
Seminar Report

Term Rewriting Characterizations of
Complexity Classes

Martin Avanzini
martin.avanzini@students.uibk.ac.at

30th July, 2007
Supervisor: Dr. Georg Moser

Abstract

Cichon and Weiermann introduced the notion of term rewriting charac-
terizations, a rewriting theoretic framework which allows the application
of techniques from the field of rewriting in the study of recursive function
theory. In this report we introduce the reader to the topic by reflecting
the results and reasoning carried out in two papers by Isabelle Oitavem,
leading to a characterization of FPSPACE, the functions computable in
polynomial space. We present a rewrite system S that naturally models
the functions in FPSPACE. It is shown that every S reduction strategy
yields an algorithm that runs in polynomial space. Therefore S exactly
describes the functions in FPSPACE.

Contents

1. Introduction 1

2. Preliminaries 3
2.1. Classic Characterization of FPSPACE 3

3. New Characterization of FPSPACE 5

4. A Rewrite System for FPSPACE 9

5. Conclusion 17

A. Closure Properties of PS 19

B. PS contains FPSPACE 22

C. FPSPACE contains PS 27

Bibliography 29

ii

1. Introduction

In 1995, Cichon and Weiermann [4] introduced a rewriting theoretic framework
for investigating recursive function theory. The general idea is very simple.
Assume a class C of recursive functions where every function f is defined via
an equation of shape

f(x1, . . . , xn) = g(x1, . . . , xn, λy1, . . . , yn. f(y1, . . . , yn)) (*)

Here g denotes some previously defined function. The corresponding rewrite
system R consists of the rewrite rules

f(x1, . . . , xn)→ g(x1, . . . , xn, λy1, . . . , yn. f(y1, . . . , yn))

obtained by orienting the equations (*). In all non pathological cases the so
obtained system is terminating and orthogonal, yielding a convenient model of
computation for the functions in C . R at hand allows then the application of
techniques from the field of rewriting to gain intrinsic information about the
considered class C .

In [4], the authors demonstrate the application by presenting transparent and
illustrative proofs of the fact that the recursion scheme of parameter recursion,
simple nested recursion and unnested multiple recursion do not lead outside
the class of primitive recursive functions (PR). To exemplify this, we show
that PR is closed under the parameter recursion scheme. Assume that P is
a characterization of PR and that the signature of P contains the constructor
symbols s and 0. We map every natural number n to a numeral n by 0 := 0
and n+ 1 = s(n). For each primitive recursive function f the signature of
P contains a corresponding function symbol f such that any P-reduction of
f(n1, . . . , nk) reduces to the numeral f(n1, . . . , nk). Hence a computation of
f(n1, . . . , nk) amounts to a reduction of f(n1, . . . , nk) under P. Next define the
rewrite system P ′ as the least extension of P containing for every function
symbol g of arity k, h of arity k+2 and all symbols p = p1, . . . , pk of arity k+1
the rules

PR[g, h,p](0, y1, . . . , yk)→ g(y1, . . . , yk)

PR[g, h,p](s(x), y1, . . . , yk)→ h(x, y1, . . . , yk,PR[g, h,p](x,p(x, y1, . . . , yk))

Let g, h and p denote the functions represented by the symbols g, h and p. Then
a P ′-reduction of PR[g, h,p](n,m1, . . . ,mk) corresponds to the computation of
f(n,m1, . . . ,mk) where f is defined by parameter recursion on g, h and p. Hence
P ′ yields a characterization of the class PRP that is obtained by closing PR
under parameter recursion. To show that PRP ⊆ PR we define for every func-
tion symbol f in the signature of P ′ the derivation length function DlfP ′ as the
maximum length of all possible rewrite sequences starting from f(m1, . . . ,mk).
Then it can be shown that the derivation length function DlfP ′ is primitive re-
cursive for every function symbol f admitted by P ′. The number of steps for
computing a derivation on a turing machine is primitive recursive (even elemen-
tary) in the derivation length, for example see [6]. Thus any P ′-reduction can

1

be computed by a primitive recursive function. Since every function f ∈ PRP
is naturally computed by P ′ it follows that PRP ⊆ PR, concluding the claim.
By similar reasoning it is shown in [4] that the primitive recursive functions are
closed under simple nested recursion and unnested multiple recursion.

In the meantime, term rewriting characterizations of various classes have been
introduced. In [1] Beckmann and Weiermann present a characterization of the
class FP, the class of functions computable in polynomial time. For this, instead
of the classical recursive-theoretic characterization given by Cobham in [5], they
use as starting point the characterization of FP given by Bellantoni and Cook
in [3]. Whereas Cobham’s characterization is defined using a bounded recursion
scheme, Bellantoni and Cook’s characterization is entirely resource-bound free
and translates seamless to a term rewriting characterization.

Following Beckmann and Weiermanns approach, Oitavem describes in [8]
a term rewriting characterizations of FPSPACE, the class of functions com-
putable in polynomial space. Again an alternative characterization [7] that does
not depend on explicit bounds is used as a basis. However, a direct transla-
tion of the recursion schemes from [7] results in rewrite rules that give rise to
exponentially fast growing terms. Clearly, if we consider the space complexity
FPSPACE then the goal is to bind the lengths of terms occurring in a deriva-
tion by a polynomial in the size of the input arguments. Thus the recursion
schemes from [7] are not admissible in the context of term rewriting. Oitavem
solves this problem in [8] by replacing the recursion schemes by two adequate
reformulations. This way an alternative characterization PS of the functions
from FPSPACE is obtained. PS can then be almost straight forward trans-
lated into the term rewriting characterization S of the functions computable in
polynomial space.

In this work we mainly reflect the results and reasoning carried out in [7, 8].
Although we study functions that are defined on binary words, all presented
results carry over to functions defined on N. We show that we can drop one of
the recursion schemes in the definition of PS, resulting in a simplified version
of the term rewriting characterization given in [8]. Whereas Oitavem gives
a quite complicated termination proof of S spanning over multiple pages, we
present a very clear and simple proof by means of semantic labeling. Finally
it should be noted that some of the proofs given in [7, 8] lack details that
need further explanation. For example, in the proof of the main theorem only
the “most interesting cases” are discussed. However, it is not clear to the
author how the theorem can be established without further modifications for
one of the unexplained cases, namely when the considered root symbol denotes
a function defined by composition. We therefore present a reformulation of the
main theorem and provide a detailed proof.

The report is structured as follows. In Section 2.1 we start with the classic
characterization of FPSPACE using bounded recursion schemes. In Section
3 we introduce the reader to PS, a resource-bound free characterization of the
functions computable in polynomial space. This correspondence is shown in
Appendix B and C, without introducing the previously mentioned intermediate
characterization from [8]. Based on PS we finally present in Section 4 the
rewrite system S that naturally models the functions from PS. It is proven that

2

any S-reduction admits an algorithm that runs in polynomial space. Therefore
S yields a term rewriting characterization of exactly those functions computable
in polynomial space.

2. Preliminaries

Let N = {1, 2, . . . } denote the set of natural numbers and W denote the set of
all binary words {0, 1}∗. The empty word is denoted by ε.

Let x, y, z ∈W. We write xy for the concatenation of the sequences x and y.
|x| denotes the length of x, that is |ε| := 0 and |xi| := |x|+ 1 for i ∈ {0, 1}. x′
denotes the successor of x, i.e. the sequence that follows immediately after x
when we consider all binary words ordered according to length and, within the
same length, lexicographically. We write x + y for the y-th successor of x, i.e.
x+ε = x and x+y′ = (x+y)′. Likewise x−̇y denotes y-th predecessor of x, that
is y−̇ε = y, ε−̇x = ε and y′−̇x′ = y−̇x. Then for all a, b, c ∈ W, a−̇(b + c) =
(a−̇b)−̇c holds. We denote by < (≤) both the natural order on N and the
transitive (and reflexive) closure of the successor relation {(x, x′) | x ∈W}. We
may also write x > y (x ≥ y) instead of y < x (y ≤ x). ∃z.xz = y abbreviates
to x ⊆ y and we call x a prefix of y. x|y denotes the truncation of x to the
length of y, i.e. x|y = x if |x| ≤ |y| and otherwise x|y = z where |z| = |y| and

z ⊆ x. We write xR to denote the sequence x written in reverse order and xn

for the n-times concatenation of x.
We write x for a n-tuple of arguments, the i-th element of x is denoted by xi

when clear from context. Likewise we write g for a k-tuple of n-ary functions,
gi denoting the i-th element of g.

We follow the notion of rewriting from [2]. We call a set A equipped with
interpretation functions fA : Ak → A for every f ∈ Fk an F-algebra. A is
called the carrier of the algebra A. We denote by [α]A(t) the interpretation
of t ∈ T (F ,V) under A with assignment α. In the case where t is ground we
simply write tA. We call an algebra a model of a rewrite system R if for all
rules l→ r ∈ R and all assignments α, [α]A(l) = [α]A(r) holds. For a model A
of R and for all ground terms s, t, if s→∗R t then sA = tA.

Let R be a TRS over signature F and A be a non-empty model for R with
carrier A. A labeling l for A consists of sets of labels Lf ⊆ A for every n-
ary function symbol f ∈ F together with mappings lf : An → Lf whenever
Lf 6= ∅. A term is labeled under an assignment α by labα(t) = t if t ∈ V,
labα(f(t1, . . . , tn)) = f(labα(t1), . . . , labα(tn)) if Lf = ∅ and if Lf 6= ∅ then
labα(f(t1, . . . , tn)) = fa(labα(t1), . . . , labα(tn)). Here a denotes the label ob-
tained by lf ([α]A(t1), . . . , [α]A(tn)). The labeled TRS is defined by Rlab :=
{labα(l)→ labα(r) | l→ r ∈ R and every assignment α}. R is terminating if
and only if Rlab is terminating.

2.1. Classic Characterization of FPSPACE

Cobham [5] characterizes FP as the smallest class of functions containing the
projection, i-concatenation and conditional functions and that is closed un-
der the composition and bounded recursion on notation schemes. If we close

3

FP under bounded primitive recursion we obtain exactly the class of functions
computable in polynomial space [9]. Intuitively, this is because primitive recur-
sion allows exponential many recursion steps in the length of the input. At the
same time, the bounding requirement ensures that the result is polynomially
bounded in size. Therefore we may describe FPSPACE, the class of functions
computable in polynomial space, as follows:

Definition 2.1. For k ∈ N the set of k-ary functions FPSPACEk is inductively
defined as follows:

1. (Constant) E : Wk →W ∈ FPSPACEk denotes the function

Ek(x1, . . . , xk) = ε

2. (i-Concatenation) For i ∈ {0, 1}, C : W → W ∈ FPSPACE1 denotes
the function

Ci(x) = xi

3. (Projection) For every k 6= 0 and j ≤ k, Pkj : Wk → W ∈ FPSPACEk

denotes the function
Pkj (x1, . . . , xk) = xj

4. (Smash) # ∈ FPSPACE2 denotes the function

#(x, y) = 2|x|·|y|

5. (Composition) If h ∈ FPSPACEl and g1, . . . , gl ∈ FPSPACEk then
COMP [h, g1, . . . , gl] denotes the function f : Wk → W ∈ FPSPACEk

satisfying

f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gl(x1, . . . , xk))

6. (Bounded Recursion on Notation) If g ∈ FPSPACEk, h0,h1 ∈
FPSPACEk+2 and t ∈ FPSPACEk+1 then by BRECN [g,h0, h1, t] we
denote the function f : Wk+1 → W ∈ FPSPACEk+1 such that for i ∈
{0, 1},

f(ε, y1, . . . , yk) = g(y1, . . . , yk)

f(xi, y1, . . . , yk) = hi(x, y1, . . . , yk, f(x, y1, . . . , yk))

provided that for all x, y1, . . . , yk ∈W

hi(x, y1, . . . , yk, f(x, y1, . . . , yk)) ≤ t(x, y1, . . . , yk)

7. (Bounded Primitive Recursion) If g ∈ FPSPACEk, h ∈ FPSPACEk+2

and t ∈ FPSPACEk+1 then by BREC[g, h, t] we denote the function
f : Wk+1 →W ∈ FPSPACEk+1 such that

f(ε, y1, . . . , yk) = g(y1, . . . , yk)

f(x′, y1, . . . , yk) = h(x, y1, . . . , yk, f(x, y1, . . . , yk))

provided that for all x, y1, . . . , yk ∈W,

h(x, y1, . . . , yk, f(x, y1, . . . , yk)) ≤ t(x, y1, . . . , yk)

4

Then FPSPACE =
⋃
k∈NFPSPACEk.

Proposition 2.2. FPSPACE coincides with the functions computable in poly-
nomial space.

Notice that if f ∈ FPSPACEk then there exists a (monotone) polynomial
bf such that for all x1, . . . , xk ∈ W, | f(x1, . . . , xk)| ≤ bf (|x1|, . . . , |xk|). We are
going to use this observation several times.

3. New Characterization of FPSPACE

In [8] a new characterization of the polyspace computable function was intro-
duced. This characterization uses similar techniques as employed by Bellantoni
and Cook in [3], where the input variables can occur in two kinds of positions:
“normal” and “safe”. Instead of f(m1, . . . ,mk, n1, . . . , nl) we therefore write
f(m1, . . . ,mk;n1, . . . , nl) where m1, . . . ,mk denotes the normal and n1, . . . , nl
denotes the safe arguments of f .

The purpose of this distinction is to break the strength of the recursion
scheme. This will become more clear in a moment.

Definition 3.1. For k, l ∈ N the set of functions PSk,l with k normal and l
safe arguments is inductively defined as follows:

1. (Constant) E : Wk,l →W ∈ FPSPACEk,l denotes the function

Ek,l(x1, . . . , xk; y1, . . . , yl) = ε

2. (i-Concatenation) For i ∈ {0, 1}, C : W1,0 → W ∈ FPSPACE1,0 de-
notes the function

Ci(x;) = xi

3. (Deletion) D : W0,1 →W ∈ FPSPACE0,1 denotes the function

D(; ε) = ε D(;xi) = x where x ∈ {0, 1}

4. (Successor) D : W1,0 →W ∈ FPSPACE1,0 denotes the function

S(x;) = x′

5. (Predecessor) P : W0,1 →W ∈ FPSPACE0,1 denotes the function

P(; ε) = ε P(;x′) = x

6. (Projection) For every j ∈ {1, . . . , k + l}, Pj : Wk,l →W ∈ FPSPACEk,l

denotes the function

Pk,lj (x1, . . . , xk;xk+1, . . . , xk+l) = xj

5

7. (Modified Concatenation) For i ∈ {0, 1}, Bi : W2,1 →W ∈ FPSPACE2,1

denotes the function

Bi(x, y; z) = x(zRi)|y

8. (Modified Product) × : W2,0 →W ∈ FPSPACE2,0 denotes the func-
tion

×(x, y;) = xR · · ·xR︸ ︷︷ ︸
|y|

9. (Conditional) Q : W0,4 →W ∈ FPSPACE0,4 denotes the function

Q(;x, y, z0, z1) =

{
y if x = ε, else
zi where x = wi, i ∈ {0, 1}

10. (Safe Composition) If g ∈ FPSPACEk
′,l′ , r1, . . . , rk′ ∈ FPSPACEk,0

and s1, . . . , sl′ ∈ FPSPACEk,l then by SUB[g, r1, . . . , rk′ , s1, . . . , sl′] we
denote the function f : Wk,l →W ∈ FPSPACEk,l satisfying

f(x; y) = g(r1(x;), . . . , rk′(x;); s1(x; y), . . . , sl′(x; y))

11. (Generalized Safe Primitive Recursion) If h ∈ FPSPACEk,l then
PREC[h] ∈ FPSPACEk+1,l denotes the the function f : Wk+1,l → W
such that

f(ε, b,x; y, a) = a

f(z′, b,x; y, a) = f(z, b′,x; y,h(b,x; y, a))

The functions from FPSPACE are exactly those functions from PS with only
normal input positions. Further every function definable in PS is definable in
FPSPACE. A proof of this can be found in Appendix B and C.

Theorem 3.2. PS coincides with the functions computable in polynomial space.

As a consequence there exists a monotone polynomial pf such that for all
x1, . . . , xk ∈ W, | f(x1, . . . , xk)| ≤ pf (|x1|, . . . , |xk|) for every function f ∈ PS.
To explain the effect of the employed recursion scheme, assume that f is defined
by generalized safe primitive recursion on h. During the evaluation of f, when
the first argument decreases from z to ε, the second argument increases from
b to b + z. At each intermediate evaluation step of f, instead of the recursive
argument, the second argument is given to the function h. This has the effect
of inverting the usual evaluation order. At each step, the last argument a of
f acts as an accumulator and holds the recursively computed result. a is then
substituted into a safe position of the function h. As the recursion argument has
to come from a normal position, and by the asymmetry of the safe composition
scheme, h cannot be a function defined by recursion on a. Intuitively, this
means that the depth of sub-recursion of h can not depend on the recursively
computed value held by a.

6

Since functions without safe arguments can not be used for function h in
the definition of the recursion scheme, they do not produce great increase.
This is the reason why both i-concatenation functions posses no safe argument
positions and is essential if we want to establish a polynomial size bound. To
demonstrate this, assume that we join functions Ci(;x) = xi for i ∈ {0, 1} to
the initial functions. Notice that, although it is possible to define Ci based on
Ci, the opposite does not hold. Ci at hand allows the definition of the function
f such that

f(ε, b; a) = a f(z′, b; a) = f(z, b′;C1(; a))

Then f(z′,m;n) produces a result that is exponential long in the length of the
arguments.

As the i-concatenation functions with safe arguments are not admissible, the
functions Bi and × have to be added to the initial functions. In fact without
those PS would admit only functions with constant growth rate. The functions
Bi allow the modification of safe arguments, however the length of the result
is bounded by the length of the normal arguments. This restriction prevents
the definition of functions where the recursively computed result grows larger
then the values in normal position. Using modified product together with safe
composition we can then construct sufficiently large normal arguments, without
exceeding a polynomial size bounds.

As stated before, a resource-bound free characterization of FPSPACE has
already been given in [7] earlier. In [7] it is proven that FPSPACE coincides
with the smallest class of functions that contains certain initial functions and
that is closed under the safe composition, safe primitive recursion and safe
recursion on notation schemes. For PS, some of the initial functions from [7]
have been slightly modified in favor of replacements yielding simplified rewrite
rules. Further, the recursion schemes from [7] are the following:

1. (Safe Recursion on Notation) Define the new function f by

f(ε,x; y) = g(x; y)

f(zi,x; y) = hi(z,x; y, f(z,x; y))

for i ∈ {0, 1}.

2. (Safe Primitive Recursion) Define the new function f by

f(ε,x; y) = g(x; y)

f(z′,x; y) = h(z,x; y, f(z,x; y))

The obvious term rewriting rules corresponding to the safe primitive recursion
scheme are similar to

PREC[g, h](ε,x; y)→ g(x; y)

PREC[g, h](z′,x; y)→ h(z,x; y,PREC[g, h](z,x; y))

7

yielding for f = PREC[g, h] the derivation

f(z′′,x; y)→ h(z′,x; y, f(z′,x; y))

→ h(z′,x; y, h(z,x; y, f(z,x; y)))

→∗ h(z′,x; y, h(z,x; y, h(. . . h(ε,x; y, g(x; y)) . . .))

Here the symbol h occurs exponentially often in the length of z′′ in the last
term. Thus the last term is exponential in length with respect to the first term.
In the definition of PS both recursion schemes from [7] are replaced by the
generalized safe primitive recursion scheme, the corresponding rewrite rules are
similar to

PREC[h](ε, b,x; y, a)→ a

PREC[h](z′, b,x; y, a)→ PREC[h](z, b′,x; y, h(b,x; y, a))

The term obtained by instantiating the second position of f ′ = PREC[h] with ε
and the last position with g(x; y) admits a derivation

f ′(z′′, ε,x; y, g(x; y))→ f ′(z′, 0,x; y, h(ε,x; y, g(x; y)))

→ f ′(z, 1,x; y, h(0,x; y, h(ε,x; y, g(x; y))))

→∗ h(z′,x; y, h(z,x; y, h(. . . h(ε,x; y, g(x; y)) . . .))

The last term equals the last term in the derivation of f(z′′,x; y) given before,
again exponentially in size compared to the first. However, we are now able to
enforce the normalization of the safe arguments to avoid nested occurrences of
h and prevent this way derivations that grow exponential in size.

It should be noted that the definition of PS from [8] is explicitly closed under
a second recursion scheme. In essence, the second scheme is used to show that
PS is closed under safe recursion on notation. Intuitively it is clear that safe
primitive recursion, admitting exponentially many recursion steps in the length
of the recursion input, is strictly more powerful than safe recursion on notation.
Using the conditional function one can easily define a function h that checks
the last bit of the recursion input and calls appropriate function h0, h1. Thus
one can simulate safe recursion on notation using safe primitive recursion by
skipping the recursion steps not performed by safe recursion on notation (cf.
Appendix A). We can therefore safely omit this scheme in the definition of PS.
This result in a simplified term rewriting characterization since no rules for the
second scheme have to be introduced.

Finally let us state the following frequently used lemma.

Lemma 3.3. Assume that f is defined by generalized safe recursion on h, i.e.
f = PREC[h]. Then for all a, b,x,y, z ∈W,

f(z′, b,x; y, a) = h(b+ z, f(z, b,x; y, a))

This directly follows from the observation that for all a, b,x,y, z ∈W

z ≥ c⇒ f(z′, b,x; y, a) = f(z′−̇c′, b+ c′,x; y, h(b+ c, f(c, b,x; y, a)))

8

Here the right-hand side may be perceived as the c-th recursion step of f. That
is, when the first argument to f decreased from z′ to z′−̇c′, the second argument
increased from b to b+ c′. At the same time the last argument holds the value
h(b + c, f(c, b,x; y, a)) = f(c′, b,x; y, a). For a proof of this we refer the reader
to Appendix A.

4. A Rewrite System for FPSPACE

In this section we establish a term rewriting characterization of the functions
computable in polynomial space. More precise, we construct a TRS S that
naturally computes the functions in PS. That is, for any function f ∈ PS
and m1, . . . ,mk, n1, . . . , nl ∈ W there exists a term that normalizes under S
to a term corresponding to the result of f(m1, . . . ,mk;n1, . . . , nl). We show
that for each such derivation the size of every occurring term is bounded by a
polynomial in the length of m1, . . . ,mk, n1, . . . , nl. Therefore, based on S, we
can construct for any f ∈ PS an algorithm that runs in polynomial space. Since
PS coincides with FPSPACE, S effectively yields a characterization of exactly
those functions that are computable in polynomial space. The signature of S
contains following function symbols.

Definition 4.1. For k, l ∈ N we define the set Fk,l of safe recursive function
symbols with k normal and l safe argument positions inductively as follows:

1. Ek,l ∈ Fk,l 8. × ∈ F2,0

2. Ci ∈ F1,0 for i ∈ {0, 1} 9. Q ∈ F0,4

3. D ∈ F0,1 10. SUB[g, r1, . . . , rk′ , s1, . . . , sl′] ∈ Fk,l

4. S ∈ F1,0 if g ∈ Fk′,l′ , r1, . . . , rk′ ∈ Fk,0

5. P ∈ F0,1 and s1, . . . , sl′ ∈ Fk,l

6. Pk,lj ∈ F
k,l for 1 ≤ j ≤ k + l 11. PREC[h] ∈ Fk+1,l+1 if h ∈ Fk,l+1

7. Bi ∈ F2,1 for i ∈ {0, 1}

Then F =
⋃
k,l∈NFk,l is the set of safe recursive function symbols.

The correspondence between function symbols in F and functions in PS is
made precise in the F-algebra π.

Definition 4.2. For k, l ∈ N and f ∈ F the mapping π : F → PS is recursively
defined as follows:

π(Ek,l) := Ek,l π(Bi) := Bi for o ∈ {0, 1}
π(Ci) := Ci for i ∈ {0, 1} π(×) := ×
π(D) := D π(Q) := Q

π(S) := S π(SUB[g, r, s]) := SUB[π(g), π(r), π(s)]

π(P) := P π(PREC[h]) := PREC[π(h)]

π(Pk,lj) := Pk,lj for j ∈ {1, . . . , k + l}

Then W equipped with interpretations fπ := π(f) is a F-algebra, denoted by π.

9

Lemma 4.3. If f ∈ PSk,l then there exists a symbol f ∈ Fk,l such that f = fπ.

Definition 4.4. We associate with every element in W a numeral n ∈ T (F)
as follows:

1. ε := E0,0

2. ni := Ci(n;) where i ∈ {0, 1}

We write ε instead of E0,0. For any function symbol f ∈ F we define the
length | f | of f recursively as follows: |ε| := 0, |SUB[g, r, s]| := | g |+ |r|+ |s|+ 1
and |PREC[h]| := | h | + 1. In all other cases we define | f | := 1. Further the
length of a ground term is defined by | f(r; s)| := | f |+ |r|+ |s|.

Definition 4.5. The rewrite system S over the signature F consists of following
rewrite rules:

1. Ek,l(x1, . . . , xk;xk+1, . . . , xk+l)→ ε for all k, l ∈ N with k + l ≥ 1

2. D(; ε)→ ε

3. D(;Ci(x;))→ x

4. S(ε;)→ C0(ε;)

5. S(C0(x;);)→ C1(x;)

6. S(C1(Ci(x;););)→ C0(S(Ci(x;););) for i ∈ {0, 1}

7. P(; ε)→ ε

8. P(;C0(ε;))→ ε

9. P(;C0(Ci(x;);))→ C1(P(;Ci(x;));) for i ∈ {0, 1}

10. P(;C1(x;))→ C0(x;)

11. Pk,lj (x1, . . . , xk;xk+1, . . . , xk+l)→ xj for j ∈ {1, . . . , k + l} and k + l ≥ 1

12. Bi(x, ε; z)→ x for i ∈ {0, 1}

13. Bi(x,Cj(y;); ε)→ Ci(x;) for i, j ∈ {0, 1}

14. Bi(x,Cj(y;);Cl(z;))→ Bi(Cl(x;), y; z) for i, j, l ∈ {0, 1}

15. ×(x, ε;)→ ε

16. ×(x,Ci(y;);)→ B0(×(x, y;), x;x) for i ∈ {0, 1}

17. Q(ε, y, z0, z1)→ y

18. Q(Ci(x;), y, z0, z1)→ zi for i ∈ {0, 1}

19. SUB[g, r, s](x; y)→ g(r(x;); s(x; y)) for all SUB[g, r, s] ∈ PS

20. PREC[h](ε, b,x; y, a)→ a for all a ∈W.

10

21. PREC[h](Ci(z;), b,x; y, a)→
PREC[h](P(;Ci(z;)), S(b;),x; y, h(b,x; y, a)) for all PREC[h] ∈ PS and
a, b, z ∈W.

As pointed out earlier, we require that the last argument to a function symbol
PREC[h] has to be normalized before one of the last two rules is applicable.
Similar, the first and second arguments of PREC[h] in the last rule have to be
rewritten to numerals before the rule is applicable. This avoids undesired chains
of the form

PREC[h](m, b, · ; · , ·)→∗

→∗ PREC[h](S(S(. . . S(S(m;);) . . . ;);),P(P(. . .P(P(b;);) . . . ;);), · ; · , ·)

where the last term is exponential in size. In essence, this amounts to a call-
by-value reduction strategy employed at these argument positions.

One easily verifies that whenever s →S t holds then sπ = tπ. This is an
immediate consequence of the following Lemma.

Lemma 4.6. π is a model of S.

Proof. This follows by considering the rewrite rules in S.

It is also easy to see that every normal form of S is a numeral.

Lemma 4.7. Let t ∈ T (F) be a normal form of S. Then t = a for some
a ∈W.

The first task is to show that S does not admit infinite rewrite sequences. For
this we want to employ lexicographic path orderings (LPOs). However we can
not employ LPOs on S directly. The reason is that for rule 21 the right-hand
side is embedded in the left-hand side. Also rule 14 can not be handled by
LPOs. If we consider the intended semantics of these rules then it is clear that
they do not introduce infinite chains. As Zantema has shown, we can enrich
the structure of S with semantic information. This technique is called semantic
labeling and explained in detail in [10]. To orient rule 14, we label function
symbols B0 and B1 by exploiting the fact that the second argument decreases.
Likewise for rule 21 we attach the value of the recursion argument as label to
function symbols PREC[h] ∈ PS.

Lemma 4.8. S is terminating.

Proof. We label S according to the model π from Definition 4.2. We define the
labeling functions as follows:

1. lBi(x, y; z) := y for i ∈ {0, 1}.

2. lPREC[h](z, b,x; y, a) := z for any PREC[h] ∈ F .

Labeling S results in the system Slab consisting of rules 1–11,15 and 17–18 from
Definition 4.5 and additionally

11

1. Bεi(x, ε; z)→ x for i ∈ {0, 1}.

2. Byji (x,Cj(y;); ε)→ Ci(x;) for i, j ∈ {0, 1} and y ∈W.

3. Byji (x,Cj(y;);Cl(z;))→ Byi (Cl(x;), y; z) for i, j, l ∈ {0, 1} and y ∈W.

4. ×(x,Ci(y;);)→ B
×(x,y;)π
0 (×(x, y;), x;x) for i ∈ {0, 1}

5. SUB[g, r, s](x; y)→ g′(r1(x;), . . . , rk(x;); s′1(x; y), . . . , s′l(x; y))
for all SUB[g, r, s] and all possible combinations of, possibly labeled, sym-
bols g′, s′1, . . . , s

′
l for g, s1, . . . , sl. The labeling of these functions is in this

case unimportant.

6. PREC[h]ε(ε, b,x; y, a)→ a for all a ∈W.

7. For all z, b, a ∈W and i ∈ {0, 1}

PREC[h]m
′
(Ci(z;), b,x; y, a)→

→ PREC[h]m(P(;Ci(z;)),S(b;),x; y, h(b,x; y, a))

where m′ = zi, h 6= B0, h 6= B1 and h 6= PREC[h′] for any PREC[h′] ∈ PS.

8. For all z, b, a ∈W and i ∈ {0, 1}

PREC[h]m
′
(Ci(z;), b,x; y, a)→
→ PREC[h]m(P(;Ci(z;)),S(b;),x; y, hlh(b,xπ ,yπ ,a)(b,x; y, a))

where m′ = zi, h = B0, h = B1 or h = PREC[h′] for some PREC[h′] ∈ PS.

We choose a precedence > such that Ek,l > ε for all k, l ∈ N where k + l 6= 0.
Further S > C0, S > C1, P > C0, P > C1, B

y
i > Ci,B

yj
i > Byi and × > By0 for all

y ∈ W, i, j ∈ {0, 1}. To orient the rules for safe composition and generalized
safe primitive recursion, we set fk > gl if | f | > | g |. Finally for all PREC[h] ∈ PS
we set PREC[h]k > PREC[h]l if k > l.

Then it can be shown that >lpo is compatible with the labeled system, i.e.
l >lpo r for every rule l → r ∈ Slab. Therefore s >lpo t whenever s →Slab t.
As > is well-founded, >lpo on ground terms is well-founded and we conclude
termination of the labeled system. Finally from termination of Slab we conclude
termination of S.

Lemma 4.9. S is confluent.

Proof. S is orthogonal, i.e. left-linear and does not contain critical pairs [2].
From termination and orthogonality confluence follows [2].

Up to this point we have observed that for all f ∈ PS there exists a cor-
responding function symbol f ∈ F satisfying fπ = f. For all m,n ∈ W any
normalizing S-reduction rewrites the term f(m; n) to the numeral a for a ∈W
satisfying a = fπ(mπ; nπ) = f(m,n). This is a direct consequence of Lemmas
4.3–4.9. Therefore we can compute every function f from PS by rewriting the

12

corresponding term to normal form and extracting the final result from the so
obtained numeral.

To show that this computation can be done in polynomial space, we show that
the length of every term occurring in a derivation is bounded by a polynomial
in the length of the arguments. In the following we write f(r; s) for the numeral
that is the unique normal form of f(r, s) ∈ T (F). This is justified by confluence
and termination of S. Notice that by definition |m| = |m| for all m ∈ W.
Therefore and by the observation that f(m; n)

π
= f(m; n) holds for some f ∈ PS

the next lemma follows.

Lemma 4.10. If f ∈ PS then there exists a monotone polynomial pf such that

∀m.∀n ∈W.|f(m; n)| ≤ pf(|m|, |n|)

To show that the length of every term occurring in a derivation of f(m,n) is
polynomially bounded in the lengths of m,n ∈ W we prove a slightly more
general result.

Theorem 4.11. Assume f ∈ F and t1, . . . , tk+l ∈ T (F), b1, . . . , bk+l ∈ N
satisfying

max {|si| | ti →∗S si} ≤ bi for i in {1, . . . , k + l}

Then there exists a polynomial pf such that

max {|s| | f(t1, . . . , tk; tk+1, . . . , tk+l)→∗S s} ≤ pf(b1, . . . , bk+l)

Proof. We proof the theorem by induction on | f |. If | f | = 0 then f = ε and the

claim trivially follows. Assume that | f | = 1. Then f ∈ {Ek,l,D,S,P,Pk,lj ,Bi,×}
for some k, l, j ∈ N and i ∈ {0, 1}. When f 6= × then it suffices to set
pf(b1, . . . , bn) := Σn

i=1bi+1 since all involved rewrite rules are non size-increasing.

The proofs of the remaining cases all follow a common scheme. We consider
an arbitrary normalizing derivation of f(t1, . . . , tk; tk+1, . . . , tk+l) and show that
any occurring term is bounded by a monotone polynomial under the conditions
of the lemma. By confluence and termination of S this implies that the lemma
holds for any derivation f(t1, . . . , tk; tk+1, . . . , tk+l) →∗ t where t might not be
a normal form.

For the case where f = ×, we set p×(bx, by) := by ∗ (2∗bx+1)+bx+by+1. To
prove the claim, assume a normalizing derivation starting from ×(tx, ty;) where
tx, ty satisfy the assumption of the lemma with bounds bx and by respectively.
We proceed by side induction on by. If by = 0 then ty = ε and

×(tx, ε;)→∗ ×(t′x, ε;)→ ε

where tx →∗ t′x. In this case, the claim follows directly.

For the inductive step of the side induction, assume by ≥ 1 and the lemma
has been shown for by − 1. Then every normalizing derivation is of shape

×(tx, ty;)→∗ ×(t′x,Ci(t
′
y;);)→ B0(×(t′x, t

′
y;), t′x; t′x)

13

where tx →∗ t′x and ty →∗ Ci(t
′
y;). Therefore and by transitivity of →S , if

t′y →∗ t′′y then ty →∗ Ci(t
′′
y;). Hence by the assumption on tx, ty and the

definition of | · |,

max {|t′′x| | t′x →∗ t′′x} ≤ bx and max {|t′′y| | t′y →∗ t′′y} ≤ by − 1

Since every reduct of t′′y is bounded by by−1 by side induction hypothesis we
have

max {|s| | ×(t′x, t
′
y;)→∗ s} ≤ p×(bx, by − 1)

To conclude the claim one just has to unfold the definition of | · | and apply side
induction hypothesis:

|B0(×(t′x, t
′
y;), t′x; t′x)| ≤ p×(bx, by − 1) + 2 ∗ bx + |B0 |

= (by − 1) ∗ (2 ∗ bx + 1) + bx + (by − 1) + 1 + 2 ∗ bx + 1

= by ∗ (2 ∗ bx + 1) + bx + by

< by ∗ (2 ∗ bx + 1) + bx + by + 1

= p×(bx, by)

For the inductive step of the main induction, when | f | > 1, then f is either
one of SUB[f, r, s] ∈ F or PREC[h] ∈ F .

1. For the first case assume f = SUB[g, r, s]. The general case follows then by
same reasoning. Any normalizing derivation of f(t1, . . . , tk; tk+1, . . . , tk+l)
is of the form

f(t1, . . . , tk; tk+1, . . . , tk+l)→∗ f(t′1, . . . , t′k; t′k+1, . . . , t
′
k+l)

→ g(r(t′1, . . . , t
′
k;); s(t′1, . . . , t

′
k; t
′
k+1, . . . , t

′
k+l))

→+ f(t1, . . . , tk; tk+1, . . . , tk+l)

where ti →∗ t′i. Clearly for all t such that f(t1, . . . , tk; tk+1, . . . , tk+l) →∗
t→∗ f(t′1, . . . , t′k; t′k+1, . . . , t

′
k+l) we have

|t| ≤ |f |+ Σk+l
i=1bi = | g |+ | r |+ | s |+ 1 + Σk+l

i=1bi

Let tr = r(t′1, . . . , t
′
k;) and ts = s(t′1, . . . , t

′
k; t
′
k+1, . . . , t

′
k+l). Since t′i →∗ si

implies ti →∗ si we have max {|si| | t′i →∗ si} ≤ bi by the assumption on
ti. Therefore and since | f | > | r |, | s | induction hypothesis for tr, ts is
applicable, so

max {|t′r| | tr →∗ t′r} ≤ pr(b1, . . . , bk)
max {|t′s| | ts →∗ t′s} ≤ ps(b1, . . . , bk+l)

for monotone polynomials pr and ps. Also, since | f | > | g | and by the
previous observation, induction hypothesis is applicable for g. Thus we
may assume there exists a monotone polynomial ph such that

max {|t| | g(tr; ts)→∗ t} ≤ pg(pr(b1, . . . , bk), ps(b1, . . . , bk+l))

14

Observe that |r|+Σk
i=1bi ≤ pr(b1, . . . , bk) and |s|+Σk+l

i=1bi ≤ ps(b1, . . . , bk+l).
Assuming otherwise one easily derives a contradiction. By similar reason-
ing one obtains

| g |+ | r |+ | s |+ Σk
i=1bi + Σk+l

i=1bi ≤ pg(pr(b1, . . . , bk), ps(b1, . . . , bk+l))

Thus setting

pf(b1, . . . , bk+l) := pg(pr(b1, . . . , bk), ps(b1, . . . , bk+l)) + 1

finishes the proof of this case.

2. Finally, assume f = PREC[h] ∈ F3,2. Again the general case where f ∈ F
follows by same reasoning. Assume a normalizing derivation starting from
f(tz′ , tb, tx; ty, ta) where the intermediate subterms tz′ , tb, tx; ty, ta satisfy
the assumptions of the lemma with bounds bz′ , bb, bx; by, ba. The first,
second and last argument to f have to be normalized first. Hence the
considered derivation begins by

f(tz′ , tb, tx; ty, ta)→∗ f(z′, b, t(1)x ; t(1)y , a)

Then for z′, b, a ∈ W it holds that |z′| ≤ bz′ since tz′ →∗ z′ and by same

reasoning, |b| ≤ bb, |t
(1)
x | ≤ bx, |t(1)y | ≤ by and |a| ≤ ba. Without loss of

generality this sequence continues by one application of rule 21

f(z′, b, t(1)x ; t(1)y , a)→ f(P(; z′), S(b;), t(1)x ; t(1)y , h(b, t(1)x ; t(1)y , a))

→+ f(z, b′, t(2)x ; t(2)y , h(b, tx; ty, a))

where h(b, t
(1)
x ; t

(1)
y , a)→∗ h(b, tx; ty, a) by confluence of S. By Lemma 3.3

and definition of the algebra π, h(b, tx; ty, a) = h(b, tx; ty, f(ε, b, tx; ty, a)) =

f(0, b, tx; ty, a).

Consequently, by definition of π and iterated application of Lemma 3.3,
for c ∈W the c-th application of rule 21 in the considered derivation is of
shape

f(z′−̇c, b+ c, t(3)x ; t(3)y , f(c, b, tx; ty, a))

→ f(P(; z′−̇c),S(b+ c;), t(3)x ; t(3)y , h(b+ c, t(3)x ; t(3)y , f(c, b, tx; ty, a)))

→+ f(z′−̇c′, b+ c′, t(4)x ; t(4)y , h(b+ c, tx; ty, f(c, b, tx; ty, a)))

= f(z′−̇c′, b+ c′, t(4)x ; t(4)y , f(c′, b, tx; ty, a))

where the equality follows again by Lemma 3.3 and π. Likewise the last
application of rule 21 is of shape

f(z′−̇z, b+ z, t(5)x ; t(5)y , f(z, b, tx; ty, a))

→ f(P(; z′−̇z),S(b+ z;), t(5)x ; t(5)y , h(b+ z, t(5)x ; t(5)y , f(z, b, tx; ty, a)))

→+ f(ε, b+ z′, t(6)x ; t(6)y , f(z′, b, tx; ty, a))

→ f(z′, b, tx; ty, a)

15

Any occuring term, except the last, is of shape f(t1, t2, t3; t4, t5) for some
terms t1, . . . , t5. Since the last term is embedded in the previous term,
we can construct a polynomial pf satisfying the lemma by summing up
appropriate length bounds for the intermediate subterms and add the
length of f. Assume c ≤ z. As we have already shown there exists
a monotone polynomial pP for P satisfying the lemma. Since |z′−̇c| <
|z′| + 1 = |P(; z′)| and |z′| ≤ bz′ the first argument to f is bounded in
length by pP(bz′). Similar, since |b+ c| ≤ |b+ z′| ≤ |b| + |z′| the second

argument is at most pS(bz′ + bb) in length. As for all j, t
(j)
x derives from

tx the length of t
(j)
x is bounded by bx. Similar t

(j)
y is bounded in length

by by. By Lemma 4.10 there exists a monotone polynomial qf such that

|f(c, b, tx; ty, a)| = |f(c, b, tx; ty, a)| ≤ qf(|c|, |b|, |tx|, |ty|, |a|)

By monotonicity of pf , for any c ≤ z′ we obtain

|f(c, b, tx; ty, a)| ≤ qf(bz′ , bb, bx, by, ba)

Since | f | > | g |, induction hypothesis is applicable for h. Therefore when

h(b+ c, t
(j)
x ; t

(j)
y , f(c, b, x; y, a)) →∗ t then t is bounded by a monotone

polynomial ph satisfying the lemma. Thus when c ≤ z′, by similar rea-
soning as before the length of the last argument to f and the unique
normal form is bounded by

pa(bz′ , bb, bx, by, ba) := ph
(
bz′ + bb, bx, by, qf(bz′ , bb, bx, by, ba)

)
Putting things together the lemma follows by choosing the polynomial pf
such that

pf(bz′ , bb, bx, by, ba) := | f |+ pP(bz′) + pS(bz′ + bb) + bx + by

+ pa(bz′ , bb, bx, by, ba)

Corollary 4.12. Assume that f ∈ PS and m1, . . . ,mk,m1, . . . ,ml ∈W. Then
there exists a polynomial pf satisfying

max {|s| | f(m1, . . . ,mk;n1, . . . , nl)→∗ s} ≤ pf(|m1|, . . . , |mk|, |n1|, . . . , |nl|)

Proof. Since for every m ∈W, m is a normal form with respect to S we obtain
max {|t| | m→∗ t} = |m| = |m|. Hence the claim follows by choosing the
polynomial obtained from Theorem 4.11.

Theorem 4.13. For every f ∈ PS any S-reduction yields an algorithm for f
running in polynomial space.

16

Proof. We have already observed that for every function f ∈ PS there exists a
function symbol f ∈ F such that any normalizing reduction

f(n1, . . . , nk;m1, . . . ,ml) = t0 →S t1 →S . . .→S tn = a

results in a numeral a satisfying a = f(m1, . . . ,mk;n1, . . . , nl) for a ∈W. Thus
any S-reduction yields an algorithm for the functions in PS. By Corollary 4.12,
the length of every ground term ti in the above rewrite sequence is bounded by
a polynomial pf in the length of m1, . . . ,mk, n1, . . . , nl ∈W.

By folklore, there exists an algorithm that rewrites every ground term into its
reduct which runs in polynomial time and hence in polynomial space. It is easy
to see that based on this, we can construct an algorithm with the desired space
bounding property that iteratively calculates t1, t2, . . . , a and finally returns
a.

5. Conclusion

Following [7, 8] we have shown how to obtain from the function theoretic char-
acterization FPSPACE a term rewriting characterization S of the polyspace
computable functions.

The here presented results mainly differ from [7, 8] in the following cases.
Instead of referring to the resource-bound free characterization given in [7] we
have proven in Appendix B and C directly that the class PS coincides with
FPSPACE. Only a indirect proof of this fact is given in [8]. It is obvious to
see that the recursion scheme of generalized safe primitive recursion closes PS
under safe recursion on notation. We present a proof of this in Appendix A.
As opposed to [8] we therefore dropped the second scheme from the definition
of PS. This results in a simplified term rewriting characterization. In [8]
termination of the term rewrite characterization has been shown using complex
polynomial interpretations. We provide a simplified and very natural proof of
this fact by means of semantic labeling. The main theorem of [8] states that
for all function symbols f ∈ F , every term in a rewrite sequence starting from
f(m1, . . . ,mk, n1, . . . , nl) is bounded in length by a polynomial in the length
of f(m1, . . . ,mk, n1, . . . , nl), provided that m1, . . . ,mk, n1, . . . , nl are numerals.
This amounts to the conclusion given in Corollary 4.12. In the proof of this
theorem, Oitavem states that by induction on the definition of F , the claim can
be shown. Then only the case where f = PREC[h] ∈ F is given. The other cases
are considered trivial. However, if we consider a function symbol SUB[g, r, s],
denoting a function defined by safe composition, we have to assume an arbitrary
derivation of the form

f(m1, . . . ,mk;n1, . . . , nl)→ g(r(n1, . . . , nk;); s(m1, . . . ,mk;n1, . . . , nl))

→∗ g(tr; ts)

→∗ f(m1, . . . ,mk;n1, . . . , nl)

Since terms tr, ts are not necessarily numerals, it is not clear how induc-
tion hypothesis can be applied to conclude the claim. We have rectified this

17

by reformulating the theorem for arbitrary terms f(r1, . . . , rk; s1, . . . , sl), pro-
vided that terms occurring in derivations of r1, . . . , rk, s1, . . . , sl are bounded
in length. Finally, Oitavem points out the importance of the bound estab-
lished for functions in PS: for all f ∈ PS there exists a monotone polynomial
pf such that | f(x; y)| ≤ max {pf (|x|),max |y|} (cf. Lemma C.1). It is stated
that this bound is essential for the proof of the main theorem, a bound like
| f(x; y)| ≤ pf (|x|) + |y| is inadmissible. This is not the case, as we have shown
in the proof of Theorem 4.11.

18

A. Closure Properties of PS

In this section we show that PS is closed under safe primitive recursion and
safe recursion on notation. Although this is not mandatory, having these closure
properties at hand helps in presenting the proofs in the remaining sections. For
this, let us prove the following lemma first.

Lemma A.1. Assume that f is defined by generalized safe recursion on h, i.e.
f = PREC[h]. Then for all b,x,y, a, z ∈W,

f(z′, b,x; y, a) = h(b+ z, f(z, b,x; y, a))

More general, for all c ∈W such that z ≥ c it holds that

f(z′, b,x; y, a) = f(z′−̇c′, b+ c′,x; y, h(b+ c, f(c, b,x; y, a)))

Proof. We proof the general case

z ≥ c⇒ f(z′, b,x; y, a) = f(z′−̇c′, b+ c′,x; y, h(b+ c, f(c, b,x; y, a)))

by induction on c. This implies

f(z′, b,x; y, a) = f(z′−̇z′, b+ z′,x; y, h(b+ z, f(z, b,x; y, a)))

= f(ε, b+ z′,x; y, h(b+ z, f(z, b,x; y, a)))

= h(b+ z, f(z, b,x; y, a))

If c = ε then then z′−̇ε′ = z, b+ ε′ = b′ and b+ ε = b so

f(z, b′,x; y; h(b,x; y, f(ε, b,x; y, a))) = f(z, b′,x; y,h(b,x; y, a))

= f(z′, b,x; y, a)

For the inductive step, assume the lemma has been shown for c. Instantiating
z with c results then in

f(c′, b,x; y, a) = f(c′−̇c′, b+ c′,x; y; h(b+ c, f(c, b,x; y, a)))

= h(b+ c, f(c, b,x; y, a))

and therefore, for z ≥ c′

f(z′, b,x; y, a) = f(z′−̇c′, b+ c′,x; y; h(b+ c, f(c, b,x; y, a)))

= f(z′−̇c′, b+ c′,x; y; f(c′, b,x; y, a))

= f(z′−̇c′′, b+ c′′,x; y; h(b+ c′, f(c′, b,x; y, a)))

where the first equation is due to induction hypothesis, the second equation fol-
lows from the the previous observation and the last by unfolding the definition.
This concludes the claim.

Lemma A.2. PS is closed under safe primitive recursion.

19

Proof. Assume that f is defined via the equations

f(ε,x; y) = g(x; y)

f(z′,x; y) = h(z,x; y, f(z,x; y))

where g, h ∈ PS. We show that for all z,x,y ∈W we have f(z,x; y) = f̂(z,x; y)
where f̂ is defined as follows:

f̂(z,x; y) = PREC[h](z, ε,x; y, g(x; y))

To prove the claim, we proceed by induction on z. If z = ε then

f̂(ε,x; y) = PREC[h](ε, ε,x; y, g(x; y)) = g(x; y)

as wished. Else assume z > ε. Then

f(z′,x; y) = h(z,x; y, f(z,x; y))

= h(z,x; y, f̂(z,x; y))

= h(z,x; y, PREC[h](z, ε,x; y, g(x; y)))

= PREC[h](z′, ε,x; y, g(x; y))

where the second equality follows by induction hypothesis and the last equality
follows by Corollary 3.3.

Lemma A.3. PS is closed under safe recursion on notation.

Proof. Assume that f is defined via the equations

f(ε,x; y) = g(x; y)

f(zi,x; y) = hi(z,x; y, f(z,x; y))

where g, h ∈ PS and i ∈ {0, 1}. We show that there exists a function f̂ ∈ PS
such that for all z,x,y ∈W, f(z,x; y) = f̂(z, z,x; y) holds.

Intuitively, f̂ may be described as follows. If the first argument of f̂ is ε then
f̂(ε, z,x; y) will be g(x; y). Each call of f̂(u, z,x; y) will result in f(u,x; y) in
the case that u ⊆ z. If u 6⊆ z then the call will result in f(v,x; y) where v is
the first predecessor of u such that v ⊆ z. Therefore f̂ skips all recursion steps
where the recursion value u is not a prefix of the recursion input to f .

To define f̂, some predicates and boolean operations are needed.

#f() = C0(ε;) if(; b, t, e) = Q(; b, ε, e, t)

#t() = C1(ε;) empty?(; e) = Q(; e,#t(),#f(),#f())

∨(;x, y) = if(;x, x, y) ∧(;x, y) = if(;x, y, x)

We regard every numeral zi as true if i = 1 and false if i = 0, ε has no associated
boolean value. #f() returns therefore a false value and likewise #t() returns
a true value. The function ∨ performs a logical or on the given arguments,
likewise ∧ performs a logical and. Finally empty? returns only a true value if
given ε.

20

To check if two numerals x, y equal, we first define the function P*(x; y)
that computes y−̇x. Based on P* we can then formulate predicates ≥ and =
following their intentional semantics.

P*(ε; y) = y ≥ (x; y) = empty?(; P*(x; y))

P*(x′; y) = P(; P*(x; y)) =(x, y;) = ∧(;≥ (x; y),≥ (y;x))

Here P* is defined by safe primitive recursion and is according to Lemma A.2
in PS. Next we need to define, for x 6= ε, a predicate ⊆(x; y) that checks if
x ⊆ y, i.e. there exists some z such that xz = y. In other words, x is a prefix
of y if there exists some n ≤ |y| such that deleting n rightmost bits of y results
in x.

D*(ε;x) = x ⊆′(ε, x, y;) = #f()

D*(y′;x) = D(; D*(y;x)) ⊆′(z′, x, y;) = ∨(; =(x,D*(z′; y);),⊆′(z, x, y;))

⊆(x, y;) = ⊆′(y, x, y;)

Again both functions D* and ⊆ are defined by safe primitive recursion. They
are described as follows. D*(z; y) performs z deletions on y. ⊆(x, y;) may be
rephrased as

∨
z≤y x = Dz(; y) where the index means iteration.

Finally we need the function I that extracts the last bit of a given numeral:

I(; z) = if(; z,C0(ε),C1(ε))

The function f̂ is then defined by safe primitive recursion as follows:

f̂(ε, z,x; y) = g(x; y)

f̂(c′, z,x; y) = ĥ(c, z,x; y, f̂(c, z,x; y))

ĥ(c, z,x; y, a) = if(;⊆(S(c;), z),

H(D(; S(c;)), I(; S(c;)),x; y, a)

a)

H(z, i,x; y, a) = if(; i, h1(z,x; y, a), h0(z,x; y, a))

By Lemma A.2, f̂ in PS. To prove that f(z,x; y) = f̂(z, z,x; y) we fix z,x,y
and show by induction on u that f̂(u, z,x; y) = f(v,x; y) where v is either
u or the first predecessor of u that is a prefix of z. This implies then that
f(z,x; y) = f̂(z, z,x; y).

Assume u = ε. Therefore f̂(ε,x; y) = g(x; y) = f(ε,x; y). For the inductive
step we distinguish two cases:

• Case u′ = ci ⊆ z for i ∈ {0, 1}: Therefore

f̂(u′, z,x; y) = ĥ(u, z,x; y, f̂(u, z,x; y))

= ĥ(u, z,x; y, f(c,x; y))

= H(D(; S(u;)), I(; S(u;)),x; y, f(c,x; y))

= H(c,Ci(ε),x; y, f(c,x; y))

= hi(c,x; y, f(c,x; y))

= f(ci,x; y)

21

where in the second equation the induction hypothesis has been applied.

• Case u′ 6⊆ z: Then ⊆(S(;u); z) is a false value,

f̂(u′, z,x; y) = ĥ(u, z,x; y, f̂(u, z,x; y))

= f̂(u, z,x; y)

and induction hypothesis is directly applicable.

B. PS contains FPSPACE

In this section we show that every function that is definable in FPSPACE is
definable in PS with only normal argument positions. As pointed out earlier,
we can not effectively use generalized safe recursion in this situation. The idea
now is to construct for every function f ∈ FPSPACE a function f̂ into PS such
that f̂(w; x) = f(x) provided that w is sufficiently large enough. Intuitively,
large enough means at least as big as the maximum depth of recursion used in
computing f(x). w can then be used to simulate recursion on the safe arguments
of the involved functions.

Lemma B.1. If f ∈ FPSPACE then there exists a function f̂ ∈ PS and a
polynomial pf such that

∀x, w ∈W.|w| ≥ pf (|x|)⇒ f(x) = f̂(w; x) (*)

Proof. We proof this lemma by induction on the definition of FPSPACE.

1. If f = En we set f̂ := E1,n. Likewise, if f = Pnj we defining f̂ := P1,n
j+1.

In these cases, let pf (|x|) = 0 and the claim follows. If f = Ci then

define f̂i(w, x) := Bi(ε, w; D(; B0(ε, w;x))) and pf (|x|) = |x| + 1. Now
assume that |w| ≥ pf (|x|). Since |w| ≥ |x|+ 1 we have D(; B0(ε, w;x)) =
D(;xR0) = xR. Therefore Bi(ε, w;xR) = xi and the claim follows.

Next assume that f(x, y) = x#y. Then f can be defined in FPSPACE
by bounded recursion on notation as follows:

g(ε, y) = y

g(xi, y) = C0(g(x, y))

f(ε, y) = C1(ε)

f(xi, y) = g(y, f(x, y))

Here g(x, y) is bounded in length by polynomials bg(|x|, |y|) = |x| + |y|
and bf (|x|, |y|) = |x| ∗ |y| + 1 f(xi, y). Hence we can construct bound-
ing functions tg, tf for g, f and apply the same method as for bounded
recursion on notation.

22

2. If f is defined by composition, i.e. f(x) = h(g1(x), . . . , gm(x)). Then by
the final observation in Section 2.1 there exist length-bounding monotone
polynomials bgi bounding gi. By induction hypothesis there exists ĥ ∈ PS
with polynomial ph for h and ĝi ∈ PS with polynomial pgi for every gi
satisfying the lemma. Hence we may define

f̂(w; x) := ĥ(w; ĝ1(w; x), . . . , ĝm(w; x))

with polynomial:

pf (|x|) = ph(bg1(|x|), . . . , bgm(|x|)) + Σipgi(|x|)

Assume that |w| ≥ pf (|x|). By monotonicity of the involved polynomials
|w| ≥ pgi(|x|) for all i ∈ {1, . . . ,m} and further

|w| ≥ ph(bg1(|x|), . . . , bgm(|x|))
≥ ph(|g1(x)|, . . . , |gm(x)|)

Therefore induction hypothesis is directly applicable and the desired result
follows.

3. The interesting cases occur when f(y,x) is defined by bounded recursion
on notation or bounded primitive recursion. Of course f̂(w; y,x) can not
be defined by recursion on y since y appears at a safe position of f .
However, if w is sufficiently large enough we can use the “normal bits”
of w to simulate recursion on y. For this, we introduce a parameter z
that is initialized by w. Then we build a function f̂ ∈ PS such that
recursion of f̂ on z from w down to some u corresponds to recursion on
y. For both recursion schemes we construct a function f̂ together with a
polynomial pf satisfying f(y,x) = f̂(w,w; y,x) for all y,x ∈ W provided
that |w| ≥ pf (|y|, |x|). This implies then the claim of the lemma.

Assume now that f(y,x) is defined by bounded recursion on notation, i.e.

f(ε,y) = g(y)

f(xi,y) = hi(x,y, f(x,y))

for some g, h0, h1 ∈ FPSPACE and bounding function t ∈ FPSPACE.
The definition of f̂ relies on following auxiliary functions:

D*
1(ε;x) = x Y (z, w; y) = D*

1(D
*
2(z, w;); y)

D*
1(yi;x) = D(; D*

1(y;x)) I(z, w; y) = Q(;Y (z1, w; y), ε,C0(ε),C1(ε))

D*
2(y, x;) = D*

2(y;x)

Here D*
1 is defined by safe recursion on notation and from Lemma A.3

we infer that D*
1 ∈ PS. Both D*

1(x; y) and D*
2(x, y;) perform |x| deletion

operations on y. Therefore, Y (z, w; y) performs |w| − |z| deletion opera-
tions on y. When z varies in length from |w| to |w|− |y|, Y (z, w; y) varies

23

from y to ε provided that |w| ≥ |y|. Finally, for j ∈ {0, 1}, the function I
satisfies Y (zj, w; y) = CI(z,w;y)(Y (z, w; y);).

At each recursion step of f̂, Y (z, w; y) is used to produce an appropriate
initial segment of y, likewise I(z, w; y) is used to determine which stepping
function hi should be used. If Y (z, w; y) = ε then f̂ returns the result of
g(x). As recursion depths with |z| below |w| − |y| are irrelevant, f̂ will
return ε in this case.

By induction hypothesis we may assume that there exist functions ĝ with
polynomial pg for g and functions ĥi with polynomials phi satisfying the

lemma for hi and i ∈ {0, 1}. We define f̂ using safe recursion on notation.

C(; g, t, e) = Q(; g, t, e, e)

H(w; i, y,x, a) = Q(; i, ε, ĥ0(w; y,x, a), ĥ1(w; y,x, a))

f̂(ε, w; y,x) = ε

f̂(zi, w; y,x) = C(;Y (z1, w; y),

ĝ(w; x),

H(w; I(z, w; y), Y (z, w; y),x, f̂(z, w; y,x)))

As by Lemma A.3 PS is closed under safe recursion on notation f̂ ∈ PS.
Finally, pf is defined by:

ph(|y|, |x|) := ph0(|y|, |x|) + ph1(|y|, |x|) and

pf (|y|, |x|) := ph(|y|, |x|, bf (|y|, |x|)) + pg(|x|) + |y|

where bf is a monotone bounding-polynomial for f ∈ FPSPACE.

We fix y,x and w such that |w| ≥ pf (|y|, |x|). Hence |w| ≥ |y|. We show
by side induction on |u| that for |w| − |y| ≤ |u| ≤ |w| we have:

f̂(u,w; y,x) = f(Y (u,w; y),x)

As Y (w,w; y) = y this implies that f̂(w,w; y,x) = f(y,x).

Let u be such that |w|−|y| ≤ |u| ≤ |w|. If |u| = |w|−|y| then Y (u,w; y) = ε
and so f̂(u,w; y,x) = ĝ(w; x) = g(x) = f(Y (u,w; y),x) as wished.

Else assume u = zj for j ∈ {0, 1} and |w| − |y| < |u| ≤ |w|. By mono-
tonicity of the involved polynomials we have

|w| ≥ pf (|y|, |x|)
≥ ph(|y|, |x|, bf (|y|, |x|))
≥ phi(|Y (z, w; y)|, |x|, bf (|Y (z, w; y)|, |x|))
≥ phi(|Y (z, w; y)|, |x|, |f(Y (z, w; y),x)|)

By side induction hypothesis we may assume f̂(z, w; y,x) = f(Y (z, w; y),x).
Hence

ĥi(w;Y (z, w; y),x, f̂(z, w; y,x)) = ĥi(w;Y (z, w; y),x, f(Y (z, w; y); y,x))

= hi(Y (z, w; y),x, f(Y (z, w; y); y,x))

24

for i ∈ {0, 1}. Here the second equation follows by main induction hypoth-
esis on h0 and h1. Since |w|−|y| < |zj| implies Y (zj, w; y) = Y (z1, w; y) 6=
ε and Y (zj, w; y) = CI(z,w;y)(Y (z, w; y);) we finally obtain

f̂(zj, w; y,x) = H(w; I(z, w; y), Y (z, w; y),x, f̂(z, w; y,x))

= ĥI(z,w;y)(w;Y (z, w; y),x, f̂(z, w; y,x))

= hi(Y (z, w; y),x, f(Y (z, w; y); y,x))

= f(Y (zj, w; y); y,x)

as desired.

4. Finally assume that f is defined by bounded primitive recursion, i.e.

f(ε,x) = g(y)

f(y′,x) = h(y,x, f(y,x))

for some g, h ∈ FPSPACE and bounding function t ∈ FPSPACE. We
proceed similar as in the case for bounded recursion on notation. Y is
this time defined as follows:

P*
1(ε;x) = x P*

1(y
′;x) = P*

1(y; P(;x))

P*
2(y, x;) = P*

1(y;x) Y (z, w; y) = P*
1(P

*
2(z, w;); y)

Notice that P*
2(x, y;) = P*

1(x; y) = y−̇x. Therefore Y (z, w; y) = y−̇(w−̇z).
If z = w then P*

2(z, w;) = w−̇z = ε and therefore Y (z, w; y) = P*
1(ε; y) =

y. Provided that w ≥ y, when z decreased to w−̇y then P*
2(z, w;) =

w−̇z = w−̇(w−̇y) = (w−̇w) + y = y and so Y (z, w; y) = ε in this case.
We define

C(; g, t, e) = Q(; g, t, e, e)

f̂(ε, w; y,x) = ε

f̂(z′, w; y,x) = C(;Y (S(; z), w; y),

ĝ(w; x),

ĥ(w;Y (z, w; y),x, f̂(z, w; y,x)))

where ĝ, ĥ are given by induction hypothesis on g, h. We define

pf (|y|, |x|) := ph(|y|, |x|, bf (|y|, |x|)) + pg(|x|) + |y|+ 1

where bf is the bounding polynomial of f ∈ FPSPACE and pg, ph are
given by induction hypothesis.

Let y,x, w ∈W such that |w| ≥ pf (|y|, |x|). Notice that |w| ≥ pf (|y|, |x|) ≥
|y|+ 1 implies w > y. We prove by induction on u that for w−̇y ≤ u ≤ w
we have:

f̂(u,w; y,x) = f(Y (u,w; y),x)

25

If u = w−̇y then Y (u,w; y) = y−̇(w−̇(w−̇y)) = ε and so f̂(u,w; y,x) =
ĝ(w; x) = g(x) = f(Y (u,w; y),x) by main induction hypothesis on g.

For the inductive step, assume w−̇y < u ≤ w. By side induction hypoth-
esis we have f̂(z, w; y,x) = f(Y (z, w; y),x) where z′ = u. Further

|w| ≥ pf (|y|, |x|)
≥ ph(|Y (z, w; y)|, |x|, bf (|Y (z, w; y)|, |x|))
≥ ph(|Y (z, w; y)|, |x|, | f(Y (z, w; y),x)|)

by monotonicity of pf and ph. Assuming w ≥ y, z′ = u > w−̇y implies
Y (z′, w; y) = Y (S(; z), w; y) 6= ε. Therefore

f̂(z′, w; y,x) = ĥ(w;Y (z, w; y),x, f̂(z, w; y,x))

= ĥ(w;Y (z, w; y),x, f(Y (z, w; y),x))

= h(Y (z, w; y),x, f(Y (z, w; y),x))

where main induction hypothesis for ĥ and side induction hypothesis has
been applied.

This completes the proof.

Theorem B.2. Let f(x) be in FPSPACE. Then f(x;) is in PS.

Proof. Let pf and f̂ be obtained by the previous lemma. We construct a function
b(x;) that produces a binary word w such that |w| ≥ pf (|x|). Then by setting

f(x;) := f̂(b(x;); x)

we obtain the desired result.
Without loss of generality we may assume the existence of c, d ∈ N such that

(Σi|xi|)d + c ≥ pf (|x|) for all x. Therefore it suffice to construct b such that
|b(x;)| ≥ (Σi|xi|)d + c.

First we construct functions ⊕i for i ≥ 1, taking i normal arguments, such
that | ⊕i(x1, . . . , xi)| = Σi

j=1|xj |.

⊕1(x1;) = x1

⊕2(x1, x2;) = B1(x1, x2;x2)

⊕k+1(x1, . . . , xk+1;) = B1(⊕k(x1, . . . , xk;), xk+1;xk+1)

Next we define unary functions #i for each i ≥ 1.

#1(x;) = x #k+1(x;) = ×(#k(x;), x;)

#2(x;) = ×(x, x;)

#k(x;) produces a string of length |x|k. Using this definition we may construct
b as follows:

b(x1, . . . , xn;) := Cc
1(#d(⊕n(x1, . . . , xn;););)

Here Cc
1 denotes the function obtained by c compositions of C1. As already

stated | ⊕n(x1, . . . , xn;)| = Σi|xi| and hence |#d(⊕n(x1, . . . , xn;);)| = (Σi|xi|)d.
Finally |Cc

1(#d(⊕i(x1, . . . , xi;););)| = (Σi|xi|)d + c. This concludes the claim.

26

C. FPSPACE contains PS

Lemma C.1. If f ∈ PS then there exists a monotone polynomial pf such that

∀x∀y ∈W.| f(x; y)| ≤ max {pf (|x|),max
i
|yi|} (**)

Proof. The proof is by induction on the definition on PS.

1. If f is a constant, i-concatenation, deletion, successor, predecessor, pro-
jection or modified concatenation function then we set qf (|x|) = 1+Σi|xi|
and easily verify that for all x,y, | f(x; y)| ≤ max{qf (|x|),maxi |yi|}.

2. If f is defined by safe composition then we may assume by induction
hypothesis the existence of monotone polynomials qh,qr,qs bounding h, r
and s respectively. Then

| f(x; y)| = | h(r(x;); s(x; y))|
≤ max{qh(r(x;)),max

i
|si(x; y)|}

≤ max
{
qh(qr(|x|)),max

i
qsi(|x|),max

j
|yj |
}

≤ max
{
qh(qr(|x|)) + Σiqsi(|x|),max

j
|yj |
}

which follows by applying induction hypothesis and by monotonicity of the
polynomials. Therefore we may choose qf such that qf (|x|) = qh(qr(|x|))+
Σiqsi(|x|).

3. Finally assume that f is defined by generalized safe primitive recursion.
By induction hypothesis we may assume that there exists monotone poly-
nomials qh0 for h0 and qh1 for h1 such that (**) holds. We define qf as
follows:

qf (|z|, |b|, |x|) = qh(|z|+ |b|, |x|)

If z = ε then the result is immediate. Else assume z = c′ and the lemma
has been established for c.

| f(c′, b,x; y, a)| = | h(b+ c,x; y, f(c, b,x; y, a))|
≤ max{qh(|b+ c|, |x|),max

i
|yi|, | f(c, b,x; y, a)|}

≤ max
{
qh(|b+ c|, |x|),max

i
|yi|,

max {qf (|c|, |b|, |x|),max
i
|yi|, |a|}

}
≤ max{qh(|c′|+ |b|, |x|),max

i
|yi|, qf (|c|, |b|, |x|), |a|}

≤ max{qf (|c′|, |b|, |x|),max
i
|yi|, |a|}

Here the first inequality follows by Corollary 3.3 and the second two in-
equalities follow by induction hypothesis on h and f respectively. For the
fourth inequality we use that for c and b ∈ W, |b + c| ≤ |c′| + |b| holds.
Finally, the last inequality follows by monotonicity of qf .

27

This completes the proof.

Theorem C.2. Let f(x; y) be in PS. Then f(x,y) is in FPSPACE.

Proof. This is an immediate consequence of Theorem 4.13. Alternatively the
claim can be shown by induction on the definition of PS. It can be easily seen
that the initial functions of PS are all polyspace computable. Also, if f is an
instance of safe composition then by forgetting the distinction between safe
and normal arguments f is an instance of composition and the claim follows by
induction hypothesis.

Finally, assume f(z, b,x; y, a) is defined by generalized safe recursion on h.
We define the function f̂(z, b,x; y, a) by safe primitive recursion as follows.

g(b,x; y, a) = a

f̂(ε, b,x; y, a) = g(b,x; y, a)

f̂(z′, b,x; y, a) = ĥ(z, b,x; y, f̂(z, b,x; y, a))

ĥ(z, b,x; y, a) = h(z + b,x; y, a)

Then using Lemma 3.3 it is an easy exercise to show that for all a, z, b,m,n ∈W
we have f(z, b,m; n, a) = f̂(z, b,m; n, a). By Lemma A.2, PS is closed under safe
primitive recursion, so f̂ ∈ PS. Observe that using the bounding polynomial
established in Lemma C.1 an appropriate bounding function t from FPSPACE
can be constructed. Thus f̂ is an instance of bounded primitive recursion with
bounding function t and we conclude f ∈ FPSPACE.

28

References

[1] A. Weiermann A. Beckmann. A term rewriting characterization of the
polytime functions and related complexity classes. Archive for Mathemat-
ical Logic, 36:11–30, 1996.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[3] Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic char-
acterization of the polytime functions. Computational Complexity, 2:97–
110, 1992.

[4] E. A. Cichon and Andreas Weiermann. Term rewriting theory for the
primitive recursive functions. Ann. Pure Appl. Logic, 83(3):199–223, 1997.

[5] A. Cobham. The intrinsic computational difficulty of functions. In Proc.
of the 1964 International Congress for Logic, Methodology, and the Phi-
losophy of Science, pages 24–30, 1964.

[6] W. G. Handley and S. S. Wainer. Equational derivation vs. computation.
Ann. Pure Appl. Logic, 70(1):17–49, 1994.

[7] Isabel Oitavem. New recursive characterizations of the elementary func-
tions and the functions computable in polynomial space. Revista Mathe-
matica de la Universidad Complutense de Madrid, 10:109–125, 1997.

[8] Isabel Oitavem. Implicit characterizations of pspace. In Reinhard Kahle,
Peter Schroeder-Heister, and Robert F. Stärk, editors, Proof Theory in
Computer Science, volume 2183 of Lecture Notes in Computer Science,
pages 170–190. Springer, 2001.

[9] Kenya Ueno. Recursion theoretic operators for function complexity classes.
In Xiaotie Deng and Ding-Zhu Du, editors, ISAAC, volume 3827 of Lecture
Notes in Computer Science, pages 748–756. Springer, 2005.

[10] Hans Zantema. Termination of term rewriting by semantic labelling. Fun-
damenta Informaticae, 24(1/2):89–105, 1995.

29

	Introduction
	Preliminaries
	Classic Characterization of FPSPACE

	New Characterization of FPSPACE
	A Rewrite System for FPSPACE
	Conclusion
	Closure Properties of PS
	PS contains FPSPACE
	FPSPACE contains PS
	Bibliography

