
Submitted to the International Conference on Rewriting Techniques and Applications
http://rewriting.loria.fr/rta/

CLOSING THE GAP BETWEEN RUNTIME COMPLEXITY AND

POLYTIME COMPUTABILITY

MARTIN AVANZINI 1 AND GEORG MOSER 1

1 Institute of Computer Science, University of Innsbruck, Austria

E-mail address: {martin.avanzini,georg.moser}@uibk.ac.at

Abstract. In earlier work, we have shown that for confluent term rewrite systems (TRSs
for short), innermost polynomial runtime complexity induces polytime computability of
the functions defined. In this paper, we generalise this result to full rewriting, for that we
exploit graph rewriting. We give a new proof of the adequacy of graph rewriting for full
rewriting that allows for a precise control of the resources copied. In sum we completely
describe an implementation of rewriting on a Turing machine (TM for short). We show that
the runtime complexity of the TRS and the runtime complexity of the TM is polynomially
related. Our result strengthens the evidence that the complexity of a rewrite system is
truthfully represented through the length of derivations. Moreover our result allows the
classification of deterministic as well as nondeterministic polytime-computation based on
runtime complexity analysis of rewrite systems.

1. Introduction

Recently we see increased interest in studies of the (maximal) derivation length of term
rewrite system, compare for example [10, 9, 15, 11, 14]. We are interested in techniques
to automatically classify the complexity of term rewrite systems (TRS for short) and have
introduced the polynomial path order POP∗ and extensions of it, cf. [1, 2]. POP∗ is
a restriction of the multiset path order [18] and whenever compatibility of a TRS R with
POP∗ can be shown then the (innermost) runtime complexity ofR is polynomially bounded.
Here the runtime complexity of a TRS measures the maximal number of rewrite steps as
a function in the size of the initial term, where the initial terms are restricted argument
normalised terms (aka basic terms).

We have successfully implemented this technique.1 As a consequence we have a fully
automatic (but of course incomplete) procedure that verifies for a given TRS R whether
it admits at most polynomial runtime complexity. In this paper, we study the question
whether such techniques are restricted to runtime complexity, or whether they can be applied

1998 ACM Subject Classification: F 1.2, F 1.3, F 4.2.
Key words and phrases: term rewriting, graph rewriting, complexity analysis, polytime computability.
This research is supported by FWF (Austrian Science Fund) projects P20133.

1Our implementation forms part of the Tyrolean Complexity Tool (TCT for short). For further information,

see http://cl-informatik.uibk.ac.at/software/tct/.

© M. Avanzini and G. Moser
Confidential — submitted to RTA

{martin.avanzini,georg.moser}@uibk.ac.at
http://cl-informatik.uibk.ac.at/software/tct/

also for the (automated) classification of the computational complexity of the functions
computed by the given TRS R. For motivation consider the TRS Rsat given in the next
example. It is not difficult to see that Rsat encodes the function problem FSAT associated
to the well-known satisfiability problem SAT. FSAT is complete for the class of function
problems over NP (FNP for short), compare [16].

Example 1.1. Consider the following TRS Rsat:

1 : if(tt, t, e)→ t 11: ε = ε→ tt

2: if(ff, t, e)→ e 12: 1(x) = 1(y)→ x = y

3: choice(x : xs)→ x 13: 1(x) = 0(y)→ ff

4: choice(x : xs)→ choice(xs) 14: 0(x) = 1(y)→ ff

5: guess(nil)→ nil 15: 0(x) = 0(y)→ x = y

6: guess(c : cs)→ choice(c) : guess(cs) 16: verify(nil)→ tt

7: in(x, nil)→ ff 17: verify(l : ls)→ if(in(¬l, ls),ff, verify(ls))

8 : in(x, y : ys)→ if(x = y, tt, in(x, ys)) 18: sat′(a)→ if(verify(a), a, unsat)

9 : ¬1(x)→ 0(x) 19: sat(c)→ sat′(guess(c))

10: ¬0(x)→ 1(x)

These rules are compatible with POP∗ and as a result we conclude that the innermost
runtime complexity of Rsat is polynomially bounded.2

This leads to the question, whether a characterisation of the runtime complexity of Rsat

suffices to conclude that the functional problem expressed by Rsat belongs to the class FNP.
The purpose of this paper is to provide a positive answer to this question. More precisely,
we establish the following results:

- We re-consider graph rewriting and provide a new proof of the adequacy of graph
rewriting for full rewriting. This overcomes obvious inefficiencies of rewriting, when
it comes to the duplication of terms.

- We provide a precise analysis of the resources needed in implementing graph rewriting
on a Turing machine (TM for short).

- Combining these results we obtain an efficient implementation of rewriting on a TM.
More precisely, we show that for a given TRS R, for any term s, some normal-form
of s is computable in deterministic time O(log(`3)∗`7), and further, any normal-form
of s is computable in nondeterministic time O(log(`2)∗ `5). Here ` refers to an upper
bound on the length of derivations starting from s (the bound ` is supposed to be at
least as large as the size of s). Based on this implementation our main result on the
correspondence between polynomial runtime complexity and polytime computability
follows.

Our result strengthens the evidence that the complexity of a rewrite system is truth-
fully represented through the length of derivations. Furthermore, our result allows the
classification of deterministic as well as nondeterministic polytime-computation based on
runtime complexity analysis of rewrite systems. This extends previous work (see [3]) that
shows that for confluent TRSs, innermost polynomial runtime complexity induces polytime

2To our best knowledge TCT is currently the only complexity tool that can provide a complexity certificate

for the TRS Rsat, compare http://termcomp.uibk.ac.at.

http://termcomp.uibk.ac.at

computability of the functions defined. Moreover, it extends related work by Dal Lago and
Martini [8, 7] that studies the complexity of orthogonal TRSs, also applying graph rewriting
techniques (c.f. also Section 6).

The paper is structured as follows. In Section 2 we present basic notions, in Section 3
we (briefly) recall the central concepts of our employed notion of graph rewriting. The
adequacy theorem is provided in Section 4 and in Section 5 we show how rewriting can
be implemented efficiently. Finally we discuss our results in Section 6, where the above
application to computational complexity is made precise. Missing proofs are available in
the technical report [4].

2. Preliminaries

We assume familiarity with the basics of term rewriting, see [5, 18]. No familiarity with
graph rewriting (see [18]) is assumed. Let R be a binary relation on a set S. We write R+

for the transitive and R∗ for the transitive and reflexive closure of R. An element a ∈ S
is R-minimal if there exists no b ∈ S such that a R b. We write a R! b if a R∗ b and b is
R-minimal.

Let V denote a countably infinite set of variables and F a signature. The set of terms
over F and V is denoted as T (F ,V) or T for short. The size |t| of a term t is defined as
usual. A term rewrite system (TRS for short) R over T is a finite set of rewrite rules l→ r,
such that l /∈ V and Var(l) ⊇ Var(r). We write −→R for the induced rewrite relation. The
set of defined function symbols is denoted as D, while the constructor symbols are collected
in C, clearly F = D ∪ C. We use NF(R) to denote the set of normal-forms of R. We define
the set of values Val := T (C,V), and we define B := {f(v1, . . . , vn) | f ∈ D and vi ∈ Val}
as the set of basic terms. Let 2 be a fresh constant. Terms over F ∪ {2} and V are called
contexts. The empty context is denoted as 2. For a context C with n holes, we write
C[t1, . . . , tn] for the term obtained by replacing the holes from left to right in C with the
terms t1, . . . , tn.

A TRS is called confluent if for all s, t1, t2 ∈ T with s −→∗R t1 and s −→∗R t2 there exists
a term u such that t1 −→∗R u and t2 −→∗R u. The derivation height of a terminating term s
with respect to → is defined as dl(s,→) := max{n | ∃t. s →n t}, where →n denotes the
n-fold application of →. The runtime complexity function rcR with respect to a TRS R is
defined as rcR(n) := max{dl(t,−→R) | t ∈ B and |t| 6 n}.

3. Term Graph Rewriting

In the sequel we introduce the central concepts of term graph rewriting or graph rewrit-
ing for short. We closely follow the presentation of [3], for further motivation of the pre-
sented notions we kindly refer the reader to [3]. Let R be a TRS over a signature F . We
keep R and F fixed for the remaining of this paper.

A directed graph G = (VG, SuccG,LG) over the set L of labels is a structure such that
VG is a finite set, the nodes or vertices, Succ : VG → V∗G is a mapping that associates
a node u with an (ordered) sequence of nodes, called the successors of u. Note that the
sequence of successors of u may be empty: SuccG(u) = []. Finally LG : VG → L is a
mapping that associates each node u with its label LG(u). Typically the set of labels L is
clear from context and not explicitly mentioned. In the following, nodes are denoted by
u, v, . . . possibly followed by subscripts. We drop the reference to the graph G from VG,

SuccG, and LG, i.e., we write G = (V,Succ,L) if no confusion can arise from this. Further,
we also write u ∈ G instead of u ∈ V.

Let G = (V,Succ,L) be a graph and let u ∈ G. Consider Succ(u) = [u1, . . . , uk]. We

call ui (1 6 i 6 k) the i-th successor of u (denoted as u
i
⇀ ui). If u

i
⇀ v for some i, then

we simply write u ⇀ v. A node v is called reachable from u if u
∗
⇀ v, where

∗
⇀ denotes the

reflexive and transitive closure of ⇀. We write
+
⇀ for ⇀ · ∗⇀. A graph G is acyclic if u

+
⇀ v

implies u 6= v and G is rooted if there exists a unique node u such that every other node in
G is reachable from u. The node u is called the root rt(G) of G. The size of G, i.e., the
number of nodes, is denoted as |G|. The depth of G, i.e., the length of the longest path in
G, is denoted as dp(G). We write G�u for the subgraph of G reachable from u.

Let G and H be two term graphs, possibly sharing nodes. We say that G and H are
properly sharing if u ∈ G ∩H implies LG(u) = LH(u) and SuccG(u) = SuccH(u). If G and
H are properly sharing, we write G ∪H for their union.

Definition 3.1. A term graph (with respect to F and V) is an acyclic and rooted graph
S = (V,Succ,L) over labels F ∪ V. Let u ∈ S and suppose L(u) = f ∈ F such that f is
k-ary. Then Succ(u) = [u1, . . . , uk]. On the other hand, if L(u) ∈ V then Succ(u) = []. We
demand that every variable node is shared. That is, for u ∈ S with L(u) ∈ V, if L(u) = L(v)
for some v ∈ V then u = v.

Below S, T, . . . and L,R, possibly followed by subscripts, always denote term graphs.
We write Graph for the set of all term graphs with respect to F and V. Abusing notation
from rewriting we set Var(S) := {u | u ∈ S,L(u) ∈ V}, the set of variable nodes in S. We
define the term term(S) represented by S as follows: term(S) := x if L(rt(S)) = x ∈ V
and term(S) := f(term(S �u1), . . . , term(S �uk)) for L(rt(S)) = f ∈ F and Succ(rt(S)) =
[u1, . . . , uk].

We adapt the notion of positions in terms to positions in graphs in the obvious way.
Positions are denoted as p, q, . . . , possibly followed by subscripts. For positions p and q
we write pq for their concatenation. We write p 6 q if p is a prefix of q, i.e., q = pp′

for some position p′. The size |p| of position p is defined as its length. Let u ∈ S be
a node. The set of positions PosS(u) of u is defined as PosS(u) := {ε} if u = rt(S)

and PosS(u) := {i1 · · · ik | rt(S)
i1⇀ · · · ik⇀ u} otherwise. The set of all positions in S is

PosS :=
⋃

u∈S PosS(u). Note that PosS coincides with the set of positions of term(S). If
p ∈ PosS(u) we say that u corresponds to p. In this case we also write S �p for the subgraph
S �u. This is well defined since exactly one node corresponds to a position p. One verifies
term(S � p) = term(S)|p for all p ∈ PosS . We say that u is (strictly) above a position p if
u corresponds to a position q with q 6 p (q < p). Conversely, the node u is below p if u
corresponds to q with p 6 q.

By exploiting different degrees of sharing, a term t can often be represented by more
than one term graph. Let S be a term graph and let u ∈ S be a node. We say that u is shared
if the set of positions PosS(u) is not singleton. Note that in this case, the node u represents
more than one subterm of term(S). If PosS(u) is singleton, then u is unshared. The node
u is minimally shared if it is either unshared or a variable node (recall that variable nodes
are always shared). We say u is maximally shared if term(S �u) = term(S �v) implies u = v
for all nodes v ∈ S. The term graph S is called minimally sharing (maximally sharing)
if all nodes u ∈ S are minimally shared (maximally shared). Let s be a term. We collect

all minimally sharing term graphs representing s in the set M(s). Maximally sharing term
graphs representing s are collected in O(s).

We now introduce a notion for replacing a subgraph S �u of S by a graph H.

Definition 3.2. Let S be a term graph and let u, v ∈ S be two nodes. Then S[u←− v]
denotes the redirection of node u to v: define the mapping r such that r(u) := v and r(w) :=
w for all w ∈ S\{u}. Set V′ := (VS ∪{v})\{u} and for all w ∈ V′, Succ′(w) := r∗(SuccS(w))
where r∗ is the extension of r to sequences. Finally, set S[u←− v] := (V′, Succ′,LS).

Let H be a rooted graph over F ∪V. We define S[H]u := (S[u←− rt(H)] ∪H)�v where
v = rt(H) if u = rt(S) and v = rt(S) otherwise. Note that S[H]u is again a term graph if
u 6∈ H and H acyclic.

The following notion of term graph morphism plays the role of substitutions.

Definition 3.3. Let L and S be two term graphs. A morphism from L to S (denoted
m : L→ S) is a function m : VL → VS such that m(rt(L)) = rt(S), and for all u ∈ L with
LL(u) ∈ F , (i) LL(u) = LS(m(u)) and (ii) m∗(SuccL(u)) = SuccS(m(u)).

The next lemma follows essentially from Assertion (ii) of Definition 3.3.

Lemma 3.4. If m : L→ S then for any u ∈ L we have m : L�u→ S �m(u).

Let m : L→ S be a morphism from L to S. The induced substitution σm : Var(L)→ T
is defined as σm(x) := term(S �m(u)) for any u ∈ L such that L(u) = x ∈ V. As an easy
consequence of Lemma 3.4 we obtain the following.

Lemma 3.5. Let L and S be term graphs, and suppose m : L→ S for some morphism m.
Let σm be the substitution induced by m. Then term(L)σm = term(S).

Proof. The lemma has been shown in [3, Lemma 14].

We write S >m T (or S > T for short) if m : S → T is a morphism such that for
all u ∈ VS , Property (i) and Property (ii) in Definition 3.3 are fulfilled. For this case, S
and T represent the same term. We write S >m T (or S > T for short) when the graph
morphism m is additionally non-injective. If both S > T and T > S holds then S and T
are isomorphic, in notation S ∼= T . Recall that |S| denotes the number of nodes in S.

Lemma 3.6. For all term graph S and T , S >m T implies term(S) = term(T) and
|S| > |T |. If further S >m T holds then |S| > |T |.

Let L and R be two properly sharing term graphs. Suppose rt(L) 6∈ Var(L), Var(R) ⊆
Var(L) and rt(L) 6∈ R. Then the graph L∪R is called a graph rewrite rule (rule for short),
denoted by L → R. The graph L, R denotes the left-hand, right-hand side of L → R
respectively. A graph rewrite system (GRS for short) G is a set of graph rewrite rules.

Let G be a GRS, let S ∈ Graph and let L → R be a rule. A rule L′ → R′ is called a
renaming of L→ R with respect to S if (L′ → R′) ∼= (L→ R) and VS ∩VL′→R′ = ∅. Let
L′ → R′ be a renaming of a rule (L → R) ∈ G for S, and let u ∈ S be a node. We say S
rewrites to T at redex u with rule L → R, denoted as S −→G,u,L→R T , if there exists a

morphism m : L′ → S �u and T = S[m(R′)]u. Here m(R′) denotes the structure obtained
by replacing in R′ every node v ∈ dom(m) by m(v) ∈ S, where the labels of m(v) ∈ m(R′)
are the labels of m(v) ∈ S. We also write S −→G,p,L→R T if S −→G,u,L→R T for position
p corresponding to u in S. We set S −→G T if S −→G,u,L→R T for some u ∈ S and

(L → R) ∈ G. The relation −→G is called the graph rewrite relation induced by G. Again
abusing notation, we denote the set of normal-forms with respect to −→G as NF(G).

4. Adequacy of Graph Rewriting for Term Rewriting

In earlier work [3] we have shown that graph rewriting is adequate for innermost rewrit-
ing without further restrictions on the studied TRS R. In this section we generalise this
result to full rewriting. The adequacy theorem presented here (see Theorem 4.15) is not
essentially new. Related results can be found in the extensive literature, see for example
[18]. In particular, in [17] the adequacy theorem is stated for full rewriting and unrestricted
TRSs. In this work, we take a fresh look from a complexity related point of view. We give
a new proof of the adequacy of graph rewriting for full rewriting that allows for a precise
control of the resources copied. This is essential for the accurate characterisation of the
implementation of graph rewriting given in Section 5.

Definition 4.1. The simulating graph rewrite system G(R) of R contains for each rule
(l→ r) ∈ R some rule L→ R such that L ∈ M(l), R ∈ M(r) and VL ∩VR = Var(R).

The next two Lemmas establish soundness in the sense that derivations with respect to
G(R) correspond to R-derivations.

Lemma 4.2. Let S be a term graph and let L→ R be a renaming of a graph rewrite rule for
S, i.e., S∩R = ∅. Suppose m : L→ S for some morphism m and let σm be the substitution
induced by m. Then term(R)σm = term(T) where T := (m(R) ∪ S)�rt(m(R)).

Proof. The lemma has been shown in [3, Lemma 15].

In Section 2 we introduced 2 as designation of the empty context. Below we write 2

for the unique (up-to isomorphism) graph representing the constant 2.

Lemma 4.3. Let S and T be two properly sharing term graphs, let u ∈ S \ T and C =
term(S[2]u). Then term(S[T]u) = C[term(T), . . . , term(T)].

Proof. The lemma has been shown in [3, Lemma 16]. Note that the set of positions of 2 in
C corresponds to PosS(u).

For non-left-linear TRSs R, −→G(R) does not suffice to mimic −→R. This is clarified in

the following example.

Example 4.4. Consider the TRS Rf := {f(x)→ eq(x, a); eq(x, x)→ >}. Then Rf admits
the derivation

f(a) −→Rf
eq(a, a) −→Rf

>
but G(Rf) cannot completely simulate the above sequence:

f

a

eq

a a
−→G(Rf) ∈ NF(G(Rf))

Let L → R be the rule in G(Rf) corresponding to eq(x, x) → >, and let S, term(S) =
eq(a, a), be the second graph in the above sequence. Then L → R is inapplicable as we
cannot simultaneously map the unique variable node in L to both leaves in S via a graph
morphism. Note that the situation can be repaired by sharing the two arguments in S.

For maximally sharing graphs S we can prove that redexes of R and (positions corre-
sponding to) redexes of G(R) coincide. This is a consequence of the following Lemma.

Lemma 4.5. Let l be a term and s = lσ for some substitution σ. If L ∈ M(l) and S ∈ O(s),
then there exists a morphism m : L→ S. Further, σ(x) = σm(x) for the induced substitution
σm and all variables x ∈ Var(l).

Proof. We prove the lemma by induction on l. It suffices to consider the induction step.
Let l = f(l1, . . . , lk) and s = f(l1σ, . . . , lkσ). Suppose SuccL(rt(L)) = [u1, . . . , uk] and
SuccS(rt(S)) = [v1, . . . , vk]. By induction hypothesis there exist morphisms mi : L�ui → S �
vi (1 6 i 6 k) of the required form. Define m : VL → VS as follows. Set m(rt(L)) = rt(S)
and for w 6= rt(L) define m(w) = mi(w) if w ∈ dom(mi). We claim w ∈ (dom(mi) ∩
dom(mj)) implies mi(w) = mj(w). For this, suppose w ∈ (dom(mi) ∩ dom(mj)). Since
L ∈ M(l), only variable nodes are shared, hence w needs to be a variable node, say LL(w) =
x ∈ V. Then

term(S �mi(w)) = σmi(x) = σ(x) = σmj (x) = term(S �mj(w))

by induction hypothesis. As S ∈ O(s) is maximally shared, mi(w) = mj(w) follows. We
conclude m is a well-defined morphism, further m : L→ S.

A second problem is introduced by non-eager evaluation. Consider the following.

Example 4.6. Let Rdup := {dup(x)→ c(x, x); a→ b}. Then Rdup admits the derivation

dup(a) −→Rdup
c(a, a) −→Rdup

c(b, a)

but applying the corresponding rules in G(Rdup) yields:

dup

a

c

a

c

b

−→G(Rdup)
−→G(Rdup)

Application of the first rule produces a shared redex. Consequently the second step amounts
to a parallel step in Rdup.

To prove adequacy of graph rewriting for term rewriting and unrestricted TRSs, we
follow the standard approach [18, 17] where folding (also called collapsing) and unfolding
(also referred to as copying) is directly incorporated in the graph rewrite relation. Unlike
in the cited literature, we employ a very restrictive form of folding and unfolding. To
this extend, we define for positions p relations Ip and Cp on term graphs. Both relations
preserve term structure. However, when S Ip T holds then the subgraph T � p admits
strictly more sharing than S �p. Conversely, when S Cp T holds, nodes above p in T admit
less sharing than nodes above p in S. Extending the graph rewrite relation −→G(R),p by Ip

and Cp addresses both problems highlighted in Example 4.4 and Example 4.6.
The relations Ip and Cp are based on single step approximations =u

v of >m.

Definition 4.7. Let � denote some total quasi-order on nodes, let < denote the reflexive
closure of �. Let S be a term graph, and let u, v ∈ S be nodes satisfying u < v. We define
S wu

v T for term graph T if S >m T for the morphism m identifying u and v, more precisely,
m(u) = v and m(w) = w for all w ∈ S \ {u}. We define S =u

v T if S wu
v T and u 6= v.

We write S wv T (S =v T) if there exists u ∈ S such that S wu
v T (S =u

v T) holds.
Similar S w T (S = T) if there exist nodes u, v ∈ S such that S wu

v T (S =u
v T) holds.

Example 4.8. Consider the term t = (0 + 0) × (0 + 0). Then t is represented by the
following three graphs that are related by <2

3 and =4
5 respectively.

À×

Â+

Ã 0 Ä 0

T1

<2
3

À×

Á+ Â+

Ã 0 Ä 0

T2

=4
5

À×

Á+ Â+

Ä 0

T3

Put otherwise, the term graph T2 is obtained from T1 by copying node 3, introducing the
fresh node 2. The graph T3 is obtained from T2 by collapsing node 4 onto node 5.

Suppose S =u
v T . Then the morphism underlying =u

v defines the identity on VS \{u}. In
particular, it defines the identity on successors of u, v ∈ S. Thus the following is immediate.

Lemma 4.9. Let S be a term graph, and let u, v ∈ S be two distinct nodes. Then there exists
a term graph T such that S =u

v T if and only if LS(u) = LS(v) and SuccS(u) = SuccS(v).

The restriction u < v was put ontowu
v so thatwv enjoys the following diamond property.

Otherwise, the peak <u
v · =v

u ⊆ ∼= cannot be joined.

Lemma 4.10. vu · wv ⊆ ww1
· vw2

where w1, w2 ∈ {u, v}.

Proof. Assume T1 vu′
u S wv′

v T2 for some term graphs S, T1 and T2. The only non-trivial

case is T1 <
u′
u S =v′

v T2 for u′ 6= v′ and u 6= v. We prove T1 =w1
· <w2

T2 for w1, w2 ∈ {u, v}
by case analysis. We highlight two interesting cases. The remaining cases follow by similar
reasoning, c.f. [4].

- Case T1 <
u′
w S =v′

w T2 for v′ 6= u′. We claim T1 =
v′
w · <u′

w T2. Let m1 be the morphism

underlying <u′
w and let m2 be the morphism underlying =v′

w (c.f. Definition 4.7). We

first show LT1(v′) = LT1(w) and SuccT1(v′) = SuccT1(w). Using Lemma 4.9, S =v′
w T2

yields LS(v′) = LS(w). Employing v′ 6= u′ and w 6= u′ we see

LT1(v′) = LT1(m1(v
′)) = LS(v′)

= LS(w) = LT1(m1(w)) = LT1(w) .

where we employ m1(v
′) = v′ and m1(w) = w. Again by Lemma 4.9, we see

SuccS(u′) = SuccS(w) and SuccS(v′) = SuccS(w) by the assumption T1 <
u′
w S =v′

w T2.
We conclude SuccS(v′) = SuccS(w) and thus

SuccT1(v′) = SuccT1(m1(v
′)) = m∗1(SuccS(v′))

= m∗1(SuccS(w)) = SuccT1(m1(w)) = SuccT1(w) .

By Lemma 4.9 we obtain term graph U1 such that T1 =
v′
w U1. Symmetrically, we can

prove T2 =u′
w U2 for some term graph U2. Hence T1 =v′

w · <u′
w T2 holds if U1 = U2.

To prove the latter, one shows m2 ·m1 = m1 ·m2 by a straightforward case analysis.
- Case T1 <u′

u S =v′
v T2 for pairwise distinct u′, u, v′ and v. We show T1 =v′

v · <u′
u T2.

Let m be the morphism underlying =u′
u . Observe m(v) = v and m(v′) = v′ by our

assumption. Hence LT1(v′) = LS(v′) = LS(v) = LT1(v) and LT1(v′) = m∗(LS(v′)) =

m∗(LS(v)) = LT1(v). We obtain T1 =v′
v U1 and symmetrically T2 =u′

u U2 for some
term graphs U1 and U2. Finally, one verifies U1 = U2 by case analysis as above.

The above lemma implies confluence of w. Since =∗ = w∗, = is also confluent.

Definition 4.11. Let S be a term graph and let p be a position in S. We say that S folds
strictly below p to the term graph T , in notation S Ip T , if S =u

v T for nodes u, v ∈ S
strictly below p in S. The graph S unfolds above p to the term graph T , in notation S Cp T ,
if S <u

v T for some unshared node u ∈ T above p, i.e., PosT (u) = {q} for q 6 p.

Example 4.12. Reconsider the term graphs T1, T2 and T3 with T1 <2
3 T2 =4

5 T3 from
Example 4.8. Then T1 C2 T2 since node 3 is an unshared node above position 2 in T2.
Further T2 I2 T3 since both nodes 4 and 5 are strictly below position 2 in T2.

Note that for S =u
v T the sets of positions PosS and PosT coincide, thus the n-fold

composition Cn
p of Cp (and the n-fold composition In

p of Ip) is well-defined for p ∈ PosS .
In the next two lemmas we prove that relations Cp and Ip fulfill their intended purpose.

Lemma 4.13. Let S be a term graph and p a position in S. If S is Cp-minimal then the
node corresponding to p is unshared.

Proof. By way of contradiction, suppose S is Cp-minimal but the node w corresponding to
p is shared. We construct T such that S Cp T . We pick an unshared node v ∈ S, and
shared node vi ∈ S, above p such that v ⇀ vi. By a straightforward induction on p we see
that v and vi exist as w is shared. For this, note that at least the root of S is unshared.

Define T := (VT ,LT , SuccT) as follows: let u be a fresh node such that u � vi. set
VT := VS ∪{u}; set LT (u) := LS(vi) and SuccT (u) := SuccS(vi); further replace the edge

v
i
⇀ vi by v

i
⇀ u, that is, set LT (v) := [v1, . . . , u, . . . , vl] for LS(v) = [v1, . . . , vi, . . . , vl]. For

the remaining cases, define LT (w) := LS(u) and SuccT (w) := SuccS(w). One easily verifies
T =u

vi S. Since by way of construction u is an unshared node above p, S Cp T holds.

Lemma 4.14. Let S be a term graph, let p be a position in S. If S is Ip-minimal then the
subgraph S �p is maximally shared.

Proof. Suppose S �p is not maximally shared. We show that S is not Ip-minimal. Pick some
node u ∈ S �p such that there exists a distinct node v ∈ S �p with term(S �u) = term(S �v).

For that we assume that u is ⇀-minimal in the sense that there is no node u′ with u
+
⇀ u′

such that u′ would fulfill the above property. Clearly LS(u) = LS(v) follows from term(S �

u) = term(S � v). Next, suppose u
i
⇀ ui and v

i
⇀ vi for some nodes ui 6= vi. But then ui

contradicts minimality of u, and so we conclude ui = vi. Consequently SuccS(u) = SuccS(v)
follows as desired. Without loss of generality, suppose u � v. By Lemma 4.9 there exists a
term graph T such that S =u

v T . Since u, v ∈ S �p, S Ip T follows.

Theorem 4.15 (Adequacy). Let s be a term and let S be a term graph such that term(S) =
s. Then

s −→R,p t if and only if S C!
p · I!

p · −→G(R),p T

for some term graph T with term(T) = t.

Proof. First, we consider the direction from right to left. Suppose S C!
p U I

!
p V −→G(R),p T .

Note that Ip preserves Cp-minimality. We conclude V is Cp-minimal as U is. Let v ∈ V
be the node corresponding to p. By Lemma 4.13 we see PosU (v) = {p}. Now consider
the step V −→G(R),p T . There exists a renaming L′ → R′ of (L→ R) ∈ G(R) such that

m : L′ → V �v is a morphism and T = V [m(R′)]v. Set l := term(L′) and r := term(R′), by

definition (l→ r) ∈ R. By Lemma 3.5 we obtain lσm = term(V �v) for the substitution σm
induced by the morphism m. Define the context C := term(V [2]v). As v is unshared, C
admits exactly one occurrence of 2, moreover the position of 2 in C is p. By Lemma 4.3,

term(V) = term(V [V �v]v) = C[term(V �v)] = C[lσm] .

Set Tv := (m(R′) ∪ V)�rt(m(R′)), and observe T = V [m(R′)]v = V [Tv]v. Using Lemma 4.3
and Lemma 4.2 we see

term(T) = term(V [Tv]v) = C[term(Tv)] = C[rσm] .

As term(S) = term(V) by Lemma 3.6, term(S) = C[lσm] −→R,p C[rσm] = term(T) follows.

Finally, consider the direction from left to right. For this suppose s = C[lσ] −→R,p

C[rσ] = t where the position of the hole in C is p. Suppose S C!
p U I

!
p V for term(S) = s.

We prove that there exists T such that V −→G(R),p T and term(T) = t. Note that V

is Ip-minimal and, as observed above, it is also Cp-minimal. Let v ∈ V be the node
corresponding to p, by Lemma 4.13 the node v is unshared. Next, observe lσ = s|p =
term(S � p) = term(V � v) since term(S) = term(V) (c.f. Lemma 3.6). Additionally,
Lemma 4.14 reveals V �v ∈ O(lσ). Further, by Lemma 4.3 we see

s = C[lσ] = term(V) = term(V [V �v]v) = term(V [2]v)[lσ] .

Since the position of the hole in C and term(V [2]v) coincides, we conclude C = term(V [2]v).
Let L→ R ∈ G(R) be the rule corresponding to (l→ r) ∈ R, let (L′ → R′) ∼= (L→ R)

be a renaming for V . As L′ ∈ M(l) and V �v ∈ O(lσ), by Lemma 4.5 there exists a morphism
m : L′ → V � v and hence V −→G(R),p T for T = V [m(R′)]v. Note that for the induced

substitution σm and x ∈ Var(l), σm(x) = σ(x). Set Tv := (m(R′) ∪ V) � rt(m(R′)), hence
T = V [Tv]v and moreover rσ = rσm = term(Tv) follows as in the first half of the proof.
Employing Lemma 4.3 we obtain

t = C[rσ] = term(V [2]v)[rσ] = term(V [Tv]v) = term(T) .

We define S CI−→G(R),p T if and only if S C!
p · I!

p U −→G(R),p T . Employing this

notion we can rephrase the conclusion of the Adequacy Theorem as: s −→R,p t if and only

if S CI−→G(R),p T for term(S) = s and term(T) = t.

5. Implementing Term Rewriting Efficiently

Opposed to term rewriting, graph rewriting induces linear size growth in the length of
derivations. The latter holds as a single step −→G admits constant size growth:

Lemma 5.1. If S −→G T then |T | 6 |S|+ ∆ for some ∆ ∈ N depending only on G.

Proof. Set ∆ := max{|R| | (L→ R) ∈ G} and the lemma follows by definition.

It is easy to see that a graph rewrite step S −→G T can be performed in time polynomial
in the size of the term graph S. By the above lemma we obtain that S can be normalised
in time polynomial in |S| and the length of derivations. In the following, we prove a result
similar to Lemma 5.1 for the relation CI−→G , where (restricted) folding and unfolding is
incorporated. The main obstacle is that due to unfolding, size growth of CI−→G is not bound
by a constant in general. We now investigate the relation Cp and Ip.

Lemma 5.2. Let S be a term graph and let p be a position in S.

1) If S C`
p T then ` 6 |p| and |T | 6 |S|+ |p|.

2) If S I`
p T then ` 6 |S �p| and |T | 6 |S|.

Proof. We consider the first assertion. For term graphs U , let PU = {w | PosU (w) =
{q} and q 6 p} be the set of unshared nodes above p. Consider U Cp V . Observe that
PU ⊂ PV holds: By definition U <u

v V where PosV (u) = {q} with q 6 p. Clearly, PU ⊆ PV ,
but moreover u ∈ PV whereas u 6∈ PU . Hence for (S C`

p T) = S = S0 Cp . . . Cp S` = T ,
we observe PS = PS0 ⊂ . . . PS`

= PT . Note that |PS | > 1 since rt(S) ∈ Ps. Moreover,
|PT | = |p|+ 1 since the node corresponding to p in T is unshared (c.f. Lemma 4.13). Thus
from PSi ⊂ PSi+1 (0 6 i < `) we conclude ` 6 |p|. Next, we see |T | 6 |S|+|p| as |T | = |S|+`
by definition of Cp.

Finally, the second assertion can be proved as above, where we employ that U Cp V
implies |V | = |U | − 1, c.f. the technical report [4].

By combining the above two lemmas we derive the following:

Lemma 5.3. If S CI−→G T then |T | 6 |S| + dp(S) + ∆ and dp(T) 6 dp(S) + ∆ for some
∆ ∈ N depending only on G.

Proof. Consider S CI−→G T , i.e., S C!
p U I!

p V −→G T for some position p and term
graphs U and V . Lemma 5.2 reveals |U | 6 |S| + |p| and further |V | 6 |U | for ∆ :=
max{|R| | (L→ R) ∈ G}. As |p| 6 dp(S) we see |V | 6 |S| + dp(S). Since V −→G T
implies |T | 6 |V | + ∆ (c.f. Lemma 5.1) we establish |T | 6 |S| + dp(S) + ∆. Finally,
dp(T) 6 dp(S) + ∆ follows from the easy observation that both U Cp V and U Ip V imply
dp(U) = dp(V), likewise V −→G T implies dp(T) 6 V + ∆.

Lemma 5.4. If S CI−→`
G T then |T | 6 (`+ 1)|S|+ `2∆ for ∆ ∈ N depending only on G.

Proof. We prove the lemma by induction on `. The base case follows trivially, so suppose the
lemma holds for `, we establish the lemma for `+1. Consider a derivation S CI−→`

G T CI−→G U .

By induction hypothesis, |T | 6 (`+ 1)|S|+ `2∆. Iterative application of Lemma 5.3 reveals
dp(T) 6 dp(S) + `∆. Thus

|U | 6 |T |+ dp(T) + ∆

6
(
(`+ 1)|S|+ `2∆

)
+
(
dp(S) + `∆

)
+ ∆ 6 (`+ 2)|S|+ (`+ 1)2∆ .

In the sequel, we prove that an arbitrary graph rewrite step S CI−→ T can be performed
in time cubic in the size of S. Lemma 5.4 then allows us to lift the bound on steps to a
polynomial bound on derivations in the size of S and the length of derivations. We closely
follow the notions of [12]. As model of computation we use k-tape Turing Machines (TM
for short) with dedicated input- and output-tape. If not explicitly mentioned otherwise,
we will use deterministic TMs. We say that a (possibly nondeterministic) TM computes a

relation R ⊆ Σ∗ × Σ∗ if for all (x, y) ∈ R, on input x there exists an accepting run such
that y is written on the output tape.

We fix a standard encoding for term graphs S. We assume that for each function symbol
f ∈ F a corresponding tape-symbols is present. Nodes and variables are represented by
natural numbers, encoded in binary notation and possibly padded by zeros. We fix the
invariant that natural numbers {1, . . . , |S|} are used for nodes and variables in the encoding
of S. Thus variables (nodes) of S are representable in space O(log(|S|)). Finally, term
graphs S are encoded as a list of node specifications, i.e., triples of the form 〈v,L(v),Succ(v)〉
for all v ∈ S (see [18, Section 13.3]). For a suitable encoding of tuples and lists, a term
graph S is representable in size O(log(|S|) ∗ |S|). For this, observe that the length of
Succ(v) is bound by the maximal arity of the fixed signature F . In this spirit, we define
the representation size of a term graph S as ‖S‖ := O(log(|S|) ∗ |S|).

We investigate into the computational complexity of Cp and Ip first.

Lemma 5.5. Let S be a term graph and let p a position in S. A term graph T such that
S C!

p T is computable in time O(‖S‖2).

Proof. Suppose S = S0 Cp S1 Cp · · · Cp S` = T . By Lemma 5.2, ` 6 |p| 6 |S| 6 ‖S‖. One
verifies that Si+1 is computable from Si (0 6 i < `) in time linear in Si, and thus linear in
S (compare Lemma 5.2). From this it is easy to see that there exists a deterministic TM
operating in time quadratic in ‖S‖ (c.f. the technical report [4]).

Lemma 5.6. Let S be a term graph and p a position in S. The term graph T such that
S I!

p T is computable in time O(‖S‖2).

Proof. Define the height htU (u) of a node u in a term graph U inductively as usual:
htU (u) := 0 if Succ(u) = [] and htU (v) := 1 + maxv∈Succ(u) htU (v) otherwise. We drop

the reference to the graph U in htU (u) in the analysis of the normalising sequence S I!
p T

below. This is justified as the height of nodes remain stable under =-reductions.
Recall the definition of Ip: U Ip V if there exist nodes u, v strictly below p with

U =u
v V . Clearly, for u, v given, the graph V is constructable from U in time linear in |U |.

However, finding arbitrary nodes u and v such that U =u
v V takes time quadratic in |U |

worst case. Since up to linearly many =-steps in |S| need to be performed, a straightforward
implementation admits cubic runtime complexity. To achieve a quadratic bound in the size
of the starting graph S, we construct a TM that implements a bottom up reduction-strategy.
More precisely, the machine implements the maximal sequence

S = S1 =
!
u1
S2 =

!
u2
· · · =!

u`−1
S` (a)

satisfying, for all 1 6 i < ` − 1, (i) either ht(ui) = ht(ui+1) and ui ≺ ui+1 or ht(ui) <
ht(ui+1), and (ii) for Si =

vi,1
ui . . . =

vi,k
ui Si+1, ui and vi,j (1 6 j 6 k) are strictly below p.

By definition S I∗p S`, it remains to show that the sequence (a) is normalising, i.e., S`
is Ip-minimal. Set d := dp(S �p) and define, for 0 6 h 6 d,

=(h) :=
⋃

u,v∈S�p∧ht(v)=h

=u
v .

Observe that each =ui
-step in the sequence (a) corresponds to a step =(h) for some 0 6 h 6

d. Moreover, it is not difficult to see that

S = Si0 =!
(0) Si1 =!

(1) · · · =!
(d) Sid+1

= S` (b)

for {Si0 , . . . , Sid+1} ⊆ {S1, . . . , S`−1}.
Next observe Si =(h1)

Si+1 =(h2)
Si+2 and h1 > h2 implies Si =(h2)

· =(h1)
Si+2: suppose

Si =
u′
u Si+1 =v′

v Si+2 where ht(u) > ht(v) and u′, u, v, v′ ∈ S �p, we show Si =
v′
v · =u′

u Si+2.

Inspecting the proof of Lemma 4.10 we see <u′
u · =v′

v ⊆ =v′
v · <u′

u for the particular case that
u′, u, v and v′ pairwise distinct. The latter holds as ht(u′) = ht(u) 6= ht(v) = ht(v′). Hence

it remains to show Si =
v′
v S′i+1 for some term graph S′i+1, or equivalently LSi(v) = LSi(v

′)
and SuccSi(v) = SuccSi(v

′) by Lemma 4.9. The former equality is trivial, for the latter
observe ht(u′) = ht(u) > ht(v) = ht(v′) and thus neither u′ 6∈ SuccSi(v

′) nor u′ 6∈ SuccSi(v).
We see SuccSi(v) = SuccSi+1(v) = SuccSi+1(v′) = SuccSi(v

′).
Now suppose that S` is not Ip-minimal, i.e, S` =(h) U for some 0 6 h 6 d and term

graph U . But then we can permute steps in the reduction (b) such that Sih+1
=(h) V for

some term graph V . This contradicts =!
(h)-minimality of Sih+1

. We conclude that S` is

Ip-minimal. Thus sequence (a) is Ip-normalising.
Finally, using the derivation (a) it is not difficult to show that there exists a TM

operating in time O(‖S‖2) that, on input S and p, computes T such that S Ip T . For the
construction we kindly refer the reader to the technical report [4].

Lemma 5.7. Let S be a term graph, let p be a position of S and let L→ R be a rewrite rule
of the simulating graph rewrite system. It is decidable in time O(‖S‖2 ∗ 2‖L→R‖) whether
S −→p,L→R T for some term graph T . Moreover, the term graph T is computable from S,

p and L→ R in time O(‖S‖2 ∗ 2‖L→R‖).

Proof. For the first assertion we can use the matching-algorithm as described in [3, Lemma
24]. Based on the morphism returned by this procedure, it is easy to construct a TM that
computes the graph T under the stated bound, c.f. the technical report [4].

Lemma 5.8. Let S be a term graph and let G(R) be the simulating graph rewrite system of
R. If S is not a normal-form of G(R) then there exists a position p and rule (L→ R) ∈ G(R)
such that a term graph T with S CI−→G(R),p,L→R T is computable in time O(‖S‖3).

Proof. The TM searches for a rule (L→ R) ∈ G and position p such that S CI−→G(R),p,L→R T
for some term graph T . For this, it enumerates the rules (L→ R) ∈ G on a separate working
tape. For each rule L→ R, each node u ∈ S and some p ∈ PosS it computes S1 such that
S I!

p S1 in time quadratic in ‖S‖ (c.f. Lemma 5.6). Using the machine of Lemma 5.7, it

decides in time 2O(‖L‖) ∗ O(‖S1‖2) whether rule L → R applies to S1 at position p. Since

R is fixed, 2O(‖L‖) is constant, thus the TM decides whether rule L → R applies in time
O(‖S1‖2) = O(‖S‖2). Note that the choice of p ∈ PosS(u) is irrelevant, since S I!

pi S1 and

S I!
pj S2 for pi, pj ∈ PosS(u) implies S1 ∼= S2. Hence the node corresponding to pi in S1 is

a redex with respect to L→ R if and only if the node corresponding to pj is. Suppose rule

L→ R applies at S1 �p. One verifies S1 �p ∼= S2 �p for term graph S2 such that S C!
p · I!

p S2.
We conclude S CI−→G(R),p,L→R T for some position p and rule (L→ R) ∈ G(R) if and only if
the above procedure succeeds. From u one can extract some position p ∈ PosS(u) in time
quadratic in ‖S‖. This can be done for instance by implementing the function pos(u) = ε

if u = rt(S) and pos(u) = pi for some node v ∈ S with v
i
⇀ u and pos(v) = p. Overall, the

position p ∈ PosS and rule (L → R) ∈ G is found if and only if S CI−→p,L→R T for some
term graph T . Since |S| 6 ‖S‖, and only a constant number of rules have to be checked,
the overall runtime is O(‖S‖3).

To obtain T from S, p, and L → R, the machine now combines the machines from
Lemma 5.5, Lemma 5.6 and Lemma 5.7. These steps can even be performed in time
O(‖S‖2), employing that the size of intermediate graphs is bound linear in the size of S
(compare Lemma 5.2) and that sizes of (L→ R) ∈ G(R) are constant.

Lemma 5.9. Let S be a term graph and let ` := dl(S, CI−→G(R)). Suppose ` = Ω(|S|).
1) Some normal-form of S is computable in deterministic time O(log(`)3 ∗ `7).
2) Any normal-form of S is computable in nondeterministic time O(log(`)2 ∗ `5).

Proof. We prove the first assertion. Consider the normalising derivation

S = T0 CI−→G(R) . . . CI−→G(R) Tl = T (†)
where, for 0 6 i < l, Ti is obtained from Ti+1 as given by Lemma 5.8. By Lemma 5.4,
we see |Ti| 6 (`+ 1)|S|+ `2∆ = O(`2). Here the latter equality follows by the assumption
` = Ω(|S|). Recall ‖Ti‖ = O(log(|Ti|) ∗ |Ti|) (0 6 i < l) and hence ‖Ti‖ = O(log(`2) ∗ `2) =
O(log(`)∗`2). From this, and Lemma 5.8, we obtain that Ti+1 is computable from Ti in time
O(‖Ti‖3) = O(log(`)3 ∗ `6). Since l 6 dl(S, CI−→G(R)) = ` we conclude the first assertion.

We now consider the second assertion. Reconsider the proof of Lemma 5.8. For a given
rewrite-position p, a step S CI−→G(R) T can be performed in time O(‖S‖2). A nondetermin-
istic TM can guess some position p, and verify whether the node corresponding to p is a
redex in time O(‖S‖2). In total, the reduct T can be obtained in nondeterministic time
O(‖S‖2). Hence, following the proof of the first assertion, one easily verifies the second
assertion.

6. Discussion

We present an application of our result in the context of implicit computational com-
plexity theory. We define semantics of TRSs as follows.

Definition 6.1. Let N ⊆ Val be a finite set of non-accepting patterns. We call a term t
accepting (with respect to N) if there exists no p ∈ N such that pσ = t for some substitution
σ. We say that R computes the relation R ⊆ Val×Val with respect to N if there exists
f ∈ D such that for all s, t ∈ Val,

s R t :⇐⇒ f(s) −→!
R t and t is accepting .

On the other hand, we say that a relation R is computed by R if R is defined by the above
equations with respect to some set N of non-accepting patterns.

For the case that R is confluent we also say that R computes the (partial) function
induced by the relation R. The reader may wonder why we restrict to binary relations, but
this is only a non-essential simplification that eases the presentation. The assertion that for
normal-forms t, t is accepting amounts to our notion of accepting run of a TRS R. This
aims to eliminate by-products of the computation that should not be considered as part
of the relation R. (A typical example would be the constant ⊥ if the TRS contains a rule
of the form l →⊥ and ⊥ is interpreted as undefined.) The restriction that N is finite is
essential for the simulation results below: If we implement the computation of R on a TM,
then we also have to be able to effectively test whether t is accepting.

We briefly contrast Definition 6.1 to the way how semantics is given to TRSs in [6]. Ba-
sically, in [6] the result of a computation is defined as the maximal normal-form with respect

to some ordering on terms. So even non-confluent TRSs compute functions. This definition
serves the purpose of characterising optimisation problems. In particular, restricted poly-
nomial interpretations are used to characterise the class of functions OptP as introduced in
[13]. Intuitively, an OptP function is computed by an NP machine that, at the end, outputs
the maximal result of all accepting computation branches. Our intention is not to capture
optimisation problems. Instead, we show below a tight correspondence between polynomial
runtime-complexity and the class FNP of functional problems [16] associated with NP. It is
well-known that FNP ⊆ OptP and it is expected that the inclusion is strict, see [13, 16].

First, we show that polynomial runtime-complexity implies polytime computability of
the relations defined in the sense of Definition 6.1. For this, we encode terms as graphs and
perform rewriting on graphs instead.

Theorem 6.2. Let R be a terminating TRS, moreover suppose rcR(n) = O(nk) for all n ∈
N and some k ∈ N, k > 1. The relations computed by R are computable in nondeterministic
time O(n5k+2). Further, if R is confluent then the functions computed by R are computable
in deterministic time O(n7k+3).

Proof. We investigate the complexity of a relation R computed by R. For that, single out
the corresponding defined function symbol f and fix some argument s ∈ Val. Suppose the
underlying set of non-accepting patterns is N . By definition, s R t if and only if f(s) −→!

R t
and t ∈ Val is accepting with respect to N . Let S be a term graph such that term(S) = f(s)
and recall that |S| 6 |f(s)|. Set ` := dl(S, CI−→G(R)). By the Adequacy Theorem 4.15, we

conclude S CI−→!
G(R) T where term(T) = t, and moreover, ` 6 rcR(|f(s)|) = O(nk). By

Lemma 5.9 we see that T is computable from S in nondeterministic time O(log(`)2 ∗ `5) =
O(log(nk)2∗n5k) = O(n5k+2). Clearly, we can decide in time linear in ‖T‖ = O(`2) = O(n2k)
(c.f. Lemma 5.4) whether term(T) ∈ Val, further in time quadratic in ‖T‖ whether term(T)
is accepting. For the latter, we use the matching algorithm of Lemma 5.7 on the fixed set
of non-accepting patterns, where we employ pσ = term(T) if and only if there exists a
morphism m : P → T for P ∈ M(p) (c.f. Lemma 4.5 and Lemma 3.5). Hence overall, the
accepting condition can be checked in (even deterministic) time O(n4k). If the accepting
condition fails, the TM rejects, otherwise it accepts a term graph T representing t. The
machine does so in nondeterministic time O(n5k+2) in total. As s was chosen arbitrarily,
we conclude the first half of the theorem.

Finally, the second half follows by identical reasoning, where we use the deterministic
TM as given by Lemma 5.9 instead of the nondeterministic one.

Let R be a binary relation that is decidable by some nondeterministic TM N . That is,
the pair (x, y) is accepted by N if and only if x R y holds. Furthermore, suppose N operates
in time polynomial in the size of x. The function problems RF associated with R is: given
x, find some y such that x R y holds. The class FNP is the class of all functional problems
defined in the above way, compare [16]. FP is the subclass resulting if we only consider
function problems in FNP that can be solved in polynomial time by some deterministic
TM. As by-product of Theorem 6.2 we obtain:

Corollary 6.3. Let R be a terminating TRS with polynomially bounded runtime complexity.
Suppose R computes the relation R. Then RF ∈ FNP for the function problem RF associated
with R. Moreover, if R is confluent then RF ∈ FP.

Proof. The nondeterministic TM N as given by Theorem 6.2 (the deterministic TM N ,
respectively) can be used to decide whether s R t holds. By the assumptions on R, the

runtime of N is bounded polynomially in the size of s. Recall that s is represented as some
term graph S, in particular s is encoded over the alphabet of N in size ‖S‖ = O(log(|S|)∗|S|)
for |S| 6 |s|. Thus trivially N operates in time polynomially in the size of S.

In the terminology of [7], we have shown that the number of rewrite steps is an invariant
cost model for term rewriting. Not only does it reflect the complexity of a TRS in a very
natural way, but in fact it truthfully reflects the complexity of rewriting on the standard
computational model in complexity theory, the Turing machine. In [7] our result is proved
for orthogonal TRSs and innermost or respectively outermost rewriting. Hence our work can
be seen as a direct extension of [7], establishing that neither the restriction to orthogonality
nor the use of particular reduction-strategies is essential. Based on [7], Dal Lago and Martini
establish in [8] that the number of β-steps constitutes an invariant cost model for the weak
λ-calculus (here reduction below λ-abstractions are disallowed), when reducing under a
call-by-value or call-by-need reduction strategy. Their approach works by embedding β-
steps into the rewrite relation as induced by specific orthogonal TRSs, and analysing the
complexity of the latter relation. This raises the question whether our result can be used to
extend the work by Dal Lago and Martini on λ-calculus. This is subject to further research.

References

[1] M. Avanzini and G. Moser. Complexity Analysis by Rewriting. In Proc. of 9th FLOPS, volume 4989 of
LNCS, pages 130–146. Springer Verlag, 2008.

[2] M. Avanzini and G. Moser. Dependency Pairs and Polynomial Path Orders. In Proc. of 20th RTA,
volume 5595 of LNCS, pages 48–62. Springer Verlag, 2009.

[3] M. Avanzini and G. Moser. Complexity Analysis by Graph Rewriting. In Proc. of 11th FLOPS, LNCS.
Springer Verlag, 2010. To appear.

[4] M. Avanzini and G. Moser. Technical report: Complexity Analysis by Graph Rewriting Revisited.
CoRR, cs/CC/1001.5404, 2010. Available at http://www.arxiv.org/.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[6] G. Bonfante, A. Cichon, J. Marion, and H. Touzet. Algorithms with Polynomial Interpretation Termi-

nation Proof. JFP, 11(1):33–53, 2001.
[7] U. Dal Lago and S. Martini. Derivational Complexity is an Invariant Cost Model. In Proc. of 1st

FOPARA, 2009.
[8] U. Dal Lago and S. Martini. On Constructor Rewrite Systems and the Lambda-Calculus. In Proc. of

36th ICALP, volume 5556 of LNCS, pages 163–174. Springer Verlag, 2009.
[9] J. Endrullis, J. Waldmann, and H. Zantema. Matrix Interpretations for Proving Termination of Term

Rewriting. JAR, 40(3):195–220, 2008.
[10] A. Koprowski and J. Waldmann. Arctic Termination . . . Below Zero. In Proc. of 19th RTA, volume 5117

of LNCS, pages 202–216. Springer Verlag, 2008.
[11] M. Korp and A. Middeldorp. Match-bounds revisited. IC, 207(11):1259–1283, 2009.
[12] D. C. Kozen. Theory of Computation. Springer Verlag, first edition, 2006.
[13] M. W. Krentel. The Complexity of Optimization Problems. In Proc. of 18th STOC, pages 69–76. ACM,

1986.
[14] G. Moser and A. Schnabl. The Derivational Complexity Induced by the Dependency Pair Method. In

Proc. of 20th RTA, volume 5595 of LNCS, pages 255–260. Springer Verlag, 2009.
[15] G. Moser, A. Schnabl, and J. Waldmann. Complexity Analysis of Term Rewriting Based on Matrix

and Context Dependent Interpretations. In Proc. of 28th FSTTCS, pages 304–315. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2008.

[16] C. H. Papadimitriou. Computational Complexity. Addison Wesley Longman, second edition, 1995.
[17] D. Plump. Essentials of Term Graph Rewriting. ENTCS, 51:277–289, 2001.
[18] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracks in Theoretical Computer Science.

Cambridge University Press, 2003.

http://www.arxiv.org/

	1. Introduction
	2. Preliminaries
	3. Term Graph Rewriting
	4. Adequacy of Graph Rewriting for Term Rewriting
	5. Implementing Term Rewriting Efficiently
	6. Discussion
	References

