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Abstract. In this paper, we study quantitative properties of quantum
programs. Properties of interest include (positive) almost-sure termina-
tion, expected runtime or expected cost, that is, for example, the ex-
pected number of applications of a given quantum gate, etc. After study-
ing the completeness of these problems in the arithmetical hierarchy over
the Clifford+T fragment of quantum mechanics, we express these prob-
lems using a variation of a quantum pre-expectation transformer, a weak-
est pre-condition based technique that allows to symbolically compute
these quantitative properties. Under a smooth restriction—a restriction
to polynomials of bounded degree over a real closed field—we show that
the quantitative problem, which consists in finding an upper-bound to
the pre-expectation, can be decided in time double-exponential in the
size of a program, thus providing, despite its great complexity, one of
the first decidable results on the analysis and verification of quantum
programs. Finally, we sketch how the latter can be transformed into an
efficient synthesis method.

1 Introduction

Motivations. Quantum computation is a promising and emerging computa-
tional paradigm which can efficiently solve problems considered to be intractable
on classical computers [41,20]. However, the unintuitive nature of quantum me-
chanics poses challenging questions for the design and analysis of corresponding
quantum programming. Indeed, the quantum program dynamics are consider-
ably more complicated compared to the behavior of classical or probabilistic
programs. Therefore, formal reasoning requires the development of novel meth-
ods and tools, a development that has already started and recently gathered
momentum in various areas, like design automation [43,22], programming lan-
guages [39,2,31,23,15], verification [36,11], etc.

Among these formal methods, those that allow us to obtain quantitative
properties on quantum programs are particularly interesting. They can be used
to obtain relevant information about the computations of a quantum program,
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RUS ≜ iN = 0;

xB = tt;

while x do {
q2 = |0⟩ ;
q2 ∗= H;

q2 ∗= T;

i = i+ 1

q2, q1 ∗= CNOT;

q2 ∗= H;

q2, q1 ∗= CNOT;

q2 ∗= T;

i = i+ 1

q2 ∗= H;

x = meas q2
}
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Fig. 1. Repeat-until-success program RUS and step-circuit.

such as the number of qubits used and the number of unitary operators used,
thus enabling the corresponding compiled quantum circuit to be optimized (for
example, by minimizing the use of gates that are hard to make fault-tolerant,
or by reducing the number of qubits) or to avoid undesirable behavior such
as non-termination. Another quantitative property of interest may also be the
question whether or not a program terminates almost-surely, that is, whether its
probability of non-termination is zero or not. Similarly, we could aim to capture
the expected values of (classical) program variables upon program termination.
The latter can also be employed to reason about the expected runtime or the
expected cost of quantum programs, if we suitably instrument the code with
counter variables.

To illustrate this, the program of Figure 1 implements a Repeat-Until-Success
algorithm that can be used to simulate quantum unitary operators on input qubit
q1 by using repeated measurements. The quantum step-circuit on the right part
corresponds to one iteration of the loop. Variable i in the program just acts as a
counter for T-gates. Hence an analysis on the expected value of variable i can be
used to infer an upper-bound on the expected T-count, i.e., the expected number
of times a T-gate is used in the fully compiled quantum circuit. Such an approach
offers the advantage to allow the programmer to implement quantum programs
using fewer T-gates, which are costly to implement fault-tolerantly [10,16], and
it therefore provides a simple quantum program to illustrate that the study of
quantitative properties is paramount.

In [6,30], new methodologies named quantum expectation transformers based
on predicate transformers [13,28] and expectation transformers [32,17] have been
put forward to naturally express and study the quantitative properties of quan-
tum programs. However, no attempt was made to automate the corresponding
techniques or delineate how complicated such an automation could be. Automa-
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tion of these formal verification techniques in the context of quantum programs
is a particularly difficult problem. Indeed, the consideration of Hilbert spaces
as a mathematical framework for describing principles and laws of quantum
mechanics makes it seemingly impossible to reason fully automatically about
quantitative properties of quantum program: they involve computational ob-
jects of exponential dimensions (in the number of qubits) with scalars ranging
over an uncountable domain (i.e., complex numbers C). This problem is directly
linked to the fact that the set C includes non-computable numbers [42] and that
testing the inequality ≤ or the equality = of two real numbers is not decidable,
even if one restricts their study to computable real numbers. Consequently, the
particular nature of quantum programs and of their semantic domain, Hilbert
spaces, makes it impossible to directly apply the results obtained in the classical
and probabilistic setting [37,24].

Contributions. In this paper, we study the hardness of the quantitative prop-
erties of mixed classical-quantum programs and provide a first step towards their
(full) automation using quantum expectation transformers.

To this end, we restrict the considered quantum gates to the Clifford+T frag-
ment, which is known to be the simplest approximately universal fragment of
quantum mechanics [1]. Clifford+T makes it possible to only consider quantum
states with algebraic amplitudes, thus restricting the study to a countable do-
main. It implies that our results can accommodate quantum gates employed in
actual hardware, recently employed to claim quantum advantage, cf [3]. More-
over, the obtained results are very general as it can be extended to any set of
gates with algebraic coefficients.

As motivated, our first contribution is about the general hardness of deciding
quantitative properties for mixed classical-quantum programs. For a given input
state, we study properties such as (positive) almost-sure termination, (P)Ast
for short; testing problems, TestR, which consist in comparing a quantum ex-
pectation (for example, the mean value of a variable) with a given value (an
algebraic and positive real number) wrt the relation R; and the finiteness prob-
lem, Test̸=∞, which consists in checking that a quantum expectation is finite.
For each of those problems, we also study the related universal problem, which
consists in checking the corresponding property for every input. We establish a
precise mapping (Theorem 1) of the inherent complexity of each problem in the
arithmetical hierarchy [34] that is summarized in Table 1 (provided in Section 3).
E.g., Ast is Π0

2 -complete while Past is Σ0
2 -complete.

Our second contribution aims to overcome the aforementioned undecidability
results. For that, we study approximations. More precisely, we focus on infer-
ring bounding functions (in general depending on the input) on the expected
values of classical program variables upon termination. The decision problem
has thus been altered to an inference problem. Further, we restrict the set of
potential bounding functions. As a suitable class of functions, we consider poly-
nomials over the real-closed field of the algebraic numbers. The restriction to
algebraic numbers guarantees that comparison operations between real num-
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bers remain decidable. On the other hand, for any real closed field, quantifier
elimination for formulas over polynomials is decidable, that is, there exists a
double-exponential algorithm computing a quantifier-free formula equivalent to
the original formula [21]. This recasting of the problem and restriction of the
solution space suffices to render the problem decidable. The inference algorithm
established remains double-exponential (Theorem 4), thus of similar complexity
as the underlying quantifier elimination procedure.

Finally, our last contribution (Section 5) studies effective automation of the
inference of upper bounds on the expected values of program variables. To im-
prove upon the double-exponential complexity, we further restrict the class of
polynomials considered, that is, to degree-2 polynomials and sketch how tech-
niques from optimization theory can be employed. Several simple quantum algo-
rithms such as program RUS can be analyzed using this approach (Example 6).
This further reduction in expressivity allows the encoding of the problem in SMT
and thus paves the way towards (full) automation.

Related Work. Predicate transformers [13,28]—on which our work is based—
were introduced as a method for reasoning about the semantics of imperative pro-
grams. They have been adapted to the probabilistic setting, leading to the notion
of expectation transformer [32,17], which has been used to reason about expected
values [26,8], runtimes [27,33], and costs [7,4,33], and to the quantum paradigm,
leading to the notion of quantum pre-expectation transformer [35,30,6].

The problem of studying the difficulty of analyzing quantitative program
properties has been deeply studied in the classical setting. To mention a few,
[14] and [37] study termination properties and runtime/derivational properties
of first-order programs, respectively. Further, in [24] completeness results for
various quantitative properties of (pure) probabilistic programs have been estab-
lished. The inference problem of expectation transformers, i.e., establishing an
implementation that automates the search for pre-expectations, has been stud-
ied extensively. Examples of successful implementation are presented in [33,7,8].
Up to now, however, no practical, feasible studies have been carried out on quan-
tum languages. Among the techniques using quantum expectation transformers,
we believe [6] to be the most amenable to automation. Indeed, by lifting up-
per invariants of [27] to the quantum setting, it enables approximate reasoning
and eliminate the need to reason about fixpoints or limits, stemming from the
semantics of loops.

2 Quantum Programming Language

In this section, we introduce the syntax and operational semantics of the con-
sidered mixed-quantum imperative programming language.

Syntax. We make use of three basic datatypes B, N and Q for Boolean, num-
bers (non-negative integers), and qubit data, respectively. Let K be an arbitrary
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NExp ∋ n, n1, n2 ::= xN | n ∈ N | n1 + n2 | n1 − n2 | n1 × n2
BExp ∋ b, b1, b2 ::= xB | tt | ff | n1 = n2 | n1 < n2 | ¬b | b1 ∧ b2 | b1 ∨ b2
Exp ∋ e, e1, e2 ::= n | b
Stmt ∋ stm, stm1, stm2 ::= skip | xK = eK | stm1; stm2 | if bB then stm1 else stm2

| while bB do stm | qQ ∗= U | xB = meas qQ

Fig. 2. Syntax of quantum programs.

classical type in {B,N}. Each program variable comes with a fixed datatype and
can be optionally annotated by its type as a superscript. In what follows, we will
use x, x′, y, . . . to denote classical variables of type K and q, q′, . . . to denote
quantum variables of type Q. A program, denoted P, is simply a statement; see
Figure 2. Program statements are either classical assignments, conditionals, se-
quences, loops, quantum assignments qQ ∗= U, or measurements xB = meas qQ.
A quantum assignment consists in the application of a quantum unitary gate
U of arity ar(U) to a sequence of qubits q ≜ q1, . . . , qar(U). As we will see in
the semantics section, a unitary matrix U will be associated with each quantum
gate U. A measurement performs a single qubit measurement of q in the com-
putational basis: the outcome is a Boolean value and the quantum state evolves
accordingly. For a given syntactic construct t, let B(t) (respectively N (t), Q(t))
be the set of Boolean (respectively, number, qubit) variables in t.

Notice that the language encompasses qubit-initializing in the basis states. In
particular, we will use qQ = |0⟩ as syntactic sugar for x = meas q; if x then q ∗=
X else skip, for X being the Pauli X gate and for some fresh variable x of type
B.

Example 1. Consider the program of Figure 3, adapted from [6], as a simple
leading example. Let H be the unitary operator computing the Hadamard gate.
This program simulates coin tossing by repeatedly measuring the qubit q, until
the measurement outcome ff occurs. The probability to terminate within n steps

depends on the initial state ρ =
(

α β
γ δ

)
(a density matrix in C2×2, which implies

α + δ = 1 and γ = β̄) of the qubit q. Variable i is increased by one at each
iteration, and hence, when the program terminates, i stores as final value the
number of loop iterations performed. The overall probability of termination is
1. The mean value of variable i, that is, the expected number of loop iterations,
depends on the program input, in particular on the initial quantum state. After

termination, for an initial state ρ =
(

α β
β̄ δ

)
, its expected value is given by

F (ρ) = p0×1+

∞∑
i=1

p1
2i

(i+1) = p0+p1+2p1 = 1+(α−β− β̄+ δ) = 2− (β+ β̄),

where p0 = α+β+β̄+δ
2 = 1+β+β̄

2 and p1 = 1−p0 are the probabilities of measuring
|0⟩ and |1⟩, respectively, on the first iteration of the loop. For instance, for a qubit
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Cntoss ≜ xB = tt;

iN = 0;

while x do {
i = i+ 1;

qQ ∗= H;

x = meas q

}

≜ stm

with H =
1√
2

(
1 1
1 −1

)

Fig. 3. Quantum Coin tossing

initialized in state |ϕ⟩ =
√

1/3 |0⟩ +
√

2/3 |1⟩, the corresponding density matrix

is ρ|ϕ⟩ = |ϕ⟩⟨ϕ| =
(

1/3
√

2/3
√

2/3 2/3

)
and hence the expected number of loop iterations

is F (ρ|ϕ⟩) = 2− 2
√
2/3. It will be simply 2 in the case of an initialization in the

computational basis |ϕ⟩ = |0⟩ or |ϕ⟩ = |1⟩.

Operational Semantics. Following [6], we model the dynamics of our language
as a probabilistic abstract reduction system (see [9]), a transition system where
reduction is defined as a relation over probability distributions.

Probabilistic abstract reduction systems. Given a subset K of R, let K+ be the
set of non-negative numbers in K, i.e., K+ ≜ K ∩ {x | x ≥ 0} and let K∞ be
defined by K∞ ≜ K ∪ {∞}.

A discrete (sub)distribution δ over a set A is a function δ : A → [0, 1] with
countable support supp(δ) ≜ {a ∈ A | δ(a) ̸= 0} that maps an element a of
A to a probability δ(a) such that |δ| ≜

∑
a∈supp(δ) δ(a) = 1 (|δ| ≤ 1). Any

(sub)distribution δ can be written as {δ(a) : a}a∈supp(δ). The set of subdistribu-
tions over A, denoted by D(A), is closed under denumerable convex combinations∑

i pi · δi ≜ λa.
∑

i piδi(a), with pi ∈ [0, 1] and
∑

i pi ≤ 1. Slightly simplifying
standard notation, given f : A → R+∞ and a subdistribution δ ∈ D(A), we de-
fine Eδ(f), the expectation of f on δ, by Eδ(f) ≜ Σa∈supp(δ)δ(a)f(a). Note that
Eδ(f) ∈ R+∞ is always defined, since the images of f are non-negative reals.

Bournez and Garnier [9] introduced the notion of Probabilistic Abstract Re-
duction System (PARS) as a means to study reduction systems that evolve
probabilistically. A PARS → on A is a binary relation · → · ⊆ A × D(A). The
intended meaning is that when a→ δ, then a reduces to b ∈ supp(δ) with prob-
ability δ(b). Here, we focus on deterministic PARSs, i.e., PARSs → with a→ δ1
and a → δ2 implies δ1 = δ2. An object a ∈ A is called terminal if there is no
rule a→ δ, which we write as a ̸→.

Every deterministic PARS → over A naturally lifts to a reduction relation
−→→ over distributions so that δ −→→ ε, if the reduct distribution ε is obtained
from δ by replacing reducts in supp(δ) according to the PARS →. In fact, we

define this lifting in terms of a ternary relation · ·−→→ · ⊆ D(A)× R+ ×D(A) on
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distributions, where in a step δ
c−→→ ε the weight c signifies the probability that

a reduction has occurred. This relation is defined wrt. the following three rules.

a ̸→

{1 : a} 0−→→ {1 : a}

a→ δ

{1 : a} 1−→→ δ

δi
ci−→→ ϵi

∑
i pi ≤ 1∑

i pi · δi
∑

i pici−−−−−→→
∑

i pi · ϵi

We may sometimes use the n-fold (n ≥ 0) composition of
·−→→, denoted

·−→→n, given

by δ
c−→→n ϵ if δ

c1−→→ · · · cn−→→ ϵ and the weights satisfy c =
∑n

i=1 ci. Notice that

since → is deterministic, so is
c−→→, in the sense that δ

c1−→→ ϵ1 and δ
c2−→→ ϵ2 implies

c1 = c2 and ϵ1 = ϵ2. Thus, in particular, for every a ∈ A there is precisely one
(infinite) reduction

{1 : a} = δ0
c0−→→ δ1

c1−→→ δ2
c2−→→ δ3 −→→ · · · .

For any b ∈ A, δi(b) gives the probability that a reduces to b in i steps. Note
that when b is terminal, this probability only increases along reductions (i.e.,
δi(b) ≤ δi+1(b) for all i). This justifies that we define the terminal distribution
of a as the distribution δ(b) ≜ limi→∞ δi(b). Note that δ(b) gives the probability
that a reaches b in an arbitrary (but finite) number of steps. Since the weights
ci indicate the probability that a step has been performed from δi to δi+1, the
infinite sum

∑∞
i=0 ci ∈ R+∞ gives the expected number of reduction steps carried

out, the expected derivation length of a [5].
For a PARS →, we denote by term→ : A → D(A) the function associating

with each a ∈ A its terminal distribution. The expected derivation length function
edl→ : A → R+∞ associates each a ∈ A to its expected derivation length. The
PARS → is almost surely terminating [40] (a.s. terminating for short) if a ∈ A
reduces to a terminal object b ̸→ with probability 1, that is, if |term→(a)| = 1
for every a. It is positive almost surely terminating, if the expected derivation
length is always finite, that is, edl→(a) <∞ for all a ∈ A.

Apart from termination, we are interested also in questions related to func-
tional correctness, such as (i) what is the probability that a reaches a terminal
b, (ii) what is the probability that a reaches a terminal satisfying predicate P ,
and more generally, (iii) which value does a function f : A → R+∞ take, in
expectation, when fully reducing an object a. In the literature [32], one tool to
answer all of these are given by weakest pre-expectation transformers, the natural
generalization of classical weakest pre-condition transformers to a quantitative,
probabilistic setting. We suite this notion to PARSs.

Definition 1 (Weakest pre-expectation). The weakest pre-expectation for
a PARS → over A is given by the function

wp→ : (A→ R+∞) → (A→ R+∞)

wp→ ≜ λf.λa. Eterm→(a)(f).

For 1b the indicator function evaluating to 1 on argument b and to 0 other-
wise, and by seeing a predicate P as a 0, 1-valued function, wp→ 1b a answers
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(Skip)
(skip, s, ρ) →q {1 : (↓, s, ρ)}

(Exp)
(x = e, s, ρ) →q {1 : (↓, s[x := JeKs], ρ)}

(Op)
(q ∗= U, s, ρ) →q {1 : (↓, s, ΦUq(ρ))}

(Meas)
(x = meas qi, s, ρ) →q {tr(Mk,iρ) : (↓, s[x := k],mk,i(ρ))}k∈{0,1}

(stm1, s, ρ) →q {pi : (stmi↓, si, ρi)}i∈I
(Seq)

(stm1; stm2, s, ρ) →q {pi : (stmi↓; stm2, s
i, ρi)}i∈I

JbKs ∈ {0, 1}
(Cond)

(if b then stm1 else stm0, s, ρ) →q {1 : (stmJbKs , s, ρ)}

JbKs = 0
(Wh0)

(while b do stm, s, ρ) →q {1 : (↓, s, ρ)}

JbKs = 1
(Wh1)

(while b do stm, s, ρ) →q {1 : (stm; while b do stm, s, ρ)}

Fig. 4. Operational semantics in terms of PARS.

question (i), wp→ P a answers (ii), and generally wp→ f a answers question (iii).
Note also that a PARS is a.s. terminating iff wp→ (λb. 1) a = 1 for each a ∈ A.
On the other hand, positive a.s. termination cannot be expressed through an
application of wp→.

Quantum programs as PARSs. We now endow quantum programs with an op-
erational semantics defined in terms of a PARS. Given a totally ordered set of
qubits Q = {q1, . . . , qn}, let HQ be the 2n-dimensional Hilbert space defined by

HQ ≜ ⊗n
i=1Hqi , with Hq = C2 being the vector space of computational basis

{|0⟩ , |1⟩} and ⊗ being the tensor product. With ⟨k| we denote the transpose con-
jugate of |k⟩, for k ∈ {0, 1}. Let M(HQ) be the set of complex square matrices
acting on the Hilbert space HQ, i.e., M(HQ) = C2n×2n . Given M ∈ M(HQ),
M† denotes the transpose conjugate of M , and I2n denotes the identity matrix
over M(HQ). We will write I when the dimension is clear from the context.

Let D(HQ) ⊊ M(HQ) be the set of all density operators (or quantum states),
i.e., positive semi-definite matrices of trace equal to 1 on HQ. Density operators
can be viewed as the mathematical representation of a (mixed) quantum state.
A unitary operator U is a matrix in M(HQ) such that UU† = U†U = I. A
superoperator ΦU : D(HQ) → D(HQ), an endomorphism over density opera-

tors, is attached to each unitary operator U and defined by ΦU ≜ λρ.UρU†.
By definition, ΦU is a completely positive trace preserving linear map. Indeed,
tr(UρU†) = tr(ρ), by unitarity. Hence UρU† is a density operator in D(HQ) for
each ρ ∈ D(HQ).
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Regarding measurements, for each i, 1 ≤ i ≤ card(Q), we define Mk,i ∈
M(HQ), with k ∈ {0, 1}, by M0,i ≜ I2i−1 ⊗ (|0⟩ ⟨0|)⊗ I2n−i and M1,i ≜ I−M0,i.
The measurement of the qubit qi (in the computational basis) of a density matrix
ρ ∈ D(HQ), produces the classical outcome k ∈ {0, 1} with probability tr(Mk,iρ).
The (normalized) quantum state, after the measurement, is defined by

mk,i(ρ) ≜

{
Mk,iρM

†
k,i

tr(Mk,iρ)
, if tr(Mk,iρ) ̸= 0,

I
2n otherwise.

Note that for all ρ ∈ D(HQ), mk,i(ρ) ∈ D(HQ), as it holds that tr(mk,i(ρ)) = 1.

Indeed, tr(Mk,iρM
†
k,i) = tr(M2

k,iρ) = tr(Mk,iρ), as Mk,i is a projection. Hence
mk,i is a map in D(HQ) → D(HQ).

We set JBK ≜ {0, 1} and JN K ≜ N. The classical state is modeled as a (well-
typed) store s of domain dom(s) mapping each variable x of type K to a value
in JKK. With Store, we denote the set of all such stores. Let s[xK := k] with
k ∈ JKK be the store obtained from s by updating the value assigned to x in
the map s. Given a store s, let J−Ks : KExp → JKK be the map associating to
each expression e of type K and such that B(e) ∪ N (e) ⊆ dom(s), a value in
JKK, defined in the obvious way. For example JxKs ≜ s(x), JnKs ≜ n, JttKs ≜ 1,
Jn1 − n2Ks ≜ max(0, Jn1Ks − Jn2Ks), etc.

Let ↓ be a special symbol for termination. A configuration µ, for (extended)
statement stm ∈ Stmt ∪ {↓}, store s ∈ Store, and a quantum state ρ ∈ HQ,
has the form (stm, s, ρ). Let Conf be the set of configurations. A configuration
(stm, s, ρ) is well-formed with respect to the sets of variables B, V , and Q if
B(stm) ⊆ B, N (stm) ⊆ V , Q(stm) ⊆ Q, dom(s) = B ∪ V , and ρ ∈ D(HQ).
Throughout the paper, we only consider configurations that are well-formed
with respect to the sets of variables of the program under consideration.

The operational semantics is described in Figure 4 as a PARS →q over ob-
jects in Conf, where terminal objects are precisely the configurations of the
shape (↓, s, ρ). The (classical or quantum) state of a configuration can only
be updated by the three rules (Exp), (Op), and (Meas). Rule (Exp) updates
the classical store wrt the value of the evaluated expression. Rule (Op) up-

dates the quantum state to a new quantum state ΦUq
(ρ) = UqρU

†
q , where

Uq is the unitary operator in M(HQ) computed by extending the quantum
gate U to the entire set of qubits Q. Rule (Meas) performs a measurement on
qubit qi. This rule returns a distribution of configurations corresponding to the
two possible outcomes, k = 0 and k = 1, with their respective probabilities
tr(Mk,iρ) and, in each case, updates the classical store and the quantum state
accordingly. In the particular case where tr(Mk0,iρ) = 0 for some k0 ∈ {0, 1},
{tr(Mk,iρ) : (↓, s[x := k],mk,i(ρ))}k∈{0,1} = {1 : (↓, s[x := 1− k0],m1−k0,i(ρ))}.
Rule (Seq) governs the execution of a sequence of statements stm1; stm2, under
the covenant that ↓ ; stm ≜ stm, for each statement stm. The rule accounts
for potential probabilistic behavior when stm1 performs a measurement and it
is otherwise standard. All the other rules are standard.
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In a configuration µ = (stm, s, ρ), the pair σ ≜ (s, ρ) is called a state. Let
Ststm be the set of states σ, τ, . . . that are well-formed wrt statement stm. For
simplicity, we will denote this set by St when stm is clear from the context. To
ease the presentation, we sometimes write (stm, σ) for the configuration µ.

We will be interested in expectation-based reasoning on quantum programs.
In what follows, we also call functions f : Conf → R+∞ expectations, for brevity.

Definition 2. For a statement stm and f : St → R+∞, we overload the notions
of expected derivation length and weakest pre-expectation by:

edlstm : St → R+∞ qwpstm : (St → R+∞) → (St → R+∞)

edlstm ≜ λσ.edl→q
(stm, σ) qwpstm ≜ λf.λσ.wp→q

(fst)(stm, σ),

where fst(stm, τ) = f(τ).

Example 2. Consider the program Cntoss given Figure 3. In the setting of the
program Cntoss,Q = {q},M0,1 = ( 1 0

0 0 )andM1,1 = ( 0 0
0 1 ). On an initial state σ =

(s, ρ), the reduction starts deterministically as in the classical setting, performing
the initialization x = tt and i = 0. From there, evaluation reaches the loop
while x do stm. At each loop iteration, the loop counter i is incremented,
and the Hadamard gate applied to the quantum variable q. The loop guard is
obtained through measuring q.

To see how this is reflected in the semantics, let us first look at an iteration
of the loop. If x was set to false, that is x holds the value 0, by rule (Wh0) the
loop terminates within one step:

{1 : (while x do stm, [x:=0, i:=i], ρ)} 1−→→q {1 : (↓, [x:=0, i:=i], ρ)}. (0)

On the other hand, when x was previously set to true, the loop executes its body.
Precisely, we have:

{1:(while x do stm, [x:=1, i:=i], ρ)}
1−→→q {1:(i = i+1; q = H; x = meas q; while x do stm, [x:=1, i:=i],ρ)} (1)

1−→→q {1 : (q = H; x = meas q; while x do stm, [x:=1, i:=i+ 1], ρ)} (2)
1−→→q {1 : (x = meas q; while x do stm, [x:=k, i:=i+ 1], ΦH(ρ))} (3)
1−→→q {pk : (while x do stm, [x:=k, i:=i+ 1], ρk))}k∈{0,1}, (4)

where in the last step, the probability pk equals tr(Mk,1ΦH(ρ)), while the normal-
ized quantum state ρk is given as mk,1(ΦH(ρ)). The above reduction is obtained
by applying the rules of Figure 4: rule (Wh1) for reduction (1); rules (Exp) and
(Seq) for reduction (2); rules (Op) and (Seq) for reduction (3); and finally rules
(Meas) and (Seq) for reduction (4).

For an arbitrary initial quantum state ρ =
(

α β
γ δ

)
∈ D(HQ) (where α, β, γ, δ ∈

C and tr(ρ) = α+ δ = 1, γ = β, etc.), it follows that

p0 = tr(M0,1HρH
†) = tr(( 1 0

0 0 )
1

2

(
α+β+γ+δ α−β+γ−δ
α+β−γ−δ α−β−γ+δ

)
) =

1 + β + γ

2
,
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and that, p1 = 1− p0 = 1−(β+γ)
2 . Using ρk =

Mk,1HρH†M†
k,1

tr(Mk,1HρH†)
=

(Mk,1H)ρ(Mk,1H)†

pk
,

ρ0 =

(
1/

√
2 1/

√
2

0 0

)( α β
γ δ

)(
1/

√
2 0

1/
√

2 0

)
p0

= ( 1 0
0 0 ) ρ1 =

(
0 0

1/
√

2 1/
√

2

)( α β
γ δ

)(
0 1/

√
2

0 1/
√

2

)
p1

= ( 0 0
0 1 ).

Summarizing (1)–(4) we thus get:

{1 : (while x do stm, [x:=1, i:=i],
(

α β
γ δ

)
)}

4−→→4
q {p0: (while x do stm, [x:=0, i:=i+ 1], ρ0),

p1: (while x do stm, [x:=1, i:=i+ 1], ρ1)}.
Putting everything together, we have

(Cntoss, s,
(

α β
γ δ

)
)

2−−−−→→2
q {1 : (while x do stm, [x:=1, i:=0], ρ)}

4−−−−→→4
q {p0: (while x do stm, [x:=0, i:=1], ρ0),

p1: (while x do stm, [x:=1, i:=1], ρ1)}
p0+4p1−−−−−→→4

q {p0: (↓, [x:=0, i:=1], ρ0),
p1

2 : (while x do stm, [x:=0, i:=2], ρ0),
p1

2 : (while x do stm, [x:=1, i:=2], ρ1)}
p1
2 +4

p1
2−−−−−→→4

q {p0: (↓, [x:=0, i:=1], ρ0),
p1

2 : (↓, [x:=0, i:=2], ρ0),
p1

4 : (while x do stm, [x:=0, i:=3], ρ0),
p1

4 : (while x do stm, [x:=1, i:=3], ρ1)}
p1
4 +4

p1
4−−−−−→→4

q · · ·
where terminal configurations are underlined. This reduction converges to the
terminal distribution

termCntoss(s, ρ) = {p0 : (↓, [x:=0, i:=1], ρ0)}+ {p1

2i : (↓, [x:=0, i:=i+ 1], ρ0)}i≥1,

with an expected derivation length of

edlCntoss(s,
(

α β
γ δ

)
) = 2 + 4 + (p0 + 4p1) +

∞∑
i=1

5p1
2i

= 7 + 8p1 = 11− 4(β + γ).

For expectation f(s, ρ) ≜ s(i), measuring the iteration counter i, we have

qwpCntoss f (s,
(

α β
γ δ

)
) = p0 × 1 +

∞∑
i=1

p1
2i

(i+ 1) = p0 + p1 + 2p1 = 2− (β + γ),

that is, the mean value held by i holds after execution is 2 − (β + γ). The
termination probability is

qwpCntoss (λσ.1) (s,
(

α β
γ δ

)
) = p0 × 1 +

∞∑
i=1

p1
2i

× 1 = p0 + p1 = 1,

i.e., the program is almost surely terminating.
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3 Weakest Pre-expectations and Arithmetical Hierarchy

In this section, we study the hardness of some natural quantitative problems for
weakest pre-expectations and expected derivation length.

Computability-Aimed Restrictions. This subsection is devoted to putting
some restrictions on programs and on the considered notion of expectation to
overcome the issues of computability, mentioned in the introduction.

Algebraic numbers. Towards this end, our solution is to target a subset of com-
plex numbers, where simple operations like equality are decidable. We consider
the set Q of algebraic numbers, i.e., complex numbers in C that are roots of a non-
zero polynomial in Q[X]. Let A ≜ Q∩R be the real closed field of real algebraic
numbers in R. The following inclusions trivially hold (i) N ⊆ Q ⊆ A ⊆ R ⊆ C
and (ii) Q ⊆ C. It was proved in [18, Proposition 2.2] that equality over Q and
inequality over A are decidable using Cohn’s representation [12]. It is well-known
that the product and sum over Q are computable in polynomial time.

We now restrict the program semantics to matrices and density operators over
algebraic numbers. Given a totally ordered set of qubits Q = {q1, . . . , qn}, let
H̃Q be the Hausdorff pre-Hilbert space Q2n

(i.e., the completeness requirement

on Hilbert spaces is withdrawn) of n qubits defined by H̃Q ≜ ⊗n
i=1H̃qi , with

H̃q ≜ Q2
being the vector space of computational basis {|0⟩ , |1⟩} over the field

Q. Let M(H̃Q) and D(H̃Q) be the set of matrices and density operators on H̃Q,
respectively.

Clifford+T gates. For the program semantics to be defined on the space D(H̃Q),
the considered quantum gates are now restricted to gates whose corresponding
unitary operators are in M(H̃Q), i.e., have a matrix representation over the
algebraic numbers. To this end, we consider a restriction to the Clifford+T gates:
I, X, Y, Z, H, S, CNOT, and T, whose unitary matrices are given below:

I ≜ ( 1 0
0 1 ), X ≜ ( 0 1

1 0 ), Y ≜
(
0 −i
i 0

)
, Z ≜

(
1 0
0 −1

)
, H ≜

1√
2

(
1 1
1 −1

)
,

S ≜
1√
2
( 1 0
0 i ), CNOT ≜

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
, T ≜

(
1 0

0 ei
π
4

)
.

The Clifford+T fragment is the set of unitary transformations generated by se-
quential (matrix multiplication) and parallel (Kronecker product) compositions
of the gates H, S, CNOT , and T . This constitutes a reasonable restriction for
unitary operators as it is known to be the simplest approximately universal
fragment of quantum mechanics [1].

A central observation is that the superoperator associated with a unitary
operator of the Clifford+T fragment is an endomorphism over density operators
in D(H̃Q).
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Lemma 1. The Clifford+T fragment preserves D(H̃Q), i.e., there exist Q and
q ∈ Q such that for each unitary operator U of the Clifford+T fragment ΦUq

∈
D(H̃Q) → D(H̃Q).

Notice that, while a restriction to Clifford+T is reasonable in terms of quan-
tum mechanics and universality, our result can be extended by adding any quan-
tum gate preserving the above lemma. For example, the phase shift gate, defined
by Pφ ≜

(
1 0
0 eiφ

)
, preserves D(H̃Q) whenever φ = rπ, for any r ∈ Q.

Let StmtCT be the set of statements restricted to quantum gates computing
Clifford+T unitary operators (hence a subset of Stmt), StCT be the set of states
whose quantum state is in D(H̃Q), and ConfCT be the set of well-formed config-
urations in (StmtCT ∪ {↓})× StCT. Let St

stm
CT be the set of states in StCT that are

well-formed wrt statement stm. Once again, by abuse of notation, we will denote
this set by StCT when stm is clear from the context.

A consequence of Lemma 1 is that ConfCT is closed under reduction, in
the following sense. Let Dfin

A+(A) ⊆ D(A) be the set of finitely supported sub-
distributions δ with algebraic probabilities, i.e., δ(a) ∈ A+ for all a ∈ A.

Lemma 2. The set Dfin
A+(ConfCT) is stable under reduction, more precisely, if

δ ∈ Dfin
A+(ConfCT) and δ

c−→→q ε, then ε ∈ Dfin
A+(ConfCT) and c ∈ A+.

Computable expectations. We also restrict the expectation codomain to algebraic
numbers. Hence the considered expectations will be functions in StCT → A+. On
its own, this restriction is not sufficient for our concerns, as the set StCT → A+ is
not countable. It implies that there exist expectations in StCT → A+ that are not
computable functions. To resolve this issue, we restrict the space of expectations
further to computable ones:

ECT ≜ {f | f : StCT → A+, f computable}.

An immediate consequence of Lemma 2 is that termstm(σ) ∈ D(ConfCT) for any
stm ∈ StmtCT and σ ∈ StCT. In consequence, qwpstm f σ is well-defined for all
f ∈ StCT. This justifies that in our treatment below, we restrict expectations
to the class ECT. However, keep in mind that despite Lemma 2, the subdistribu-
tion termstm(σ), obtained at the limit, does not fall within Dfin

A+(A). It is neither
finite nor are probabilities algebraic (A+ is not complete). In particular, in gen-
eral qwpstm f σ is a real number, rather than an algebraic one.

Quantitative Problems. We now define formally the quantitative problems
that we study.

Testing problems. Some natural quantitative problems related to weakest pre-
expectations are to determine for a given program stm, a given state σ, a given ex-
pectation f , and a given algebraic number a, whether the corresponding weakest
pre-expectation qwpstm f σ is smaller than or equal to a. In this setting, it makes
sense to consider any possible relation in the set {<,≤,=,≥, >} ⊆ P(A×A) as
one could be interested in finding precise values, (strict) upper- or lower-bounds.
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Definition 3. The testing problem sets TestR ⊆ ConfCT × ECT × A+, for R ∈
{<,≤,=,≥, >}, are defined by:

(stm, σ, f, a) ∈ TestR :⇐⇒ (qwpstm f σ) R a.

The consideration of both Test≤ and Test> may seem redundant, as Test>

can be viewed as the complement of Test≤. However, it makes perfect sense
to distinguish both properties, when considering the corresponding universal
problems, as we do in a moment.

Finiteness problem. Another problem of interest consists in checking whether
the weakest pre-expectations produces some finitary output.

Definition 4. The finiteness problem set Test̸=∞ ⊆ ConfCT × ECT is defined
by:

(stm, σ, f) ∈ Test̸=∞ :⇐⇒ qwpstm f σ <∞.

Termination problems. We also define two termination problems for almost sure
termination and positive almost sure termination:

Definition 5. The sets of (positive) almost-sure terminating configurations
Ast ⊆ ConfCT (Past ⊆ ConfCT) are defined by:

(stm, σ) ∈ Ast :⇐⇒ |termstm(σ)| = 1

(stm, σ) ∈ Past :⇐⇒ edlstm(σ) <∞.

It is well-known that Past ⊊ Ast, cf. [9].

Universal problems. Another kind of natural problems arises if one tries to check
some properties for each possible program input (i.e., for each state σ). We can
thus define universal properties for each of the sets described previously.

Definition 6. The sets of universal testing, finiteness and (positive) a.s. termi-
nation problems are defined by:

(stm, f, g)∈UTestR ⊆ StmtCT × E2CT ⇐⇒ ∀σ ∈ StCT, (stm, σ, f, g(σ))∈TestR

(stm, f) ∈ UTest̸=∞ ⊆ StmtCT × ECT ⇐⇒ ∀σ ∈ StCT, (stm, σ, f) ∈ Test̸=∞

stm ∈ UAst ⊆ StmtCT ⇐⇒ ∀σ ∈ StCT, (stm, σ) ∈ Ast

stm ∈ UPast ⊆ StmtCT ⇐⇒ ∀σ ∈ StCT, (stm, σ) ∈ Past

Example 3. We have Cntoss ∈ UAst and Cntoss ∈ UPast, for the program
Cntoss of Figure 3. Indeed, it was shown in Example 2 that Cntoss termi-
nates with probability 1 and a finite expected derivation length. This prop-
erty holds for any input of the domain. In the same example, we have proven
(Cntoss, f) ∈ Test ̸=∞ for f(s, ρ) = s(i). Indeed, we have shown the stronger

property (Cntoss, f, g) ∈ Test=, where g(s,
(

α β
γ δ

)
) = 2− (β + γ).
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Standard Universal

Problem Class Problem Class

Testing Test> Σ0
1 UTest> Π0

2
(‡)

Test≥ Π0
2

(‡) UTest≥ Π0
2

(‡)

Test= Π0
2 UTest= Π0

2
(‡)

Test≤ Π0
1

(‡) UTest≤ Π0
1

(‡)

Test< Σ0
2 UTest< Π0

3
(‡)

Finiteness Test̸=∞ Σ0
2 UTest̸=∞ Π0

3
(‡)

Termination Ast Π0
2 UAst Π0

2

Past Σ0
2 UPast Π0

3

Table 1. Completeness results for quantitative problems in the arithmetical hierarchy.

Completeness Results in the Arithmetical Hierarchy. In what follows,
we place the introduced quantitative problems within the arithmetical hierar-
chy [34]. The arithmetical hierarchy is a means to classify and relate undecidable
problems wrt. to their inherent difficulty, measured in terms of the number of
(unbounded) quantifier alternations needed to state the problem as a formula in
first-order arithmetic, based on a decidable (recursive) predicate.

Reminder on the arithmetical hierarchy. Classes of the arithmetical hierarchy
are defined inductively as follows:

Π0
0 = Σ0

0 ≜ rec, rec being the class of decidable problems (recursive sets)

Π0
n+1 ≜ {ψ | ∃ϕ ∈ Σ0

n, ∀x.(ψ(x) ⇐⇒ ∀y.ϕ(x, y))},
Σ0

n+1 ≜ {ψ | ∃ϕ ∈ Π0
n, ∀x.(ψ(x) ⇐⇒ ∃y.ϕ(x, y))}.

For each n, Π0
n is the complement of Σ0

n (i.e., Π0
n = co-Σ0

n, and vice versa) and it
is a well-known result that Σ0

1 and Π0
1 correspond to the classes re of recursively

enumerable (i.e., semi-decidable) problems and co-re of co-recursively enumer-
able (i.e., co-semi-decidable) problems, respectively. Given the sets A ⊆ X and
B ⊆ Y , we write A ≤m B (A is many-one reducible to B) if there exists a com-
putable function f : X → Y such that ∀x ∈ X, x ∈ A ⇐⇒ f(x) ∈ B. Given a
class c of the arithmetical hierarchy and a set A, A is c-hard if ∀B ∈ c, B ≤m A.
A set A is c-complete if A ∈ c and A is c-hard. It is well-known that if a set A
is c-complete then its complement, noted co-A, is (co-c)-complete.

Results. Table 1 associates the quantum decision problems to the correspond-
ing classes in the arithmetical hierarchy for which we have proven them com-
plete, that is, we have proven membership and hardness for the corresponding
class. Some of the results may seem surprising. For instance, the testing problem
Test>, i.e., deciding qwpstm f σ > a within the Clifford+T fragment, turns out
to be recursive enumerable. It is thus classified identical to the (classical) halting
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problem H.§ Remarkable, through the restriction to the Clifford+T fragment,
corresponding problems are ranked within the arithmetical hierarchy identical
to their non-quantum counterparts (see [37,24]). This observation holds for all
problems apart those marked with (‡) which, to the best of our knowledge, have
not been studied in a classical/probabilistic setting. Π0

2 - and Π
0
3 -completeness

of the universal testing problems, given relations > and < respectively, has been
conjectured by Kaminski in his PhD thesis [25] for probabilistic programs.

A crucial observation towards these results is that, restricting to the Clif-
ford+T fragment, the weakest pre-expectation of a program P can be approxi-
mated through computable transformers qwp≤n

stm : ECT → ECT that limit execution
of stm to at most n ∈ N reduction steps. That is,

qwp≤n
stm f σ ≜ E

term≤n
stm (σ)

(f),

for term≤n
stm(σ) the distribution of terminal configurations obtained within n re-

duction steps, when evaluating (stm, σ). With regards to the above mentioned
Test> ∈ Σ0

1 for instance, observe that:

(stm, f, σ, a) ∈ Test> ⇐⇒ qwpstm f σ > a

⇐⇒ lim
i→∞

qwp≤n
stm f σ > a

⇐⇒ ∃n ∈ N, ∃δ ∈ A+ \ {0}, qwp≤n
stm f σ ≥ a+ δ.

Crucially, the predicate qwp≤n
stm f σ ≥ a+δ becomes computable. In essence, this

is a consequence of Lemma 2: The n-th step normal form distribution term≤n
stm(σ)

is finite and computable, as f is computable so is thus qwp≤n
stm f σ. From here,

the result follows now as equality on A is decidable. The proof of this, as well
as all completeness proofs listed in Table 1 can be found in the Appendix. The
following constitutes our first main result.

Theorem 1. All completeness results in Table 1 hold.

4 Quantum Expectation Transformers

In what follows, we are interested in deliniating subclasses of testing problems
that lead to decidability. To this end, we now define a notion of quantum ex-
pectation transformer as a means to compute symbolically the weakest pre-
expectation of a program. We first introduce some preliminary notations in order
to lighten the presentation.

Notations. For any expression e, JeK is a shorthand notation for the function
λ(s, ρ).JeKs ∈ St → R+∞. We will also use f [x := e] for the expectation
λ(s, ρ).f(s[x := JeKs], ρ). Similarly, for a given map χ : D(HQ) → D(HQ),

§In our context the halting set H can be defined as the class of classical programs
and states (P, σ) for which P is halting on σ.
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qet[ · ]{·} : Stmt → (St → R+∞) → (St → R+∞)

qet[ skip ]{f} ≜ f

qet[ x = e ]{f} ≜ f [x := e]

qet[ stm1; stm2 ]{f} ≜ qet[ stm1 ]{qet[ stm2 ]{f}}

qet[ if b then stm1 else stm2 ]{f} ≜ qet[ stm1 ]{f} +JbK qet[ stm2 ]{f}

qet[ while b do stm ]{f} ≜ lfp
(
λF.qet[ stm ]{F} +JbK f

)
qet[ q ∗= U ]{f} ≜ f [ΦUq ]

qet[ x = meas qi ]{f} ≜ f [x := 0; m0,i] +p0,i f [x := 1; m1,i].

Fig. 5. Quantum expectation transformer qet[ · ]{·}

f [χ] ≜ λ(s, ρ).f(s, χ(ρ)). We will also sometimes group such state modifications,
for instance, f [x := e; χ] stands for (f [x := e])[χ] and f [x := e, y := e′] stands
for (f [x := e])[y := e′].

For p ∈ St → [0, 1] and f, g ∈ St → R+∞, f +p g denotes the function
λσ.p(σ) · f(σ) + (1 − p(σ)) · g(σ) ∈ St → R+∞, similar we use f · g to denote
λσ.f(σ) · g(σ) ∈ St → R+∞. Thus, for instance, f [x := x + 1] +Jx=1K f behaves
like f , except that x is first incremented when applied to states with classical
variable x equal to 1. In correspondence to the normalization of quantum state
mk,i, we define probabilities pk,i ≜ λρ.tr(Mk,iρM

†
k,i). We overload this function

from D(HQ) to St s.t. pk,i(s, ρ) = pk,i(ρ). In this way, f [x := 0; m0,i] +p0,i

f [x := 1; m1,i] computes precisely the expected value of f on the distribution
of states obtained by measuring the i-th qubit and assigning the outcome to
classical variable x.

Finally, we denote by ≤ also the pointwise extension of the order from R+∞

to functions, that is, f ≤ g holds iff ∀σ ∈ St, f(σ) ≤ g(σ).

Definition 7 (Quantum expectation transformer). The quantum expec-
tation transformer consists in a program semantics mapping expectations to ex-
pectations in a continuation passing style

qet[ · ]{·} : Stmt → (St → R+∞) → (St → R+∞)

and is defined inductively on statements in Figure 5.

This transformer corresponds to the notion of expected value transformer of [6] on
the Kegelspitze S = (R+∞,+f), with +f being the forgetful addition. In the case
of loops, the least fixed point lfp is defined with respect to the pointwise ordering
on the function space St → R+∞. Equipped with this ordering, this space forms
a ω-CPO. As the quantum transformer can be shown to be ω-continuous, the
fixed-point is always defined, cf. [44].
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continuity qet[ stm ]{supi fi} = supi qet[ stm ]{fi}
monotonicity f ≤ g ⇒ qet[ stm ]{f} ≤ qet[ stm ]{g}
upper invariance (J¬bK·f ≤ g ∧ JbK·qet[ stm ]{g} ≤ g)⇒qet[ while b do stm ]{f} ≤ g

Fig. 6. Universal laws derivable for the quantum expectation transformer.

Theorem 2 (Adequacy). The following holds:

∀stm ∈ Stmt, ∀f : St → R+∞, qwpstm(f) = qet[ stm ]{f} .

Apart from continuity, the quantum expectation transformer satisfies several
useful laws, see Figure 6. The (monotonicity) Law permits us to reason modulo
upper-bounds: actual expectations can be always substituted by upper-bounds.
It is in fact an immediate consequence from the (continuity) Law, which is
defined for any ω-chain (fi)i. The (upper invariance) Law constitutes a general-
ization of the notion of invariant stemming from Hoare calculus. It is used to find
closed-form upper-bounds g to expectations f of loops. The pre-conditions state
that g should dominate f on states where the loop would immediately exist,
and otherwise, should remain invariant under iteration. It is worth mentioning
that this proof rule is not only sound, but also complete, in the sense that any
upper-bound satisfies the two constraints. The following example illustrates the
use of this rule on the running example.

Example 4. Following Example 2, we over-approximate qet[ Cntoss ]{f}, for
f(s, ρ) = s(i) the post-expectation measuring the classical variable i.

To this end, observe that the function g : St → R+∞ is an upper-invariant
(Figure 6) to the while loop while x do stm, given a post-expectation f : St →
R+∞. Recall that the loop body stm comprises (i = i+1; q ∗= H; x = meas q).
To fulfill the conditions of the (upper invariance) Law the following inequalities
have to be met:

J¬xK · f ≤ g JxK · qet[ i = i+1; q ∗= H; x = meas q ]{g} ≤ g. (5)

By unfolding the definition, we see

qet[ i = i+1; q ∗= H; x = meas q ]{g}
= qet[ i = i+1 ]{qet[ q ∗= H ]{qet[ x = meas q ]{g}}}
= qet[ i = i+1 ]

{
qet[ q ∗= H ]

{
g[x:=0; m0,1] +p0,1

g[x:=1; m1,1]
}}

= qet[ i = i+1 ]
{
g[x:=0; m0,1; ΦH ] +p0,1·ΦH

g[x:=1; m1,1; ΦH ]
}

= g[x:=0; m0,1; ΦH; i:=i+1] +p0,1·ΦH
g[x:=1; m1,1; ΦH; i:=i+1]

= λ(s, ρ).
∑

k∈{0,1}

pk,1(ΦH(ρ)) · g(s[x = k, i:=i+1],mk,1(ΦH(ρ))).
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By using the identities computed already in Example 2, we thus obtain

qet[ stm ]{g} (s,
(

α β
γ δ

)
) =

∑
k∈{0,1}

pk · g(s[x = k, i:=i+1], ρk), (6)

where, as in Example 2, p0 = 1+β+γ
2 , p1 = 1−(β+γ)

2 , ρ0 = ( 1 0
0 0 ) and ρ1 = ( 1 0

0 0 )

We claim that g(s,
(

α β
γ δ

)
) ≜ s(i) + s(x) · (2− (β + γ)) is an upper-bound to

the pre-expectation of the while loop wrt. to the post expectation f . To this end,
we check (5). The first inequality is trivially satisfied. Concerning the second,
notice that by definition,

g(s[x = 0, i:=i+1], ( 1 0
0 0 )) = s(i)+1 and g(s[x = 1, i:=i+1], ( 0 0

0 1 )) = s(i)+3.

By (6) we have

qet[ stm ]{g} (s,
(

α β
γ δ

)
) =

1 + β + γ

2
(s(i) + 1) +

1− (β + γ)

2
(s(i) + 3)

= (s(i) + 2)− (β + γ) = g(s,
(

α β
γ δ

)
),

from which now the second constraint follows by case analysis on the value of x.
Hence qet[ while x do stm ]{f} ≤ g and, by monotonicity (Figure 6),

qet[ Cntoss ]{f} (s,
(

α β
γ δ

)
) ≤ qet[ x = tt; i = 0 ]{g} (s,

(
α β
γ δ

)
)

= g([x:=1, i:=0],
(

α β
γ δ

)
) = 2− (β + γ).

Note that, in this case, the computed bound is exact.

One question of interest is to find the qet[ · ]{·} of a given statement. We
obtain the following completeness results as a corollary of Theorem 1 and The-
orem 2 on the Clifford+T fragment.

Corollary 1. The following completeness results hold:

– {(stm, f, g) ∈ StmtCT × E2CT | ∀σ, qet[ stm ]{f} (σ) = g(σ)} is Π0
2 -complete.

– {(stm, f, g) ∈ StmtCT × E2CT | ∀σ, qet[ stm ]{f} (σ) ≤ g(σ)} is Π0
1 -complete.

The same kind of result can be straightforwardly obtained for each of the quan-
titative problems defined in previous section. All the corresponding sets are un-
decidable: they are at best (co-)semi-decidable as illustrated by Figure 1. This
motivates us for restricting the problem a bit further to find a class of functions
for which the quantitative problems for wpstm f can be decided.

5 Decidability of qet Inference over a Real Closed Field

Corollary 1 illustrates that it is not sufficient to relax the problem of finding the
quantum expectation transformer of a given statement to upper-bounds, in order



20 M. Avanzini, G. Moser, R. Péchoux, S. Perdrix

qinf[ skip ]{F} ≜ F

qinf[ x = e ]{F} ≜ F [x := e]

qinf[ stm1; stm2 ]{F} ≜ qinf[ stm1 ]{qinf[ stm2 ]{F}}

qinf

 ifℓ b

then stm1
else stm2

{F} ≜ Xℓ, with side-cond.

{
b ⊢ qinf[ stm1 ]{F} ≤ Xℓ

¬b ⊢ qinf[ stm2 ]{F} ≤ Xℓ

qinf
[
whileℓ b do stm

]
{F} ≜ Xℓ, with side-cond.

{
b ⊢ qinf[ stm ]{Xℓ} ≤ Xℓ

¬b ⊢ F ≤ Xℓ

qinf[ q ∗= U ]{F} ≜ F [ϕUq ]

qinf
[
x = measℓ qi

]
{F} ≜ Xℓ, with side-cond.


p0,i = 0 ⊢ F [x := 1; m1,i] ≤ Xℓ

p1,i = 0 ⊢ F [x := 0; m0,i] ≤ Xℓ

pk,i ̸= 0 ⊢ F [x := 0; m0,i]

+p0,i F [x := 1; m1,i] ≤ Xℓ

Fig. 7. Term representations of qinf[ · ]{·} and their corresponding side-conditions.

to make it decidable. The undecidability of finding the quantum expectation
transformer of a given program is due to two other issues: 1) Issue 1: The
computation of a fixpoint for qet[ · ]{·} in the case of while loops, 2) Issue 2:
The check for inequalities over functions in ECT, whose first-order theory is not
decidable. This section is devoted to overcoming these two issues, by finding an
expressive fragment on which the inference of an upper-bound of the quantum
expectation transformer becomes decidable.

Symbolic Inference. As a first step towards automated inference, we define
a symbolic variant of the quantum expectation transformer in Figure 7. In the
case of conditionals, loops, and measurements, we will use fresh variables for
expectations; side conditions will guarantee that these variables indeed denote
(upper-bounds to) the corresponding expectations. This means that the sym-
bolic version yields correct results only when the expectations assigned to these
variables satisfy all the side conditions. By solving the generated constraints,
viz., by finding an interpretation of ascribed variables that satisfy the imposed
side-conditions, we effectively arrive at an inference procedure overcoming Issue
1.

To formalize this approach, we associate a unique label ℓ with each loop, con-
ditional, and measurement, occurring in the considered program. Notationally,
we write whileℓ b do stm / ifℓ b then stm1 else stm2 / measℓ q. Such labels
permit us to associate a unique expectation variable Xℓ to each of these con-
structs. Given a set of such expectation variables EVar, the set of terms ETerm,
upon which the symbolic quantum expectation transformer operates, is defined
according to the following grammar:

ETerm F,G ::= X | F [x := e] | F [χ] | F +p G,
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where X stand for an arbitrary expectation variable in EVar. As stressed above,
X will be used to denote certain expectations wrt. loops, conditionals, and mea-
surements. We have already introduced the notations F [x := e] and F [χ] to
represent updates to the classical and quantum state, respectively. Here, χ will
always denote a finite composition of superoperators ϕU and measurementsmk,i.
By ensuring that normalization of quantum states mk,i(ρ) is never considered
in the degenerate case of a zero-probability measurement pk,i(ρ), it will thereby

always be possible to write χ as λρ. MρM†

tr(NρN†)
, for some M ∈ M(H̃Q) in the Clif-

ford+T fragment. Finally, following the same reasoning, in the barycentric sum
F +p G the probability p is a function in the quantum state, and will always

be of general form λρ. tr(MρM†)
tr(NρN†)

, for some M,N ∈ M(H̃Q) in the Clifford+T

fragment. Similar to before, we may group updates such as in F [x := e; χ].
The symbolic variation of the expectation transformer can now be defined as

qinf[ · ]{·} : Stmt → ETerm → ETerm,

generating also a set of side-conditions of the shape Γ ⊢ F ≤ G, with the
intended meaning that G binds F on all input states that satisfy the predicate
Γ . The full definition of qinfer is given in Figure 7. As already hinted, the side
conditions ensure that introduced variables Xℓ indeed yield an upper-bound on
the corresponding expectation, in the case of conditionals by case-analysis, and
in the case of loops via an application of the upper-invariant law from Figure 6.
In the case of measurements, mk,i and pk,i are defined exactly as before. Here,
we single out the two cases where the probability of a measurement, either
p0,i(ρ) = tr(M0,iρ) = tr(M0,iρM

†
0,i) or p1,i(ρ) = 1−p0,i(ρ), is zero. This way, we

avoid the case analysis underlying the definition of mk,i and may, wlog., assume

that it is indeed of the form λρ.
Mk,iρM

†
k,i

tr(Mk,iρM
†
k,i)

, with non-zero trace tr(Mk,iρM
†
k,i).

Example 5. In correspondence to Example 4, let us consider the application of
the inference procedure on the program Cntoss, wrt. to the post-expectation
f(s, ρ) = s(i). We label the loop and measurement with m and w, respectively.

Let X denote the post-expectation f . Unfolding the definition, we see

qinf[ Cntoss ]{X} = qinf[ x = tt; i = 0; whilew x do stm ]{X}
= Xw[x:=1; i:=0],

generating the side-conditions x ⊢ Xm[ΦH ; i:=i+1] ≤ Xw and ¬x ⊢ X ≤ Xw .
The left-hand side of the first constraint is obtained from

qinf[ stm ]{Xw} = qinf[ i = i+1 ]{qinf[ q ∗= H ]{qinf[ measm q ]{Xw}}}
= Xm[ΦH; i:=i+1].

Note that this expansion generates further constraints, this time on Xm repre-
senting the measurement. Specifically, it yields the following constraints:

p1−k,1 = 0 ⊢ Xw[x:=k;mk,1] ≤ Xm , (for k ∈ {0, 1}),
p0,1 ̸= 0 ̸= p1,1 ⊢ Xw[x:=0;m0,1] +p0,1

Xw[x:=1;m1,1] ≤ Xm .
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Using the analysis from Example 4, we interpret Xw and Xm as:

α(Xw) ≜ λ(s,
(

α β
γ δ

)
). s(i) + s(x)(2− (β + γ)),

α(Xm) ≜ λ(s,
(

α β
γ δ

)
). s(i) + 2− 2α.

Furthermore, we interpret the input variable X as f , i.e., α(X) ≜ λ(s, ρ). s(i).
Notice how α(Xw) just corresponds to the upper-invariant g derived in Exam-
ple 4. Using the assignment, it is now standard to check that it is a solution to

the five constraints. For instance, considering states σ = ({i:=n, x:=x},
(

α β
γ δ

)
),

the ultimate constraint amount to the implication

α ̸= 0 ̸= δ ⇒ n+α (n+ 2) ≤ n+ 2− 2α,

which trivially holds. Finally, recall qinf[ Cntoss ]{X} = Xw[x:=1; i:=0]. This

term is interpreted as λ(s,
(

α β
γ δ

)
). 2− (β+ γ), yielding the optimal bound com-

puted in Example 4.

Example 6. Re-consider program RUS depicted in Figure 1. Here, we are inter-
ested in an upper-bound on the number of T -gates, counted by the program
variable i. As before, we label the loop and measurement with m and w, respec-
tively. Let

stm =

stm0︷ ︸︸ ︷
q2 = |0⟩ ; . . . ; x = measm q2,

be the body of the while loop statement (see Figure 1). We proceed with the
analysis backwards. By the rules of Figure 7 it holds that qinf[ stm0 ]{F} =
F [Φ; i:=i+2] for any F , where Φ gives the quantum state updates within
stm0. Unfolding definitions, we have qinf[ RUS ]{X} = Xw[x:=0; i:=1] with
x ⊢ Xm[Φ; i:=i+2] ≤ Xw and ¬x ⊢ X ≤ Xw , since, by the above observation,

qinf[ stm ]{Xw} = qinf[ stm0 ]{qinf[ x = measm q2 ]{Xw}} = Xm[Φ; i:=i+2],

subject to the following additional constraints stemming from measurements:

p1−k,2 = 0 ⊢ Xw[x:=k;mk,2] ≤ Xm , (for k ∈ {0, 1}),
p0,2 ̸= 0 ̸= p1,2 ⊢ Xw[x:=0;m0,2] +p0,2 Xw[x:=1;m1,2] ≤ Xm .

Taking α(X) ≜ λ(s, ρ). s(i) and solving the constraints yields a constant
upper bound of 8/3 on the expected number of T -gates used by the program. This
is due to the fact that the probability of the internal measurement is always 3

4 .
Note that this bound is tight.

The transformer qinfer can be linked to qet of course only when variables Xℓ

are interpreted in a way that the side conditions generated by infer are met. To
spell this out formally, let α : EVar → ECT be an assignment of expectations to
variables in EVar, and let JF Kα : ECT denote the interpretation of F ∈ ETerm
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under α defined in the natural way, e.g., JXℓKα = α(Xℓ), JF [χ]Kα = JF Kα[χ],
etc.

We say that a constraint Γ ⊢ F ≤ G is valid under α if JF Kα(σ) ≤ JGKα(σ)
holds for all states σ ∈ StCT with Γ (σ). An assignment α is a solution to a set
of constraints C, if it makes every constraint in C valid. Finally, we say α is a
solution to qinf[ stm ]{f} if it is a solution to the set of constraints generated
by qinf[ stm ]{f}. We have the following correspondence:

Theorem 3. For any α ∈ EVar → ECT, if α is solution to qinf[ stm ]{F} = G,
then it holds that qet[ stm ]{JF Kα} ≤ JGKα.

It is worth mentioning that the above procedure could have been defined
without restriction to the full space St → R+∞ of expectations. In this case, this
symbolic approach is also complete, in the sense that if qet[ stm ]{f} = g then
qinf[ stm ]{X} = G for some G such that the side-conditions have a solution α,
with α(X) = f and JGKα = g. As our main focus is on decidability, however, we
have made the choice to restrict ourself to the Clifford+T setting.

Restriction to Polynomials over the Real Closed Field A. We now turn
our eyes towards constraint solving, addressing the remaining Issue 2 through
restricting the domain of expectations to polynomials over algebraic numbers.
To be more precise, we consider the following problem.

Definition 8. Let E ⊆ ECT be a class of expectations. The inference problem
Qinfer(E) ⊆ StmtCT × E × (EVar → E) is given by

(stm, f, α) ∈ Qinfer(E) ⇐⇒ α[X := f ] is solution to qinf[ stm ]{X}

In the above definition, (stm, f, α) ∈ Qinfer(E) is satisfied if the statement stm
has solution α[X := f ] wrt. the expectation f . Hence it can be seen as checking
whether f is a post-expectation for stm. In particular, any solution α[X := f ]
constitutes an upper bound on the weakest pre-expectation of f (see Theorem 3).
We will now see that Qinfer(E) is decidable, for E the set of (real algebraic)
polynomial expectations of (arbitrary but fixed) degree d. For states StCT over
n classical variables y1, . . . , yn and m qubits, let Ad[StCT] denotes the class of
functions of polynomial expectations of the form

λ({yi := Yi}1≤i≤n, (Aj,k + iBj,k)1≤j,k≤2m). P, (7)

where variables Yi refer to the classical, and variables Aj,k and Bj,k refer to the
real part and imaginary part, respectively, of each algebraic coefficient in the
quantum state. Further, P ∈ A[Y1, . . . , Yn, A1,1, . . . , A2m,2m , B1,1, . . . , B2m,2m ] is
a multivariate polynomial with coefficients in A. The index d refers to the (total)
degree of the underlying polynomial P . For instance,

λ({x := X; i := I},
(

A1,1+iB1,1 A1,2+iB1,2

A2,1+iB2,1 A2,2+iB2,2

)
). I+X(2− (A1,2+A2,1)) ∈ A2[StCT]
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One important remark here is that we allow for possibly negative polynomials
whereas expectations only output positive real algebraic numbers. Consequently,
some side conditions are put on the admissible coefficients Aj,k and Bj,k of the
input density matrix to preserve this condition (the matrix is positive, has trace

1, is hermitian). For example,
∑2m

i=1Ai,i = 1,
∑2m

i=1Bi,i = 0 (trace is 1) and
∀i, k, Ai,k = Ak,i and Bi,k = −Bk,i (self-adjointness). One can easily check
that the expectations defined in Example 5 are in Ad[StCT], for d ≥ 1.

The restriction to polynomials is made on purpose, as quantifier elimination
is decidable in the theory of real closed fields, a well known result due to Tarski
and Seidenberg. Recall that the theory of real closed fields is the first-order
theory in which the primitive operations are multiplication, addition, the order
relation ≤, and the constants 0 and 1. Consequently, the only numbers that
can be defined are the real algebraic numbers. Specifically, we will make use
of the following result, quantifying the complexity of the quantifier elimination
decision procedure as a function exponential in number of variables, and double-
exponential in the number of quantifier alternations.

Proposition 1 ([21, Theorem 6]). Let A be an integral ring over a real
closed field R. Let ψ = Q1x1.Q2x2. · · ·Qlxl. ϕ be a formula in prenex-normal
form, where ∀k, Qk ∈ {∀,∃}, Qk ̸= Qk+1, and ϕ is a quantifier-free formula
over i variables and j atomic propositions of the shape P ≥ 0, each P being a
polynomial of degree at most d with coefficients in A. There exists an algorithm

computing a quantifier-free formula equivalent to ψ in time O(|ψ|) · (jd)iO(l)

.

As A constitutes both an integral ring and a real closed field, the above
theorem is in particular applicable taking A = R ≜ A. In the particular case
where ψ is a closed formula, the resulting quantifier-free formula is simply a
Boolean combination of inequalities over constants from A. Since we already
observed that these can be decided in polynomial time, the above proposition
thus implies that validity of ψ is decidable under the given time bound.

By restricting assignment α to polynomial expectations, it becomes decidable
to check that α is a solution to a given constraint set C. Indeed, under such a
polynomial assignment α, a constraint Γ ⊢ F ≤ G becomes expressible as a
formula in the theory of real closed field A. By letting α range over polynomial
expectations with undetermined coefficients, we can this way arrive at the main
decidability result of this section.

Theorem 4. For any degree d ∈ N, d ≥ 1, the problem Qinfer(Ad[StCT]) is

decidable in time 22
dO(n)

, where n is the size of the considered program.

Practical Algorithm. Theorem 4 established a computable algorithm on the
inference of upper bounds on weakest pre-expectation on quantitative program
properties of any given mixed classical-quantum program. Nevertheless, the com-
plexity of this algorithm — double-exponential in the program size — is forbid-
dingly high. In order to turn this procedure into a practical algorithm, we have
to tame this inherent complexity. For this, significant further restrictions on the
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class of bounding functions are necessary. We propose to proceed as follows.
(1) Bounding functions: in (7) we restricted the class of expectations to poly-
nomials, which in turn yield a bound on the weakest pre-expectation. Based
on an analysis of concrete examples considered in the literature (e.g., [30,6]),
this can be tightened further to degree 2 polynomials. (2) Approximate solu-
tions: Theorem 4 rests upon (the decidability) of quantifier elimination. Thus
the constraints C induced through the symbolic inference of qinf[ stm ]{X} = G
(G,X ∈ ETerm) are solved exactly. Over-approximation, however, suffices, if we
are only interested in soundness of the inference mechanism.

The restriction of the class of bounding functions is in essence a question of
applicability of the automation, taking into account particular use-cases. With
respect to approximate solutions, we observe that the actual constraints C con-
sidered have at most one quantifier alternation and admit a quantifier prenex of
the form ∃∗∀∗, that is, a sequence of existential quantifier follows by a sequence
of universal quantifiers. Roughly speaking the existential quantifiers refer to the
inference of coefficients in the bounding polynomials, while the universal quanti-
fiers refer to program variables. It is well-known that universal quantification in
optimization problems can be turned into existential quantification, like Farka’s
lemma or generalizations thereof, cf. [38,19]. (E.g., [7,29] for instances of this
approach for the inference of expected program costs.)

Summarizing, the inference mechanism detailed in Section 5 can be over-
approximated to generate purely existential constraints. The latter can be effec-
tively solved via SMT. We expect that (full) automation of the inference mech-
anism can captialize on these ideas. Working out the details and in particular
implementation of an effective prototype is subject to future work.

6 Conclusion and Future Work

We have studied the complexity and inference of techniques for obtaining quali-
tative program properties. One particular property of interest would be the cost
of quantum programs, that is average time, average number of gates, mean value
of a variable, etc. We show that these problems were undecidable in general by
placing them in the arithmetic hierarchy and saw that inference could become
decidable on a restricted fragment: quantum gates in Clifford+T and a function
space with a decidable theory (polynomials of bounded degree over a real closed
field). Further, we sketch how the latter can be transformed into an efficient
synthesis method.

Many open questions remain. The studied notion of expectation transformer
describes local properties of the quantum state, while it would be interesting
to extend this technique to the global state so as to study a mixed state in
a quantum-only setting (without classical variables and stores). Another ques-
tion of interest is to what extent a characterization of the quantum class zbqp,
the class of problems computed by quantum programs in polynomial expected
runtime, could be obtained using this tool.
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