Tyrolean Complexity Tool: Features and Usage

Martin Avanzini\(^1\) and Georg Moser\(^1\)

\(^1\) Institute of Computer Science, University of Innsbruck, Austria
{martin.avanzini,georg.moser}@uibk.ac.at

Abstract

The Tyrolean Complexity Tool, TCT for short, is an open source complexity analyser for term rewrite systems. Our tool TCT features a majority of the known techniques for the automated characterisation of polynomial complexity of rewrite systems and can investigate derivational and runtime complexity, for full and innermost rewriting. This system description outlines features and provides a short introduction to the usage of TCT.

1998 ACM Subject Classification F.1.3, F.3.2, F.4.1, F.4.2

Keywords and phrases Program Analysis, Term Rewriting, Complexity Analysis, Automation

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In order to measure the complexity of a term rewrite system (TRS for short) it is natural to look at the maximal length of derivation sequences—the derivation length—as suggested by Hofbauer and Lautemann in [13]. The resulting notion of complexity is called derivational complexity. Hirokawa and the second author introduced in [11] a variation, called runtime complexity, that only takes basic or constructor-based terms as start terms into account. The restriction to basic terms allows one to accurately express the complexity of a program through the runtime complexity of a TRS. An investigation into these notions is of particular interest, as both constitute an invariant cost model for rewrite systems [7, 3], in the sense that the actual cost of a reduction on a standard model of computation, viz Turing machines, is bounded by a polynomial in the size of the start term and the length of the reduction. In particular, if the consider TRS defines a function and this TRS admits a polynomial bound on its runtime complexity, then the function is polytime computable.

As first observed in [13], it is by now folklore that termination techniques induce a certain bound on the time complexity of rewrite systems. The seminal paper by Bonfante et. al., [6] gives an early account on taming a termination technique to infer feasible, viz polynomial, bounds. Since then, a wealth of techniques have been introduced specifically to establish polynomial complexity bounds [2, 11, 17, 18, 20, 21, 19, 15, 1, 12], see [16] for an overview. Motivated not only by these theoretical advances, but also by the annual international termination competition\(^1\), which features four dedicated complexity categories since 2008, a vast part of this theoretical body has been implemented in dedicated complexity analysers for rewrite systems. For instance, the termination prover APoVE\(^2\) features powerful support for analysing the innermost runtime complexity of TRSs. CaT\(^3\), a variation of the very fast

\(^*\) This work was partially supported by FWF (Austrian Science Fund) project I-603-N18.
\(^1\) http://www.termination-portal.org/wiki/Termination_Competition/
\(^2\) http://aprove.informatik.rwth-aachen.de/
\(^3\) Available from http://cl-informatik.uibk.ac.at/software/cat/.
and powerful termination prover TTT2\(^4\), has excellent support to investigate derivational complexity, and also partial support for runtime complexity analysis. The automated complexity analyser Matchbox/Poly\(^5\) verifies polynomially bounded derivational complexity.

Our tool TCT, the Tyrolean Complexity Tool, is an automated complexity analyser for TRSs in the line of the aforementioned tools. Its distinct feature is that it is currently the only tool that is competitive, and provides dedicated techniques, for both runtime and derivational complexity analysis. TCT is open-source, released under the GNU Lesser General Public License (LGPL) Version 3, and available from

http://cl-informatik.uibk.ac.at/software/tct/.

The theoretical framework underlying TCT, which allows for this generality and modularity, is documented in separate work \([5]\). Here we want to outline the practical aspects of TCT, version 2.0 to be precise. In Section 2 we provide a brief description of the implementation including accompanying libraries. Section 3, where we discuss features and usage of our tool, constitutes the main part of this work. In Section 4 we indicate future work and conclude.

2 Implementation

Our tool is implemented in the strongly typed, lazy functional programming language Haskell\(^6\) and compiles on the Glasgow Haskell Compiler on GNU Linux. The sources consist of about 13,000 lines of code, and additionally 4,000 lines of documentation. Out of the 73 modules, 43 modules are dedicated to the implementation of the various techniques (roughly 56 \% of the code), the remaining modules provide the core of TCT and utilities. Our tool makes also use of following Haskell libraries, separately available from the TCT homepage\(^7\), that have been specifically developed for TCT:

- qlogic provides facilities for dealing with propositional logic, and consists of approximately 3100 lines of code. Notably it defines an interface to SAT-solvers, including routines to efficiently translate Boolean formulas to conjunctive normal form. Also it features support for theories over natural numbers and integers, implemented by bit-blasting.
- termlib provides term rewriting functionality, and consists of around 2100 lines of code.
- parfold is a small library that provides folding capabilities over lists of concurrently evaluated monad actions, a simple but convenient abstraction to concurrent programming.

3 Features and Usage

The Tyrolean Complexity Tool currently features 23 techniques which are available for runtime and, where applicable, for derivational complexity analysis. Our implementation follows closely the framework provided in \([5]\) which ensures that the techniques are implemented in a modular way. We indicate some characteristic methods implemented in TCT:

Matrix Interpretations: Our tool features an implementation of matrix interpretations over the naturals \([8]\), as well as arctic interpretations \([14]\). To weaken monotonicity requirements we have integrated the usable arguments criterion \([12]\) and usable rules w.r.t. argument

\(^4\) Available from http://cl-informatik.uibk.ac.at/software/ttt2/.

\(^6\) An open-source product of more than twenty years of cutting-edge research, c.f. http://haskell.org/.

\(^7\) http://cl-informatik.uibk.ac.at/projects/.
In order to give polynomial bounds on the induced complexity, TCT can employ triangular matrices [18], or use the criterions defined in [15, 20]. Moreover, our implementation also integrates the weight gap principle [12].

Polynomial Path Orders: Up to our knowledge, TCT is the only tool that features an implementation of polynomial path orders [2, 4] as well as the recently introduced small polynomial path orders [1]. Both orders constitute a miniaturisation of recursive path orders that induce polynomially bounded innermost runtime complexity. Whereas the former order can only deduce if the innermost runtime complexity is in principle polynomial, its small brother allows a precise control on the complexity certificate obtained.

Match-Bounds: Match-Bounds for term rewrite systems [9] is a powerful termination method that induces linear complexity. Our tool supports match-, top- and roof-bounds both for derivational, and its refinement to runtime complexity analysis.

Weak Dependency Pairs and Dependency Tuples: The introduction of weak dependency pairs greatly simplifies the task of estimating the runtime complexity of TRSs. Our tool supports this method as well as its refinement to innermost rewriting, called dependency tuples in [19]. This technique gives rise to advanced techniques specifically designed for the dependency pair setting, notably various simplifications, usable rules, path analysis, (safe) reduction pairs as well as dependency graph decomposition, compare [12, 19, 5].

In the following, we discuss usage of TCT.

3.1 Web Interface

![Figure 1 Web Interface of TCT](image)

Our web interface, accessible from the TCT homepage, provides a convenient way to use TCT without the necessity to install the software. The interface is aimed for simplicity, compare Figure 1. For the curious user that wants to play around with TCT, we also provide a wealth of interesting examples. The web interface is configured so that by default an upper bound on the runtime complexity of the given rewrite system is estimated. This behaviour can be modified under category, where the user can pick from the four different complexity measures TCT currently supports. On success this certificate is presented to the user, together with a proof script that explains in considerable detail how the certificate was obtained.
To find a proof in a reasonable amount of time, the different techniques implemented in TCT need to be combined wisely. This combination depends on the one hand on the input problem, but on the other hand also on the available hardware. In TCT, proof search is not hard-wired, instead it is guided by a (proof) search strategy. The interface allows to specify such a search strategy from a set of pre-defined proof search strategies. Besides the search strategies employed in recent competitions, the web-interface currently offers the search strategy RaML, specifically designed for functional programs given as rewrite systems, and a customisable search strategy that allows the explicit inclusion/exclusion of methods.

3.2 Command-Line Interface

The full power of TCT is available through its command-line interface. For installation instructions we refer the reader to the homepage. Here we want to briefly outline usage and customisation, comprehensive documentation can be found online. TCT is run by

```
$ tct [options] [-s <strategy>] <file>,
```

from the command-line, where [options] specify an optional list of command-line options, <strategy> specifies optionally a proof search strategy, and <file> the input file. The input file must adhere either the old TPDB format\(^8\) or the new XTC Format\(^9\).

A list of options can be obtained by typing `tct --help`. In the command-line interface, the proof search strategy is given as an \textit{S-expression} of the form

```
(<name> [[:<argname> <arg>]* [<arg>]*],
```

where outermost parentheses can be dropped. Here <name> refers to the name of a proof technique, also called \textit{processor}, the list [:<argname> <arg>]* can be used to specify named optional arguments, and the list [<arg>]* gives a possibly empty sequence of positional arguments. As an example,

```
fastest (timeout 3 (bounds :enrichment match)) (matrix :degree 2),
```

provides a valid proof search strategy in TCT. Here \texttt{fastest} is used to combine one or more processors in parallel, in this case the \texttt{bound} and \texttt{matrix} processors, solving the input problem with whichever processor succeeds first. The defined search strategy advises TCT to check for three seconds for \textit{match-boundness} of the input problem, respectively compatibility with a matrix interpretation that induces a quadratic upper bound. All implemented techniques, including a wealth of \textit{processor combinators} like \texttt{fastest} and \texttt{timeout}, can be applied directly from the command-line with the option \texttt{-s <strategy>}. A complete list of available search strategies, including synopsis and documentation, can be obtained by typing `tct --list`.

Besides basic options given on the command-line, TCT can be configured by modifying the \textit{configuration file}, which resides in `~/ .tct/tct.hs` by default. This Haskell source-file defines the actual binary that is run each time TCT is called. Thus the full expressiveness of Haskell is available; as a downside, it requires also a working Haskell environment. A minimal configuration is generated automatically on the first run of TCT. This initial configuration consists of a set of convenient imports and the IO action \texttt{main} together with a \textit{configuration record \texttt{config}}. The configuration record passed in \texttt{main} allows one to overwrite various flags of TCT. Most importantly, through the field \texttt{strategies} it also allows the modification of the list of proof search strategies that can be employed.

\(^8\) http://www.lri.fr/~marche/tpdb/format.html

import Tct (tct)
import Tct.Instances

main :: IO ()
main = tct config
config :: Config
config = defaultConfig { strategies = strategies }
where
 strategies =

matrices (Nat s :+ Nat n) =
 fastest [matrix 'withDimension' d 'withBits' bitsForDimension d | d <- [s..s+n]]
where
 bitsForDimension d = if d < 3 then 2 else 1

withDP = (timeout 5 dps <> dts)
where
dps = dependencyPairs
dts = dependencyTuples

Figure 2 Configuration defining two new search strategies, called matrices and withDP.

In Figure 2 we depict a modified configuration that defines two new search strategies, called matrices and withDP. Strategies are added by overwriting the field strategies with a list of declarations of the form
<code> :: :: strategy "<name>" [parameters-declaration].

Here <code> refers to a definition that evaluates to a processor, and "<name>" as well as the optional parameters-declaration specify how this code is accessible from the command-line. For instance, the first declaration in Figure 2 defines a new search strategy named matrices, which is available by supplying the option -s "matrices [:start <nat>] <nat>" to the TCT executable. Here the parameters to matrices are declared by

optional naturalArg "start" (Nat 1) :+ naturalArg,

where the constructor naturalArg is used to specify sequences of parameters. As indicated by the constructor naturalArg, the search strategy matrices expect two natural numbers as arguments. In contrast to the second parameter, the first is optional and defaults to the natural number 1.

In Figure 2, these parameters are provided to the code of matrices. Using parameters s and n as supplied on the command-line, the code evaluates to a processor that searches for n compatible matrix interpretations of increasing dimension, in parallel. Both matrix and fastest, along with other processors, combinators and modifiers like withDimension and withBits, are exported by the module Tct.Instances.

The second proof search strategy declared in Figure 2 defines a transformation called withDP. Transformations are a specific class of processors, that generate from the given input problem a possibly empty set of sub-problems, in a complexity-preserving manner.10 For every transformation t and processor p, one can use the processor t >>| p which first applies transformation t and then solves the resulting sub-problems using p. Search strategy declarations perform such a lifting of transformation implicitly, the declaration of withDP for instance results in a search strategy available as withDP <processor>. Besides the

10 Transformations were introduced in Version 1.7 of TCT. Although any processor like matrix could also be defined as a transformation, the distinction in TCT is present mainly for historical reasons.
The Tyrolean Complexity Tool

combinator \(\gg \) and its variation \(\gg \gg \), where the given processor \(p \) is applied in parallel on all sub-problems, the module \texttt{Tct.Instances} provides a wealth of \textit{transformation combinators}. We briefly discuss here the most important ones. The transformation \(t_1 \leftrightarrow t_2 \) employed in \texttt{withDP} first applies transformation \(t_1 \), only if this is unsuccessful it applies transformation \(t_2 \) on the input problem instead. A variation of the combinator is given by \(t_1 \ll t_2 \) that applies transformations \(t_1 \) and \(t_2 \) in parallel, resulting in the sub-problems of whichever transformation succeeds first. The combinator \(\ll \) thus implements a form of non-deterministic choice. The combinator \(\gg \gg \) defines composition of transformations, in the sense that the transformation \(t_1 \gg t_2 \) first applies transformation \(t_1 \) and then transformation \(t_2 \) on all resulting sub-problems. We remark that any transformation aborts if it is inapplicable. The combinator \texttt{try} overrides this behaviour, in the sense that \texttt{try t} behaves exactly like \(t \) should \(t \) succeed, otherwise it behaves as an identity. Finally, the combinator \texttt{exhaustively}, defined by \texttt{exhaustively \ t = t \gg \gg \texttt{try (exhaustively \ t)}}), applies \(t \) in an iterated fashion.

In total, the defined search strategy \texttt{withDP} depicted in Figure 2 applies weak dependency pairs (as realised in the definition of \texttt{dps}), or dependency tuples (as realised by \texttt{dts}) should the former fail. This transformation is followed by a sequence of syntactic simplifications, if applicable. We remark the thoughtful use of \texttt{try}. The transformation \texttt{dps} fails if the \textit{weight gap principle} cannot be established on all TRS rules, i.e., rules that are not dependency pairs. The latter is implemented by the transformation \texttt{wgOnUsable}, and constitutes an implementation of [12, Theorem 6.5]. We finally point out that an extended version of the transformation \texttt{withDP} is available in \texttt{TCT} as \texttt{toDP}.

3.3 Interactive Interface

\texttt{TCT} features also an \textit{interactive interface}, \texttt{TCT-i} for short. In this section we guide the reader through a small interactive session that outlines the main features, elaborate documentation of this mode is again provided online.

This \textit{semi-automatic} mode is in particular useful when investigating into tight(er) complexity bounds, and to crack hard-to-solve problems. The interactive interface constitutes essentially of a tiny wrapper around \texttt{ghci}, the interpreter bundled with the \textit{Glasgow Haskell compiler}. Users familiar with \texttt{ghci} will note that all features available in \texttt{ghci} are also available in \texttt{TCT-i}. The interactive interface is started from the command-line by supplying the option \texttt{-i} to the \texttt{TCT} executable.

\$ tct -i
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help
\% .. This is version 2.0 of the Tyrolean Complexity Tool.
\((c) \) Martin Avanzini <martin.avanzini@uibk.ac.at>,
Georg Moser <georg.moser@uibk.ac.at>, and
Andreas Schnabl <andreas.schnabl@uibk.ac.at>.

This software is licensed under the GNU Lesser General Public License, see <http://www.gnu.org/licenses/>.

Don't know how to start? Type 'help'.

\texttt{TCT> load "examples/div.trs"}

The interactive interface maintains a \textit{proof state}, which consists conceptually of a list of open problems together with proof information. The command \texttt{load "<file>"} is used to populate the proof state by the TRS given as argument.

\texttt{TCT> load "examples/div.trs"}

Current Proof State ...
Selected Open Problems:

Strict Trs:
{ -(x, 0()) \rightarrow x
 , -(s(x), s(y)) \rightarrow -(x, y)
 , %0(), s(y)) \rightarrow 0()
 , %s(x), s(y)) \rightarrow s(%(-(x, y), s(y)))) }

StartTerms: basic terms
Strategy: none

The current state can be inspected at any time by typing the command `state`. We note that the rewrite strategy and set of start terms are defined in accordance to the input file. The commands `set[DC|RC|IDC|IRC]` provide short-hands to these accordingly.

The primary means to modify the proof state is the use of the command `apply`. This command takes a single argument, a transformation or processor respectively, which is applied by default on all open problems collected in the current proof state. Both processors and transformations as imported from `Tct.Instances` qualify as arguments to `apply`. Of course one can also use the various combinators that we have seen so far to construct more complex arguments. Notably, since `TCT` loads the configuration file of `TCT`, all declarations given in the configuration are available as top-level bindings, and can thus be used in conjunction with `apply`. Recall that our configuration defines a transformation `withDP` that computes weak dependency pairs or dependency tuples respectively, applying various transformations on success. We use this transformation to simplify the input problem.

```
TCT> apply withDP
Problems simplified. Use 'state' to see the current proof state.
```

The output of `apply` is intentionally kept short. By typing `state` one can observe that our initially loaded complexity problem has been replaced by the problem obtained by our transformation `withDP`. To see that proof generated so far, one can use the command `proof`. Note that as long as the list of open problems is not empty, this proof is marked as open.

```
TCT> proof
1) dp [OPEN]:
We consider the following problem:
Strict Trs:
{ -(x, 0()) \rightarrow x
 , -(s(x), s(y)) \rightarrow -(x, y)
 , %0(), s(y)) \rightarrow 0()
 , %s(x), s(y)) \rightarrow s(%(-(x, y), s(y)))) }
StartTerms: basic terms
Strategy: none

We add following weak dependency pairs:
```

```
TCT> proof
1.1) dp [OPEN]:
We consider the following problem:
Strict DPs:
{ -^%(x, 0()) \rightarrow c_1(x)
 , -^%(s(x), s(y)) \rightarrow c_2(-^%(x, y))
 , %^%(s(x), s(y)) \rightarrow c_4(%^%(-(x, y), s(y)))) }
Weak Trs:
{ -(x, 0()) \rightarrow x
 , -(s(x), s(y)) \rightarrow -(x, y) }
StartTerms: basic terms
Strategy: none
```

\(^{11}\) To override this behaviour and see actions performed, one can use the command `setShowProofs`, or alternatively set the field `interactiveShowProofs` to `True` in the configuration record of `TCT`.\n
Besides state and proof, following commands allow for further inspection of the current proof state. The command problems returns the list of open problems, wags and cwdgs return the corresponding dependency graphs respectively congruence graph and uargs returns the usable argument positions. Cf. [12] for an explanation of these attributes. For instance, we can use cwdgs to inspect the congruence graph of our open problem as follows.

\[
\text{TCT} \gg [\text{cwdg}] \leftarrow \text{cwdgs}
\]

Congruence Graph of Problem 1:
-1:1,2
-1:-2:3

Here dependency-pairs are as follows:

Strict DPs:
-1: -\#(x, 0()) -> c_1(x)
-2: -\#(s(x), s(y)) -> c_2(-\#(x,y))
-3: %\#(s(x), s(y)) -> c_4(\#(x, y, s(y)))

The Tyrolean Complexity Tool

Once the list of open problem is empty, the complexity of the input problem has been successfully proven. We can do so on our running example using the matrix processor that we have already used before.

\[
\text{TCT} \gg \text{apply matrix}
\]

Hurray, the problem was solved with certificate YES(O(1),O(n^2)).

Use 'proof' to show the complete proof.

We have found a closed proof that verifies that our initial problem has at most quadratic runtime complexity. We remark that the runtime complexity of the input TRS is even linear. Inspecting the proof we see that the imprecision in the certificate was introduced in the last proof step. Fortunately TCT-i provides a command undo that can be used to revert the effect of apply. In fact, it reverts any modification on the proof state, except of course the effect of undo itself. We refine the proof by restricting the induced degree of the constructed interpretation.

\[
\text{TCT} \gg \text{undo}
\]

Current Proof State

Selected Open Problems:

\[
\begin{align*}
\text{Strict DPs:} \\
\{ & -\#(x, 0()) \rightarrow c_1(x) \\
& -\#(s(x), s(y)) \rightarrow c_2(\#(x,y)) \\
& \#(s(x), s(y)) \rightarrow c_4(\#(x, y, s(y))) \\
\text{Weak Trs:} \\
\{ & -(x, 0()) \rightarrow x \\
& -(s(x), s(y)) \rightarrow -(x, y) \\
\text{StartTerms: basic terms} \\
\text{Strategy: none}
\end{align*}
\]

\[
\text{TCT} \gg \text{apply } \text{withDegree} \text{ matrix 'Just 1'}
\]

Hurray, the problem was solved with certificate YES(O(1),O(n^1)).

Use 'proof' to show the complete proof.

Here the function withDegree is used to modify the default parameters as defined in matrix. We finally end up with a closed proof that verifies that our loaded TRS has linear runtime complexity. Using the command writeProof "<file>" one can write the constructed proof to the given file.

\[
\text{TCT} \gg \text{undo}
\]

Current Proof State

Selected Open Problems:

\[
\begin{align*}
\text{Strict DPs:} \\
\{ & -\#(x, 0()) \rightarrow c_1(x) \\
& -\#(s(x), s(y)) \rightarrow c_2(\#(x,y)) \\
& \#(s(x), s(y)) \rightarrow c_4(\#(x, y, s(y))) \\
\text{Weak Trs:} \\
\{ & -(x, 0()) \rightarrow x \\
& -(s(x), s(y)) \rightarrow -(x, y) \\
\text{StartTerms: basic terms} \\
\text{Strategy: none}
\end{align*}
\]

\[
\text{TCT} \gg \text{apply } \text{withDegree} \text{ matrix 'Just 1'}
\]

Hurray, the problem was solved with certificate YES(O(1),O(n^1)).

Use 'proof' to show the complete proof.

\[
\text{TCT} \gg \text{apply } \text{withDegree} \text{ matrix 'Just 1'}
\]

Hurray, the problem was solved with certificate YES(O(1),O(n^1)).

Use 'proof' to show the complete proof.

Here the function withDegree is used to modify the default parameters as defined in matrix. We finally end up with a closed proof that verifies that our loaded TRS has linear runtime complexity. Using the command writeProof "<file>" one can write the constructed proof to the given file.

\[
\text{TCT} \gg \text{undo}
\]

Current Proof State

Selected Open Problems:

\[
\begin{align*}
\text{Strict DPs:} \\
\{ & -\#(x, 0()) \rightarrow c_1(x) \\
& -\#(s(x), s(y)) \rightarrow c_2(\#(x,y)) \\
& \#(s(x), s(y)) \rightarrow c_4(\#(x, y, s(y))) \\
\text{Weak Trs:} \\
\{ & -(x, 0()) \rightarrow x \\
& -(s(x), s(y)) \rightarrow -(x, y) \\
\text{StartTerms: basic terms} \\
\text{Strategy: none}
\end{align*}
\]

\[
\text{TCT} \gg \text{apply } \text{withDegree} \text{ matrix 'Just 1'}
\]

Hurray, the problem was solved with certificate YES(O(1),O(n^1)).

Use 'proof' to show the complete proof.

Here the function withDegree is used to modify the default parameters as defined in matrix. We finally end up with a closed proof that verifies that our loaded TRS has linear runtime complexity. Using the command writeProof "<file>" one can write the constructed proof to the given file.

\[
\text{TCT} \gg \text{undo}
\]

Current Proof State

Selected Open Problems:

\[
\begin{align*}
\text{Strict DPs:} \\
\{ & -\#(x, 0()) \rightarrow c_1(x) \\
& -\#(s(x), s(y)) \rightarrow c_2(\#(x,y)) \\
& \#(s(x), s(y)) \rightarrow c_4(\#(x, y, s(y))) \\
\text{Weak Trs:} \\
\{ & -(x, 0()) \rightarrow x \\
& -(s(x), s(y)) \rightarrow -(x, y) \\
\text{StartTerms: basic terms} \\
\text{Strategy: none}
\end{align*}
\]

12 The application operator $\$ has low, right-associative binding precedence.
This completes the short tutorial. We remark that for the GNU Emacs13 enthusiast, we have also crafted a small major-mode for TCTi. This mode is available in the source distribution of TCT. The mode can be started by typing \texttt{M-x tct} into GNU Emacs. In addition to the features explained above, the major-mode provides a refurbished view on the proof state, compare Figure 3 which shows an example session. The approximated dependency graph depicted in Figure 3 is visualised using the \texttt{dot} tool of the Graphviz toolkit.14

![Figure 3 TCT Major Mode for GNU Emacs.](image)

4 Conclusion and Future Work

Our complexity analyser TCT has matured to a state where we can say that it is both versatile and powerful. This is underpinned by the experimental evidence given online15 which highlights in particular the strength of the underlying combination framework presented in [5].

We of course seek to keep the implementation in line with the active research community. In the upcoming version, we also intend to remove some out-dated design choices, foremost the separation of processors and transformations, which will result in a significantly simplified core. Also, we currently investigate the integration of constrained rewriting. This should leverage the design of complexity preserving reductions from real world programs to rewrite systems, in the hope that TCT will act as a powerful backend.

Acknowledgement

Foremost we thank Andreas Schnabl for his major role in the development of TCT. Moreover, we thank Martin Korp, Christian Sternagel, and Harald Zankl as (former) members of the TTT2 team for ongoing discussions. We also thank Bertram Felgenhauer for valuable discussions concerning the implementation. Finally, we also thank the anonymous reviewers for valuable suggestions that improved the presentation of this paper.

13GNU Emacs is open-source and available from \url{http://www.gnu.org/s/emacs/}.
14The toolkit is open-source and available from \url{http://www.graphviz.org/}.
15C.f. \url{http://cl-informatik.uibk.ac.at/software/tct/experiments/tct2/}.
References