j 6∈ π(f) or π(f) = j the result is

immediate, or follows directly from induction hypothesis. Otherwise j ∈ π(f).
Since s ∈ N, also si ∈ N and thus the term π(u⊥j) occurs as safe argument to
π(s⊥i). By case analysis on the induction hypothesis the claim follows. �

Using the claim, a reduction

f(~v) Q−→S/W t1 · · · Q−→S/W tn ,

translates into a descent

H(f(~v)⊥) A∆ H(t⊥1) A∆ · · · A∆ H(t⊥n) .

For f(~v) ∈ T] we thus have n 6 G(π(f(~v)⊥)) · (∆ + 1) + dp(f(~v)), as we have
observed G(π(f(~v)⊥)) ∈ O(|f(~v)|d) already in Theorem 14.16 we conclude the
theorem. �

Our final theorem is obtained as an application of dependency graph decom-
position, using Theorem 14.16 and Theorem 14.68 to solve the two generated
sub-problems. Example 14.67 indicates that the deduced bound is tight in the
general case. Noteworthy, this also shows that the bound deduced by dependency
graph decomposition is essentially optimal for the general case.

Theorem 14.69. Consider an innermost DP problem P] = 〈S]/W]∪W,Q, T]〉
where S], W] and W are constructor TRSs. Let µ denote a usable replacement
map for S]∪W] in P], and let π denote an argument filtering on the symbols in P
that agrees with µ. Let Kπ ⊆ D]π denote a set of recursive function symbols, and
Á an admissible precedence where cπ ∼ dπ only holds for non-compound symbols
c, d 6∈ Com. The following processor is sound, for d := max{0} ∪ {rdÁ,Kπ(fπ) |
fπ ∈ F]π}.

S] ⊆ ąπ
spop∗ps

W] ∪W ⊆ Áπ
spop∗ps

` 〈S]/W] ∪W,Q, T]〉 : nmax(1,2·d)
.

Proof. Let P] = 〈S]/W]∪W,Q, T]〉 be an innermost DP problem which satisfies
the preconditions of the processor. To simplify matters, we assume the stronger
property that π(l) ≈s π(r) holds for every DP l→ r ∈ W]. The theorem then
follows also in the general case, by shifting DPs l→ r ∈ W] with l ąπ

spop∗ps
r to

the strict component.
Consider partitions W] := W]

c ∪W]
nc and S] := S]c ∪ S]nc such that W]

c ∪ S]c
collects all DPs collapsed by the argument filtering, i.e., f](l1, . . . , lk) → r ∈
W]

c ∪ S]c if and only if π(f]) = i for some i ∈ {1, . . . , k}. We apply the DG

214

14.7 Small Polynomial Path Orders and Dependency Pairs

decomposition processor, where the lower component is given by the collapsed
rules W]

c ∪W]
c . Define

P]nc := 〈S]nc/W]
nc ∪W,Q, T]〉 , and

P]c := 〈S]c/W]
c ∪W ∪ sep(S]nc ∪W]

nc),Q, T]〉 .

Let G denote the dependency graph of P]. Consider and edge from s] →
com(t]1, . . . , t

]
k) ∈ S]c∪W]

c to u] → com(v]1, . . . , v
]
l) in G labeled by i ∈ {1, . . . , k}.

This means that the roots of t]i and u
]
i coincide. Using that π collapses the root of

the constructor based term s], we have π(s]) ∈ T (Cπ). Using that the precedence
Á underlying Áspop∗ps

is admissible, similar to Lemma 9.15 we see that the root of
t]i , and thus of u], is collapsed by π. We conclude u] → com(v]1, . . . , v

]
l) ∈ S

]
c∪W]

c ,
i.e., S]c ∪W]

c is forward closed in P].
Inversely, suppose there is an edge from u] → com(v]1, . . . , v

]
l) ∈ S

]
nc ∪W]

nc

to s] → com(t]1, . . . , t
]
k) ∈ S

]
c ∪ W]

c labeled by i in the dependency graph G.
This implies that π(v]i) ∈ T (Cπ), since π is non-collapsing on the root of u]

we can strengthen π(u]) Áπ
spop∗ps

com(v]1, . . . , v
]
l) to π(u]) ąπ

spop∗ps
com(v]1, . . . , v

]
l)

and hence even u] → com(v]1, . . . , v
]
l) ∈ S

]
nc by the assumption π(l) ≈s π(r)

for l → r ∈ W]
nc. We conclude PreG(W]

c ∪ W]
c) ⊆ S]c. This establishes the

preconditions of the DG decomposition processor (Theorem 14.63), hence the
inference

` P]nc : nd ` P]c : nmax(1,d)

` P] : nmax(1,2·d)
,

is sound.
By construction π is non-collapsing on defined symbols in S]nc. Since S]nc ⊆
S] ∪W], the usable replacement µ constitutes also a usable replacement map for
S]nc in P]nc. Thus µ together with π satisfy the pre-conditions of Theorem 14.16,
since S]nc ⊆ ąπ

spop∗ps
and W]

nc ∪W ⊆ Áπ
spop∗ps

we conclude thus ` P]nc : nd.

The remaining judgement ` P]c : nmax(1,d) is verified with the help of The-
orem 14.68. Since µ is a usable replacement map for dependency pairs in
P], by construction of P]c it is not difficult to verify that µ is also a usable
replacement map for dependency pairs in P]c . Consider a dependency pair
s] → t ∈ S]c ∪ W]

c for t = com(t]1, . . . , t
]
k). We observed already above that

π(s]) D/≈ π(t]) with π(t]) ∈ T (Cπ) holds. In particular, π(t]) contains no com-
pound symbol by the assumption on the equivalence ∼. Thus if t contains a
compound symbol ck, then π(ck) = i for some i = 1, . . . , k. Using that π agrees
with µ, we see that µ(ck) ⊆ {i} holds. Hence µ together with π satisfy the
pre-conditions of Theorem 14.16. Since the order constraints S]c ⊆ ąπ

spop∗ps
and

W]
c∪W∪sep(S]nc∪W]

nc) ⊆ Áπ
spop∗ps

are satisfied, we conclude thus ` P]c : nmax(1,d).

Note that the inclusion sep(S]nc ∪W]
nc) ⊆ Áπ

spop∗ps
follows by a straight forward

case analysis on the assumptions S]nc ⊆ S] ⊆ ąπ
spop∗ps

and W]
nc ⊆ W] ⊆ Áπ

spop∗ps
.�

Our final example clarifies that the we can indeed not allow the precedence to
identify compound symbols with non-compound symbols.

215

14 Complexity Processors in TCT

Example 14.70. Consider the predicative recursive constructor TRS Rdup′ con-
sisting of the rules

141 : f(0;)→ leaf 142 : f(s(;x);)→ dup(; f(x;)) 143 : dup(; t)→ u(; b(; t, t)) .

This rewrite system is a variation of Rdup from Example 9.12, where inner nodes
of the constructed binary tree are encoded by a constructor term u(; b(; ·, ·)).
Consider the innermost DP problem 〈S]dup′/Rdup′ ,Rdup′ , {F](n) | n ∈ N}〉 where
S]dup′ consisting of the two dependency pairs

144 : F](x;)→ G](f(x;)) 145 : G](u(; b(; t1, t2)))→ c2(; G](t1),G](t2)) .

Since G] traverses a full binary tree of height n in the reduction of a starting term
F](n), the complexity function of the considered DP problem is not bounded by
a polynomial from above.
Let π denote the argument filtering that collapses only on G]. Then we can

prove

F]π(x;) ąspop∗ps
G]π(fπ(x;)) uπ(; bπ(; t1, t2)) ąspop∗ps

c2,π(t1, t2) ,

hence S]dup′ ⊆ ąπ
spop∗ps

, but also Rdup′ ⊆ Áπ
spop∗ps

, for an admissible precedence
which satisfies

fπ ą dupπ, 0π dupπ ą uπ, bπ F]π ą G]π, fπ bπ ∼ c2,π .

If we allow the latter equivalence in Theorem 14.69, we would thus wrongly
conclude that the complexity of the considered innermost DP problem is polyno-
mial. C

216

Chapter 15.

Experimental Evaluation

In this chapter we present our experimental evaluation of TCT.

Data Sets. We have compiled a collection of examples specifically targeted
at runtime complexity analysis. This collection, the data set RC, is mostly a
compilation of examples found in the literature on the topic. It also contains
some natural examples not found in the literature. For instance, it contains
various sorting algorithms on lists and simple functions expressed in Peano
arithmetic.1

To test the applicability of runtime complexity analysis of TRSs in the context
of program analysis, we have employed a naive (but complexity preserving)
transformation of RaML programs considered in [44] into TRSs.2 We remark
that in this transformation, we do not take typing information into account. We
however use the call-by-value strategy adopted by RaML to obtain an innermost
runtime complexity problem. Also, build-in operations like comparison operations
on Integers and Boolean operations are assigned unitary cost. This is achieved
by modelling their semantics with rewrite rules occurring in the weak component
of the constructed problem. Data set RaML collects the examples obtained by
this translation from the example collection available in the source repository of
the RaML prototype.3

Setup. All experiments were conducted on a machine with a 16 core Intel R©

CoreTM i7–3930K CPU running at 3.20GHz, and 32Gb of RAM. The employed
version of TCT is version 2.0. Below we compare various techniques implemented
in TCT to the complexity tool CaT (for runtime complexity analysis) and AProVE
(for innermost complexity analysis). The employed binaries of these tools are
the ones used in the annual termination competition of 2012.4 Every test was
run with a generous timeout of 300 seconds.
In tables below, we contrast the strength of the various proof techniques

implemented in TCT. Precisely, we tested TCT in following configurations.

1We decided against the use of the termination problem data base (TPDB for short) as data.
Unarguably, the TPDB is the most extensive selection of examples available. Still, it was
primarily intended as a means to assess the strength of termination provers, and falls short
of interesting examples for runtime complexity analysis.

2The corresponding tool is available online at http://cl-informatik.uibk.ac.at/cbr/
tools/RaML/.

3Available online at http://raml.tcs.ifi.lmu.de/.
4Available through http://termcomp.uibk.ac.at/.

217

http://cl-informatik.uibk.ac.at/cbr/tools/RaML/
http://cl-informatik.uibk.ac.at/cbr/tools/RaML/
http://raml.tcs.ifi.lmu.de/
http://termcomp.uibk.ac.at/

15 Experimental Evaluation

- Direct: With this configuration we check the power of direct methods. As
processors, complexity pairs (Theorem 14.10) and small polynomial path
orders (Theorem 14.16) are employed. Complexity pairs are synthesised as
described in Section 14.1, using matrix interpretations of dimension one to
four, as well as polynomial interpretations up to degree three.

- RD: With this configuration we indicate the strength of Zankl and Korp’s
decomposition processor in combination with complexity pairs (Theo-
rem 14.13). To synthesise complexity pairs, we used the same configuration
as for the direct approach.

- DP+RD: In this configuration TCT proceeds as above, except that as a
first proof step weak dependency pairs (Theorem 14.24) for runtime, or
dependency tuples (Theorem 14.29) for innermost runtime complexity
analysis, are applied. In the former case TCT also tries to establish the
weightgap condition [38]. Interpretation methods are directed towards
orienting leafs in the congruence graph, so that these can be eventually
dropped from the dependency problem using the DP simplifications given
in Section 14.5. In total, this configuration thus reflects the body of
techniques implemented in TCT that where known prior to this thesis,
together with some minor simplifications.

- DGD: With this configuration we indicate the strength of our new DG
decomposition processor (Theorem 14.63). Like in the previous configu-
ration, the input problem is transformed into a DP problem. To avoid
imprecision of the certificate, TCT tries to solve the DP problem as in the
configuration DP+RD. When this approach gets stuck, dependency graph
decomposition is applied. The procedure is repeated until the problem is
eventually solved.

- DGD-g: TCT behaves in this configuration as above, except that DG
decomposition is exhaustively applied directly after the dependency pair
transformation.

Experiments Performed on Data Set RaML. In Tables 15.1 and 15.3 we
contrast TCT in the above mentioned configurations on the data set RaML. For
comparison, we also indicate experimental results obtained by AProVE on this
testbed. The entries in Table 15.3 indicate the estimated upper bounds on the
runtime complexity. An entry ? indicates that the tool gave up, and an entry ∞
indicates that the tool was aborted due to a timeout. Table 15.1 summarises this
data, where numbers annotated to the right of each entry indicate the average
execution time, in seconds.
Column Direct in Table 15.1 clearly illustrates the need for transformations.

The results drawn in Column RD shows that relative decomposition gives an
improvement on the direct approach, still, a majority of the example TRSs can
not be handled. Column RD indicates the usefulness of the dependency pair
transformations. Two additional problems can be solved in the dependency pair

218

Answer Direct RD DP+RD DGD DGD-g AProVE

O(n) 1/0.15 1/0.38 2/14.18 3/10.21 2/0.56 2/2.89
O(n2) 1/0.70 3/6.07 7/7.52 13/17.45 11/4.83 6/11.01
O(n3) — 3/44.67 — 3/63.08 4/6.12 1/11.95
O(n4) — — — 1/159.03 3/40.91 —
O(n5) — — — 1/149.30 1/78.97 —

Success 2/0.29 7/19.08 9/8.10 21/34.32 21/12.75 8/9.31
Maybe 19/9.35 12/54.85 5/86.77 — — —

Timeout 1 3 7 1 1 13

Table 15.1.: Overview experimental evaluation on data set RaML.

setting, and for three problems a more precise certificate could be obtained. Still,
a majority of the problems remain open.

Column DGD indicates the gain in power of our tool through DG decomposition.
Out of the 22 examples, only one cannot be handled with this approach. A clear
drawback of this method however is that DG decomposition might overestimate
the complexity, compare Example 14.66. In order to retain a precise estimation
on the asymptotic worst case complexity, we are forced to apply this method
only as a last means. This results in significantly higher execution times. In
comparison, Column DGD-g shows a significant increase in speed, at the cost of
precision of the estimated bounding function.

Finally we remark that the RaML-prototype developed by Hofmann et al. [45]
beats TCT on the (untransformed) data set, in precision of the estimated bound,
and in the speed of the analysis. We attribute this mainly to the naive transfor-
mation of RaML programs to TRSs. The RaML-prototype can use for instance
domain information given by the semantics of RaML programs. This information
is lost during transformation.

Experiments Performed on Data Set RC. Finally, in Tables 15.2 and 15.4 we
compare our tool TCT to CaT (full rewriting) and AProVE (innermost rewriting)
respectively, on the data set RC. For TCT we indicate results with respect to
configuration without DG decomposition (configuration DP+RD) and including
DG decomposition (configuration DGD).

The results depicted in Table 15.1 are similar to the ones on the data set RaML.
In contrast to innermost rewriting, TCT can only partly benefit from DG de-
composition. Observe that weak dependency pairs leave rules from the input
problem in the strict component. In contrast, DG decomposition operates on
dependency pairs only.

219

15 Experimental Evaluation

Full rewriting Innermost rewriting
Answer DP+RD DGD CaT DP+RD DGD AProVE

O(1) 1/1.01 1/0.90 — 1/1.16 1/0.09 1/1.06
O(n1) 8/15.77 7/9.22 6/0.42 10/2.29 8/0.91 8/2.05
O(n2) — 2/4.61 — 4/9.33 11/13.02 11/2.53
O(n3) — 1/44.64 — — 3/22.59 3/6.20
O(n4) — 1/52.85 — — 2/77.99 —
O(n5) — — — — 2/84.33 —

Success 9/14.13 12/14.35 6/0.42 15/4.09 27/20.11 23/2.78
Maybe — — — — — 1/168.07

Timeout 21 18 — 15 3 6

Table 15.2.: Overview experimental evaluation on data set RC.

Input Direct RD DP+RD DGD DGD-g AProVE

appendall O(n2) O(n2) O(n) O(n) O(n) O(n)

bfs ? ? O(n) O(n) O(n2) ∞
bftmmult ? ? ∞ O(n3) O(n4) ∞

bitonic ? ? ∞ O(n4) O(n4) ∞
bitvectors ∞ ∞ ∞ O(n2) O(n2) ∞

clevermmult ? ? ? O(n2) O(n3) O(n2)

duplicates ? O(n2) O(n2) O(n2) O(n3) O(n2)

dyade ? ? O(n2) O(n2) O(n2) O(n2)

eratosthenes ? O(n3) O(n2) O(n2) O(n2) ∞
flatten ? ? ? O(n2) O(n2) O(n2)

insertionsort ? O(n3) O(n2) O(n2) O(n2) O(n2)

listsort ? ? ? O(n2) O(n3) ∞
lcs ? ? ? O(n2) O(n2) ∞

martix ? ? ∞ O(n3) O(n4) ∞
mergesort ? ∞ ∞ O(n2) O(n2) ∞
minsort ? O(n3) O(n2) O(n2) O(n2) O(n3)

queue ? ? ∞ O(n5) O(n5) ∞
quicksort ? ∞ ∞ O(n2) O(n2) ∞

rationalpotential O(n) O(n) O(n) O(n) O(n) O(n)

splitandsort ? ? ? O(n3) O(n3) ∞
subtrees ? O(n2) O(n2) O(n2) O(n2) O(n2)

tuples ? ? ∞ ∞ ∞ ∞

Table 15.3.: Experimental results on data set RaML.

220

Full rewriting Innermost rewriting

Answer DP+RD DGD CaT DP+RD DGD AProVE

jones1 O(n1) O(n1) O(n1) O(n1) O(n1) O(n1)

jones2 O(n1) O(n1) ? O(n1) O(n1) O(n1)

jones4 O(n1) O(n1) O(n1) O(n1) O(n1) O(n1)

jones5 ∞ ∞ ? ∞ ∞ ∞

jones6 O(n1) O(n1) O(n1) O(n1) O(n1) O(n1)

flatten O(n1) O(n1) O(n1) O(n1) O(n1) O(n1)

reverse ∞ O(n2) ? ∞ O(n2) O(n2)

shuffle ∞ O(n3) ? ∞ O(n3) O(n3)

shuffleshuffle ∞ O(n4) ? ∞ O(n4) ∞

clique ∞ ∞ ? ∞ O(n3) ?

dcquad ∞ ∞ ? ∞ ∞ O(n2)

egypt ∞ ∞ ? O(n1) O(n1) O(n1)

eratosthenes ∞ ∞ ? O(n2) O(n2) ∞

lcs ∞ ? ∞ ∞ ∞ ∞

mmult-nat ∞ ∞ ? ∞ O(n5) O(n2)

qbf ∞ ∞ ? O(n1) O(n1) O(n1)

sat ∞ ∞ ? O(n2) O(n2) O(n2)

z86 O(1) O(1) O(n1) O(1) O(1) O(1)

bits O(n1) O(n2) O(n1) O(n1) O(n2) O(n2)

div O(n1) O(n1) ? O(n1) O(n2) O(n2)

mult ∞ ∞ ? O(n2) O(n2) O(n2)

mult2 ∞ ∞ ? ∞ O(n3) O(n3)

quad ∞ ∞ ? ∞ O(n2) O(n2)

square ∞ ∞ ? O(n2) O(n2) O(n2)

bubblesort-nat ∞ ∞ ? ∞ O(n2) O(n3)

isort ∞ ∞ ? ∞ O(n2) O(n2)

mergesort ∞ ∞ ? ∞ O(n4) ∞

mergesort-nat ∞ ∞ ? ∞ O(n5) ∞

quicksort-buggy O(n1) O(n1) ? O(n1) O(n1) O(n1)

quicksort ∞ ∞ ? ∞ O(n2) O(n2)

Table 15.4.: Experimental results on data set RC.

221

Chapter 16.

Conclusion

This work is concerned with the automated complexity analysis of term rewrite
systems. In the first part we have established that the runtime complexity of a
rewrite system forms an invariant cost model for rewriting. If a TRS R computes
a function f , this function can be implemented on a Turing machine, and the cost
of this implementation is polynomially related to the runtime complexity of R.
This result is established by using graph rewriting as an intermediate language.
To achieve soundness and completeness of this implementation whilst retaining
effectiveness of the implementation, we presented an adequacy theorem that relies
only on restricted folding and unfolding operations. For innermost reductions,
we have shown that adequacy can be achieved even without unfolding. We think
that these adequacy theorems are interesting on its own, as they make precise
the necessary folding and unfolding operations required for the implementation
of term rewriting.
In the second part we have introduced two restrictions of the recursive path

order, the small polynomial path order and the exponential path order. Small
polynomial path orders characterise the class of polynomial time computable
functions. Further, they also provide a syntactic criteria for the automated
runtime complexity analysis of rewrite systems. We have extended upon this
order by introducing parameter substitution. This increases the intensionality of
the order. Also, this extension allows us to establish a fine grained connection
between the functions computed by predicative tail-recursive TRSs, and those
computed by register machines.

Our extension of the small polynomial path order, the exponential path order,
demonstrates that our approach is general enough to capture computations
outside of FP. We conjecture that similar variations of small polynomial path
orders can lead to new order-theoretic characterisations of various complexity
classes. For instance, it seems that keeping the product status underlying
sPOP?, but incorporating a nested recursion scheme as in EPO?, can yield an
order-theoretic characterisation of the class FE of functions computable in time
2O(n).

In the final part we discussed our automated complexity tool TCT, and its
underlying combination framework. The framework is general enough to reason
about both runtime and derivational complexity, and to formulate a majority of
the techniques available for proving polynomial complexity of rewrite systems. On
the other hand, it is concrete enough to serve as a basis for a modular complexity
analyser. Our tool TCT closely implements the discussed framework. Besides the
combination framework we have introduced the notion of P-monotone complexity

223

16 Conclusion

pair. This notion unifies the different orders used for complexity analysis. We
have also suited small polynomial path orders to complexity problems, allowing
the use of argument filterings to weaken monotonicity. Further, we have presented
various simplifications employed in TCT and introduced the dependency graph
decomposition processor. This processor is easy to implement, and greatly
improves modularity. By combining these techniques, our complexity analyser
TCT has matured to a state where we can say that it is both versatile and
powerful.
Our approach to the automated complexity analysis, through rewriting tech-

niques, can be improved in various ways. The integration of constrained rewriting
could leverage the design of complexity preserving reductions from real world
programs to rewrite systems. Using a suitable formalism, one can reflect domain
specific information in complexity problems. The automated analysis could
greatly profit from such an extension. In the quest for a complexity backend
for program analysis, it might prove crucial to extend first-order rewriting to a
higher-order setting. Last but not least, it seems also beneficial to study lower
bounds. Such an analysis could inform a programmer about inefficiencies in
code. Until now, this research area is hugely unexplored.

224

Bibliography

[1] B. .Accattoli and U. D. Lago. On the Invariance of the Unitary Cost Model
for Head Reduction. In Proceedings of the 23rd International Conference on
Rewriting Techniques and Applications, volume 15 of Leibniz International
Proceedings in Informatics, pages 22–37, 2012.

[2] T. Arai and N. Eguchi. A New Function Algebra of EXPTIME Functions
by Safe Nested Recursion. ACM Transactions on Computational Logic,
10(4), 2009.

[3] T. Arai and G. Moser. A note on a term rewriting characterization of
PTIME. In Proceedings of the 7th Workshop on Termination, pages 10–13.
number AIB-2004-07 of Aachener Informatik-Berichte, 2004. Extended
abstract.

[4] T. Arai and G. Moser. Proofs of Termination of Rewrite Systems for Polytime
Functions. In Proceedings of the 15th Conference on the Foundations of
Software Technology and Theoretical Computer, volume 3821 of Lecture
Notes in Computer Science, pages 529–540, 2005.

[5] T. Arts and J. Giesl. Termination of Term Rewriting using Dependency
Pairs. Theoretical Computer Science, 236(1–2):133–178, 2000.

[6] M. Avanzini, , and G. Moser. Polynomial Path Orders. CoRR,
cs/CC/1209.3793, 2012. Submitted to LMCS. Preprint available at http:
//www.arxiv.org/abs/1209.3793/.

[7] M. Avanzini, N. Eguchi, and G. Moser. A Path Order for Rewrite Systems
that Compute Exponential Time Functions. In Proceedings of the 22nd

International Conference on Rewriting Techniques and Applications, vol-
ume 10 of Leibniz International Proceedings in Informatics, pages 123–138,
2011.

[8] M. Avanzini, N. Eguchi, and G. Moser. A New Order-theoretic Characteri-
sation of the Polytime Computable Functions. In Proceedings of the 10th

Asian Symposium on Programming Languages and Systems, volume 7705 of
Lecture Notes in Computer Science, pages 280–295, 2012.

[9] M. Avanzini, N. Eguchi, and G. Moser. A New Order-theoretic Characteri-
sation of the Polytime Computable Functions. CoRR, cs/CC/1201.2553,
2012. Available at http://www.arxiv.org/abs/1201.2553.

[10] M. Avanzini, N. Eguchi, and G. Moser. On a Correspondence be-
tween Predicative Recursion and Register Machines. In Proceedings of

225

http://www.arxiv.org/abs/1209.3793/
http://www.arxiv.org/abs/1209.3793/
http://www.arxiv.org/abs/1201.2553

Bibliography

the 12th Workshop on Termination, pages 15–19, 2012. , available at
http://cl-informatik.uibk.ac.at/users/georg/events/wst2012/.

[11] M. Avanzini and G. Moser. Complexity Analysis by Rewriting. In Proceedings
of the 9th International Symposium on Functional and Logic Programming,
volume 4989 of Lecture Notes in Computer Science, pages 130–146, 2008.

[12] M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity
and Polytime Computability. In Proceedings of the 21st International
Conference on Rewriting Techniques and Applications, volume 6 of Leibniz
International Proceedings in Informatics, pages 33–48, 2010.

[13] M. Avanzini and G. Moser. Complexity Analysis by Graph Rewriting. In
Proceedings of the 10th International Symposium on Functional and Logic
Programming, volume 6009 of Lecture Notes in Computer Science, pages
257–271. Springer Verlag, 2010.

[14] M. Avanzini and G. Moser. A Combination Framework for Complexity. In
Proceedings of the 24th International Conference on Rewriting Techniques
and Applications. Leibniz International Proceedings in Informatics, 2013. To
appear. Technical Report available at http://arxiv.org/abs/1302.0973.

[15] M. Avanzini and G. Moser. Tyrolean Complexity Tool: Features and Usage.
In Proceedings of the 24th International Conference on Rewriting Techniques
and Applications. Leibniz International Proceedings in Informatics, 2013.
To appear.

[16] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[17] P. Bahr. Modes of Convergence for Term Graph Rewriting. In Proceedings of
the 22nd International Conference on Rewriting Techniques and Applications,
volume 10 of Leibniz International Proceedings in Informatics, pages 139–154,
2011.

[18] P. Baillot, J.-Y. Marion, and S. R. D. Rocca. Guest Editorial: Special Issue
on Implicit Computational Complexity. ACM Transactions on Computa-
tional Logic, 10(4), 2009.

[19] H. P. Barendregt, M. v. Eekelen, J. R. W. Glauert, J. R. Kennaway, M. J.
Plasmeijer, and M. R. Sleep. Term Graph Rewriting. In Volume II: Parallel
Languages on PARLE: Parallel Architectures and Languages Europe, volume
259 of Lecture Notes in Computer Science, pages 141–158. Springer Verlag,
1987.

[20] A. Beckmann and A. Weiermann. A Term Rewriting Characterization
of the Polytime Functions and Related Complexity Classes. Archive for
Mathematical Logic, 36:11–30, 1996.

[21] S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of
the Polytime Functions. Computational Complexity, 2(2):97–110, 1992.

226

http://cl-informatik.uibk.ac.at/users/georg/events/wst2012/
http://arxiv.org/abs/1302.0973

Bibliography

[22] P. V. E. Boas. Machine Models and Simulation. In Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity (A), pages 1–66.
The MIT Press, 1990.

[23] G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with
Polynomial Interpretation Termination Proof. Journal on Functional Pro-
gramming, 11(1):33–53, 2001.

[24] W. Buchholz. Proof-theoretic Analysis of Termination Proofs. Annals of
Pure and Applied Logic, 75:57–65, 1995.

[25] E. A. Cichon and A. Weiermann. Term Rewriting Theory for the Primitive
Recursive Functions. Annals of Pure and Applied Logic, 83(3):199–223,
1997.

[26] E. Contejean, C. Marché, A.-P. Tomás, and X. Urbain. Mechanically Prov-
ing Termination Using Polynomial Interpretations. Journal of Automated
Reasoning, 34(4):325–363, 2005.

[27] U. Dal Lago and S. Martini. Derivational Complexity is an Invariant Cost
Model. In Proceedings of the 1st International Workshop on Foundational
and Practical Aspects of Resource Analysis, 2009.

[28] U. Dal Lago and S. Martini. On Constructor Rewrite Systems and the
Lambda-Calculus. In Proc. of 36th ICALP, volume 5556 of Lecture Notes
in Computer Science, pages 163–174. Springer Verlag, 2009.

[29] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.
Communications of the ACM, 22(8):465–476, 1979.

[30] N. Eèn and N. Sõrensson. An Extensible SAT-solver. In Proceedings of the
6th International Conference on Theory and Applications of Satisfiability
Testing, volume 2919 of Lecture Notes in Computer Science, pages 272–286,
2003.

[31] N. Eguchi. A Lexicographic Path Order with Slow Growing Derivation
Bounds. Mathematical Logic Quarterly, 55(2):212–224, 2009.

[32] J. Endrullis, J. Waldmann, and H. Zantema. Matrix Interpretations for
Proving Termination of Term Rewriting. Journal of Automated Reasoning,
40(3):195–220, 2008.

[33] M. F. Ferreira. Termination of Term Rewriting. Well-foundedness, Total-
ity and Transformations. PhD thesis, University of Utrecht, Faculty for
Computer Science, 1995.

[34] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On Tree Automata
that Certify Termination of Left-Linear Term Rewriting Systems. In Pro-
ceedings of the 16th International Conference on Rewriting Techniques and
Applications, number 3467 in Lecture Notes in Computer Science, pages
353–367. Springer Verlag, 2005.

227

Bibliography

[35] J. Giesl, T. Arts, and E. Ohlebusch. Modular Termination Proofs for
Rewriting Using Dependency Pairs. Journal of Symbolic Computation,
34:21–58, 2002.

[36] B. Gramlich and F. Schernhammer. Extending context-sensitivity in term
rewriting. In Proceedings 9th International Workshop on Reduction Strate-
gies in Rewriting and Programming, Electronic Proceedings in Theoretical
Computer Science, pages 56–68, 2009.

[37] W. G. Handley and S. S. Wainer. Complexity of Primitive Recursion. In
Computational Logic, NATO ASI Series F: Computer and Systems Science,
volume 165, pages 273–300. Springer Verlag, 1999.

[38] N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the
Dependency Pair Method. In Proceedings of the 4th International Joint
Conference on Automated Reasoning, volume 5195 of Lecture Notes in
Artificial Intelligence, pages 364–380, 2008.

[39] N. Hirokawa and G. Moser. Complexity, Graphs, and the Dependency Pair
Method. In Proceedings of the 15th International Conference on Logic for
Programming Artificial Intelligence and Reasoning, pages 652–666, 2008.

[40] N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the
Dependency Pair Method. Information and Computation, 2012. to appear.

[41] D. Hofbauer. Termination Proofs by Multiset Path Orderings Imply Primi-
tive Recursive Derivation Lengths. Theoretical Computer Science, 105(1):129–
140, 1992.

[42] D. Hofbauer and C. Lautemann. Termination Proofs and the Length of
Derivations. In Proceedings of the 3rd International Conference on Rewriting
Techniques and Applications, volume 355 of Lecture Notes in Computer
Science, pages 167–177. Springer Verlag, 1989.

[43] D. Hofbauer and J. Waldmann. Termination of String Rewriting with
Matrix Interpretations. In Proceedings of the 17th International Conference
on Rewriting Techniques and Applications, volume 4098 of Lecture Notes in
Computer Science, pages 328–342. Springer Verlag, 2011.

[44] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized Resource
Analysis. In Proceedings of the 38th Annual Symposium on Principles of
Programming Languages, pages 357–370. ACM, 2011.

[45] J. Hoffmann, K. Aehlig, and M. Hofmann. Resource Aware ML. In Proceed-
ings of the 24th International Conference on Computer Aided Verification,
volume 7358 of Lecture Notes in Computer Science, pages 781–786. Springer
Verlag, 2012.

[46] N. D. Jones. Computability and Complexity: From a Programming Perspec-
tive. The MIT Press, 1997.

228

Bibliography

[47] S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path
orderings. Unpublished manuscript, 1980.

[48] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. On the
Adequacy of Graph Rewriting for Simulating Term Rewriting. ACM Trans-
actions on Programming Languages and Systems, 16:493–523, 1994.

[49] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination
Tool 2. In Proceedings of the 20th International Conference on Rewriting
Techniques and Applications, volume 5595 of Lecture Notes in Computer
Science, pages 295–304. Springer Verlag, 2009.

[50] M. S. Krishnamoorthy and P. Narendran. On Recursive Path Ordering.
Theoretical Computer Science, 40:323–328, 1985.

[51] D. Lankford. On Proving Term Rewriting Systems are Noetherian. Technical
Report MTP-3, Louisiana Technical University, 1979.

[52] D. Leivant. A Foundational Delineation of Computational Feasiblity. In
Proceedings of the 6th ACM/IEEE Symposium on Logic in Computer Science,
pages 2–11. IEEE Computer Society, 1991.

[53] S. Lucas. Fundamentals of Context-Sensitive Rewriting. In Proceedings of
the 22nd Seminar on Current Trends in Theory and Practice of Informatics,
Lecture Notes in Computer Science, pages 405 – 412. Springer Verlag, 1995.

[54] J.-Y. Marion. Analysing the Implicit Complexity of Programs. Information
and Computation, 183:2–18, 2003.

[55] J.-Y. Marion. On Tiered Small Jump Operators. Logical Methods in
Computer Science, 5(1), 2009.

[56] A. Middeldorp, G. Moser, F. Neurauter, J. Waldmann, and H. Zankl. Joint
Spectral Radius Theory for Automated Complexity Analysis of Rewrite
Systems. In Proceedings of the 4th International Conference on Algebraic
Informatics, volume 6742 of Lecture Notes in Computer Science, pages 1–20.
Springer Verlag, 2011.

[57] R. Milner, M. Tofte, and D. Macqueen. The Definition of Standard ML.
The MIT Press, Cambridge, MA, USA, 1997.

[58] G. Moser. Derivational Complexity of Knuth-Bendix Orders Revisited. In
Proceedings of the 13th International Conference on Logic for Programming
Artificial Intelligence and Reasoning, volume 4246 of Lecture Notes in
Artificial Intelligence, pages 75–89. Springer Verlag, 2006.

[59] G. Moser. Proof Theory at Work: Complexity Analysis of Term Rewrite
Systems. CoRR, abs/0907.5527, 2009. Habilitation Thesis.

[60] G. Moser and A. Schnabl. The derivational complexity induced by the
dependency pair method. In Proceedings of the 20th International Conference

229

Bibliography

on Rewriting Techniques and Applications, volume 5595 of Lecture Notes in
Computer Science, pages 276–290. Springer Verlag, 2009.

[61] G. Moser, A. Schnabl, and J. Waldmann. Complexity Analysis of Term
Rewriting Based on Matrix and Context Dependent Interpretations. In Pro-
ceedings of the 28th Conference on the Foundations of Software Technology
and Theoretical Computer, Leibniz International Proceedings in Informatics,
pages 304–315, 2008.

[62] F. Neurauter. Termination Analysis of Term Rewriting by Polynomial Inter-
pretations and Matrix Interpretations. PhD thesis, University of Innsbruck,
2012.

[63] L. Noschinski, F. Emmes, and J. Giesl. A Dependency Pair Framework for
Innermost Complexity Analysis of Term Rewrite Systems. In Proc. of 23rd
CADE, Lecture Notes in Artificial Intelligence, pages 422–438. Springer
Verlag, 2011.

[64] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer Verlag, 2001.

[65] C. H. Papadimitriou. Computational Complexity. Addison Wesley Longman,
second edition, 1995.

[66] D. Plump. Essentials of Term Graph Rewriting. Electronic Notes in
Theoretical Computer Science, 51:277–289, 2001.

[67] J. A. Robinson and A. Voronkov. Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press, 2001.

[68] H. Rogers. Theory of Recursive Functions and Effective Computability. The
MIT Press, 1987.

[69] S. L. Peyton Jones. The Implementation of Functional Languages. Prentice-
Hall International, 1987.

[70] A. Schnabl. Derivational Complexity Analysis Revisited. PhD thesis, Uni-
versity of Innsbruck, 2012. Available at http://cl-informatik.uibk.ac.
at/research/.

[71] J. C. Shepherdson and H. E. Sturgis. Computability of Recursive Functions.
Journal of the Association for Computing Machinery, 10:217–255, 1963.

[72] J. Staples. Computation on Graph-like Expressions. Theoretical Computer
Science, 10:297–316, 1980.

[73] J. Steinbach. Extensions and Comparsoin of Simplification Orderings. In
Proceedings of the 3rd International Conference on Rewriting Techniques
and Applications, volume 355 of Lecture Notes in Computer Science, pages
434–448, 1989.

[74] J. Steinbach and U. Kühler. Check your Ordering - Termination Proofs and
Open Problems. Technical Report SEKI-Report SR-90-25, University of
Kaiserslautern, 1990.

230

http://cl-informatik.uibk.ac.at/research/
http://cl-informatik.uibk.ac.at/research/

Bibliography

[75] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracks in
Theoretical Computer Science. Cambridge University Press, 2003.

[76] R. Thiemann. The DP Framework for Proving Termination of Term Rewrit-
ing. PhD thesis, University of Aachen, 2007. Available as Technical Report
AIB-2007-17.

[77] J. Waldmann. Polynomially Bounded Matrix Interpretations. In Proceedings
of the 21st International Conference on Rewriting Techniques and Applica-
tions, volume 6 of Leibniz International Proceedings in Informatics, pages
357–372, 2010.

[78] A. Weiermann. Termination Proofs for Term Rewriting Systems with
Lexicographic Path Orderings Imply Multiply Recursive Derivation Lengths.
Theoretical Computer Science, 139(1,2):355–362, 1995.

[79] H. Zankl and M. Korp. Modular Complexity Analysis via Relative Com-
plexity. In Proceedings of the 21st International Conference on Rewriting
Techniques and Applications, volume 6 of Leibniz International Proceedings
in Informatics, pages 385–400, 2010.

[80] H. Zantema. Termination of Context-Sensitive Rewriting. In Proceedings of
the 8th International Conference on Rewriting Techniques and Applications,
volume 1232 of Lecture Notes in Computer Science, pages 172–186. Springer
Verlag, 1997.

231

List of Notations and Abbreviations

++ concatenation of sequences . 96

mS(R) morphism application . 41

O(f) set of functions asymptotically bounded from above by f 7

Ω(f) set of functions asymptotically bounded from below by f 7

Tb(D] C) set of basic terms . 16

BW class of polytime computable functions BW 109

C(S) canonical term graph of S . 39

cpP complexity function of problem P . 156

GC(F ,V) set of canonical term graphs. .39

Com set of compound symbols. .178

◦ composition . 5

C set of constructors . 16

dcR derivational complexity function. .20

dciR innermost derivational complexity function 20

dp(G) depth of graph G . 32

dp(t) depth of term . 14

dh(t,→) derivation height of term t with respect to relation → 19

D set of defined symbols . 16

DR set of symbols defined in R .15

K set of recursive symbols . 89

KR set of recursive symbols defined in R . 89

DT(R) dependency tuples R .182

[a]≈ ≈-equivalence class of a . 6

ε empty word . 7

233

Bibliography

≈ equivalence underlying quasi-precedence Á 21

≈s safe equivalence . 91

C/≈ sub-term relation modulo equivalence. .91

FEXP functions computable in exponential time 10

wuv single step approximation of folding . 52

Ip folding relation, strictly above position p 55

FNP function problems computable in polynomial time 10

FP functions computable in polynomial time 10

F signature .14

Fn normalised signature . 103

Fπ argument filtered signature .172

F] set of function symbols including marked symbols 178

Fun(S) function symbol nodes in term graph S .34

ąepo? exponential path order . 127

ą` exponential path order on sequences . 129

G(F ,V) set of term graphs. .33

⊕ graph union . 32

ąrpo,τ recursive path order . 22

rt(G) root of term graph . 32

G graph rewrite system . 40

ąspop? small polynomial path order . 91

ąπ
spop∗ps

small polynomial path order with argument filtering.173

ąspop∗ps
small polynomial path order with parameter substitution . . 113

ąK,` small polynomial path order on sequences 96

� empty context, hole . 15

[α]A(t) interpretation of term t under assignment α 23

i−−→G innermost graph rewrite relation of G .59
i−→R innermost rewrite relation of R .16

i−−→G innermost graph rewrite relation of G, with folding 60

234

Bibliography

∼= isomorphism on term graphs . 35

=k Kleene equality. .5

<mul weak multiset extension of < . 7

�mul strict multiset extension of < . 7

m : L→V S matching morphism . 40

m : S →∆ T ∆-morphism . 35

< folding relation on term graphs . 35

T] set of marked terms from T . 178

M(A) multisets over A . 7

Tµ(→) set of µ-replacing terms . 165

N set of non-accepting patterns . 17

NF(R) normal forms of term rewrite system R .16

NF(→) normal forms of relation → .16

w normalised quasi-precedence . 106

nC/≈ normal sub-term modulo equivalence relation 91

n numeral of n ∈ N .19

π argument filtering . 172

IR predicative interpretation . 104

Pos(t) set of positions in term t . 14

Posµ(t) set of µ-replacing positions in t .165

PosS set of positions in term graph S . 37

PreG(R) predecessors of R in dependency graph G 196

↪→L→R,u pre-reduction step with rule L→ R . 42

Á quasi-precedence . 21

Q−→R Q-restricted rewrite relation of R . 155

N−→R rewrite relation of R restricted by set N 104

Q−→S/W Q-restricted rewrite relation of S relative to W155

RBW term rewriting characterisation of class BW110

rcR runtime complexity function. .20

235

Bibliography

rciR innermost runtime complexity function . 20

rdK,Á(f) recursion depth of symbol f in quasi-precedence Á 89

rdR(f) recursion depth of symbol f in TRS R . 89

S[T]u replacement of sub-graph in S at node u by term graph T . . 42

G[v ← u] redirection of edge in graph G . 32

−−→G graph rewrite relation of G . 43

−→P rewrite relation of complexity problem P 156

−→R rewrite relation of R . 16

−−→G graph rewrite relation of G, with folding and unfolding 56

−−→G graph rewrite relation of G, with unfolding 56

rkÁ(f) rank of symbol f in quasi-precedence Á . 89

RN term rewriting characterisation of N . 135

R term rewrite system . 15

‖S‖ representation size of term graph S .67

safe safe mapping . 90

JfKR,N relation/function defined by f in TRS R 17

T ?(F ,V) set of sequences . 96

O(F ,V) set of fully collapsed term graphs . 37

σ substitution . 15

|G| size of graph G .32

|t| size of term . 14

sPOP?
PS small polynomial path order with parameter substitution . . 113

G�u sub-graph of G at node u . 32

E subterm relation . 15

t|p sub-term of t at position p . 15

C strict subterm relation . 15

succiG(u) ith successor of node u in graph G .32

i−⇀G successor relation on graph G . 32

T (F) set of ground terms . 14

236

Bibliography

T (F ,V) set of terms . 14

NN terms with normal arguments in N .104

M(F ,V) set of trees . 37

U(S) unfolding of term graph S . 33

♦T (F ,V) set of term graphs sharing only T . 37

Cp unfolding relation, above position p . 55

T (C) set of values. .16

Var(S) variable nodes in term graph S . 34

V set of variables . 14

WDP(R) weak dependency pairs of R . 180

f/k function-symbol f with arity k . 14

W(Σ) words over alphabet Σ. .7

C[t]p substitution of term t in context C at position p15

L→ R graph rewrite rule . 40

l→ r term rewrite rule . 15

p·q concatenation of position p and position q 14

EPO? exponential path order . 86

MPO multiset path order . 22

sPOP? small polynomial path order. .85

LPO lexicographic path order. .22

RM register machine . 11

RPO recursive path order . 22

TM Turing machine . 8

237

Index

F-algebra, 23
G-collapsible, 163
P-derivation, 156
Q-restricted rewrite relation, 155
>klex-function, 134
µ-monotone, 166
µ-replacing position, 165
ML-like, 18

above
node, 32
position, 14

accepting term, 17
acyclic graph, 32
addressing, 37
adequacy, 51
admissible, 90
agree, 173
alphabet, 7
argument

normalised, 16
argument filtering, 172
arity, 14
asymptotically bounded, 8

basic terms, 16

canonical
complexity problem, 156
term graph, 39

closed
under constructor contexts, 104
under contexts, 15
under sub-terms, 104
under substitutions, 15

closure
reflexive, 6
transitive, 6

collapsing, 172

compatible
complexity pair, 166
reduction order, 21

complete, 17
completely defined TRS, 18
complexity

function, 156
judgement, 158
problem, 156
processor, 158
proof, 158

complexity pair, 166
confluent, 17
congruence dependency graph, 192
constructor, 16
constructor TRS, 18
constructor-based, 18
context, 15
cyclic graph, 32

defined symbol, 15, 16
dependency graph, 189
dependency pair, 178

chain, 190
problem, 178

dependency tuples, 182
depth

of graph, 32
of term, 14

depth of recursion, 89
derivation height, 19
derivation tree, 187
derivational complexity

problem, 156
derivational complexity function, 20
directed and ordered graph, 31

equivalence, 6

239

Index

contained in quasi-order, 6
exponential path order, 127

on sequences, 129

finitely branching, 6
folding, 33
folding relation, 35
forward closed, 195
fully collapsed, 37, 38
function problem, 9

computed by TM, 10
computed by TRS, 17

function symbol nodes, 34
function-symbol, 14

graph
redirection, 32
union, 32

graph rewrite
relation, 43
rule, 40
step, 43
system, 40

hypergraph, 187

induced
complexity, 163
substitution, 44

innermost
derivational complexity function,

20
graph rewrite relation, 59
rewrite relation, 16
runtime complexity functions, 20

innermost complexity
problem, 156

instance, 15
interpretation, 23
isomorphic term graph, 35

Kleene equality, 5

language, 7
left-linear, 18
lexicographic path order, 22

marked term, 178
matching morphism, 40

matrix interpretation, 24
monotone F-algebra, 23
morphism

application, 41
multiset, 7

extension, 7
multiset path order, 22

non-accepting pattern, 17
non-collapsing, 172
non-overlapping, 18
non-variadic signature, 14
normal form, 16
normal sub-term modulo ≈, 91
normalised

quasi-precedence, 106
signature, 103
term, 103

orthogonal, 18
overlap, 18

parallel
position, 14

partial order, 6
partially ordered set, 6
polynomial interpretation, 24
polytime

computable, 10
reduction, 10

position, 14
term graph, 37

pre-order, 6
pre-reduction step, 42
precedence, 21
predicative

interpretation, 104
notation, 90
recursive TRS, 91
tail-recursive, 116

proper order, 6
contained in quasi-order, 6

properly sharing, 42

quasi-order, 6
compatibility condition, 6
contained equivalence, 6
contained proper order, 6

240

Index

quasi-precedence, 21

rank, 89
recursive path order, 22
redex, 16
reduction order, 20
reflexive, 6
representation size, 67
rewrite order, 20
rewrite position, 16
rewrite relation, 15

of TRS, 16
rewrite rule, 15
rewrite system, 15
root

term, 14
rooted graph, 32
runtime complexity

problem, 156
register machine, 13
term rewrite system, 20
turing machine, 10

safe
equivalence, 91
mapping, 90
recursion on notation, 110

shared, 37
sharing, 35
simple TRS, 117
size

of graph, 32
of term, 14

small polynomial path order, 91
on sequences, 96
parameter substitution, 113
with argument filtering, 173

status function, 22
strict component, 156
strictly above

node, 32
position, 14

strictly below
node, 32
position, 14

sub-graph, 32
replacement, 42

sub-term, 15
relation, 15

substitution, 15
symmetric, 6

tail-recursive, 116
term, 14

ground, 14
term graph, 33

morphism, 35
terminating, 17
transitive, 6
tree, 37
Turing machine, 8

deterministic, 9
non-deterministic, 9

unfolding, 33
of graph rewrite system, 44
relation, 35

unifiable, 15
unshared, 37
usable replacement map, 165

value, 16
variable nodes, 34
variadic signature, 14

weak
component, 156
dependency pairs, 180
safe composition, 109

well-founded, 6

241

	Introduction
	Preliminaries
	Sets, Relations and Orders
	Complexity Theory
	Turing Machines
	Register Machines

	Term Rewriting
	Rewriting as Computational Model
	Complexity Analysis of Rewrite Systems
	Termination Analysis of Rewrite Systems

	Closing the Gap
	Introduction
	Term Graph Rewriting
	Term Graphs
	Term Graph Morphisms
	Positions and Sharing
	Canonical Term Graphs

	Term Graph Rewriting Systems
	Simulating Term Rewriting by Graph Rewriting

	The Adequacy Theorem
	Restricted Folding and Unfolding
	Adequacy for Full Rewriting
	Adequacy for Innermost Rewriting

	An Implementation of Graph Rewriting
	An Upper Bound on Sizes of Reducts
	Implementing a Graph Rewriting Reduction

	The Polynomial Invariance Theorem

	Order-Theoretic Characterisation of Complexity Classes
	Introduction
	The Small Polynomial Path Order
	Small Polynomial Path Orders are Sound
	Small Polynomial Path Order on Sequences
	Predicative Embedding
	Putting Things Together

	Small Polynomial Path Orders are Complete
	Parameter Substitution
	A Tight Characterisation
	Soundness
	Completeness

	The Exponential Path Order
	Exponential Path Orders are Sound
	Exponential Polynomial Path Order on Sequences
	Predicative Embedding
	Putting Things Together

	Exponential Path Orders are Complete

	Automated Runtime Complexity Analysis
	Introduction
	The Tyrolean Complexity Tool
	Web Interface
	Command-Line Interface
	Proof Search Strategy Format
	Configuration

	Interactive Interface

	The Combination Framework Underlying TCT
	Complexity Processors in TCT
	Suiting Reduction Orders to Complexity
	Complexity Pairs in TCT

	Relative Decomposition
	Relative Decomposition in TCT

	Small Polynomial Path Orders as Complexity Pairs
	Small Polynomial Path Orders in TCT

	Dependency Pairs for Complexity Analysis
	Dependency Pair Complexity Problems
	Weak Dependency Pairs
	Dependency Tuples
	Reduction Pairs
	Derivation Trees
	Dependency Graphs for Complexity Analysis
	Dependency Pairs in TCT

	Syntactic Simplifications
	Usable Rules
	Removing of Weak Suffixes in the DG
	Predecessor Estimation
	Simplifying Right-hand Sides
	Simplifications In TCT

	Dependency Graph Decomposition
	Dependency Graph Decomposition in TCT

	Small Polynomial Path Orders and Dependency Pairs

	Experimental Evaluation
	Conclusion

