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1 Introduction
Quantum computation is a promising and emerging compu-
tational paradigm which can efficiently solve problems con-
sidered to be intractable on classical computers [4, 12]. How-
ever, the unintuitive nature of quantum mechanics poses
interesting and challenging questions for the design and
analysis of quantum programming languages. Indeed, the
quantum program dynamics are considerably more compli-
cated compared to the behaviour of classical probabilistic
programs. Therefore, formal reasoning about quantum pro-
grams requires the development of novel methods and tools.

An important open problem is to compute the expected re-
source usage of quantum programs. For example, this may be
used to determine: (1) the expected runtime; (2) the expected
number of quantum gates; or (3) the amount of quantum
resources (in an application-specific sense) required by quan-
tum programs, etc. The difficulty of this problem, which is
undecidable, requires using elaborate methods to solve it
whenever possible. These methods for estimating resource
usage must be compositional, systematic, and, preferably,
tractable; this excludes de facto any direct use of the opera-
tional semantics.
We address this open problem by establishing a weakest

precondition reasoning in the form of a quantum expectation
transformer, named qet-calculus, that is rich enough to re-
cover earlier wp-calculi in the context of classical programs
as well as denotational semantics for quantum programs.
Further, the calculus appears to be the right foundation for
subsequent automation of the method, which however, is
left for future work. The exact solution of the expected cost
problem can be recovered via this calculus, and furthermore,
our method may also be used to find approximate solutions
by identifying suitable upper bounds. Therefore, our method
provides a basis for attacking and ameliorating this undecid-
able problem in a systematic and compositional way.

Our Contributions. As a first step towards achieving
our main objective, we introduce a new domain-theoretic
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notion, called a cost structure (Section 2). It is based on Kegel-
spitzen [7], which are dcpo’s (directed-complete partial or-
ders) equipped with a suitable convex structure that may be
used to reason about the semantics of probabilistic [6, 10]
and quantum programming languages [5]. A cost structure
is then a pair (S, +̂) of a Kegelspitze S together with a cost
addition operation +̂ that allows us to model resource con-
sumption in a coherent way.
We introduce a mixed classical-quantum programming

language on which we formally define the expected cost
and the expected value of programs. Our programming lan-
guage (Section 3) supports conditional branching, while
loops, the usual quantum primitives (including quantum
measurements), classical data, and a special statement for
resource consumption. To seamlessly model the combina-
tion of cost primitives and probabilistic choice — induced
by quantum measurements — we define the operational se-
mantics of our language as a probabilistic abstract reduction
system [3], whose reduction rules are annotated by costs [2].

In Section 4, we introduce the aformentioned qet-calculus,
which can be seen as a generalisation of previous work on
predicate transformers and probabilistic expectation trans-
formers. For a given cost structure (S, +̂), our quantum ex-
pectation transformer is a semantic function

qet
[
·
] {
·
}
: Program → SState → SState

which maps programs and expectations (functions from quan-
tum program states to a cost structure) to expectations, in
a continuation passing style. We prove that our semantics
enjoys nice algebraic and domain-theoretic properties and
that it is sound and adequate with respect to the operational
semantics. As a consequence, we prove that the expected cost
of a program in our mixed classical-quantum language (as
defined via the operational semantics) is precisely recovered
by using our quantum expectation transformer (Corollary
4.4). Furthermore, because our semantics is defined in a suit-
able level of generality, by choosing an appropriate cost
structure (S, +̂), we show how a strongly adequate quan-
tum denotational semantics may be defined as a special case
(§4.1), which highlights important connections between our
approach and denotational semantics of probabilistic and
quantum programming languages.
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The usefulness of our methods are illustrated through a
running example that performs (unbounded) coin tossing us-
ing quantum resources and through more involved quantum
programs in the full paper (omitted here).

2 Kegelspitzen and Cost Structures
We begin by defining a notion of cost structure based on
the domain-theoretic and convex structure of Kegelspitzen.
This is used in later sections by our quantum expectation
transformers in order to formalise the semantics.
Kegelspitzen [7] are cpo’s (complete partial orders) that

enjoy a convex structure.

Definition 2.1. A Kegelspitze is a pointed barycentric alge-
bra 𝐾 equipped with an 𝜔-complete partial order such that,
(1) scalar multiplication (𝑟, 𝑎) ↦→ 𝑟 · 𝑎 : [0, 1] × 𝐾 → 𝐾 is
𝜔-continuous in both arguments, and (2) for every 𝑟 ∈ [0, 1]
convex combination (𝑎, 𝑏) ↦→ 𝑎 +𝑟 𝑏 : 𝐾 × 𝐾 → 𝐾 is 𝜔-
continuous in both arguments.

Example 2.2. The real unit interval [0, 1] is a Kegelspitze
in the usual order when we define 𝑎 +𝑟 𝑏 ≜ 𝑟𝑎 + (1 − 𝑟 )𝑏
and ⊥ ≜ 0. The same assignment can also be used to equip
the extended non-negative reals R+∞ ≜ R+ ∪ {∞} with the
structure of a Kegelspitze. Note that the non-negative reals
R+ is not a Kegelspitze, because it lacks an 𝜔-cpo structure.

Example 2.3. A density matrix is a positive semi-definite
hermitian matrix𝐴, such that tr(𝐴) = 1. A subdensity matrix
is a positive semi-definite hermitian matrix 𝐴, such that
tr(𝐴) ≤ 1. Let 𝐷𝑛 ⊆ C𝑛×𝑛 be the set of subdensity matrices
of dimension 𝑛. Then 𝐷𝑛 is an 𝜔-cpo when equipped with
the Löwner order: 𝐴 ≤ 𝐵 iff 𝐵 −𝐴 is positive semi-definite
[11]. Moreover, 𝐷𝑛 has the structure of a Kegelspitze under
the assignment ⊥≜ 0 and 𝐴 +𝑟 𝐵 ≜ 𝑟𝐴 + (1 − 𝑟 )𝐵.

In quantum programming semantics, we use subdensity
matrices in order to account for the probability of non-
termination. Kegelspitzen may also be used to define (count-
able) convex sums.

We now formalize a notion of cost structure for expectation
transformers in the context of quantum programs. This can
be seen as a Kegelspitze equipped with an operation for
injecting a cost — modeled as a positive real number — into
the Kegelspitze, which satisfies some coherence conditions
with respect to the structure of the Kegelspitze.

Definition 2.4. A cost structure S = (S, +̂) is a Kegelspitze
S equipped with an operation +̂ : R+∞ × S → S that is
𝜔-continuous in both arguments and satisfies the identities

0 +̂ 𝑠 = 𝑠 (1)
𝑐 +̂ (𝑑 +̂ 𝑠) = (𝑐 + 𝑑) +̂ 𝑠 (2)

(𝑐1 +̂ 𝑠1) +𝑟 (𝑐2 +̂ 𝑠2) = (𝑐1 +𝑟 𝑐2) +̂ (𝑠1 +𝑟 𝑠2) (3)

Example 2.5. For any Kegelspitze S, we get a cost structure
(S, +f) with forgetful cost addition defined by 𝑐 +f 𝑟 ≜ 𝑟 . A

more representative example is given by the cost structure
(R+∞, +), where + is the standard addition in R+∞ .

3 Quantum Programming Language
We introduce the syntax and operational semantics of our
imperative programming language supporting both quan-
tum and classical programming primitives. The syntax is
summarised in Figure 1. The consume(a) expression is used
to represent resource consumption and may be thought of
as a meta-language primitive. We model the dynamics (oper-
ational semantics, omitted here) of our language as a proba-
bilistic abstract reduction system [3] — a transition system
where reducts are chosen from a probability distribution.
Reductions can then be defined as stochastic processes [3],
or equivalently, as reduction relations over distributions [1].
We follow the latter approach, unlike the former it permits us
to define a notion of expected cost concisely, without much
technical overhead [2]. By using the operational semantics,
we can precisely formulate the expected cost of a quantum
program in purely operational terms, as we do in the full
paper.
However, this formulation, like most other operational

notions, is not compositional in terms of the syntactic struc-
ture of the programs. This motivates the development of our
quantum expectation transformer (in the next section) which
also allows us to recover the expected cost of a program and
which has the added benefit of compositionality.

4 Quantum Expectation Transformers
Expectations are functions from the set of (classical and quan-
tum)memory states to cost structures, i.e., functions in SState,
for a given cost structure S. The quantum expectation trans-
former qet

[
·
] {
·
}
is then defined in terms of a program se-

mantics mapping expectations to expectations in a contin-
uation passing style. Specializing the cost structure yields
several quantum expectation transformers such as the quan-
tum expected value transformer qevS

[
·
] {
·
}
and the quantum

expected cost transformer qect
[
·
] {
·
}
. After exhibiting sev-

eral laws and properties of these transformers, we show their
soundness and their adequacy.

Definition 4.1. Let (S, +̂) be a cost structure. The quantum
expectation transformer

qet
[
·
] {
·
}
: Program → SState → SState

is defined inductively in Figure 2 (we have omitted many
explanations for notations here for brevity).

Definition 4.2 (Quantum expectation transformers instances).

1. Taking the cost structure ( [0, 1], +f) yields a weakest
precondition transformer

qwp
[
·
] {
·
}
: Program → [0, 1]State → [0, 1]State,

for probabilistic pre-condition reasoning.
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AExp a, a1, a2 ::= xV | 𝑛 | a1 + a2 | a1 − a2 | a1 × a2
BExp b, b1, b2 ::= xB | true | false | a1 = a2 | a1 ≤ a2 | a1 < a2 | ¬b | b1 ∧ b2 | b1 ∨ b2
Exp e, e1, e2 ::= a | b
Statement stm, stm1, stm2 ::= skip | xK = eK | q ∗= U | xB = meas(q) | consume(a)

| stm1; stm2 | if(b){stm1} else {stm2} | while(b){stm}

Figure 1. Syntax of quantum programs.

qet
[
𝜖
] {
𝑓
}
≜ 𝑓 qet

[
x = meas(q)

] {
𝑓
}
≜ 𝑓 [x := 0; Mq0] +𝑝q

0
𝑓 [x := 1; Mq1]

qet
[
skip

] {
𝑓
}
≜ 𝑓 qet

[
consume(a)

] {
𝑓
}
≜ max(JaK , 0) +̂ 𝑓

qet
[
x = e

] {
𝑓
}
≜ 𝑓 [x := e] qet

[
stm1; stm2

] {
𝑓
}
≜ qet

[
stm1

] {
qet

[
stm2

] {
𝑓
}}

qet
[
q ∗= U

] {
𝑓
}
≜ 𝑓 [Uq] qet

[
if(b){stm1} else {stm2}

] {
𝑓
}
≜ qet

[
stm1

] {
𝑓
}
+JbK qet

[
stm2

] {
𝑓
}

qet
[
while(b){stm}

] {
𝑓
}
≜ lfp

(
𝜆𝐹 .qet

[
stm

] {
𝐹
}
+JbK 𝑓

)
Figure 2. Quantum Expectation Transformer qet

[
·
] {
·
}
: Program → SState → SState.

2. Taking the cost structure (S, +f), for any Kegelspitze S,
yields an expected value transformer

qevS
[
·
] {
·
}
: Program → SState → SState .

3. Taking the cost structure (R+∞, +) yields an expected
cost transformer

qect
[
·
] {
·
}
: Program → (R+∞)State → (R+∞)State.

Next, we give a counterpart to the quantum expectation
transformer that is defined via the operational semantics
(details omitted here). This is again a function

QET [·]{·} : Program → SState → SState,

but now its definition is purely operational and it is not com-
positional. The soundness statement follows which states
that there is a perfect correspondence between the oper-
ational notion just introduced and the one we formulate
through our quantum expectation transformers (which is
compositional).

Theorem 4.3 (Soundness). For all stm ∈ Statement, 𝜎 ∈
State and 𝑓 ∈ SState, qet

[
stm

] {
𝑓
}
(𝜎) = QET [stm]{𝑓 }(𝜎).

This theorem allows us to easily recover the expected cost
and expected value of programs.

Corollary 4.4 (Adequacy). The following identities hold, for
all stm ∈ Statement, 𝜎 ∈ State and 𝑓 ∈ SState.

1. qect
[
stm

] {
0
}
(𝜎) = ecoststm (𝜎); and

2. qevS
[
stm

] {
𝑓
}
(𝜎) = evaluestm (𝑓 ) (𝜎).

4.1 Relationship to Denotational Semantics
As a special case of our quantum expectation transformer,
we can define a quantum denotational semantics for our

language. A cost structure K can be constructed, such that
our quantum expectation transformer qet from Definition
4.1 yields a quantum denotational semantics transformer

qevK
[
·
] {
·
}
: Program → KState → KState .

Recall that a quantum denotational semantics consists in
giving a mathematical interpretation of program configu-
rations which is invariant under the operational semantics
(in a probabilistic sense). This can be obtained from qevK by
making a suitable choice for the continuation, which we call
ℎ (details omitted). Then, a quantum denotational semantics

L−M : Conf ∪ State → K

can be defined by L(stm, 𝜎)M ≜ qevK
[
stm

] {
ℎ
}
(𝜎) for config-

urations and L𝜎M ≜ ℎ(𝜎) for program states (which are our
notion of terminal objects). Then, by Corollary 4.4, for any
well-formed configuration 𝜇 = (stm, 𝜎) we have that

L𝜇M = qevK
[
stm

] {
ℎ
}
(𝜎) = evaluestm (ℎ) (𝜎) = Enf→ (𝜇 ) (L−M).

This shows that the denotational interpretation L𝜇M is equal
to the (countable) convex sum of the interpretations of final
states (i.e., terminal objects) that 𝜇 can reduce to, where each
probability weight associated to a final state 𝜏 is given by
the reduction probability of 𝜇 to 𝜏 as determined by the op-
erational semantics. This is precisely the statement of strong
adequacy in the denotational semantics of probabilistic [6, 8]
and quantum programming languages [5, 9].
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