
Type Introduction for Runtime Complexity
Analysis∗

Martin Avanzini1 and Bertram Felgenhauer1

1 Institute of Computer Science,
University of Innsbruck, Austria
{martin.avanzini,bertram.felgenhauer}@uibk.ac.at

1 Introduction

Runtime complexity analysis is a natural refinement of termination analysis. Instead of
asking whether all reductions yield a result eventually, we are interested in how long the
reduction process takes. In order to measure the runtime complexity of a term rewrite system
(TRS for short) it is natural to look at the maximal length of derivation sequences, a program
first suggested by Hofbauer and Lautemann [5]. The resulting notion of complexity is called
derivational complexity. Hirokawa and Moser [4] introduced a variation, called runtime
complexity, that only takes basic or constructor-based terms as start terms into account. This
notion of complexity accurately express the complexity of a program through the runtime
complexity of a TRS, and constitutes an invariant cost model for rewrite systems [2].

Advanced techniques developed in the context of program complexity analysis essentially
rely on sort information. For instance Hoffmann et al. [6] define an elegant and powerful
calculus to infer various complexity properties of resource aware ML programs, essentially
sorted rewrite systems, automatically. It is inherently difficult to transfer these techniques
into an untyped setting.

In this note we show that the runtime complexity function of a sorted rewrite system
R coincides with the runtime complexity function of the unsorted rewrite system Θ(R),
obtained by forgetting sort information. Hence our result states that sort-introduction, a
process that is easily carried out via unification, is sound for runtime complexity analysis.
Our result thus provides the foundation for exploiting sort information in analysis of TRSs.

Our main research is tightly related to the research on persistent properties [9] of rewrite
systems, e.g. [1, 7]. Here a property on rewrite systems is called persistent if it holds for the
sorted TRS R if and only if it holds on the unsorted variant Θ(R). As trivial corollary to
our main result we obtain that innermost termination is persistent, a result that has been
previously established in [3].

2 Preliminaries

We assume familiarity with rewriting [8]. We denote by V a countable infinite set of variables,
F denotes a signature and T (F ,V) denotes the set of terms with symbols in F and variables
in V. We denote by Var(t) the set of variables occurring in t. Let R be a TRS. Roots of
left-hand sides in R are called defined, symbols that are not defined are called constructors
and are collected in CR. Terms t = f(t1, . . . , tk) with ti ∈ T (CR,V) for all i = 1, . . . , k are
called basic. The rewrite relation of a term rewrite system R is denoted by −→R, by i−→R we
denote the innermost rewrite relation of R. The runtime complexity (function) rcR : N→ N

∗ This work is supported by FWF (Austrian Science Fund) projects J3563 and P22467.

of R is defined by

rcR(n) := max{` | ∃t0, . . . , t`. t0 −→R · · · −→R t` and t0 is a basic term of size up to n} .

Note that rcR is well-defined when R is terminating. The innermost runtime complexity
(function) rciR of R is defined analogously, considering innermost reductions only.

To simplify notations, we employ the notion of S-sorted rewriting of Aoto and Toyama
[1]. Let S be a set of sorts. Sorts are denoted by α, β, . . . , possibly followed by subscripts.
A sort-attachment is a mapping τ from V ∪ F to S∗ such that τ(x) ∈ S for x ∈ V and
τ(x) ∈ Sk+1 for every k-ary f ∈ F . In the latter case we write f :α1, . . . , αk → α instead
of τ(f) = α1, . . . , αk, α. Without loss of generality, we assume that for each α ∈ S the sets
Vα := {x | τ(x) = α} are countable infinite. The sort sort(t) of a term t is defined by the
root symbol only. We set sort(x) := τ(x) for variables x and sort(f(t1, . . . , tk)) = α where
f :α1, . . . , αk → α.

A term t is well-sorted (under τ) with sort α if t :α is derivable by the following rules:
(i) t = x and τ(x) = α, or (ii) t = f(t1, . . . , tk), f :α1, . . . , αk → α and ti :αi (i = 1, . . . , k).
We denote by T (F ,V)τ ⊆ T (F ,V) the set of all term which are well-sorted under τ .

An S-sorted TRS R is given by an unsorted TRS Θ(R) and sort-attachment τ such that
every rule l → r ∈ Θ(R), l :α and r :α holds for some sort α ∈ S. In the following, R
always denotes an S-sorted TRS. The rewrite relation −→R of an S-sorted TRS is given by
the restriction of −→Θ(R) to well-sorted terms T (F ,V)τ . We extend the notion of runtime
complexity function in the obvious way to S-sorted TRSs. A property P of TRSs is called
persistent if for each rewrite system R, R has property P if and only if Θ(R) has property
P . Notice that our notion of persistency coincides with the standard notion formulated on
many-sorted TRSs, see [1].

3 Bounded Runtime Complexity is a Persistent Property of TRSs

In the following we show that the bounded runtime complexity problem, which asks for a
TRS R and function f : N → N whether rcR(n) 6 f(n) for all n ∈ N holds, is persistent.
We even show a stronger property, viz, rcR(n) = rcΘ(R)(n) for all n ∈ N. It is clear that
every R-derivation is also an Θ(R)-derivation, hence rcR(n) 6 rcΘ(R)(n) holds trivially.
The converse is however not true in general. Consider the sorted TRS R1 consisting of rules

f(0, 1, x)→ f(x, x, x) g(y, z)→ y g(y, z)→ z ,

and sort-attachment so that 0, 1 :α, f :α, α, α → α and g :β, β → β. Notice that R1 is
terminating, since sorting excludes the formation of terms involving both f and g symbols.
On the other hand, the TRS Θ(R1) gives rise to a cycle

t := f(0, 1, g(0, 1)) −→Θ(R1) f(g(0, 1), g(0, 1), g(0, 1)) −→Θ(R1) f(0, g(0, 1), g(0, 1)) −→Θ(R1) t ,

and is thus not terminating. The TRS R1 is the prototypical example that shows that
termination is not persistent, it is however not a counterexample to our claim. The notion
of runtime complexity considers only basic, i.e. argument normalised terms. Indeed, the
runtime complexity function of the sorted TRS R1 and its unsorted version Θ(R1) coincide.

Our central observation is that in a Θ(R)-derivation D starting from argument normal-
ised term t, subterms that lead to a sort conflict (called aliens of t below) do not contribute
to the derivation D itself. Although the (normalised) aliens might get duplicated or erased,
the sorting condition on R ensures that aliens never contribute to a pattern which triggers

the application of a rule. This suggests that such aliens in t can be replaced by fresh vari-
ables so that the resulting term s is well-sorted. Although some care has to be taken in the
assignment of variables to aliens for non-left-linear systems, the derivation D of t can be
simulated step-wise by a R-derivation starting from the modified term s.

Fix a set of sorts S and an S-sorted TRS R. To define sorted contexts, we assume
the presence of fresh constants 2α, the holes, for each sort α ∈ S. We extend the type
assignment τ underlying R so that τ(2α) = α. A multi-holed context C[2α1 , . . . ,2αn] is a
sorted term that contains each hole 2αi

(i = 1, . . . , n) exactly once. With C[t1, . . . , tn] we
denote the term obtained by replacing holes αi with ti in C[2α1 , . . . ,2αn].

We write s = CJs1, . . . , snK for the unique decomposition s = C[s1, . . . , sn] into a well-
sorted context C[2α1 , . . . ,2αn

] and terms si with and sort(si) 6= αi for every i = 1, . . . , n.
The subterms s1, . . . , sn of s are called the aliens of s. The set of all aliens {s1, . . . , sn} in
s is denoted by alien(s). Note that when s is well-sorted, the context C degenerates to s.

I Definition 3.1. Let s be a term. Consider a family γ = (γα : T6=α → Vα)α∈S of bijective
mappings from terms T6=α ⊆ {t ∈ T (F ,V) | sort(t) 6= α} to variables Vα ⊆ Vα. We define
the domain and range of γ by dom(γ) := ∪α∈ST6=α and range(γ) := ∪α∈SVα respectively.
Then γ is called an alien replacement for s if alien(s) ⊆ dom(γ) and range(γ) ∩ Var(s) = ∅.
We denote by γ̄ the inverse of γ: γ̄(x) := t where γsort(x)(t) = x for all x ∈ range(γ).

We define s mγ t if s = CJs1, . . . , snK for context C[2α1 , . . . ,2αn
], γ is an alien replace-

ment for s and t = C[γα1(s1), . . . , γαn(sn)] is well-sorted.

Notice that to each term s = CJs1, . . . , snK we can associate an alien replacement γ and term
t such that s mγ t holds: Start from a well-sorted term C[x1, . . . , xn] for pairwise disjoint
and fresh variables of appropriate sort. Identify variables xi and xj (i, j ∈ {1, . . . , n}) when
sort(xi) = sort(xj) and si = sj . The fixpoint of this construction yields the well-sorted term
t := C[y1, . . . , yn]. The family γ = (γα)α∈S , defined by γsort(xi)(yi) := si for i = 1, . . . , n, is
an alien replacement where by construction s mγ t holds.

Consider s mγ t. By the conditions on range(γ) it follows that t matches s with sub-
stitution γ̄, i.e. s = tγ̄. Provided γ is an alien replacement, we can also state the inverse
correspondence.

I Lemma 3.2. Let γ denote an alien replacement for a term s. Then s mγ t if and only if
s = tγ̄ and t is well-sorted.

The following lemma confirms that t is a maximal well-sorted pattern that matches s.

I Lemma 3.3. Suppose s mγ t holds, and let u be a well-sorted term with Var(u)∩range(γ) =
∅. If u matches s then u matches also t.

Proof. Let σ be a substitution with s = uσ. Without loss of generality, we suppose
dom(σ) ⊆ Var(u). Observe that since u is well-sorted, aliens of s occur only in the
substitution part. We define the substitution σγ as follows, for all x ∈ dom(σ): sup-
pose sort(x) 6= sort(σ(x)), thus σ(x) ∈ alien(s) and γsort(x)(s) is well-defined. Then we
set σγ(x) := γsort(x)(σ(x)). Otherwise, suppose σ(x) = CxJs1, . . . , smK for some non-
empty context Cx[2α1 , . . . ,2αm

] and aliens {s1, . . . , sm} ⊆ alien(s). Then we set σγ(x) :=
Cx[γα1(s1), . . . , γα1(sm)].

By definition of σγ , σγ(x)γ̄ = σ(x) for x ∈ dom(σ). By the variable condition on u,
we have (uσγ)γ̄ = s. Note that uσγ is by construction well-sorted, Lemma 3.2 thus gives
s mγ uσγ . By definition of mγ we see that s mγ uσγ and s mγ t implies uσγ = t. J

The following lemma provides our central simulation result. Since we consider deriva-
tions from argument normalised terms only, it suffices to consider only outer steps in the
simulation.

I Definition 3.4. A rewrite step s −→Θ(R) t is called inner if it takes place in one of the
aliens of s. The step s −→Θ(R) t is called outer if it is not an inner rewrite step.

I Lemma 3.5. Suppose s1 mγ t1 holds for an alien replacement γ with range(γ) disjoint
from the set of variables occurring in R.

1) If s1 −→Θ(R) s2 is an outer step then t1 −→R t2 for some term t2 with either (i) s2 mγ t2
or (ii) s2 ∈ alien(s1) with t2 = γα(s2) for some α ∈ S.

2) If s1
i−→Θ(R) s2 is an outer step then t1 i−→R t2 for some term t2 with either (i) s2 mγ t2

or (ii) s2 ∈ alien(s1) and t2 = γα(s2) for some α ∈ S.

Proof. We consider Proposition 1 first. Suppose s1 mγ t1 for γ as above. Consider an outer
rewrite step s1 −→Θ(R) s2. The proof is by induction on the rewrite context.

In the base case, s1 = lσ and s2 = rσ for some substitution σ and rewrite rule l→ r ∈ R.
By Lemma 3.3 we obtain a substitution σγ such that t1 = lσγ −→R rσγ . We verify that
either condition (i) or (ii) holds for t2 = rσγ .

Reconsider the substitution σγ constructed in Lemma 3.3. Suppose first that the applied
rewrite rule is collapsing, i.e. r ∈ Var(l). We distinguish the two cases in construction
of σγ . In the first case, rσγ = γsort(r)(rσ) with rσ ∈ alien(s1), i.e. (ii) holds. In the
second case rσγ = CxJu1, . . . , umK for some non-empty context Cx[2α1 , . . . ,2αm] and aliens
{u1, . . . , um} ⊆ alien(s1). This yields alien(rσ) ⊆ alien(lσ), as moreover Var(rσ) ⊆ Var(lσ)
we conclude that γ is also an alien replacement for rσ. As the side conditions on range(γ)
gives (rσγ)γ̄ = rσ, we conclude rσ mγ rσγ by Lemma 3.2.

Now suppose that the applied rewrite rule is non-collapsing. Since l → r is well-sorted,
any alien in rσ occurs in the substitution, and hence is an alien of lσ. Hence again γ is an
alien replacement for rσ, since (rσγ)γ̄ = rσ we obtain rσ mγ rσγ using Lemma 3.2. This
finishes the base case.

For the inductive step, consider an outer rewrite step

s1 = f(u1, . . . , ui, . . . , uk) −→Θ(R) f(u1, . . . , vi, . . . , uk) = s2 ,

with ui −→Θ(R) vi outer. Using s1 mγ t1, Lemma 3.2 gives t1 = f(u′1, . . . , u′i, . . . , u′k) with
ui = u′iγ̄ for all i = 1, . . . , k. Hence by induction hypothesis, u′i −→R v′i for some well-
sorted term v′i with either vi mγ v′i or v′i = γα(vi) for vi ∈ alien(ui) and α ∈ S. Set
t2 := f(u′1, . . . , v′i, . . . , u′k) and thus t1 −→R t2. If vi mγ v′i holds then s2 mγ t2 follows by
applying Lemma 3.2 immediately. Hence suppose v′i = γα(vi). Since t2 is well-sorted and
sort(vi) 6= sort(γα(vi)) by definition, it follows that vi is an alien in s2. Again we conclude
s2 = t2γ̄ and thus s2 mγ t2 by Lemma 3.2. We conclude Proposition 1.

For Proposition 2, observe that if lσ −→Θ(R) rσ is an innermost step, i.e lσ is argument
normalised, then so is lσγ and hence lσγ −→R rσγ is an innermost rewrite step. Proposition 2
follows then by reasoning identical to above. J

I Lemma 3.6. If s1 −→Θ(R) s2 is outer, then either alien(s2) ⊆ alien(s1) or s2 ∈ alien(s1).

Proof. Consider an outer step s1 −→Θ(R) s2, and let t1 be such that s1 mγ t1 holds. Then by
Lemma 3.5, either s2 mγ t2 for some term t2 or s2 ∈ alien(s1). In the former case, s2 mγ t2
witnesses that aliens of s2 occur as aliens in s1, in the latter case we conclude directly. J

I Theorem 3.7. Let s be a term such that all aliens in s are in Θ(R) normal-form. Then
any (innermost) Θ(R)-derivation of s is simulated step-wise by an (innermost) R-derivation
starting from some t with s mγ t.

Proof. Consider a derivation D : s = s0 −→Θ(R) s1 −→Θ(R) s2 −→Θ(R) · · · . Using Lemma 3.6,
a standard induction shows that alien(si) ⊆ alien(s) for all but possibly the last term
in D, and that the steps si −→Θ(R) si+1 are outer. We conclude the by Lemma 3.5(1)
(Lemma 3.5(2) respectively). J

Any basic term s satisfies trivially that aliens of s are in Θ(R) normal-form. The
above theorem thus shows that the dh(s,−→Θ(R)) 6 dh(s′,−→R), whenever s is basic. Since
s mγ s′ implies that |s| > |s′| it follows that rcΘ(R)(n) 6 rcR(n). By identical reasoning,
rciΘ(R)(n) 6 rciR(n). Thus we obtain the following corollary.

I Corollary 3.8. The (innermost) runtime complexity functions of R and Θ(R) coincide.
In particular, the bounded (innermost) runtime complexity problem is persistent.

Observe that if a TRS R is innermost non-terminating, then there exists a minimal non-
terminating term s = f(s1, . . . , sn) in the sense that all arguments are in normal-form. In
particular, the aliens of s are normalised. We thus re-obtain the following result from [3].

I Corollary 3.9. Innermost termination is a persistent property.

4 Conclusion

In this abstract we have shown that sort-introduction is sound for runtime complexity ana-
lysis. We considered the most simple form of sorted rewriting. It is expected that our result
can be extended to more general forms, allowing for instance polymorphism or ordered sorts.
Such extensions are subject to future research. To which extent sort information can be
exploited in runtime complexity analysis is also subject to further research.

References

1 T. Aoto and Y. Toyama. Persistency of Confluence. JUCS, 3(11):1134–1147, 1997.
2 M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity and Polytime

Computability. In Proc. of 21st RTA, volume 6 of LIPIcs, pages 33–48. Dagstuhl, 2010.
3 C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, and S. Swiderski. Proving Termination

by Dependency Pairs and Inductive Theorem Proving. JAR, 47(2):133–160, 2011.
4 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency

Pair Method. In Proc. of 4th IJCAR, volume 5195 of LNAI, pages 364–380. Springer,
2008.

5 D. Hofbauer and C. Lautemann. Termination Proofs and the Length of Derivations. In
Proc. of 3rd RTA, volume 355 of LNCS, pages 167–177. Springer, 1989.

6 J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized Resource Analysis. In
Proc. of 38th POPL, pages 357–370. ACM, 2011.

7 A. Middeldorp and H. Ohsaki. Type Introduction for Equational Rewriting. AI, 36(12):
1007–1029, 2000.

8 TeReSe. Term Rewriting Systems, volume 55 of CTTCS. Cambridge University Press,
2003.

9 H. Zantema. Termination of Term Rewriting: Interpretation and Type Elimination. JSC,
17(1):23–50, 1994.

	Introduction
	Preliminaries
	Bounded Runtime Complexity is a Persistent Property of TRSs
	Conclusion

