
Hopping Proofs of Expectation-Based Properties:
Applications to Skiplists and Security Proofs
MARTIN AVANZINI, Centre Inria d’Université Côte d’Azur, France
GILLES BARTHE,MPI-SP, Germany and IMDEA Software Institute, Spain
BENJAMIN GRÉGOIRE, Centre Inria d’Université Côte d’Azur, France
GEORG MOSER, University of Innsbruck, Austria
GABRIELE VANONI, IRIF, CNRS, Université Paris Cité, France

We propose, implement, and evaluate a hopping proof approach for proving expectation-based properties of
probabilistic programs. Our approach combines eHL, a syntax-directed proof system for reducing proof goals
of a program to proof goals of simpler programs, with a “hopping” proof rule for reducing proof goals of an
original program to proof goal of a different program which is suitably related (by means of pRHL, a relational
program logic for probabilistic program) to the original program. We prove that eHL is sound for a core
language with procedure calls and adversarial computations, and complete for the adversary-free fragment
of the language. We also provide an implementation of eHL into EasyCrypt, a proof assistant tailored for
reasoning about relational properties of probabilistic programs. We provide a tight integration of eHL with
other program logics supported by EasyCrypt, and in particular probabilistic Relational Hoare Logic (pRHL).
Using this tight integration, we give mechanized proofs of expected complexity of in-place implementations
of randomized quickselect and skip lists. We also sketch applications of our approach to cryptographic proofs
and discuss the broader impact of eHL in the EasyCrypt proof assistant.

Additional Key Words and Phrases: probabilistic programs, Hoare logic, formal verification

1 INTRODUCTION
There is a long line of work that develops rigorous approaches for proving properties of probabilistic
programs. These approaches generalize to the probabilistic setting the classic notions of pre- and
post-conditions and of invariants. A fundamental difference is that in the probabilistic setting these
notions are quantitative. Assertions are expectations, i.e. functions that map states to extended
positive reals. The use of expectations was pioneered by Kozen [Kozen 1985], systematized by
Morgan, McIver and Seidel [Morgan et al. 1996], and still prevails to date.
Unfortunately, these approaches are often difficult to use. One main reason is that proofs of

probabilistic programs do not always follow their control flow. Another reason is that once the
target program property is fixed, it is often very convenient to reason about more abstract or
refactored programs. From the theoretical perspective, none of these concerns is an issue, since
in general these approaches are complete. However, more flexible approaches are desirable when
verifying concrete examples, in particular when building mechanized proofs.

Problem statement and contributions. The main goal of this paper is to support flexible computer-
aided verification of probabilistic programs, and in particular to develop an approach that allows
breaking away from the control flow of programs, and change program representation during
verification. Our target is to use our approach on relatively small but challenging probabilistic

Authors’ addresses: Martin Avanzini, Centre Inria d’Université Côte d’Azur, Route des Lucioles - BP 93, Sophia Antipolis,
06902, France, martin.avanzini@inria.fr; Gilles Barthe, MPI-SP, Bochum, 44799, Germany and IMDEA Software Institute,
Pozuelo de Alarcon, Madrid, 28223, Spain, gilles.barthe@mpi-sp.org; Benjamin Grégoire, Centre Inria d’Université Côte
d’Azur, Route des Lucioles - BP 93, Sophia Antipolis, 06902, France, benjamin.gregoire@inria.fr; Georg Moser, Department
of Computer Science, University of Innsbruck, Technikerstraße 21a, Innsbruck, 6020, Austria, georg.moser@uibk.ac.at;
Gabriele Vanoni, IRIF, CNRS, Université Paris Cité, Paris, France, gabriele.vanoni@irif.fr.

2018. ACM 2475-1421/2018/1-ART1
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

HTTPS://ORCID.ORG/0000-0002-6445-8833
HTTPS://ORCID.ORG/0000-0002-3853-1777
HTTPS://ORCID.ORG/0000-0001-6650-9924
HTTPS://ORCID.ORG/0000-0001-9240-6128
HTTPS://ORCID.ORG/0000-0001-8762-8674
https://orcid.org/0000-0002-6445-8833
https://orcid.org/0000-0002-3853-1777
https://orcid.org/0000-0001-6650-9924
https://orcid.org/0000-0001-9240-6128
https://orcid.org/0000-0001-8762-8674
https://doi.org/

1:2 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

programs drawn from the theory of randomized algorithms and from cryptography. The choice of
application domains naturally delineates the choice of the pWhile language, a core probabilistic
language with sampling from discrete distributions, (non-recursive) procedures and adversaries.
Informally, an adversary is an unspecified quantified procedure with constraints on the variables it
can read and write, and on the procedures it can call. Thus the main challenge with adversaries is
to devise proof principles that are sound w.r.t. all possible instantiations of the adversary. We note
that in contrast with many other works in this realm, pWhile explicitly (and purposedly) does not
support conditioning, concurrency and non-determinism, which do not have a central role in our
applications.

We achieve our goals in three steps. First, we define a program logic, called eHL, to reason about
expectation-based properties of pWhile programs. Judgments of eHL are of the form { 𝑓 } C {𝑔 }
where C is a statement and 𝑓 and 𝑔 are maps from program states to extended positive reals.
Informally, a judgment is valid if the expected value of 𝑔 on the output memory is upper bounded
by the value of 𝑓 on the initial memory. The proof system for eHL closely matches the pGCL
pre-expectation calculus [Morgan et al. 1996], except for loops, procedure and adversary calls:
- our rule for loops uses the notion of upper invariant from the literature;
- our rule for procedures uses auxiliary variables. It is folklore that complete proof rules for
procedures—even in the deterministic setting—require the use of auxiliary variables, cf. [Kley-
mann 1998, 1999; Nipkow 2002a,b]. We show that auxiliary variables also allow to recover
completeness in the probabilistic setting.

- our proof rule for adversaries is new. The main challenge is to devise useful and sound proof
rules based exclusively on the aforementioned adversary constraints.

In addition, our program logic features a “hopping”1 proof rule to reduce the proof of a probabilistic
program C′ to a proof of a probabilistic program C. Hopping proofs subsume the “abstract and
verify” or “refactor and verify” paradigms that are commonly used in verification by allowing the
possibility to perform arbitrary long interleavings of verification steps with abstraction/refactoring
steps. They have been previously used in interactive and automated program verification, including
[Lammich and Tuerk 2012; Magill et al. 2010; Nipkow et al. 2020; Tassarotti and Harper 2019]. In
our case, programs are probabilistic, so we use the relational program logic pRHL [Barthe et al.
2009] (we defer to subsequent sections for the definition of the pRHL judgment ⊢ { 𝑃 } C′ ∼ C {𝑄 })
in the following way:

⊢ { 𝑓 ′ } C′ {𝑔′ } ⊢ { 𝑃 } C′ ∼ C {𝑄 } (condition ommitted)
⊢ { 𝑓 } C {𝑔 } [prhl]

This rule brings hopping proofs to the realm of expectation-based properties. Our case studies use
the rule to switch to a more abstract representation of probabilistic programs, and to switch to a
different probabilistic program, e.g. one whose control flow follows the reasoning.
Our logic also features a proof rule inspired by the frame rule, also known as rule of constancy,

from classical Hoare Logic. Indispensable in practice, the rule improves upon modularity and
compositionality of the calculus, by allowing one to focus only on those parts of assertions that are
potentially affected during evaluation. Leveraging the reverse Jensen’s inequality, the rule takes
the form

⊢𝑍 { 𝑓 } C {𝑔 } 𝐹 ⊥ ModC 𝐹 concave and monotone
⊢𝑍 { 𝐹 [𝑓] } C { 𝐹 [𝑔] }

[frame]

In short, it permits the extension of judgments to arbitrary contexts 𝐹 (i) depending only on the
memory not modified by the statement C that is (ii) concave (e.g. linear or sublinear) and monotone,
1This style of proof is commonly used in cryptographic proofs under the name game-hopping (probabilistic programs with
adversary calls are known as games in this realm). We simply use the name “hopping” here.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:3

when seen as function. For instance, the rule allows to deduce ⊢𝑍 { log(2𝑥) + 𝑦 } C { log(𝑥) + 𝑦 }
from ⊢𝑍 { 2𝑥 } C { 𝑥 } by taking 𝐹 [□] = log□ + 𝑦, whenever C leaves 𝑦 unchanged.
Second, we implement our program logic in the EasyCrypt proof assistant [Barthe et al. 2013],

an existing tool for the verification of probabilistic programs and cryptographic proofs. Our im-
plementation is carefully crafted to leverage some key features of EasyCrypt, including some
weak forms of weakest precondition and SMT-based support. Concretely, we define and implement
another set of proof rules that make deductive verification more practical. This set of proof rules is
obtained by adapting classic approaches to turn Hoare logics into deductive verification tools, e.g.
chaining applications of construct-specific rules with applications of sequential composition and
non-structural rules. In order to reason effectively about pre-expectations in the ambient logic of
EasyCrypt, we have also developed a library of mathematical definitions and facts about extended
positive reals. This library is used critically in our case studies.
Finally, we use our framework to mechanize proofs of several examples. Our main examples

are proofs of expected cost for in-place implementations of randomized quickselect and skip lists.
Both examples leverage the full power of the framework and go beyond the reach of previous
approaches. In particular, our proof is the first to establish a logarithmic bound for skip lists
implementations—prior works either establish a logarithmic bound for an abstract description
of skip lists [Haslbeck and Eberl 2020] or a linear bound for a (concurrent) implementation of
2-level skiplists [Tassarotti and Harper 2019]. In addition, we illustrate how our framework can be
used beneficially in the context of cryptographic proofs. In contrast to the expected cost examples,
which target real examples, we consider a synthetic example of cryptographic proofs, inspired from
concurrent work [Barbosa et al. 2023] that uses our implementation of eHL to prove security of
Dilithium, a post-quantum signature scheme recently standardized by the NIST (National Institute
of Standards and Technology). The goal of our example is to illustrate how eHL can be used to
obtain simpler proofs with tighter security bounds. However, potential uses of eHL are not limited
to such use cases. We also discuss informally how eHL can be used to verify previously axiomatized
techniques for reasoning about failure events, and to prove probability bounds in place of the
existing logic implemented in EasyCrypt.

In summary, our main contributions are:
- the design, theoretical study and implementation of eHL;
- the application of eHL to expected cost analysis of randomized quickselect and skip lists;
- an illustration of the benefits of eHL in cryptographic proofs.

Artifact. The implementation of eHL, the library of expectations and the formally verified case
studies will be submitted as an artifact. The case studies themselves are also available in source
form as supplementary material. As an indication, the implementation of eHL proof system and
associated libraries represents about 3,000 lines of OCaml code and 1,000 lines of EasyCrypt code.
The proof of the quickselect example represent 70 lines for the programs, 300 lines for a library
on partition, 110 lines for the equivalence proof in pRHL (concrete version versus the abstract one)
and 70 lines for the proof bounding the expected cost in eHL. For skip lists, the proof consists of
2600 lines of EasyCrypt code, about 500 lines for bounding the expectation, the remaining part is
mostly concerned with the equivalence proofs and functional correctness. The implementation and
case studies will also be made publicly available in GitHub.

Outline. This paper is structured as follows. In Section 3, we provide a bird’s eye view on
the contributions of this work. Sections 4 and 5 formally establish the expectation logic eHL
and its integration with pRHL, while in Section 6 we employ our framework to obtain a fully
formalized average case complexity analysis of (a natural and realistic implementation of) skip
lists, a randomized data structure of interest for practitioners. In Section 7 we extend eHL to a

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:4 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

setting permitting adversarial code and demonstrates the usefulness of the logic for carrying out
cryptographic proofs. Section 8 we describe the integration of eHL into EasyCrypt and provide
further details on the formal verification of the case studies. In Section 2 we consider related work,
and we finally conclude in Section 9.

2 RELATEDWORK
There is a large body of work on formal verification of probabilistic programs and resource analysis.
For space reasons, we mention only closely related work.

Verification of probabilistic programs. Expectation-based reasoning can be traced back to the
seminal work of Kozen [Kozen 1985], who developed a sound and complete propositional dynamic
logic for a core probabilistic programming language. It was further developed by Morgan, McIver
and Seidel [Morgan et al. 1996], who introduced and studied extensively probabilistic predicate
transformers for a core probabilistic languagewith non-deterrinism. These approacheswere recently
extended to recursive procedures [Olmedo et al. 2016] and conditioning [Olmedo et al. 2018]. eHL
inherits many technical tools from this line of work, in particular the use of upper invariants.
However, eHL makes several (minor but practically important) technical contributions: it embeds
pRHL into expectation-based reasoning; it supports adversary calls; it features a non-structural rule
to simplify expectations (to our best knowledge, no such rule has been considered before); it recasts
in the setting of probabilistic programs existing approaches to achieve completeness of Hoare logic
in presence of procedures. For the latter, we follow the approach of [Kleymann 1998, 1999; Nipkow
2002a,b].

Complexity analysis of probabilistic of programs. There is also a huge body of work related to com-
plexity analysis of probabilistic programs. Related to probabilistic predicate transformers, Kaminski
et al. [2018] define an expected runtime transformer ert for a core probabilistic programming
language with non-determinism. Subsequent works extend the expected runtime transformer with
recursive procedures [Olmedo et al. 2016], amortized reasoning Batz et al. [2023], or to higher-order
functions [Avanzini et al. 2021]. Related to this line of work, several automated tools have emerged
Avanzini et al. [2020b, 2023]; Ngo et al. [2018]. Also martingale theory has been successfully tailored
towards the analysis of complexity related properties of imperative programs [Agrawal et al. 2018;
Barthe et al. 2016; Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2017; Takisaka et al.
2018; Wang et al. 2019]. These notions correspond close to that of Lyapunov ranking functions for
proving (positive almost-sure) termination, and for deriving bounds on the runtime [Avanzini et al.
2020a; Bournez and Garnier 2005]. For functional languages, type-based approaches to complexity
analysis turned out useful [Avanzini et al. 2019; Leutgeb et al. 2022; Wang et al. 2020].

Mechanized analyses of probabilistic programs. Haslbeck [2021] implements a Hoare style calculus
related to the ert calculus of Kaminski et al. within the Isabelle/HOL proof assistant. Interestingly,
his work contains a frame rule which can be interpreted as a special case of the one we give. Related,
Hurd et al. [2004] formalized a weakest pre-condition calculus for probabilistic programs within
HOL, and proof several interesting meta-theoretical properties of the calculus. Program verification
is aided through the extraction of recurrence relations to Prolog. Both works include proofs of
soundness and completeness of the transformer. In contrast, our core logical rules are part of the
trusted computing base. This is in line with the approach inEasyCrypt, where proof rules for
program verification are not verified—in other words, EasyCrypt does not use a shallow nor a deep
embedding of programs, but rather a hardwired embedding.
Van der Weegen and McKinna [2008] was probably the first to formalize quicksort in a proof

assistant, more precisely in Coq. They used a shallow embedding and analyzed the average case

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:5

complexity of more high-level, functional version of quicksort. In a similar spirit, Eberl et al. [2020]
use the Isabelle/HOL proof assistant to reason via a shallow embedding about the average case
complexity of algorithms on binary tree structures. Notably, their analysis covers (the functional
variant of) quicksort. Tassarotti and Harper [2018] study quantitative properties of concrete ran-
domized algorithms, focusing on the formal verification of tail bounds. For example they handle (a
functional version of) quicksort, again using a monadic embedding. Their analysis is formalized in
Coq.
The average complexity analysis of skiplists is rather intricate, rendering skip lists a prime

example to evaluate the expresivity and usability of proof assistants. Haslbeck and Eberl [2020]
formalise the relationship between the expected height and expected length of search paths within
the proof assistant Isabelle/HOL, leading also to the formalisation of a considerable amount of
results of probability theory. Wheareas the starting point of Haslbeck and Eberl is a formal but
abstract specification, here, we study a concrete algorithm resembling the reference implementation
given by Pugh [1990b]. This explains our focus on program logics, rather than the formalisation of
mathematical results. Relying on the extensive library underlying EasyCrypt, our formalisation
effort is mostly concerned with laws on expectations (such as, linearity or Jensen’s inequality).
Strongly related to our formal complexity analysis of skip lists is the work by Tassarotti and
Harper [2019] on concurrent skip lists. Their Coq formalization extends Iris [Jung et al. 2015] with
probabilistic coupling, conceptually in line with our use of eHL in conjunction with pRHL. Their
very impressive formalization is orthogonal to our results. On the one hand, the focus is on the
verification of quantitative program behaviour in the context of concurrency, while our analysis
only concerns sequential evaluation. On the other hand, the notion of skip lists is restricted to two
levels and the obtained upper bound on the expected search length is linear, while we consider skip
lists in their original definition and re-obtain the original logarithmic bound, in expectation. This
latter aspect requires a more involved encoding of our non-concurrent version and conclusively a
more sophisticated verification.

Comparison with EasyCrypt. EasyCrypt is an interactive proof assistant targetted to formal
verification of cryptographic proofs. Its main component pRHL is used to support game-hopping
proofs. In addition, EasyCrypt features a program logic called phoare for reasoning about the
probability of events. In contrast to eHL, phoare judgments are of the form ⊢⋄𝑝 {𝜙 } 𝑐 {𝜓 }, where
𝜙,𝜓 are boolean-valued assertions and ⋄ is either ≤, ≥, or =; unfortunately, it is difficult to build
sound, complete, and practical proof systems for such judgments. Moreover, the proof rules of
phoare, and in particular the rule for loops, require programs to be certainly terminating. In general,
it would seem beneficial to deprecate phoare and use eHL instead.

EasyCrypt also provides a cost logic for adversarial programs [Barbosa et al. 2021]. The purpose
of the cost logic is to upper bound the the complexity of constructed adversaries, i.e. programs with
adversary calls that formalize the security reduction from security of a cryptographic scheme to
hardness assumptions or assumptions about primitives. One main rule of the logic is an instatiation
rule, which allows to reason about the cost of a program where the adversary is instantiated by
another program—it can either be a concrete program but also a so-called constructed adversary,.
The instantiation rule is required to upper bound constructed adversaries for complex cryptographic
systems that are built from several components. The logic is focused on worst-case cost. An
interesting direction for future work is to adapt this logic to expected cost.

3 A BIRD’S-EYE VIEW ON OUR METHODOLOGY
In what follows, we introduce our methodology on Tony Hoare’s quickselect [Hoare 1961]: a
non-trivial, (possibly) non-recursive, randomized algorithm.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:6 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

var ct;

proc partition(a, l, h)
(p, i) ← (a[h], l − 1);
for j = l to h − 1 do

if a[j] < p then
i++; swap(a, i, j)

ct++;
i++; swap(a, i, h);
return i

proc rpartition(a, l, h)

p $← unif(l, h);
swap(a, p, h);
i← partition(a, l, h);
return i

proc qselect(a, k)
ct← 0;
(l, h) ← (0, size(a) − 1);
while l < h do

i← rpartition(a, l, h);
if i = k then
l← i; h← i // exit loop

elseif i < k then
l← i + 1 // descent right

else
h← i − 1 // descent left

return a[k]

(a) Quickselect.

var ct;

(l ≤ h | ct + (h − l) + 1

h−l+1
∑

h

i=l
f (i)

proc rpartition_abs(l, h)
(l ≤ h | ct + (h − l) + 1

h−l+1
∑

h

i=l
f (i)

(Eunif(l,h) [𝜆i. ct + (h − l) + f (i)]
ct← ct + (h − l);

(Eunif(l,h) [𝜆i. ct + f (i)]
i $← unif(l, h);

(ct + f (i)
return i

(ct + f (res)

(0 ≤ k < n | 4(n − 1)
proc qselect_abs(n, k)

(0 ≤ k < n | 4(n − 1)
ct← 0;

(0 ≤ k < n | ct + 4(n − 1)
(l, h) ← (0, n − 1);

(0 ≤ l ≤ k ≤ h | ct + 4(h − l)
while l < h do

(l < h ∧ 0 ≤ l ≤ k ≤ h | ct + 4(h − l) (★)
(0 ≤ 𝑙 ≤ 𝑘 ≤ ℎ | 𝑐𝑡 + (ℎ − 𝑙) + 1

ℎ−𝑙+1
∑ℎ
𝑖=𝑙

g(𝑖, 𝑘, 𝑙, ℎ)
i← rpartition_abs(l, h);

(0 ≤ l ≤ k ≤ h | ct + g(i, k, l, h)
if i = k then l← i; h← i
elseif i < k then l← i + 1
else h← i − 1

(0 ≤ l ≤ k ≤ h | ct + 4(h − l)
(h ≤ l ∧ 0 ≤ l ≤ k ≤ h | ct + 4(h − l)
(ct

return ()
(ct

(b) Size abstraction.

Fig. 1. Implementation of qselect (left) of quickselect and its eHL annotated abstraction qselect_abs (right).
The term g(i, k, l, h) abbreviates if i = k then 0 elseif i < k then 4(h − (l + 1)) else 4(h − 1 − l).

Quickselect. Sorting and searching are arguably the most studied algorithmic problems in com-
puter science.2 Quickselect is a selection algorithm to find the 𝑘th smallest element in a given
(unordered) array. Quickselect operates similar to quicksort, by partitioning the array around a
chosen pivot. However, the recursive call is performed just on the partition actually containing
the element one is looking for. This observation allows one to perform a tail-call optimization
of recursive quickselect, which produces an iterative algorithm. As for quicksort, performance
degrades if bad pivots are consistently chosen. By choosing a pivot uniformly at random at each
stage, it can be shown that quickselect expected runtime, often more interesting than worst-case
complexity when randomness plays a role, is in O(𝑛).3 The code of quickselect with random pivot
selection is given in Figure 1a. Arrays are indexed from 0, for instance, qselect([4, 6, 2, 8], 1) = 4

2This is for example witnessed by the fact that Donald Knuth dedicated an entire volume of his celebrated series The Art of
Computer Programming [Knuth 1973] just to these two problems.
3Actually, choosing the pivot uniformly at random turns out to allow the same average-case complexity analysis of
deterministic quickselect with uniformly distributed inputs.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:7

since 4 occurs at index 1 in the sorted input array [2, 4, 6, 8]. Randomized partitioning of an array
a (within indices l and h) is implemented with rpartition(a, l, h). The instruction unif(l, h),
used to choose the pivot index p, samples at random an integer between l and h. It is the only point
of the code where randomness actually plays a role. Partitioning is then carried out via partition
following the Lomuto partition scheme, expecting the pivot at the final index.

Informal Complexity Analysis. The classic textbook proof on the average case complexity of
quickselect can be found in [Cormen et al. 2009]. It is based on a sequence of lemmas that are
proved looking at the source code in a quite abstract way, through some high-level reasoning.
An important observation is that for each input, if the pivot is chosen uniformly at random

from the interval [l, h], then so is its rank (the position of an element in the sorted array) i. Thus,
partitioning with pivot of rank i has probability 1/h − l + 1 and, depending on i, the resulting parts of
the partition have sizes i − l and h − i, respectively. The procedure qselect loops over just one of
the parts, the one actually containing the element we are looking for. In particular, if i < k, the right
partition of size h − i is explored, likewise, if i > k, then the left partition of size i − l is explored.
In the remaining case i = k the k-th element has been found. Averaging over all the h − l + 1
possible partitions and noting that the number of comparisons performed inside partition is
h − l, the average number of comparisons can be estimated accurately by solving the following
recurrence relation:

C (l, h) = (h − l) + 1
h−l+1 (

∑k−1
i=l C (i + 1, h) +∑h

i=k+1 C (l, i − 1)) (†)

Then, it is not difficult to prove thatC (l, h) ≤ 4(h − l). Since l is initialized to 0 and h to size(a) − 1,
we obtain the well-known linear bound of O(size(a)), in expectation.

Towards a Formal Analysis. The complexity analysis sketched above is still informal. In particular,
the recurrence relation is obtained by a high-level analysis of the code, and through informal
reasoning involving probabilities, sizes of partitions, etc. How can we be sure that all of this is
correct?

In this paper, we propose a formal end-to-end methodology that is able to provide upper-bounds on
the complexity of randomized programs, based on the general methodology of Hoare logic [Hoare
1969]. Towards this formalization, we first have to endow a cost model, i.e., be precise in exactly
what to measure. A generic way to do so is to simply instrument the program with a cost counter,
as we have already done in Figure 1a. Notice how the global variable ct takes account of the total
number of comparisons—the usual cost metric for sorting and selection algorithms—performed by
qselect. Our objective now turns into bounding the value that ct takes on average after execution,
in terms of the size of the input.4
From here, a fully formalized complexity analysis of qselect is certainly possible, however,

unnecessarily complicated. As we have already seen in the informal proof, a priori we do not really
have to reason about the full program. Some parts of it can be abstracted, so that the complexity
analysis becomes easier. This is exactly what we have done when we have claimed that partition
does h − l comparisons. Indeed, program abstraction is a useful tool in program analysis (see
e.g. [Magill et al. 2010]). Consider the procedure qselect_abs, depicted in Figure 1b, giving a
complexity preserving skeleton of qselect. Ignoring gray annotations for now, in essence arrays
a are abstracted by their size n. While the skeleton of quickselect remains identical, partitioning

4 The attentive reader may have noticed that since we are about to measure a counter after execution, the correspondence
hinges on (almost-sure) termination. If one is interested in the analysis of non-terminating programs and the cost incurred
by infinite executions, one way to overcome the discrepancy is to externalize the cost counter in the program semantics
(see e.g. [Kaminski et al. 2018]).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:8 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

of the array becomes superfluous. In rpartition_abs a cost of h − l is incurred directly and the
rank i, rather than the pivot p, is sampled.

Naturally, the claim about the complexity equivalence of the two programs has to be made formal.
To this end, relational program logics such as probabilistic relational Hoare logic (pRHL) provide a
suitable solution [Barthe et al. 2015, 2012, 2017]. Moreover, support for pRHL is readily available in
the proof assistant EasyCrypt. In pRHL, judgments take the form of (relational) Hoare triples

{ 𝑃 } C ∼ D {𝑄 }
where 𝑃 and 𝑄 are predicates over the joint program states of C and D, with the informal meaning
that on inputs related by 𝑃 , the programs C and D produce an output (distribution) related by 𝑄 .5
Referring with (·) ⟨1⟩ and (·) ⟨2⟩ to the state of the left- and right program the triple
⊢ { unique(a⟨1⟩) ∧ size(a⟨1⟩) = n⟨2⟩ ∧ k⟨1⟩ = k⟨2⟩ } qselect(a, k) ∼ qselect_abs(n, k) { ct⟨1⟩ = ct⟨2⟩ }

(equiv_qselect)

asserts that if the inputs are related in the obvious way, then the (distributions of) cost counters ct
are identical after execution.6 The main crux of the proof lies in proving a related statement on
partitioning:
⊢ { unique(a⟨1⟩) ∧ (l, h) ⟨1⟩ = (l, h) ⟨2⟩ }
rpartition(a, l, h) ∼ rpartition_abs(a, l, h)
{ ct⟨1⟩ = ct⟨2⟩ ∧ res⟨1⟩ = res⟨2⟩ }

(equiv_rpartition)

where res refers to the return value of the procedure. Comparing the two procedures, in effect this
statement formalizes that (i) partitioning itself performs h − l comparisons (ct⟨1⟩ = ct⟨2⟩) and that
(ii) the rank of the pivot lies uniformly in the interval [l, h] (res⟨1⟩ = res⟨2⟩). While the former
point is quite trivial to prove, the latter property essentially states that pivot positions and ranks
are in a bijective relationship, a property that rests on functional correctness of partition and
uniqueness.

Formal Reasoning about Expectations. Through the correspondence (equiv_qselect) we have
achieved a separation of concerns, as functional correctness properties relevant to the complexity
analysis have been dealt with. Knowing that qselect_abs is a cost-preserving abstraction of
qselect, we can thus focus on the core of the complexity analysis, as carried out in the informal
analysis above.
For this, we use a Hoare logic for reasoning about expectations. This logic, dubbed Expectation

Hoare Logic (eHL), constitutes a sound and complete logic for reasoning about judgments of the form
⊢ { 𝑓 } C {𝑔 }

where 𝑓 , 𝑔 are (non-negative) real-valued functions over the program state of C, also referred to
as pre- and post-expectation, respectively. Informally, this judgment states the expected value of 𝑔
after execution of C is bounded by 𝑓 . More formally, this judgment is valid if EJCK𝑚 [𝑔] ≤ 𝑓 𝑚 for
any initial program memory𝑚, where the left-hand side denotes the expected value of 𝑔 on the
(sub)distribution JCK𝑚 of memories obtained after evaluating C on𝑚.

Coming back to quickselect, the judgment
⊢ { 0 ≤ k < n | 4(n − 1) } qselect_abs(n, k) { ct } (qselect_abs_cost)
5To be more precise, the judgment guarantees a probabilistic coupling of the output distributions within relation 𝑄 , as
detailed in Section 5.
6To slightly simplify proofs, we assume via predicate unique(𝑎⟨1⟩) that the input array a to the left procedure contains no
duplicate elements.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:9

bounds the expected value of ct after execution by 4(n − 1). The guard 0 ≤ k < n in the pre-
expectation should be understood as a classical pre-condition, for details see Section 5. We have
decorated the code of Figure 1b with the corresponding eHL assertions at each line of the listing.
The proof of this statement relies again on an auxiliary statement on partitioning, namely,

⊢ { l ≤ h | ct + (h − l) + 1
h−l+1

∑h
i=l f (i) } rpartition_abs(l, h) { ct + f (res) }

(rpartition_abs_cost)

Here, the free variable 𝑓 should be understood as a universally quantified, logical (function) variable,
and as above, res refers to the return value of rpartition_abs. Notice how this statement reflects
that the cost counter is advanced by h − l, and that the return value is sampled uniformly from
the interval [l, h]; eHL is in many aspects reminiscent of classical HL. Indeed, the core rules—when
restricted to predicates—are identical. As such it transfers Hoare-style backward reasoning to
probabilistic programs. Where eHL does depart from HL is the support of sampling instructions
S, embodied by the axiom ⊢ { ES [𝜆𝑣 . 𝑓 [x/𝑣]] } x $← S { 𝑓 }, generalising the the usual axiom for
assignments ⊢ { 𝑓 [𝑥/E] } x← E { 𝑓 }. Also the rule of consequence,

𝑓 ≥ 𝑓 ′ { 𝑓 ′ } C {𝑔′ } 𝑔′ ≥ 𝑔
{ 𝑓 } C {𝑔 }

extends naturally from HL to eHL, implications turn into inequalities. The two axioms together
with the consequence rule, tacitly employed before the first statement within the procedure’s body,
should be sufficient to comprehend the annotations given in Figure 1b around the definition of
rpartition_abs.
In a similar fashion, the annotations of qselect_abs can be traced from bottom to top. As

in classical HL, the treatment of loop rests on finding a suitable invariant, here it is given by
0 ≤ l ≤ k ≤ h | ct + 4(h − l). Within the loop, the guard l < h can be additionally assumed, the
guard is falsified immediately after the loop. Concerning the nested conditional in the loop,
the term ct + g(i, k, l, h) is computed syntactically as the weakest pre-expectation given post-
expectation ct + 4(h − l). (See the caption for the precise definition of g.) Concerning the call
rpartition_abs(l, h) the logical variable 𝑓 is instantiated by the function i ↦→ g(i, k, l, h), since
the result of the call is bound to i. Interestingly, one recovers, in a formal and syntax-directed way,
the recurrence relation of the previous paragraph through the weakening performed in (★). Indeed,
the (approximate) solution of the recurrence (†) becomes the invariant of the main while loop.

The combination of (equiv_qselect) and (qselect_abs_cost) yields

⊢ { unique(a) ∧ 0 ≤ k < size(a) | 4(size(a) − 1) } qselect(a, k) { ct } (qselect_cost)

confirming the linear bound—O(size(𝑎))—on the expected cost of qselect, derived above in the
informal analysis.

Integration within EasyCrypt. The here presented case study on quickselect clarifies the effec-
tiveness of our verification methodology. Relational reasoning provided by pRHL—in particular
that employed to guarantee functional correctness—and quantitative reasoning provided by eHL—
formalizing the original (informal) complexity proof—work together in a synergistic way. As
mentioned, the development is fully formalized (within EasyCrypt), rendering heightened assur-
ance that none of the (necessary) intricacies of a complexity analysis of a randomized algorithm have
been overlooked. To this end, EasyCrypt has been extended with support for eHL, see Section 8.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:10 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

4 A PROBABILISTIC PROGRAMMING LANGUAGE
We consider here a simple imperative probabilistic programming pWhile capturing the core lan-
guage of EasyCrypt without adversaries. This language follows the spirit of Dijkstra’s Guarded
Command Language but including (non-recursive) procedures and a separation of global and (stati-
cally scoped) local variables. The language will be consecutively extended to permit adversarial
code in Section 7, when we discuss applications to cryptography.

Syntax. Let Fun = {f, g, . . . } be a set of procedure names, and Var = {x, y, z, . . . } a set of variables,
partitioned into local variables LVar and global variablesGVar. The set Stmt of statements is defined
by the following syntax:

C, D ::= skip | x← E | x $← S | x← f(E) | C; D | if B then C else D | while B do C

Here, E ∈ Expr is drawn from a set of expressions, B ∈ BExpr is a Boolean expression, and
S ∈ SExpr a sampling expression. The statements are mostly standard. The statement x← E gives
the usual, deterministic assignment, whereas x $← S samples a value from S, and thereby makes
the language probabilistic. Statement x ← f(E) calls a procedure with argument E and assigns
its return value to x. Zero or more than one argument can be passed to procedures as tuples. We
require that x is a local variable. A procedure is declared through a procedure definition of the form

proc f(x) C; return E ,

where x ∈ LVar is the formal parameter, C ∈ Stmt the body and E ∈ Expr the return expression of f.
Global variables should be understood as implicit input and output to procedures, whereas local
ones are statically scoped. A program P ∈ Prog is a finite sequence of (mutually exclusive) procedure
definitions.

Monadic Denotational Semantics. Semantics of imperative programs can be given in many ways.
Here, we endow the language with a denotational (monadic) style semantics, lending itself better
to the proofs of soundness and completeness of our logic. Since programs are probabilistic, we
interpret them as functions from states to subdistributions of states, rather than as mere (partial)
state transformers.
A subdistribution over a set 𝐴 is a function 𝑑 : 𝐴 → [0, 1] such that

∑
𝑎∈𝐴 𝑑 (𝑎) ≤ 1, with D𝐴

we denote the set of all subdistributions over 𝐴. For 𝑑 : D𝐴, the support supp(𝑑) ⊆ 𝐴 is given
by the collection of elements 𝑎 ∈ 𝐴 with 𝑑 (𝑎) > 0. Throughout the following, we consider only
discrete subdistributions, that is, where the set 𝐴 is countable. Let R+∞ denote the non-negative
reals extended with top element ∞. Given function 𝑓 : 𝐴 → R+∞ and a distribution 𝑑 : D𝐴
we denote by E𝑑 [𝑓] ≜

∑
𝑎∈supp(𝑑) 𝑓 (𝑎) · 𝑑 (𝑎) the expected value of 𝑓 on 𝑑 . By the Monotone

Convergence Theorem, this value always lies within R+∞. The subdistribution functor D forms
a monad. The unit dunit : 𝐴→ D𝐴 returns on 𝑎 ∈ 𝐴 the Dirac distribution 𝛿𝑎 (where 𝛿𝑎 (𝑏) ≜ 1
if 𝑎 = 𝑏 and 𝛿𝑎 (𝑏) ≜ 0 otherwise). The bind dbind : D𝐴 → (𝐴 → D𝐵) → D𝐵 is defined as
dbind𝑑 𝑓 ≜ 𝜆𝑏.

∑
𝑎∈supp(𝑑) 𝑑 (𝑎) · 𝑓 𝑎 𝑏 : D𝐵. To ease notation, we may write dlet 𝑎 ← 𝑑 in 𝑓 (𝑎) for

dbind𝑑 (𝜆𝑎. 𝑓 (𝑎)). With fail : D𝐴 we denote the subdistribution with empty support.
We model program memories as mappings𝑚 ∈ Mem ≜ Var→ Val from variables to (a discrete

set of) values Val. Each memory 𝑚 can be partitioned into a global memory 𝑚𝑔 : GMem ≜
GVar → Val and a local memory 𝑚 : LMem ≜ LVar → Val. We write 𝑚[x/𝑣] for the memory
obtained from𝑚 by updating x to 𝑣 . We suppose that expressions E ∈ Expr, Boolean expressions
B ∈ BExpr and sampling expressions S ∈ SExpr are equipped with semantics JEK(·) : Mem→ Val,
JBK(·) : Mem→ B and JSK(·) : Mem→ DVal, respectively. Statements C are then interpreted as
functions JCK(·) : Mem → DMem, see Figure 2. The definition is mostly standard. Noteworthy,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:11

C ∈ Stmt JCK𝑚

skip dunit𝑚
x← E dunit𝑚[x/JEK𝑚]
x $← S dlet 𝑣 ← JSK𝑚 in dunit𝑚[x/𝑣]
x $← f(E) dlet (𝑚′𝑔, 𝑟) ← JfK(𝑚𝑔,JEK𝑚)

in dunit (𝑚′𝑔 ⊎𝑚𝑙) [x/𝑟]
C; D dlet𝑚′ ← JCK𝑚 in JDK

𝑚′

if B then C else D

{
JCK𝑚 if JBK𝑚 ,
JDK𝑚 otherwise.

while B do C sup𝑖∈NJwhile(𝑖) B do CK𝑚 where

Jwhile(0) B do CK𝑚 ≜ fail

Jwhile(𝑖+1) B do CK𝑚 ≜

{
dlet𝑚′ ← JCK𝑚 in Jwhile(𝑖) B do CK

𝑚′ if JBK𝑚 ,
dunit𝑚 otherwise.

Fig. 2. Semantics of statements J·K(·) : Stmt→ Mem→ DMem.

each procedure f is interpreted as a function in GMem×Val→ D (GMem×Val), parameterised by
the global memory before execution and a value—the formal parameter—and yielding as output a
subdistribution of modified global memories and return values. Upon invocation, the local memory
is initialised to an initial memory𝑚0

𝑙
assigning to each variable x ∈ LVar a default value, and the

formal parameter x is bound by the argument. Upon completion, the return value is evaluated
and returned, together with the potentially modified global memory. Precisely, we interpret a
declaration by

Jproc f(x) C; return EK(𝑚𝑔,𝑣) ≜ dlet𝑚′ ← JCK(𝑚𝑔⊎𝑚0
𝑙
[x/𝑣]) in dunit (𝑚′𝑔, JEK𝑚′) .

and we use JfK(𝑚𝑔,𝑣) as a short-hand when f is declared in the program as above.

5 EXPECTATION HOARE LOGIC
In this section, we now present the Expectation Hoare Logic (eHL) formally, starting with the core
logic and then integrating relational reasoning towards the end of the section.

As seen in Section 3, eHL is designed for reasoning reason about judgments of the form { 𝑓 } C {𝑔 },
where C is a pWhile statement and 𝑓 and 𝑔, dubbed pre- and post-expectations respectively, are
functions from states to (non-negative) extended reals. In effect, eHL manipulates slightly more
complex judgments in order to address a well-known issue with completeness of proof rules for
procedures. In a nutshell, the standard proof systems for procedures aim to achieve modularity by
proving for each procedure a procedure specification. These are triples of the form { 𝑝 } f {𝑞 }. For
instance, in (rpartition_abs_cost) on page 8, we have employed the specification

{ 𝑙 ≤ ℎ | 𝑐𝑡 + (ℎ − 𝑙) + 1
ℎ−𝑙+1

∑ℎ
𝑖=𝑙

f (𝑖) } rpartition_abs { 𝑐𝑡 + f (res) }.

In this specification, the pre-expectation is parameterised in the argument—here, a tuple (𝑙, ℎ)—
whereas the post-expectation is parameterised in the return value res. Both may reference global
variables like the counter 𝑐𝑡 above—they are implicit input and output of the procedure. Then,
modularity is achieved by using the procedure specification every time the procedure is called.
Unfortunately, a naive realization of this approach does not achieve completeness. Incompleteness
arises because the specification of a function is independent of its call site. Since independence

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:12 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

in itself is desirable for reducing proof effort, the standard compromise is to provide users with a
means to adapt a declaration to specific call-sites, to reason about properties potentially involving
local state. To this end, we borrow the notion of auxiliary (or logical) variables from Kleymann
[1998]. Auxiliary variables may occur in pre- and post-expectations and are (implicitly) unversally
quantified. Effectively, they turn declarations into schemata, where auxiliary variables can be freely
instantiated. For instance, in the above specification of rpartition_abs we used an auxiliary
variable 𝑓 , with the intended meaning that the triple holds for any concrete instantiation of
𝑓 . As for Kleymann, auxiliary variables yield a conceptual simple solution to recover (relative)
completeness of our logic. With this in mind, we can embark of defining eHL. Our presentation
follows closely the presentation of (classical) Hoare Logic HL given by Nipkow [2002b], with pre-
and post-expectations given by semantic objects parameterized by a type 𝑍 of auxiliary variables,
rather than terms or expressions. In eHL, judgments now take one of two forms, namely

⊢𝑍 { 𝑓 } C {𝑔 } or ⊢𝑍 { 𝑝 } f {𝑞 } ,

where 𝑓 , 𝑔 : 𝑍 → Mem→ R+∞ and 𝑝, 𝑞 : 𝑍 → GMem × Val→ R+∞. As indicated above, pre- and
post-expectations of procedures are parametric only in the global memory. In the pre-expectation 𝑝 ,
the additional value argument refers to the formal parameter of f, whereas in the post-expectation 𝑞
it refers to the returned value. To avoid notational overhead, in examples, we will continue to write
pre- and post-expectations as expressions, potentially referring to extra auxiliary variables besides
program variables. For instance, 𝑍 = Z×Z admits two integer valued extra variables, say 𝑥 and 𝑦. If
𝑣 is a program variable, an expression such as 𝑥 + 𝑦 + 𝑣 formally represents 𝜆(𝑥,𝑦)𝑚. 𝑥 + 𝑦 +𝑚(𝑣).
In a similar vain, we will use variables arg and res to refer to the formal parameter and return value
within procedure specifications.

eHL is tailored to proving upper-bounds 𝑓 on the value that a function 𝑔 takes, in expectation,
after running a program. This meaning is made precise through the notion of validity.

Definition 5.1 (Validity of Judgments).

(1) A triple { 𝑓 } C {𝑔 } is valid, in notation ⊨𝑍 { 𝑓 } C {𝑔 }, if EJCK𝑚 [𝑔 𝑧] ≤ 𝑓 𝑧𝑚 holds for all
𝑧 ∈ 𝑍 and initial memories𝑚 ∈ Mem, and,

(2) a procedure specification { 𝑝 } f {𝑞 } is valid, in notation ⊨𝑍 { 𝑝 } f {𝑞 }, if EJfK(𝑚𝑔,𝑣)
[𝑞 𝑧] ≤

𝑝 𝑧 (𝑚𝑔, 𝑣) holds for all 𝑧 ∈ 𝑍 , initial memories𝑚𝑔 ∈ GMem and parameters 𝑣 ∈ Val.

Finally, through the binary operator (|) that we have already used when reasoning about
quickselect, we can also combine classical with probabilistic reasoning. Semantically, the operator
is defined such that (true | 𝑟) ≜ 𝑟 and (false | 𝑟) ≜ ∞ for any real value 𝑟 ∈ R+∞, and extended
to pre- and post-expectations in the obvious way. This way, {𝑄 | 𝑓 } C { 𝑃 | 𝑔 } for instance asserts
validity of { 𝑓 } C {𝑔 } under pre-condition 𝑃 , guaranteeing post-condition 𝑄 .

The Core Rules. Figure 3 presents the core rules of eHL. Interestingly, and what we believe makes
the logic in particular usable, is that the core rules are in essence identical in shape to that of classical
HL. This is in particular visible in the rules (skip), (seq) and (assign). In Rule (assign), 𝑓 [x/E] is short-
hand for 𝜆𝑧𝑚. 𝑓 𝑧𝑚[x/JEK𝑚]. Rule (sample) generalizes the usual assignment rule to sampling
instructions: the pre-expectation ES [𝜆𝑣.𝑓 [x/𝑣]] ≜ 𝜆𝑧𝑚. EJSK𝑚 [𝜆𝑣.𝑓 𝑧𝑚[x/𝑣]], is the weakest one
binding post-expectation 𝑓 when x is sampled from S. For instance, ⊢𝑍 { 0.5 } x $← unif([0, 1]) { 𝑥 }
states that in expectation the value of x is given by 0.5, when sampled uniformly from {0, 1}.
Rule (if) is the mere adaptation of the equivalent classical HL rule. The rule descends into the

then- and else-branches, where one can additionally assume that the guard and its negation holds,
respectively. Concerning loops, rule (while) requires establishing an invariant 𝑓 on the loops body.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:13

Structural Rules

⊢𝑍 { 𝑓 } skip { 𝑓 }
[skip] ⊢𝑍 { 𝑓 [𝑥/E] } x← E { 𝑓 } [assign]

⊢𝑍 { ES [𝜆𝑣 . 𝑓 [x/𝑣]] } x $← S { 𝑓 }
[sample] ⊢𝑍 { 𝑓 } C {ℎ } ⊢𝑍 {ℎ } D {𝑔 }

⊢𝑍 { 𝑓 } C; D {𝑔 } [seq]

⊢𝑍 { B | 𝑓 } C {𝑔 } ⊢𝑍 { ¬B | 𝑓 } D {𝑔 }
⊢𝑍 { 𝑓 } if B then C else D {𝑔 }

[if]
⊢𝑍 { B | 𝑓 } C { 𝑓 }

⊢𝑍 { 𝑓 } while B do C { ¬B | 𝑓 } [while]

⊢𝑍 { 𝑝 } f {𝑞 }
⊢𝑍 { 𝜆𝑧𝑚. 𝑝 𝑧 (𝑚𝑔, JEK𝑚) } x

$← f(E) { 𝜆𝑧𝑚. 𝑞 𝑧 (𝑚𝑔,𝑚 x) }
[call]

Procedure Declarations

(proc f(x) C; return E) ∈ P
⊢𝑍 { 𝜆𝑧𝑚. 𝑚𝑙 =𝑚

0
𝑙
[x/𝑚 x] | 𝑝 𝑧 (𝑚𝑔,𝑚 x) } C { 𝜆𝑧𝑚. 𝑞 𝑧 (𝑚𝑔, JEK𝑚) }

⊢𝑍 { 𝑝 } f {𝑞 }
[proc]

Logical Rules

⊢𝑍 ′ { 𝑓 ′ } C {𝑔′ } ∀𝑚𝑑. (∀𝑧′ ∈ 𝑍 ′ . E𝑑 [𝑔′ 𝑧′] ≤ 𝑓 ′ 𝑧′𝑚) ⇒ (∀𝑧 ∈ 𝑍 . E𝑑 [𝑔 𝑧] ≤ 𝑓 𝑧𝑚)
⊢𝑍 { 𝑓 } C {𝑔 }

[conseq]

⊢𝑍×Val { 𝜆(𝑧, 𝑣)𝑚. 𝑚 x = 𝑣 | 𝑓 𝑧𝑚 } C { 𝜆(𝑧, 𝑣)𝑚. 𝑔 𝑧𝑚[x/𝑣] } x ∉ ModC
⊢𝑍 { 𝑓 } C {𝑔 }

[nmod]

Fig. 3. Kernel rules of eHL.

As in classical HL, the invariant needs to be established only on initial memories making the guard
evaluate to true. The rule also establishes that the guard evaluates to false after exiting the loop.

The rule (call) allows one to use a procedure specification { 𝑝 } f {𝑞 } to reason about a call-site
x ← f(E). Recall that 𝑝 and 𝑞 are parameterized, beside auxiliary variables and global state, by
the formal argument and return value of f, respectively. The rule adapts these to the call-site, by
substituting value of the argument E for the formal argument in 𝑝 , and by identifying the return
value of f with that of the assigned variable x within 𝑞. Dual to (call), rule (proc) establishes
that a procedure proc f(x) C; return E satisfies a specification { 𝑝 } f {𝑞 }. Here, one essentially
has to validate that the procedures body C; return E adheres to the specification. Following the
semantics of procedure calls, the pre-condition𝑚𝑙 =𝑚

0
𝑙
[x/𝑚 x] permits one to restrict attention

to memories whose local variables are initialised by𝑚0
𝑙
, apart from the formal argument x which

ranges over an arbitrary value. This completes the definition of all structural rules.
The final two logical rules deal with auxiliary variables and approximate reasoning, through

a rule of consequence. A natural candidate for the latter is the rule we have seen in Section 3,
corresponding to the law of monotonicity in pre-expectation transformers [McIver and Morgan
2005]. Alas, ignoring extra variables, the rule is too weak and its addition alone would render our
logic incomplete. Rather, our rule (conseq) is an embodiment of the one of Nipkow [2002b] which
is strictly more powerful in the presence of local variables. Observe how the additional premise is
just enough to lift validity ⊨𝑍 ′ { 𝑓 ′ } C {𝑔′ } of the premise to that of the conclusion. Although a bit
cumbersome, its generality allows one to derive various rules more useful in practice, such as the
simple rule from Section 3. It also encompasses book-keeping rules on auxiliary variables such as

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:14 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

⊢𝑍 { 𝑓 ′ } D {𝑔′ } ⊨ { 𝑃 } D ∼ C {𝑄 }
∀𝑧𝑚. 𝑓 𝑧𝑚 ≠ ∞⇒ ∃𝑚′ . 𝑓 ′ 𝑧𝑚′ ≤ 𝑓 𝑧𝑚 ∧ 𝑃 𝑚′𝑚
∀𝑧𝑚′𝑚. 𝑄𝑚′𝑚 ⇒ 𝑔 𝑧𝑚 ≤ 𝑔′ 𝑧𝑚′

⊢𝑍 { 𝑓 } C {𝑔 }
[prhl]

Fig. 4. Integration of Relational Hoare Logic

the instantiation, or substitution, rule
⊢𝑍 { 𝑓 } C {𝑔 }

⊢𝑍 ′ { 𝑓 [𝑧/𝑡] } C {𝑔[𝑧/𝑡] }
[inst]

where 𝑡 is itself an expression over 𝑍 ′.
The final rule (nmod) captures the observation that if a variable is not touched by statement

C, it remains constant through evaluation, and can thereby be regarded as an auxiliary variable.
In the rule, ModC denotes the set of variables modified by C ∈ Stmt.7 The rule gives a mean to
internalise the local memory across procedure calls, indispensable in our setup since procedure
specifications reference only global memories. This rule, together with the rule of consequence is
powerful enough to derive e.g. a framing rule based on Jensen’s inequality. We elaborate more on
that in Section 8.

Theorem 5.2 (Soundness and Completeness). For all procedures f,
⊢𝑍 { 𝑝 } f {𝑞 } ⇔ ⊨𝑍 { 𝑝 } f {𝑞 }

The proof is this theorem is given in the appendix.

Relational Reasoning. Formally reasoning about the complexity of intricate programs can be very
hard. However, complexity can often be studied on simplified (but complexity preserving) versions
of the original programs with much less burden. Probabilistic relational Hoare logic (pRHL for short)
allows one to formally relate two programs that behave the same [Barthe et al. 2015, 2012, 2017].
Judgments have the following form:

⊢ { 𝑃 } C ∼ D {𝑄 },
where 𝑃,𝑄 ⊆ Mem × Mem are both assertions that relate memories of C and D. The intuitive
meaning behind this judgment is that, when programs C and D are run on initial memories related by
𝑃 , the resulting output-distributions are coupled via relation 𝑄 . Probabilistic coupling is formalised
via the notion of relational lifting of 𝑄 to a relation 𝑄†: D (Mem) × D (Mem). Precisely, 𝑑1 𝑄† 𝑑2
iff there exists a (sub)distribution 𝑑 ∈ D (𝑀𝑒𝑚 ×Mem) such that (i) the marginal (sub)distributions
of 𝑑 are 𝑑1 and 𝑑2; and (ii) supp(𝑑) ⊆ 𝑄 . We are now ready to state the definition of validity of a
pRHL judgment:

Definition 5.3 (Validity of pRHL Judgments). Judgment ⊢ { 𝑃 } C ∼ C′ {𝑄 } is valid, in notation
⊨ { 𝑃 } C ∼ C′ {𝑄 }, if for all memories𝑚1,𝑚2 ∈ Mem such that𝑚1 𝑃 𝑚2, then JCK𝑚1 𝑄

† JC′K𝑚2 .

The proof system underlying pRHL is extensively described in the literature [Barthe et al. 2015,
2012, 2017]. Noteworthy, an implementation is available in EasyCrypt. Here, the notion of validity is
sufficient to relate eHLwith pRHL. Indeed, wewould like to transfer eHL properties from one program
C′ to a potentially more complex one C. The rule in Figure 4 allows for just that. Concerning post-
expectations, the second side-condition is sufficient to establish E𝑑 [𝑔] ≤ E𝑑 ′ [𝑔′] for any coupling
𝑑 𝑄† 𝑑 ′. Through the pRHL judgement, this holds in particular for the output distributions of C and
C′, on any pair of initial memories𝑚 and𝑚′ related by 𝑃 . The first side-condition now essentially
demands that each initial𝑚 of C can be paired with a memory𝑚′ of C′ related through 𝑃 , but also
through the pre-expectations. From here, soundness is not difficult to establish.
7 To be precise, a variable x is modified by C if𝑚 x ≠𝑚′ x for some initial memory𝑚 and final memory𝑚′ ∈ supp(JCK𝑚) .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:15

2

1

0

−∞ 1 2 3 4 5 6 +∞

(a) List with two extra levels of
balanced forward pointers.

3

2

1

0

−∞ 1 2 3 4 5 6 +∞

a b c d e f

(b) Searching for value associated
to key k = 3 in random skip list.

4

3

2

1

0

−∞ 1 2 3 3.5 4 5 6 +∞

a b c z d e f

(c) Inserting z with key k at sam-
pled height 5 in (b).

Fig. 5. Several representations of skip lists over elements [1, . . . , 6]. Figure (a) depicts a perfectly balanced
skip list. Figure (b) depicts the dictionary {1 ↦→ a, . . . , 6 ↦→ f} implemented on top of a (random) skip list.
The search path for value c with key 3 is indicated as a solid green arrow. Figure (c) is obtained from (b) by
inserting an element with key 3.5, with a sampled height of ht = 5. The dotted green arrow indicates the
search path followed by insert(3.5, z) to determine the position of the new node, it is identical to the path
from (b). The search path array sp is outlined with thick green borders, note that it is given by those nodes
on the search path where search proceeded downwards. The bended thick blue arrows indicate new pointers.

Proposition 5.4. Rule (prhl) is sound.

6 AVERAGE CASE COMPLEXITY OF SKIP LISTS
In this section, we demonstrate the flexibility of our framework via a complexity analysis of the skip
list data structure. Skip lists have been introduced in [Pugh 1990b] as a randomized alternative to
balanced binary trees that is easier to implement and maintain.8 Being a probabilistic data structure,
their formal average case complexity analysis is intricate. A skip list can be thought of as an ordered
linked list, where nodes may have additional forward pointers skipping several nodes ahead so as
to facilitate a more efficient search. Forward pointers are organised in levels, each level skipping
ahead (ideally) half of the nodes found in the level below. By introducing log2 (𝑛) levels for a list of
𝑛 elements, search becomes effectively a O(log2 (𝑛)) operation. For illustration, Figure 5a shows a
(perfectly balanced) skip list with three levels of forward pointers, organized as a stack above keys.
Element −∞ and +∞, acting as head and terminator of the list, respectively.

Maintaining perfect balance of forward pointers when elements are inserted or deleted is a costly
operation. In a skip list, forward pointers are chosen at random, so that when inserting a node, it
is assigned a forward pointer at level 𝑙 + 1 with a certain probability 𝑝 , in case there is a forward
pointer also on level 𝑙 . For 𝑝 = 1/2 (the standard case, which we fix below for simplicity), this means
that level 𝑙 +1will have around half the nodes of level 𝑙 ; maintaining a balancing of forward pointers
similar to that of the perfectly balanced case in the common case. This almost perfect balancing is
precisely the reason why skip lists have good complexity properties, on average.

6.1 A Dictionary Implementation on Top of Skip Lists
Dictionaries are prime examples of data structures implemented on top of skip lists. Figure 6a shows
such an implementation, for brevity we consider only search and insertion. This implementation
maintains an explicit, global memory nodes of nodes node(key, data, fwd) consisting of a key key,
a datum data and an array of forward pointers fwd. We assume keys are equipped with a partial
order. As indicated above, we always assume the presence of two nodes with minimal key −∞ and
maximal key +∞. As in the quickselect example, a global counter ct is used to measure costs.

8In quote “Skip lists are a probabilistic data structure that seem likely to supplant balanced trees as the implementation
method of choice for many applications. Skip list algorithms have the same asymptotic expected time bounds as balanced
trees and are simpler, faster and use less space.” [Pugh 1990a].

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:16 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

var ct;
var nodes;
proc find(k)
(p, lvl) ← (ptr−∞, height(ptr−∞));
while 0 ≤ lvl do
q← get_fwd(p, lvl);
if k < get_key(q)
then lvl−− else p← q;
ct++

if get_key(p) = k
then return get_data(p)
else return null

proc insert(k, d, hk)
(spf, k′) ← find_path(k);
if k = k′ then set_data(k′, d)
else
fwd← new_array(hk, ptr+∞);
q← fresh_ptr();
h← height(ptr−∞);
for k = 0 to min(h, hk) − 1 do
fwd[k] ← get_fwd(spf[k], k);
set_fwd(spf[k], k, q)

set_ptr(q, node(k, d, fwd));
set_fwds(ptr−∞, [h..hk − 1], q);

proc from_list(lst)
nodes← empty();
while lst ≠ nil do
(k, d) ::lst← lst;

hk $← geo(1/2) + 1;
insert(k, d, hk)

proc find_cost(lst, k)
from_list(lst);
ct← 0; find(k);
return ct

(a) Concrete implementation.

var hts;
proc path_len_to(k)
keys← decr(keys(hts));
(len, l) ← (0, −1);
while keys ≠ nil do
_::keys← keys;
if l < hts[k] ∧ head(keys) ≤ k
then
len← len + hts[k] − l;
l← hts[k] − 1

return (len + (hts[−∞] − 1) − l)
proc insert_h(k, hk)
if k ∈ dom(hts) then skip
else
hts[k] ← hk;
hts[−∞] ← max(hts[−∞], hk);

proc from_list_h(keys)
hts← { −∞ ↦→ 1; +∞ ↦→ 0};
while keys ≠ nil do
k::keys← keys;

hk $← geo(1/2) + 1;
insert_h(k, hk)

proc find_cost_h(lst, k)
from_list(keys(lst));
ct← path_len_to(k);
return ct

(b) Height abstraction.

(2 · log
2
(size(lst) + 1) + 4

proc find_cost_d(lst, k)
(2 · log

2
(size(lst) + 1) + 4

((★1)
(∆1 (m) + ∆0 (m) − 1

(len, l, h) ← (0, −1, 1);
keys← decr_uniq(keys(lst));

(𝜙 | len + (h − 1 − l) + ∆h (n) + ∆l+1 (n)
while keys ≠ nil do
(keys ≠ nil ∧ 𝜙 | 𝑙𝑒𝑛 + (ℎ − 1 − 𝑙)

+ Δℎ (𝑛) + Δ𝑙+1 (𝑛)
_::keys← keys;

(𝜙 | 𝑙𝑒𝑛 + (ℎ − 1 − 𝑙)
+ Δℎ (𝑛 + 1) + Δ𝑙+1 (𝑛 + 1)

((★2)
(E𝛿 [𝜆ℎ𝑘.

𝜙 | 𝑙𝑒𝑛 + (max(ℎ,ℎ𝑘 + 1) − 1 − 𝑙)
+ Δmax(ℎ,ℎ𝑘 +1) (𝑛)
+ if 𝑙 < ℎ𝑘 ∧ head(𝑘𝑒𝑦𝑠) then

Δℎ𝑘+1 (𝑛) + 1 else Δ𝑙+1 (𝑛)
hk $← geo(1/2) + 1;
h← max(h, hk);

(𝜙 | 𝑙𝑒𝑛 + (ℎ − 1 − 𝑙) + Δℎ (𝑛)
+ if 𝑙 < ℎ𝑘 ∧ head(𝑘𝑒𝑦𝑠) then

Δℎ𝑘+1 (𝑛) + 1 else Δ𝑙+1 (𝑛)
if l < hk ∧ head(keys) ≤ k then
len← len + hk − l;
l← hk − 1

(𝜙 | len + (h − 1 − l) + ∆h (n) + ∆l+1 (n)
(keys = nil ∧ 𝜙 | 𝑙𝑒𝑛 + (ℎ − 1 − 𝑙) + Δℎ (𝑛)

+ Δ𝑙+1 (𝑛)
((★3)
(0 ≤ len + (h − 1 − l) | len + (h−1−l)
return len + (h − 1 − l)

(0 ≤ res | res

(c) Final cost function, annotated.

Fig. 6. Skip list implementation of insertion and search, its height abstraction and final cost function. In (c),
𝑛 ≜ size(keys),𝑚 ≜ size(uniq_decr(keys(lst))), and 𝛿 is the geometric distribution with parameter 1/2.
In the invariant attributed to the loop, 𝜙 ≜ 0 ≤ len ∧ −1 ≤ l < h ∧ 1 ≤ h ∧ 0 ≤ n; and Δℓ (𝑛) ≜ log2 (𝑛+1)−ℓ
if ℓ ≤ ⌈log2 (𝑛 + 1)⌉ and Δℓ (𝑛) ≜ 𝑛

2ℓ−1 otherwise.

Search. The procedure find(k) implements lookup of a datum d associated to k, returning null
if no such datum can be found. Search proceeds from the top level at −∞, following forward
pointers as long as not overshooting, decrementing the level otherwise. Search eventually reaches
level lvl = −1, and stops at the last entry whose key is still bounded by k. Figure 5b illustrates the
search of key 3, highlighting the search path traversed by find(3). The implementation increments
the cost counter ct, whenever a comparisons of keys—k < get_key(q)—is performed. Observe
how this cost measure is directly related to the length of the search path.

Insertion. Inserting a datum d with key k involves finding first the location for the given k, and
linking a new node within skip list in case the key k is not present. Figure 5c illustrates insertion
of a datum z with unoccupied key 3.5. The size of the array of forward pointers fwd is drawn at
random. Pre-existing pointers that would “skip through the new column” are separated in two,
pointing now to and from the new node, respectively. Finally, the forward pointers of −∞ are
extended, in case insertion increases the maximal level, as in the Figure. The full implementation
of insertion is given by procedure proc insert(k, d) in Figure 6a. It uses a variation find_path
of find that returns an array spf of forward pointers on the search path where search took a

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:17

downward turn—those that will link to a newly inserted entry—together with the key k′ where
search terminated. Insertion incurs no cost, as we will be interested in the complexity of search.

Average search complexity. Inwhat follows, we outline our formalization on the search complexity—
the number of comparisons performed within a search—of skip lists. To this end, our starting point
is the function find_cost(lst, k)which searches for key k in a skip list, built from the provided list
of key/value pairs lst. The procedure returns the cost counter, storing the number of comparisons
performed by find. Since the skip list is constructed at random through the implementation of
insert, the expectation of the return value ct reflects precisely the average search complexity.

6.2 Outline of the Formalization
Height abstraction. Since pointers in a skip list always point forward to the first node of sufficient

height, the structure of a skip list is fully determined by the height of nodes, i.e. the size of their
array of forward pointers. This, in turn, justifies to abstract nodes by there height, specifically, we
have the following mapping in mind:

hts(nodes) ≜ {k ↦→ size(fwd) | p ∈ dom(nodes), nodes(p) = node(k, d, fwd)}
As insert is mostly concerned with managing the pointer structure after update, this abstraction
considerable simplifies its implementation, see Figure 6b. Correctness of this abstraction is justified
by the (classical) Hoare judgment9

⊢HL { wf(nodes) ∧ hs = hts(nodes) } insert(k, d, hk) { wf(nodes) ∧ hts = upd(hs, k, hk) }
(insert_spec)

where upd(hs, k, hk) updates the height of k to hk in hs only in the case when k ∉ dom(hs). The
predicate wf(nodes) collects several well-formedness conditions expressing that nodes forms a
skip list (eg, keys are ordered, pointers reference the first larger key, etc). Reasoning inductively,
this auxiliary result establishes the following correspondence:
⊢ { keys(lst⟨1⟩) = keys⟨2⟩ }
from_list(lst) ∼ from_list_h(keys)
{ wf(nodes⟨1⟩) ∧ hts(nodes⟨1⟩) = hts⟨2⟩ }

(equiv_from_list)

As we have alluded to already above, the search complexity corresponds to the length of the
search path. Formally, this statement is expressed by the (classical) Hoare triple
⊢HL { wf(nodes) ∧ cost = ct } find(k) { ct = cost + path_len(hts(nodes), k) } (find_spec)

where cost refers to the value of the cost counter before execution, and where path_len(hts, k)
expresses the length of the search path to key k. It is worth mentioning that the proof of this
judgment depends crucially on wf(nodes). For instance, would nodes contain a cycle, find(k)
would potentially loop and no bound on ct could be derived. This explains why we have proven
preservation of well-formedness—in essence functional correctness—of insertion. Indeed, this
turned out to be the most delicate part in the proof of (equiv_from_list).

By (find_spec), to analyze the search complexity it is sufficient to bound the length of the search
path path_len(hts(nodes), k), which in turn is computable within the abstraction. The procedure
path_len_to(k), given in Figure 6b, gives an explicit definition of the search path length. To give
some intuition about the definition, reconsider the search path for key k = 3 depicted in Figure 5b.
The procedure starts by scanning keys in reverse-order, pictorially from right to left, until it reaches
9Here and below, we denote Hoare judgments that should be interpreted in the classical sense by ⊢HL { 𝜙 } C {𝜓 }. We
have also done a similar judgment establishing the functional correctness of the data part, i.e that the skip list data structure
can be used as a dictionary.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:18 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

head(keys) = 3. From now on, the procedure traverses the search path in reverse-order, starting
at level l = −1. Observe that search reaches a new key always through the top-most incoming
forward pointer. Correspondingly, the backward traversal moves up by raising the level l to the
maximal level and by incrementing the length len of the path traversed so far, accounting for the
upward moves and the move to the left. From here, the procedure iterates. In the example, at key
3 the procedure moves this way to level l = 1 advancing len = 0 to len = 3, accounting for the
upward two moves and the move to the left. The procedure then iterates, to key 2, skipping along
key 1 not on the search path (due to the condition l < hts[k]), until finally arriving at −∞. The
final increment in the return statement accounts for the final move upwards on key −∞, in the
example from level 2 to level 3. With this intuition in mind, functional correctness
⊢HL { hs = hts } path_len_to(k) { res = path_len(hs, k) } (path_len_to_spec)
is easily provable in classical Hoare logic. Summing up, the following relational Hoare judgment
state correctness of the abstraction with respect to search complexity.
⊢ { lst⟨1⟩ = lst⟨2⟩ ∧ k⟨1⟩ = k⟨2⟩ } find_cost(lst, k) ∼ find_cost_h(lst, k) { res⟨1⟩ = res⟨2⟩ }

(equiv_find_cost_h)
It is a direct consequence of (equiv_from_list), (find_spec) and (path_len_to_spec).

Estimation of the path length through the height abstraction. The judgment (equiv_find_cost_h)
formally justifies that we analyze the search complexity through its height abstraction given in
Figure 6b. The crux in proving the latter directly is to find a suitable upper invariant for the loop in
from_list_h. In effect, this requires expressing the search path length after inserting a column,
in terms of of the search path length before the insertion. At the same time, this invariant has to
lead to a sufficiently tight bound in the size of keys. However, this technicality can be avoided
altogether, by sampling hts on-demand, rather than eagerly. The procedure find_cost_d, given
in Figure 6c, is obtained by inlining path_len_to within find_cost_d from Figure 6b. Heights
hk corresponding to hts[k] are sampled on demand-within the path traversal, rendering the call
to from_list_h obsolete. The auxiliary variable h refers to the maximal sampled height, viz. the
height of −∞. One can prove that semantically, find_cost_h and find_cost_d coincide:
⊢ { lst⟨1⟩ = lst⟨2⟩ ∧ k⟨1⟩ = k⟨2⟩ } find_cost_h(lst, k) ∼ find_cost_d(lst, k) { res⟨1⟩ = res⟨2⟩ }

(equiv_find_cost_d)

Notice that the left program inserts keys in the order they occur in lst, whereas the right program
processes keys in reverse-sorted order, removing duplicates. Thus, a rather involved key step
towards this equivalence is proving that path length is independent of the order of insertions.

Final cost analysis via eHL. The judgments (equiv_find_cost_h) and (equiv_find_cost_d)
establish
⊢ { lst⟨1⟩ = lst⟨2⟩ ∧ k⟨1⟩ = k⟨2⟩ } find_cost(lst, k) ∼ find_cost_d(lst, k) { res⟨1⟩ = res⟨2⟩ }

(equiv_find_cost)

witnessing that the complexity of searching for a key k in an arbitrary skip list build from lst

is computed by find_cost_d(lst, k). The final puzzle piece lies now in bounding this result, in
expectation. To this end, we make use of eHL, compare the assertions in Figure 6c. The gist of the
proof lies in finding an invariant for the loop. As the definition and the related weakening proofs
are quite technically involved, we have relegated further discussion to the Appendix. Very briefly,
terms Δℎ (𝑛) and Δ𝑙+1 (𝑛) are used to account for changes to the path length, through vertical and
horizontal steps, respectively. Concerning horizontal steps for instance, in the common case where

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:19

the current height h does not exceed the (average) logarithmic overall height, Δℎ (𝑛) = log2 (𝑛+12ℎ)
measures the expected height increase of completing the loop in terms of the 𝑛+1

2ℎ nodes found
at current height h. The invariant turns slightly more complicated, to also account for the final
difference h − 1 − l contributing to the result of the procedure (see weakening (★1)). Once carried
over the initialisation statements (see weakening (★2)), the invariant gives the final logarithmic
bound 2 · log2 (size(𝑙𝑠𝑡)+1) +4. Apart from defining the invariant, the most delicate step concerned
the proof of the weakening step (★2). Towards this proof, we have build a considerate library on
laws of expectations, such as the law of linearity, Jensen’s inequality, etc.

Concluding Remarks. Splitting the correctness proof, done via pRHL, from the complexity analysis,
carried on via eHL, seems essential to achieve our goal. The modularity provided by our framework
has allowed us to develop the proof step-by-step, in a compositional way, which would not have
been possible without the EasyCrypt implementation.

7 ADVERSARIES AND APPLICATIONS TO CRYPTOGRAPHIC PROOFS
In this section, we extend our programming language and logic with adversary calls, and illustrate
how the extended logic can be used to reason about cryptographic proofs. Our example is inspired
from a recent work by [Barbosa et al. 2023], which uses our implementation of eHL for proving
security of Dilithium [Ducas et al. 2017], a post-quantum signature scheme recently standardized
by the NIST (National Institute of Standards and Technology).

Extension of the language. We now extend the language to adversarial code by permitting adver-
sary calls x← Ao(E), where A is drawn from a set Adv = {A ,B , . . . } of adversary names. Each
adversary call is parameterised by an oracle, i.e., a pre-defined procedure o ∈ Fun.10 Adversaries
A refer to arbitrary procedures, granted only partial access to the global memory through a set
WriteA ⊆ GVar of writable global variables. In a call to Ao, the adversary may modify variables
outside WriteA only by invoking the oracle o. To model adversarial code in the semantics, we
index the interpretation of program statements by an adversary environment 𝛾 . This environments
maps each A ∈ Adv to a declaration

𝛾 (A) = 𝑜 ↦→ (proc A(x) C𝑜; return E) ,
indexed by an oracle 𝑜 . Note that the code of the adversary is parametric in the oracle. The
body C𝑜 may contain oracle calls x← 𝑜 (E). Invocation of Ao executes the procedure 𝛾 (A)(o) =
proc A(x) Co; return E, where in the body the meta-variable 𝑜 has been substituted by the
provided oracle o. We require that adversary environments are consistent with writeable variables,
i.e., the body of 𝛾 (A)(o), nor any of its subprocedures except the oracle o, modifies the memory
outside of WriteA . For instance, if the adversary executes an instruction x← E, then x ∈ WriteA .
In contrast to the notion of modified variables ModC, which is semantic, WriteA is a syntactic
notion with subtle differences. The memory content of a variable x ∉ WriteA may change during
an invocation, but only through invocations of the oracle. The semantics of an adversarial call
are now identical to ordinary procedure calls, just, the declaration of the adversary is provided
by the adversary environment 𝛾 , that is, we let JAoK𝛾 = J𝛾 (A)(o)K, but treat a call x← Ao(E)
otherwise identical to an ordinary procedure call.

Extension of eHL. To extend the logic for programs with adversarial code, the notion of judgment
can remain identical, apart from the fact that program statements now may contain adversarial
calls. However, judgments will now be valid if validity in the original sense holds independent
10In practice, we permit A to be parameterised by more than one oracle. Here, the restriction helps us avoid notational
overhead.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:20 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

(1

𝛿
+ size(log)

proc rsample()
var t, r;

(1

𝛿
+ size(log)

t← false;
while ¬t do
(¬t | ¬t

𝛿
+ size(log)

(Esample [𝜆r .
¬test(r)

𝛿
+ size(r ::log)]

r $← sample();
log← r::log;
t← test(r);

(¬t

𝛿
+ size(log)

(t | ¬t

𝛿
+ size(log)

(size(log)

(a) Logged rejection sampling.

(𝜙 | if Q ≤ c then bad else F

proc o()
var r;

(𝜙 | if Q ≤ c then bad else F

c← c + 1;
(𝜙 | if Q < c then bad else 𝜖

𝛿
+ F

rsample();
(𝜙 | if Q < c then bad else F

(if 𝑐 = Q then Esample [𝜆𝑟 .𝑟 ∈ 𝑙𝑜𝑔]
else 𝜙 | if Q ≤ 𝑐 then 𝑏𝑎𝑑 else 𝐹

if c = Q then

r∗ $← sample();
bad← r∗ ∈ log;

(𝜙 | if Q ≤ c then bad else F

(b) Oracle.

(𝜖 · Q
𝛿

proc game()
(𝜖 · Q

𝛿
(true | if Q ≤ 0 then 𝑏𝑎𝑑

else 𝜖 · 0 + 𝜖
𝛿
· (Q − 0)

bad← false;
c← 0;
log← nil;

(𝜙 | if Q ≤ c then bad else F

Ao()
(𝜙 | if Q ≤ c then bad else F

(bad

(c) Main program

Fig. 7. Rejection sampling with bad. Variables c, log and bad are global. Here, 0 ≤ Q is a constant,
𝛿 ≜ Pr[sample : test] > 0 is the probability of event test on the distribution given by sample,
Pr[sample : 1𝑣] ≤ 𝜖 is an upper-bound on the probability of sampling a value 𝑣 ; 𝜙 ≜ bad⇒ Q ≤ c and
𝐹 ≜ 𝜖 · (size(log) + Q−c

𝛿
).

of the adversarial code, that is, ⊨𝑍 { 𝑓 } C {𝑔 } if EJCK𝛾𝑚 [𝑔 𝑧] ≤ 𝑓 𝑧𝑚 holds for all 𝑧, 𝑚 and all

adversary environments 𝛾 . Similar, validity for procedure declarations is defined by quantifying
over all adversary environments.
The following now gives our adversarial rule, for 𝑓 : 𝑍 → GMem→ R+∞ depending only on

the global memory.
𝑓 ⊥WriteA 𝐹 = 𝜆𝑧 (𝑚𝑔, _). 𝑓 𝑧𝑚𝑔 ⊢𝑍 { 𝐹 } o { 𝐹 }

⊢𝑍 { 𝐹 } Ao { 𝐹 }
[adv]

This rule lifts invariants on oracles to that of adversaries. The hypothesis 𝑓 ⊥ WriteAdv, stating
that 𝑓 is independent of writable variables by the adversary, ensures that 𝐹 remains invariant
throughout complete invocation of the adversary.

Theorem 7.1. Rule (adv) is sound.

Example. We illustrate how eHL can be used to upper bound the probability of bad events in
rejection sampling. The example captures the essence of a key step in the security proof of the
Dilithium signature scheme, formalized in Barbosa et al. [2023] using our implementation of eHL.
Our goal is to provide an upper-bound on the probability that a fresh, random value appears in the
history of samplings performed during rejection sampling. This stage of the proof is represented,
in slightly simplified form, in Figure 7. Procedure rsample (Figure 7a) performs rejection sampling
from distribution sample with predicate test. The global variable log keeps track of all sampled
values. Each invocation of the oracle o, later provided to the adversary, performs rejection sampling
and thereby populates log. A global counter c keeps track of the number of oracle invocations. Once
the counter reaches 0 ≤ Q, a bad event is signaled through setting the global variable bad, precisely
when log contains a randomly sampled value r∗. The main program (Figure 7c) consists simply of
a call to the adversary Ao, with global auxiliary global variables initialised correspondingly. The
adversary has access to the global variables only through the oracle, that is, WriteA = ∅. Our goal
is to bind the probability of the Boolean variable bad—its expectation—within this program.

Figure 7 is annotated with the corresponding eHL proof. The central proof step lies in annotating
the oracle in Figure 7b with an invariant binding the value of bad. Being initialized to false, this
variable is only set once the invocation counter c of the oracle reaches Q, and then only when a
fresh sampled value r∗ collides with a previously sampled value in log. In turn, the probability of a

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:21

𝑔 ≤ 𝑓
⊢𝑍 { 𝑓 } skip {𝑔 }

[skipEc]
⊢𝑍 { 𝑓 } C {𝑔[x/E] }
⊢𝑍 { 𝑓 } C; x← E {𝑔 } [assignEc]

⊢𝑍 { 𝑓 } C { wp(D, 𝑔) }
⊢𝑍 { 𝑓 } C; D {𝑔 } [wpEc]

⊢𝑍 { 𝑓 } C {𝑔 } ∀𝑧 𝑣 . (𝜆𝑚. 𝐹 𝑧𝑚 𝑣) ⊥ ModC ∀𝑧𝑚. 𝐹 𝑧𝑚 concave, non-decreasing
⊢𝑍 { 𝜆𝑧𝑚.𝐹 𝑧𝑚 (𝑓 𝑧𝑚) } C { 𝜆𝑧𝑚.𝐹 𝑧𝑚 (𝑔 𝑧𝑚) }

[frameEc]

⊢𝑍 { 𝑝 } f {𝑞 }
⊢𝑍 { 𝑓 } C { 𝜆𝑧𝑚. (∀𝑟 ®𝑣 . 𝑔 𝑧𝑚[x/𝑟] [Modf/®𝑣] ≤ 𝑞 𝑧 (𝑚𝑔 [Modf/®𝑣], 𝑟)) | 𝑝 𝑧 (𝑚𝑔, JEK𝑚) }

⊢𝑍 { 𝑓 } C; x← f(E) {𝑔 } [callEc]

Fig. 8. Excerpt of derived rules implemented in EasyCrypt.

collision r∗ ∈ log is bounded from above by 𝜖 · size(log), for 𝜖 an upper-bound on probabilities
of sample. This, in effect, allows us to estimate the value of bad in terms of the size of log when c
reaches Q. To this end, let 0 < 𝛿 be the probability that a sample satisfies the predicate test. As
indicated in Figure 7a, rejection sampling increases the length of log, on average, by 1

𝛿
.

The invariant given in the specification (see Figure 7b) lifts this observation to the oracle. In
the term 𝐹 = 𝜖 · (size(log) + Q−c

𝛿
), the factor 𝜖 stems from the approximation of bad in terms of

the size of log, the fraction Q−c
𝛿

accounts the potential size increase of log until the invocation
counter reaches the limit Q. Once the counter is reached, the invariant simply refers to the value of
bad. The overall program is now treated essentially by an application of the adversary rule, using
the invariant on the oracle as provided, see Figure 7c. The weakening at the end follows from the
classical invariant 𝜙 . The derived bound 𝜖 · Q

𝛿
is obtained by simplification of the invariant with

global variables initialised correspondingly.
The proof hinges essentially on the fact that, on average, the size of log is bounded, although

rsample is potentially non-terminating andmay produce a log of arbitrary size. Lacking capabilities
for expection based reasoning, this renders a proof using the phoare logic present in EasyCrypt
significantly more involved. The most natural way here is to proceed via an approximation of
rejection sampling so that the number of iterations is bounded, say by a constant 𝐾 . Thereby,
within the Q invocations of the oracle, the size of log becomes bounded by Q · 𝐾 , worst case. On
the so transformed, certainly terminating, program, one can then obtain a bound Q · 𝐾 · 𝜖 on the
probability of bad being set. The approximation itself however, introduces an additional error rate,
leading to the overall bound of Q · 𝐾 · 𝜖 + Q · 𝛿𝐾 .
In contrast, the use of eHL not only significantly reduced proof effort, it also lead to a more

preferable bound. The complete formal proof in EasyCrypt takes in total only 48 lines. The frame
rule (detailed in the next section) turned out particularly useful. It allowed us to lift the specification
of rsample, talking only about the expected size increase of log, to the call within the oracle o.

8 IMPLEMENTATION
We have implemented eHL in the EasyCrypt proof assistant [Barthe et al. 2013]. EasyCrypt is a
natural choice to implement eHL, since it is specially tailored to reason about probabilistic programs.
Informally, EasyCrypt combines a proof engine for an ambient higher-order logic (HOL) with
several program logics for proving properties of probabilistic programs. Judgments of the program
logics are terms of the ambient logic, and proofs in the program logics are carried by means of
(proof) tactics. In essence, a tactic implements a rule of the logic, by turning the conclusion into
its hypotheses. This way, proofs are build gradually from the conclusion, upwards, ending in the
axioms of the logic.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:22 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

In order to support expectation-based reasoning, we have added eHL judgments as assertions of
the ambient logic, and built support to reason about such judgments. In particular, we have:
- added tactics for core and several derived eHL rules. The core rules are in the trusted computing
base (TCB) of the tool. However, the derived rules are designed to generate sequences of core
tactics, in order to minimize the TCB as much as possible;

- added a library to reason about expectations. The library is required to discharge the many
ambient logic goals generated by applying eHL tactics.

Derived proof rules. The proof rules in Section 5 follow the conventional presentation of program
logics but are tedious to use in practice. For instance, reasoning about a sequence of instructions
would first require a sequence of applications of rule (seq) to split the sequence apart, and then use
the syntax-directed rules, possibly combined with non-structural rules, on the individual program
instructions. Even more tedious, working towards a triple this way would entail that in many
situations the intermediate pre-/post-expectations would need to be supplied by the user, as these
cannot be inferred in general. To overcome these complications and to enhance usability of the
logic, in the implementation we composing core syntax-directed rules with sequential composition
and structural rules. An excerpt of derived rules can be found in Figure 8.
Rules (skipEc) is a variation of the ordinary rule (skip), combined with rule (conseq) to make

it applicable to the usual scenario where pre- and post-expectations differ. Rule (assignEc), the
combination ofrules (seq) and (assign), embodies the backward style kind of analysis commonly
found across the implementations of different logics in EasyCrypt, close to traditional weakest
pre-condition reasoning. Generalising on this idea with rule (wpEc), our implementation provides
a tactic wp computing the weakest pre-expectation, wp(D, 𝑓), for a tail D neither containing loops
nor procedure calls. To illustrate the advantage of these derived rules, note that the proof of
rpartition_abs in Figure 1b is completely automated by the tactic wp, apart from the initial
weakening step. This would not have been possible otherwise.

Among the more interesting derived rules is the final rule (frameEc). In classical Hoare logic
the frame rule, also known as rule of constancy constancy, takes the form

⊢HL { 𝑃 } C {𝑄 } 𝑅 ⊥ ModC
⊢HL { 𝑃 ∧ 𝑅 } C {𝑄 ∧ 𝑅 }

It is indispensable in practice, since it allows one to focus only on the relevant parts of an assertion,
namely only the one that is potentially altered by C. But how to transfer this rule to our quantitative
logic, in particular, how to translate logical conjunction? Here are three valid rules, all derivable
from rules (conseq) and (nmod):
⊢𝑍 { 𝑓 } C {𝑔 } 𝑃 ⊥ ModC
⊢𝑍 { 𝑃 | 𝑓 } C { 𝑃 | 𝑔 }

[frame1]
⊢𝑍 { 𝑓 } C {𝑔 } ℎ ⊥ ModC
⊢𝑍 { 𝑓 · ℎ } C {𝑔 · ℎ }

[frame2]
⊢𝑍 { 𝑓 } C {𝑔 } ℎ ⊥ ModC
⊢𝑍 { 𝑓 + ℎ } C {𝑔 + ℎ }

[frame3]

Rather than imposing a concrete choice, our rule (frameEc) abstracts over the choice, and permits
placing pre- and post-expectations in an arbitrary context 𝐹 ⊥ ModC, that is concave11 and non-
decreasing (i.e. monotone), when seen as function 𝐹 : R+∞ → R+∞. For instance, this rule has
been applied in the previous section, adapting the function specification of rsample to the call site
within o (see Figure 7). In the application of the rule, 𝐹 is given by the context

𝜙 | if Q < c then bad else 𝜖 · (□ + Q−c
𝛿
). (×)

Seen as function in the hole □, this term can be proven monotone and concave, as demanded
by the third premise in rule (frameEc). Since it mentions only local, unmodified variables, the
second premise is easy to discharge. The rule itself is derivable by a composition of (nmod) and
11i.e. ∀𝑡, 0 ≤ 𝑡 ≤ 1⇒ ∀𝑥 𝑦, 𝑡𝐹 (𝑥) + (1 − 𝑡)𝐹 (𝑦) ≤ 𝐹 (𝑡𝑥 + (1 − 𝑡)𝑦)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:23

(conseq). To see this, assume ⊢𝑍 { 𝑓 } C {𝑔 }. Rule (conseq) deduces ⊢𝑍 { 𝐹 [𝑓] } C { 𝐹 [𝑔] } since
E𝑑 [𝐹 [𝑔]] ≤ 𝐹 (E𝑑 [𝑔]) ≤ 𝐹 [𝑓] holds for all𝑚,𝑑 with E𝑑 [𝑔] ≤ 𝑓 . The first inequality effectively
imposes concavity of 𝐹 (it is then a consequence from the reverse Jensen’s inequality), the second
imposes that 𝐹 is non-decreasing. Allowing 𝐹 to depend on part of the memory that is not modified
by C explains why the rule relies on (nmod) to be justified.

To ease the application of the frame rule, we have proven a list of lemmas showing that functions
like identity, multiplication by a constant or log satisfy those properties. EasyCrypt is then able
to automatically/recursively apply those lemmas to prove the last premises. Furthermore this list
of lemmas is user extensible. This way, for instance, EasyCrypt can automatically discharge the
premises related to the context (×) in the proof mentioned above.
The final rule, rule (callEc) implemented by tactic call, allows to compute the weakest pre-

expectation of a procedure call, given a specification. The specification itself is usually already
proven by a lemma in EasyCrypt. It implicitly features an application of rule (frameEc), more
precisely its instance (frame1) given in the motivation above, to internalise an implicit weakening
of the post-expectations within the pre-expectation. This aides usability in connection with wp,
which will for instance automatically propagate variable initialisation within the internalised
weakening. The tactic call also takes a further context 𝐹 (adhering to the restrictions imposed by
rule (frameEc)) as optional argument, in order to lift a procedure specification directly to its use at
a call site.
Last but not least, in addition to these derived rules, we have extended already existing tactics

that do not change the semantics of programs to deal with eHL judgments, such as the inline
tactic that replaces a procedure call by its body.

Libraries of extended positive reals and expectations. We have developed a library to reason about
extended positive reals and expectations. The library formalizes the type of positive reals R+ as a
subtype of R and the type of extended positive reals as a disjoint union of R+ and +∞. The library
establishes that both positive and extended positive reals form additive monoids, which allows
to instantiate the EasyCrypt library on big-operators. This library, inspired from [Bertot et al.
2008], provides a wealth of facts to reason about indexed sums—via the mathematical operator Σ.
Using big-operators, it is thus relatively simple to define the notion of expectation, and to prove
elementary facts about expectations. These facts are used to discharge many proof obligations
automatically. At the time of writing, the library weights in at around 1.100 lines of proof scripts.

9 CONCLUSION
We have proposed a proof hopping approach for reasoning about expectation-based properties of
(adversarial) probabilistic programs, and extended the EasyCrypt proof assistant to support our
approach. In addition, we have shown that our approach is useful for reasoning about expected
cost of randomized algorithms and for cryptographic proofs. Our implementation of eHL has
been integrated into the EasyCrypt proof assistant. Future directions include extending eHL to
quantum adversaries and quantum programs, and to further develop and capture formally the use
of expectation-based properties in cryptography.

ACKNOWLEDGMENTS
We would like the thank the anonymous reviewers for their work and invaluable suggestions,
which greatly improved our presentation. This work is partly supported by the ANR Project PPS:
"Probabilistic Program Semantics" and the Agence Nationale de la Recherche (ANR, French National
Research Agency) as part of the France 2030 programme – ANR-22-PECY-0006. Further it is partly

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:24 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

supported by the FWF Project AUTOSARD: “Automated Sublinear Amortised Resource Analysis of
Data Structures”.

REFERENCES
S. Agrawal, K. Chatterjee, and P. Novotný. 2018. Lexicographic Ranking Supermartingales: An Efficient Approach to

Termination of Probabilistic Programs. PACMPL 2, POPL (2018), 34:1–34:32. https://doi.org/10.1145/3385412.3386002
Martin Avanzini, Gilles Barthe, and Ugo Dal Lago. 2021. On continuation-passing transformations and expected cost

analysis. Proc. ACM Program. Lang. 5, ICFP (2021), 1–30. https://doi.org/10.1145/3473592
M. Avanzini, U. Dal Lago, and A. Ghyselen. 2019. Type-Based Complexity Analysis of Probabilistic Functional Programs. In

Proc. of 34
th
LICS. IEEE, 1–13. https://doi.org/10.1109/LICS.2019.8785725

M. Avanzini, U. Dal Lago, and A. Yamada. 2020a. On Probabilistic Term Rewriting. SCP 185 (2020), 102338. https:
//doi.org/10.1016/j.scico.2019.102338

Martin Avanzini, Georg Moser, and Michael Schaper. 2020b. A modular cost analysis for probabilistic programs. Proc. ACM
Program. Lang. 4, OOPSLA (2020), 172:1–172:30. https://doi.org/10.1145/3428240

Martin Avanzini, Georg Moser, and Michael Schaper. 2023. Automated Expected Value Analysis of Recursive Programs.
Proc. ACM Program. Lang. 7, PLDI (2023), 1050–1072. https://doi.org/10.1145/3591263

Manuel Barbosa, Gilles Barthe, Christian Doczkal, Jelle Don, Serge Fehr, Benjamin Grégoire, Yu-Hsuan Huang, Andreas
Hülsing, Yi Lee, and Xiaodi Wu. 2023. Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and
Dilithium. In Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023,

Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part V (Lecture Notes in Computer Science, Vol. 14085), Helena
Handschuh and Anna Lysyanskaya (Eds.). Springer, 358–389. https://doi.org/10.1007/978-3-031-38554-4_12

Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, and Pierre-Yves Strub. 2021. Mechanized Proofs
of Adversarial Complexity and Application to Universal Composability. In CCS ’21: 2021 ACM SIGSAC Conference on

Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim,
Giovanni Vigna, and Elaine Shi (Eds.). ACM, 2541–2563. https://doi.org/10.1145/3460120.3484548

Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt:
A Tutorial. In Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures (Lecture Notes in

Computer Science, Vol. 8604), Alessandro Aldini, Javier López, and Fabio Martinelli (Eds.). Springer, 146–166. https:
//doi.org/10.1007/978-3-319-10082-1_6

Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. 2016. Synthesizing Probabilistic Invariants via
Doob’s Decomposition. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,

July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh Farzan
(Eds.). Springer, 43–61. https://doi.org/10.1007/978-3-319-41528-4_3

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, and Pierre-Yves Strub. 2015. Relational
Reasoning via Probabilistic Coupling. In Logic for Programming, Artificial Intelligence, and Reasoning - 20th International

Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9450), Martin
Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov (Eds.). Springer, 387–401. https://doi.org/10.1007/978-3-
662-48899-7_27

G. Barthe, B. Grégoire, and S. Z. Béguelin. 2009. Formal Certification of Code-based Cryptographic Proofs. In Proc. of 36
th

POPL. ACM, 90–101. https://doi.org/10.1145/1480881.1480894
Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2012. Probabilistic Relational Hoare Logics for Computer-

Aided Security Proofs. In Mathematics of Program Construction - 11th International Conference, MPC 2012, Madrid, Spain,

June 25-27, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7342), Jeremy Gibbons and Pablo Nogueira (Eds.).
Springer, 1–6. https://doi.org/10.1007/978-3-642-31113-0_1

Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Coupling proofs are probabilistic product
programs. In Proc. of 44

th
POPL, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 161–174. https://doi.org/10.

1145/3009837.3009896
Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Lena Verscht. 2023. A Calculus for

Amortized Expected Runtimes. Proc. ACM Program. Lang. 7, POPL (2023), 1957–1986. https://doi.org/10.1145/3571260
Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. 2008. Canonical Big Operators. In Theorem Proving in Higher

Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings (Lecture

Notes in Computer Science, Vol. 5170), Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar (Eds.). Springer, 86–101.
https://doi.org/10.1007/978-3-540-71067-7_11

O. Bournez and F. Garnier. 2005. Proving Positive Almost-Sure Termination. In Proc. of 16
th
RTA (LNCS, Vol. 3467). Springer,

323–337. https://doi.org/10.1142/S0129054112400588

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3385412.3386002
https://doi.org/10.1145/3473592
https://doi.org/10.1109/LICS.2019.8785725
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3428240
https://doi.org/10.1145/3591263
https://doi.org/10.1007/978-3-031-38554-4_12
https://doi.org/10.1145/3460120.3484548
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1007/978-3-642-31113-0_1
https://doi.org/10.1145/3009837.3009896
https://doi.org/10.1145/3009837.3009896
https://doi.org/10.1145/3571260
https://doi.org/10.1007/978-3-540-71067-7_11
https://doi.org/10.1142/S0129054112400588

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:25

A. Chakarov and S. Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Proc. of 25
th
CAV (LNCS,

Vol. 8044). Springer, 511–526. https://doi.org/10.1007/978-3-642-39799-8_34
K. Chatterjee, H. Fu, and A. Murhekar. 2017. Automated Recurrence Analysis for Almost-Linear Expected-Runtime Bounds.

In Proc. of 29
th
CAV (LNCS, Vol. 10426). Springer, 118–139. https://doi.org/10.1007/978-3-319-63387-9_6

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, 3rd Edition.
MIT Press.

Láo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, , and Damien Stehlé. 2017.
CRYSTALS–Dilithium: Algorithm Specification and Supporting Documentation. Round-1 submission to the NIST
Post-Quantum Cryptography Standardization Project. https://cryptojedi.org/papers/#dilithium.

Manuel Eberl, Max W. Haslbeck, and Tobias Nipkow. 2020. Verified Analysis of Random Binary Tree Structures. J. Autom.

Reason. 64, 5 (2020), 879–910. https://doi.org/10.1007/s10817-020-09545-0
Maximilian Paul Louis Haslbeck. 2021. Verified Quantitative Analysis of Imperative Algorithms. Ph. D. Dissertation. Technische

Universität München.
Max W. Haslbeck and Manuel Eberl. 2020. Skip Lists. Arch. Formal Proofs 2020 (2020). https://www.isa-afp.org/entries/

Skip_Lists.html
C. A. R. Hoare. 1961. Algorithm 65: find. Commun. ACM 4, 7 (1961), 321–322. https://doi.org/10.1145/366622.366647
C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–580. https:

//doi.org/10.1145/363235.363259
Joe Hurd, Annabelle McIver, and Carroll Morgan. 2004. Probabilistic Guarded Commands Mechanized in HOL. In Proceedings

of the Second Workshop on Quantitative Aspects of Programming Languages, QAPL 2004, Barcelona, Spain, March 27-28,

2004 (Electronic Notes in Theoretical Computer Science, Vol. 112), Antonio Cerone and Alessandra Di Pierro (Eds.). Elsevier,
95–111. https://doi.org/10.1016/j.entcs.2004.01.021

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proc. of 42

nd
POPL, Sriram K. Rajamani and

David Walker (Eds.). ACM, 637–650. https://doi.org/10.1145/2676726.2676980
B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. 2018. Weakest Precondition Reasoning for Expected Runtimes of

Randomized Algorithms. JACM 65, 5 (2018), 30:1–30:68. https://doi.org/10.1145/3208102
Thomas Kleymann. 1998. Hoare logic and VDM : machine-checked soundness and completeness proofs. Ph. D. Dissertation.

University of Edinburgh, UK. http://hdl.handle.net/1842/387
Thomas Kleymann. 1999. Hoare Logic and Auxiliary Variables. Formal Aspects Comput. 11, 5 (1999), 541–566. https:

//doi.org/10.1007/s001650050057
Donald Knuth. 1973. The Art Of Computer Programming, vol. 3: Sorting And Searching. Addison-Wesley.
D. Kozen. 1985. A Probabilistic PDL. JCSC 30, 2 (1985), 162 – 178. https://doi.org/10.1016/0022-0000(85)90012-1
Peter Lammich and Thomas Tuerk. 2012. Applying Data Refinement for Monadic Programs to Hopcroft’s Algorithm. In

Interactive Theorem Proving - Third International Conference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012. Proceedings

(Lecture Notes in Computer Science, Vol. 7406), Lennart Beringer and Amy P. Felty (Eds.). Springer, 166–182. https:
//doi.org/10.1007/978-3-642-32347-8_12

Lorenz Leutgeb, Georg Moser, and Florian Zuleger. 2022. Automated Expected Amortised Cost Analysis of Probabilistic
Data Structures. In Proc. of 34

th
CAV (LNCS, Vol. 13372). 70–91. https://doi.org/10.1007/978-3-031-13188-2_4

StephenMagill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. 2010. Automatic numeric abstractions for heap-manipulating
programs. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 211–222.
https://doi.org/10.1145/1706299.1706326

Annabelle McIver and Carroll Morgan. 2005. Abstraction, refinement and proof for probabilistic systems. Springer Science &
Business Media.

Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program.

Lang. Syst. 18, 3 (1996), 325–353. https://doi.org/10.1145/229542.229547
N. C. Ngo, Q. Carbonneaux, and J. Hoffmann. 2018. Bounded Expectations: Resource Analysis for Probabilistic Programs. In

Proc. of 39
th
PLDI. ACM, 496–512. https://doi.org/10.1145/3296979.3192394

Tobias Nipkow. 2002a. Hoare Logics for Recursive Procedures and Unbounded Nondeterminism. In Computer Science

Logic, 16th International Workshop, CSL 2002, 11th Annual Conference of the EACSL, Edinburgh, Scotland, UK, September

22-25, 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2471), Julian C. Bradfield (Ed.). Springer, 103–119.
https://doi.org/10.1007/3-540-45793-3_8

Tobias Nipkow. 2002b. Hoare Logics in Isabelle/HOL. Springer Netherlands, Dordrecht, 341–367. https://doi.org/10.1007/978-
94-010-0413-8_11

Tobias Nipkow, Manuel Eberl, and Maximilian P. L. Haslbeck. 2020. Verified Textbook Algorithms - A Biased Survey. In
Automated Technology for Verification and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam, October

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-63387-9_6
https://cryptojedi.org/papers/#dilithium
https://doi.org/10.1007/s10817-020-09545-0
https://www.isa-afp.org/entries/Skip_Lists.html
https://www.isa-afp.org/entries/Skip_Lists.html
https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1016/j.entcs.2004.01.021
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3208102
http://hdl.handle.net/1842/387
https://doi.org/10.1007/s001650050057
https://doi.org/10.1007/s001650050057
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-031-13188-2_4
https://doi.org/10.1145/1706299.1706326
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/3296979.3192394
https://doi.org/10.1007/3-540-45793-3_8
https://doi.org/10.1007/978-94-010-0413-8_11
https://doi.org/10.1007/978-94-010-0413-8_11

1:26 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

19-23, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12302), Dang Van Hung and Oleg Sokolsky (Eds.). Springer,
25–53. https://doi.org/10.1007/978-3-030-59152-6_2

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Annabelle McIver.
2018. Conditioning in Probabilistic Programming. ACM Trans. Program. Lang. Syst. 40, 1 (2018), 4:1–4:50. https:
//doi.org/10.1145/3156018

F. Olmedo, B. L. Kaminski, J.-P. Katoen, and C. Matheja. 2016. Reasoning about Recursive Probabilistic Programs. In Proc. of

31
nd

LICS. ACM, 672–681. https://doi.org/10.1145/2933575.2935317
William Pugh. 1990a. Concurrent Maintenance of Skip Lists. Technical Report. USA. http://hdl.handle.net/1903/542
William Pugh. 1990b. Skip Lists: A Probabilistic Alternative to Balanced Trees. Commun. ACM 33, 6 (1990), 668–676.

https://doi.org/10.1145/78973.78977
Eric Schlechter. 1996. Handbook of Analysis and Its Foundations. Academic Press.
T. Takisaka, Y. Oyabu, N. Urabe, and I. Hasuo. 2018. Ranking and Repulsing Supermartingales for Reachability in Probabilistic

Programs. In Proc. of 16
th
ATVA (LNCS, Vol. 11138). Springer, 476–493. https://doi.org/10.1007/978-3-030-01090-4_28

Joseph Tassarotti and Robert Harper. 2018. Verified Tail Bounds for Randomized Programs. In Interactive Theorem Proving -

9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12,

2018, Proceedings (Lecture Notes in Computer Science, Vol. 10895), Jeremy Avigad and Assia Mahboubi (Eds.). Springer,
560–578. https://doi.org/10.1007/978-3-319-94821-8_33

Joseph Tassarotti and Robert Harper. 2019. A separation logic for concurrent randomized programs. Proc. ACM Program.

Lang. 3, POPL (2019), 64:1–64:30. https://doi.org/10.1145/3290377
Eelis Van der Weegen and James McKinna. 2008. A Machine-Checked Proof of the Average-Case Complexity of Quicksort

in Coq. In Types for Proofs and Programs, International Conference, TYPES 2008, Torino, Italy, March 26-29, 2008, Revised

Selected Papers (Lecture Notes in Computer Science, Vol. 5497), Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro
(Eds.). Springer, 256–271. https://doi.org/10.1007/978-3-642-02444-3_16

Di Wang, David M. Kahn, and Jan Hoffmann. 2020. Raising expectations: automating expected cost analysis with types.
PACM on Programming Languages 4, ICFP (2020), 110:1–110:31. https://doi.org/10.1145/3408992

P. Wang, H. Fu, A. K. Goharshady, K. Chatterjee, X. Qin, and W. Shi. 2019. Cost Analysis of Nondeterministic Probabilistic
Programs. In Proc. of 40

th
PLDI. ACM, 204–220. https://doi.org/10.1145/3314221.3314581

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

https://doi.org/10.1007/978-3-030-59152-6_2
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3156018
https://doi.org/10.1145/2933575.2935317
http://hdl.handle.net/1903/542
https://doi.org/10.1145/78973.78977
https://doi.org/10.1007/978-3-030-01090-4_28
https://doi.org/10.1007/978-3-319-94821-8_33
https://doi.org/10.1145/3290377
https://doi.org/10.1007/978-3-642-02444-3_16
https://doi.org/10.1145/3408992
https://doi.org/10.1145/3314221.3314581

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:27

C ∈ Stmt EJCK𝑚 [𝑓]

skip 𝑓 𝑚

x← E 𝑓 𝑚[x/JEK𝑚]
x $← S EJSK𝑚 [𝜆𝑣 .𝑓 𝑚[x/𝑣]]
x $← f(E) EJfK𝑚𝑔 JEK𝑚 [𝜆(𝑚′𝑔, 𝑟). 𝑓 (𝑚′𝑔 ⊎𝑚𝑙) [x/𝑟]]
C1; C2 EJC1K𝑚 [𝜆𝑚′ .EJC2K𝑚′

[𝑓]]

if B then C1 else C2

{
EJC1K𝑚 [𝑓] if JBK𝑚 ,
EJC2K𝑚 [𝑓] otherwise.

while B do D sup𝑖∈N (𝐹 (𝑖)𝑚) where
𝐹
(·)
𝑓

: N→ Mem→ R+∞

𝐹
(0)
𝑓

𝑚 ≜ 0

𝐹
(𝑖+1)
𝑓

𝑚 ≜

{
𝑓 𝑚 if J¬BK𝑚 ,
EJDK𝑚 [𝐹

(𝑖)
𝑓
] otherwise.

Fig. 9. Structural expectation rules.

A SOUNDNESS AND COMPLETENESS PROOF OF EXPECTATION HOARE LOGIC
In this section, we proof soundness and completeness of the expectation logic.

Throughout the following, we fix a program P. Let ⊲P denote the smallest relation on Fun∪ Stmt
such that (i) C ⊲P D if D is a direct sup-program of C; and (ii) f ⊲P C for C the body of f; and (iii)
x← f(E) ⊲P f. Since procedures in P are assumed non-recursive, this relation is well-founded. The
relation justifies well-definedness of our program semantics, since the semantics follows along ⊲P.
It also yields an induction principle on Fun ∪ Stmt; that we dub definitional induction for brevity:
The base cases are given by the atomic statements, except procedure calls. The inductive cases
extend structural induction (i) on commands by the cases (ii) and (iii), where the property has to
be shown to hold for procedures and procedure calls, assuming that it holds for the considered
procedure’s body and procedure, respectively.

We start with some observations of the expectation of 𝑓 wrt. to program semantics.

Proposition A.1. The following properties hold:
(1) continuity: Esup𝑖 𝑑𝑖 [𝑓] = sup𝑖 (E𝑑𝑖 [𝑓]) for every 𝜔-chain 𝑑0 ≤ 𝑑1 ≤ 𝑑2 ≤ . . . ;
(2) monotony: 𝑓 ≤ 𝑔⇒ E𝑑 [𝑓] ≤ E𝑑 [𝑔];
(3) bind: Edbind𝑑 ℎ [𝑓] = E𝑑 [𝜆𝑎.Eℎ 𝑎 [𝑓]];
(4) unit: Edunit𝑎 [𝑓] = 𝑓 𝑎.

The first point is a discrete version of Lebesgue’s Monotone Convergence Theorem [Schlechter
1996, Theorem 21.38], implying monotony. The bind equation can be proven by unfolding and
re-arranging sums. The unit law follows by definition. These laws are sufficient to prove the
characterisation of EJCK𝑚 [𝑓] given in Figure 9, which we tacitly employ throughout the proofs of
soundness and completeness.

Proposition A.2. All equalities depicted in Figure 9 hold.

Formally this proposition can be proven by definitional induction. The only equality worth
mentioning is that given wrt. to while loops, all remaining ones follow directly from Proposition A.1.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:28 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

The crucial step in the proof of this equality lies in proving 𝐹 (𝑖)
𝑓
𝑚 = EJwhile(𝑖) B do CK𝑚 [𝑓], which

can be easily verified by induction on 𝑖 . From there, the equality follows essentially by continuity
of expectations (Proposition A.1.(1)).

The Call Rule. The rule (call), as we have introduced it in Section 5, requires the variable to which
the resulting value of the procedure is assigned to be local. We prove soundness and complete/ness
of our logic eHL in the more general case in which the assignment can be done also to a global
variable. In this case, the rule (call) becomes the following:

⊢𝑍 { 𝑝 } f { 𝜆𝑧 (𝑚𝑔, 𝑟). 𝑞 𝑧 (𝑚𝑔 [x/𝑟], 𝑟) }
⊢𝑍 { 𝜆𝑧𝑚. 𝑝 𝑧 (𝑚𝑔, JEK𝑚) } x

$← f(E) { 𝜆𝑧𝑚. 𝑞 𝑧 (𝑚𝑔,𝑚 x) }
[callG]

where 𝜆𝑧 (𝑚𝑔, 𝑟). 𝑞 𝑧 (𝑚𝑔 [𝑥/𝑟], 𝑟) just reduces to 𝑞 when x is local, resulting in our rule (call). This
implies that under our convention that calls assign only to local variables, the rule (call) retains
completeness.

A.1 Soundness
Theorem A.3 (Soundness). For every f ∈ Fun and 𝑝, 𝑞 : 𝑍 → Mem × Val→ R+∞,

⊢𝑍 { 𝑝 } f {𝑞 } ⇒ ⊨𝑍 { 𝑝 } f {𝑞 }

Proof. We prove simultaneously
(1) ⊢𝑍 { 𝑓 } C {𝑔 } implies EJCK𝑚 [𝑔 𝑧] ≤ 𝑓 𝑧𝑚 for all 𝑧 ∈ 𝑍 and𝑚 ∈ Mem; and
(2) ⊢𝑍 { 𝑝 } f {𝑞 } implies EJfK𝑚𝑔,𝑣

[𝑞 𝑧] ≤ 𝑝 𝑧 (𝑚𝑔, 𝑣) for all 𝑧 ∈ 𝑍 ,𝑚𝑔 ∈ GMem and 𝑣 ∈ Val.
The proof is by induction on the derivation of ⊢𝑍 { 𝑝 } f {𝑞 }.
- Case (skip), (assign), (sample). Soundness of all three rules follows by definition.
- Case (seq). Suppose ⊢𝑍 { 𝑓 } C; D {𝑔 } by Rule (seq) since (i) ⊢𝑍 { 𝑓 } C {ℎ } and (ii) ⊢𝑍 {ℎ } D {𝑔 }.
Then, for any𝑚 ∈ Mem and 𝑧 ∈ 𝑍 ,

EJC; DK𝑚 [𝑞 𝑧] = EJCK𝑚 [𝜆𝑚
′ .EJDK

𝑚′
[𝑔 𝑧]] ≤ EJCK𝑚 [ℎ 𝑧] ≤ 𝑓 𝑧

where the first inequality follows by induction hopothesis on (ii) andmonotony (PropositionA.1.2)
and the second by induction hypothesis on (i).

- Case (if). Suppose ⊢𝑍 { 𝑓 } if B then C else D {𝑔 } since ⊢𝑍 { B | 𝑓 } C {𝑔 } and ⊢𝑍 { ¬B |
𝑓 } D {𝑔 }. Fix a memory𝑚 ∈ Mem and 𝑧 ∈ 𝑍 . Suppose first that𝑚 satisfies B. In this case

EJif B then C else DK𝑚 [𝑞 𝑧] = EJCK𝑚 [𝑞 𝑧] ≤ B𝑚 | 𝑓 𝑧𝑚 = 𝑓 𝑧𝑚

where the equalities follow by assumption on𝑚, and the inequality is given by the induction
hypothesis. The case where𝑚 does not satisfy B follows by identical reasoning.

- Case (while). Suppose ⊢𝑍 { 𝑓 } while B do C { ¬B | 𝑓 } since ⊢𝑍 { B | 𝑓 } C { 𝑓 }.
To prove the case, it is sufficient to show

𝐹
(𝑖)
𝑔 𝑚 ≤ 𝑓 𝑧𝑚

for all 𝑖 ∈ N,𝑚 ∈ Mem and 𝑧 ∈ 𝑍 , with 𝐹 as defined in Figure 9 and 𝑔 ≜ 𝜆𝑚′ . J¬BK𝑚′ | 𝑓 𝑧𝑚′.
The proof is by (side) induction on 𝑖 . The base case is trivial. In the inductive case, we separate
two cases. First, suppose𝑚 satisfies B. Then

𝐹
(𝑖+1)
𝑔 𝑚 = EJCK𝑚 [𝐹

(𝑖)
𝑔] ≤ EJCK𝑚 [(𝑓 𝑧)] ≤ JBK𝑚 | 𝑓 𝑧𝑚 = 𝑓 𝑧𝑚

where the first inequality follows by monotony of expectations (Proposition A.1.2) and side
induction hypothesis, and the second by the outer induction hypothesis In the remaining case,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:29

where𝑚 does not satisfy B, we directly have

𝐹
(𝑖+1)
𝑔 𝑚 = J¬BK𝑚 | 𝑓 𝑧𝑚 = 𝑓 𝑧𝑚

- Case (call). Suppose ⊢𝑍 { 𝜆𝑧𝑚. 𝑝 𝑧 (𝑚𝑔, JEK𝑚) } x
$← f(E) { 𝜆𝑧𝑚. 𝑞 𝑧 (𝑚𝑔,𝑚 x) } by Rule (call).

Soundness follows as for any 𝑧 ∈ 𝑍 and𝑚 ∈ Mem,
EJx $←f(E)K𝑚

[𝜆𝑚′ . 𝑞 𝑧 (𝑚′𝑔,𝑚′ x)] = EJfK
𝑚𝑔,JEK𝑚

[𝜆(𝑚′, 𝑟). 𝑞 𝑧 (𝑚′ [x/𝑟], 𝑟)] ≤ 𝑝 𝑧 (𝑚𝑔, JEK𝑚)

by induction hypothesis.
- Case (proc). For the inverse, suppose ⊢𝑍 { 𝑝 } f {𝑞 } for (proc f(x) C; return E) ∈ P. Soundness
follows as for any 𝑧 ∈ 𝑍 ,𝑚𝑔 ∈ Mem and arguments 𝑣 ∈ Val,

EJfK𝑚𝑔,𝑣
[𝑞 𝑧] = EJCK

𝑚𝑔⊎𝑚0
𝑙
[x/𝑣]
[𝜆𝑚′ . 𝑞 𝑧 (𝑚′𝑔, JEK𝑚′)]

(induction hypothesis)

≤ (𝜆𝑚. 𝑚𝑙 =𝑚
0
𝑙
[x/𝑚 x] | 𝑝 𝑧 (𝑚𝑔,𝑚 x)) (𝑚𝑔 ⊎𝑚0

𝑙
[x/𝑣])

= 𝑝 𝑧 (𝑚𝑔, 𝑣)
- Case (conseq). Suppose ⊢𝑍 { 𝑓 } C {𝑔 } was derived from ⊢𝑍 ′ { 𝑓 ′ } C {𝑔′ } by Rule (conseq).
Fix a memory 𝑚 ∈ Mem and 𝑧 ∈ 𝑍 . Using the induction ∀𝑧′ ∈ 𝑍 ′ . EJCK𝑚 [𝑔′ 𝑧′] ≤ 𝑓 ′ 𝑧′𝑚 to
discharge the assumption of the side-condition in Rule (conseq) yields ∀𝑧 ∈ 𝑍 . EJCK𝑚 [𝑔 𝑧] ≤
𝑓 𝑧𝑚, which is precisely what we have to show in this case.

- Case (nmod). Fix𝑚 ∈ Mem and 𝑧 ∈ 𝑍 , and let 𝑣 ≜ 𝑚 x. Then
EJCK𝑚 [𝑔] = EJCK𝑚 [𝜆𝑚

′ . 𝑔 𝑧𝑚′ [x/𝑣]] ≤ 𝑚 x = 𝑣 | 𝑓 𝑧𝑚 = 𝑓 𝑧𝑚

where the first equality holds as𝑚′ ∈ supp(JCK𝑚) implies𝑚′ 𝑥 = 𝑣 due to the side-condition
x ∉ ModC, and the inequality follows by induction hypothesis.

- Case (prhl).
⊢𝑍 { 𝑓 ′ } C′ {𝑔′ } ∀𝑧𝑚. 𝑓 𝑧𝑚 ≠ ∞⇒ ∃𝑚′ . 𝑓 ′ 𝑧𝑚′ ≤ 𝑓 𝑧𝑚 ∧ 𝑃 𝑚′𝑚 (3)
⊢ { 𝑃 } C′ ∼ C {𝑄 } ∀𝑧𝑚′𝑚. 𝑄𝑚′𝑚 ⇒ 𝑔 𝑧𝑚 ≤ 𝑔′ 𝑧𝑚′ (4)

⊢𝑍 { 𝑓 } C {𝑔 }
[prhl]

We have the following hypothesis:
(1) By i.h. ⊨𝑍 { 𝑓 ′ } C {𝑔′ }, i.e. for each 𝑧 ∈ 𝑍,𝑚′ ∈ Mem, EJC′K

𝑚′
[(𝑔′𝑧)] ≤ 𝑓 ′𝑧𝑚′.

(2) By soundness of pRHL, ⊨ { 𝑃 } C′ ∼ C {𝑄 }, i.e. for each𝑚1,𝑚2 ∈ Mem,
𝑃𝑚1𝑚2 ⇒𝑄† JC′K𝑚1JCK𝑚2 .

If 𝑓 𝑧𝑚 = ∞, we are done. Then we consider 𝑓 𝑧𝑚 ≠ ∞. By (1) and (3) we have:
∀𝑧𝑚.∃𝑚′ . EJC′K

𝑚′
[𝑔′𝑧] ≤ 𝑓 𝑧𝑚 ∧ 𝑃 𝑚′𝑚

Then, by (2):
∀𝑧𝑚.∃𝑚′ . EJC′K

𝑚′
[𝑔′𝑧] ≤ 𝑓 𝑧𝑚 ∧ 𝑄† JC′K𝑚′JCK𝑚 (+)

By definition of 𝑄†, there exists a distribution 𝑑 onMem ×Mem such that (i) if 𝑑 (𝑚1,𝑚2) > 0,
then 𝑄𝑚1𝑚2 holds, and (ii) which has JC′K

𝑚′ and JCK𝑚 as marginals. Then, using (ii), for each 𝑧
we have:

EJCK𝑚 [𝑔𝑧] − EJC′K
𝑚′
[𝑔′𝑧] = E𝑑 [𝜆𝑚1𝑚2.𝑔 𝑧𝑚1] − E𝑑 [𝜆𝑚1𝑚2.𝑔

′ 𝑧𝑚2]
= E𝑑 [𝜆𝑚1𝑚2.𝑔 𝑧𝑚1 − 𝑔′ 𝑧𝑚2]

Then, by (i) and (4), we have:
E𝑑 [𝜆𝑚1𝑚2 .𝑔 𝑧𝑚1 − 𝑔′ 𝑧𝑚2] ≤ 0

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:30 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

and thus, reading back the chain of equalities:
EJCK𝑚 [𝑔 𝑧] ≤ EJC′K

𝑚′
[𝑔′ 𝑧]

Finally, combining with (+)
∀𝑧𝑚. EJCK𝑚 [𝑔 𝑧] ≤ 𝑓 𝑧𝑚

□

Adversary rule. We now prove that the adversary rule is correct. To this end, letWriteC ⊆ GMem
and Writef ⊆ GMem denote the writeable variables of statement C and procedure f. In particular,
Writef = WriteC for C the body of f. On statements C, WriteC is defined so that x ∈ WriteC if C
contains any instruction x ← 𝑒 overwriting the value of x. If 𝑒 is a call f(E) then additionally
Writef ⊆ WriteC. Finally, for a statement C𝑜 with abstract oracle call x ← 𝑜 (E), we also require
x ∈ WriteC𝑜 .

Let 𝑓 : 𝑍 → GMem → R+∞ be the invariant. To avoid notational overhead, we may also
write 𝑓 for the pre-/post-expectations 𝜆𝑚. 𝑓 𝑚𝑔 and 𝜆(𝑚𝑔, _). 𝑓 𝑚𝑔 within triples of statements and
procedure calls, respectively. The following is the main technical lemma behind soundness of the
adversarial rule.

Lemma A.4. Let C𝑜 be the body of an adversary and let 𝑓 : 𝑍 → GMem→ R+∞ with 𝑓 ⊥WriteC𝑜 .
Then

⊢𝑍 { 𝑓 } o { 𝑓 } ⇒ ⊢𝑍 { 𝑓 } Co { 𝑓 }
where Cois obtained from C𝑜 by instantiating oracles 𝑜 by o.

Proof. Suppose ⊢𝑍 { 𝑓 } o { 𝑓 }. The proof is by definitional induction on the program P, extend-
ing the relation ⊲P to adversary code as expected. Suppose ⊢𝑍 { 𝑓 } o { 𝑓 }, we prove ⊢𝑍 { 𝑓 } C { 𝑓 }
for all C𝑜 ⊲∗P C and ⊢𝑍 { 𝑓 } g { 𝑓 } for all C𝑜 ⊲∗P g.
- Case C𝑜 ⊲

∗
P C with C one of skip, x $← S; or x $← E. The claim follows directly from applying

rules (skip), (sample),or (assign)
- Case C𝑜 ⊲∗P x← g(E) with g ≠ f. We conclude by application of rule (call)

⊢𝑍 { 𝜆𝑧 (𝑚𝑔, _). 𝑓 𝑧𝑚𝑔 } g { 𝜆𝑧 (𝑚𝑔, _). 𝑓 𝑧𝑚𝑔 }
⊢𝑍 { 𝜆𝑧𝑚. 𝑓 𝑧𝑚𝑔 } x← g(E) { 𝜆𝑧𝑚. 𝑓 𝑧𝑚𝑔 }

[call]

with the premise given by induction hypothesis. Concerning the pre-expectation, notice that we
employed, 𝜆𝑧𝑚. (𝜆𝑧 (𝑚𝑔, _). 𝑓 𝑧𝑚𝑔) 𝑧 (𝑚𝑔, JEK𝑚) = 𝜆𝑧𝑚. 𝑓 𝑧𝑚𝑔 , similar for the post-expectation.

- Case C𝑜 ⊲∗P x← f(E). The case is identical to above by rule (call), but the premise stems from
the assumption.

- Case C𝑜 ⊲∗P C; D. The case is given by induction hypotheses and rule (seq).
- Case C𝑜 ⊲∗P if B then C else D. Then we conclude as follows

{ 𝑓 } C { 𝑓 } (†)
{ B | 𝑓 } C { 𝑓 } [conseq]

{ 𝑓 } C { 𝑓 } (‡)
{ ¬B | 𝑓 } D { 𝑓 } [conseq]

{ 𝑓 } if B then C else D { 𝑓 } [if]

where to discharge the side-conditions (†) and (‡) we use 𝑓 ≤ B | 𝑓 and 𝑓 ≤ ¬B | 𝑓 , respectively.
The premises are given by induction hypothesis.

- Case C𝑜 ⊲∗P while B do C. Then we conclude as follows
{ 𝑓 } C { 𝑓 } (†)
{ B | 𝑓 } C { 𝑓 } [conseq]

{ 𝑓 } while B do C { ¬B | 𝑓 } [while] (‡)
{ 𝑓 } while B do C { 𝑓 } [conseq]

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:31

where we use again 𝑓 ≤ B | 𝑓 and 𝑓 ≤ ¬B | 𝑓 to discharge the side-conditions (†) and (‡),
respectively, and where the premise is given by induction hypothesis.

- Case C𝑜 ⊲∗P g.
⊢𝑍 { 𝜆𝑧𝑚. 𝑓 𝑧𝑚𝑔 } C { 𝜆𝑧𝑚. 𝑓 𝑧𝑚𝑔 } (†)

⊢𝑍 { 𝜆𝑧𝑚. 𝑚𝑙 =𝑚
0
𝑙
[x/𝑚 x] | 𝑓 𝑧𝑚𝑔 } C { 𝜆𝑧𝑚. 𝑓 𝑧𝑚𝑔 }

[conseq]

⊢𝑍 { (𝜆𝑧 (𝑚𝑔, _). 𝑓 𝑧𝑚𝑔) } f { (𝜆𝑧 (𝑚𝑔, _). 𝑓 𝑧𝑚𝑔) }
[proc]

where proc f(x) C; return E and (†) derived from 𝜆𝑧𝑚. 𝑓 𝑧𝑚𝑔 ≤ 𝜆𝑧𝑚. 𝑚𝑙 = 𝑚0
𝑙
[x/𝑚 x] |

𝑓 𝑧𝑚𝑔.
□

Theorem A.5. Rule (adv) is sound.

Proof. The proof follows precisely the case of rule (proc) in the soundness proof Theorem A.3.
Rather than the induction hypothesis, we make use of Lemma A.4. Note how the premises of the
lemma correspond to that of the rule. □

A.2 Completeness
Theorem A.6 (Completeness). For every f ∈ Fun and 𝑝, 𝑞 : 𝑍 → Mem × Val→ R+∞,

⊨𝑍 { 𝑝 } f {𝑞 } ⇒ ⊢𝑍 { 𝑝 } f {𝑞 }

Proof. To prove this theorem, we prove the stronger claims:
(1) ⊢𝑍 { 𝜆𝑧𝑚. EJCK𝑚 [𝑔 𝑧] } C {𝑔 } for all C ∈ Stmt and 𝑔 : 𝑍 → Mem→ R+∞; and
(2) ⊢𝑍 { 𝜆𝑧 (𝑚𝑔, 𝑣). EJfK𝑚𝑔,𝑣

[𝑞 𝑧] } f {𝑞 } for all f ∈ Fun and 𝑞 : 𝑍 → GMem × Val→ R+∞.
The proof is by definitional induction on P. Again, all base cases follow by definition. Concerning
the inductive step, we continue by case analysis:
- Case x $← f(E). Fix 𝑔 : 𝑍 → Mem → R+∞. For a memory 𝑚 ∈ Mem and variables ®x, let
𝑚®x denote the projection of𝑚 to ®x. Let ®𝑙 and ®𝑔 denote a sequence of local and global variables,
respectively, without x, thus in particular every𝑚 ∈ Mem can be written as𝑚 ®𝑔 ⊎ {x ↦→ 𝑣} ⊎𝑚®𝑙 ,
for some value 𝑣 . Using this notation, unfolding definitions we see that

EJx $←f(E)K𝑚
[𝑔 𝑧] = EJfK

𝑚𝑔,JEK𝑚
[𝜆(𝑚′, 𝑟). 𝑔 𝑧 (𝑚′®𝑔 ⊎ {x ↦→ 𝑟 } ⊎𝑚®𝑙)]

By repeated application of Rule (nmod), the case thus follows if

⊢𝑍×Val𝑘 { 𝜆(𝑧, ®𝑣)𝑚. 𝑚 ®𝑙 = ®𝑣 | EJfK
𝑚𝑔,JEK𝑚

[𝜆(𝑚′, 𝑟). 𝑔 𝑧 (𝑚′®𝑔 ⊎ {x ↦→ 𝑟 } ⊎ {®𝑙 ↦→ ®𝑣})] }
x $← f(E)

{ 𝜆(𝑧, ®𝑣)𝑚. 𝑔 𝑧 (𝑚 ®𝑔 ⊎ {x ↦→𝑚 x} ⊎ {®𝑙 ↦→ ®𝑣}) }

Let 𝑞 (𝑧, ®𝑣) (𝑚, 𝑟) ≜ 𝑔 𝑧 (𝑚 ®𝑔 ⊎ {x ↦→ 𝑟 } ⊎ {®𝑙 ↦→ ®𝑣}), thus, this judgment is thus equivalent to

⊢𝑍×Val𝑘 { 𝜆(𝑧, ®𝑣)𝑚. 𝑚 ®𝑙 = ®𝑣 | EJfK
𝑚𝑔,JEK𝑚

[(𝑞 (𝑧, ®𝑣))] } x $← f(E) { 𝜆(𝑧, ®𝑣)𝑚. 𝑞 (𝑧, ®𝑣) (𝑚𝑔,𝑚𝑔 x) }

which by weakening the pre-expectation using Rule (conseq) follows from

⊢𝑍×Val𝑘 { 𝜆𝑧′𝑚. EJfK
𝑚𝑔,JEK𝑚

[𝑞 𝑧′] } x $← f(E) { 𝜆𝑧′𝑚. 𝑞 𝑧′ (𝑚𝑔,𝑚𝑔 x) }

Notice that 𝑞 𝑧 (𝑚𝑔 [x/𝑟], 𝑟) = 𝑞 𝑧 (𝑚𝑔, 𝑟), thus we can now apply Rule (call) so as to precisely
yield the induction hypothesis:

⊢𝑍×Val𝑘 { 𝜆𝑧′ (𝑚𝑔,𝑤). EJfK𝑚𝑔,𝑤
[𝑞 𝑧′] } f {𝑞 𝑧′ }

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:32 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

- Case C; D. Induction hypothesis on C and D, respectively, yield
⊢𝑍 { 𝜆𝑧𝑚. EJCK𝑚 [𝑔 𝑧] } C {𝑔 } ⊢𝑍 { 𝜆𝑧𝑚. EJDK𝑚 [𝑓 𝑧] } D { 𝑓 }

for any 𝑍 and pre-expectations 𝑓 and 𝑔. Thus, by substituting (𝜆𝑧𝑚.EJDK𝑚 [𝑓 𝑧]) for 𝑔 in the first
judgments, an application of Rule (seq) yields,

⊢𝑍 { 𝜆𝑧𝑚. EJCK𝑚 [𝜆𝑚.EJDK𝑚 [𝑓 𝑧]] } C; D { 𝑓 }
As by Figure 9 the pre-expectation just corresponds to 𝜆𝑧𝑚. EJC; DK𝑚 [𝑓 𝑧], the case follows.

- Case if B then C else D. Fix post-expectation 𝑓 . Observe that for any𝑚 ∈ Mem and 𝑧 ∈ 𝑍 ,
EJCK𝑚 [𝑓 𝑧] ≤ JBK𝑚 | EJif B then C else DK𝑚 [𝑓 𝑧]

holds. This inequality can be validated by case analysis on JBK𝑚 and unfolding the definition
of Jif B then C else DK𝑚 , see Figure 9. Induction hypothesis on C together with Rule (conseq),
then proves

⊢𝑍 { 𝜆𝑧𝑚. JBK𝑚 | EJif B then C else DK𝑚 [𝑓 𝑧] } C { 𝑓 }
Similar, induction hypothesis on D and one application of Rule (conseq) proves

⊢𝑍 { 𝜆𝑧𝑚. J¬BK𝑚 | EJif B then C else DK𝑚 [𝑓 𝑧] } D { 𝑓 }
The claim now follows by one application of Rule (if).

- Case while B do C. Fix post-expectation 𝑓 . By instantiating the post-expectation of the induction
hypothesis on C with 𝜆𝑧𝑚. EJwhile B do CK𝑚 [𝑓 𝑧], we see that

⊢𝑍 { 𝜆𝑧𝑚. EJCK𝑚 [𝜆𝑚. EJwhile B do CK𝑚 [𝑓 𝑧]] } C { 𝜆𝑧𝑚. EJwhile B do CK𝑚 [𝑓 𝑧] },
is derivable. Notice that

EJwhile B do CK𝑚 [𝑓 𝑧] = EJCK𝑚 [𝜆𝑚. EJwhile B do CK𝑚 [𝑓 𝑧]],
for all memories𝑚 ∈ Mem on which B evaluates to true, compare Figure 9. This permits us to
strengthen the pre-expectation via one application of Rule (conseq), deriving

⊢𝑍 { 𝜆𝑧𝑚. JBK𝑚 | EJwhile B do CK𝑚 [𝑓 𝑧] } C { 𝜆𝑧𝑚. EJwhile B do CK𝑚 [𝑓 𝑧] }.
An application of Rule (while) thus yields
⊢𝑍 { 𝜆𝑧𝑚. EJwhile B do CK𝑚 [𝑓 𝑧] } while B do C { 𝜆𝑧𝑚. J¬BK𝑚 | EJwhile B do CK𝑚 [𝑓 𝑧] }.

Exploiting that, by Figure 9, EJwhile B do CK𝑚 [𝑓 𝑧] = 𝑓 𝑧𝑚 for all memories𝑚 ∈ Mem on which B
evaluates to false, another application of Rule (conseq) allows us to weaken the post-expectation,
yielding

⊢𝑍 { 𝜆𝑧𝑚. EJwhile B do CK𝑚 [𝑓 𝑧] } while B do C { 𝑓 𝑧 },
and thereby concluding the case.

- Case proc f(x) C; return E. Fix 𝑞 : 𝑍 → GMem × Val→ R+∞. By induction hypothesis,
⊢𝑍 { 𝜆𝑧𝑚. EJCK𝑚 [𝜆𝑚′ . 𝑞 𝑧 (𝑚′𝑔, JEK𝑚′)] } C { 𝜆𝑧𝑚. 𝑞 𝑧 (𝑚𝑔, JEK𝑚) },

which by Rule (conseq) gives
⊢𝑍 { 𝜆𝑧𝑚. 𝑚𝑙 =𝑚

0
𝑙
[x/𝑚 x] | EJCK

𝑚𝑔⊎𝑚0
𝑙
[x/𝑚 x]
[𝜆𝑚′ . 𝑞 𝑧 (𝑚′𝑔, JEK𝑚′)] } C { 𝜆𝑧𝑚. 𝑞 𝑧 (𝑚𝑔, JEK𝑚) },

and thus
⊢𝑍 { 𝜆𝑧 (𝑚𝑔, 𝑣). EJCK

𝑚𝑔⊎𝑚0
𝑙
[x/𝑣]
[𝜆𝑚′ . 𝑞 𝑧 (𝑚′𝑔, JEK𝑚′)] } f {𝑞 },

by Rule (proc). This establishes the case, since
EJfK𝑚𝑔,𝑣

[𝑞 𝑧] = EJCK
𝑚𝑔⊎𝑚0

𝑙
[x/𝑣]
[𝜆𝑚′ . 𝑞 𝑧 (𝑚′𝑔, JEK𝑚′)],

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Hopping Proofs of Expectation-Based Properties: Applications to Skiplists and Security Proofs 1:33

(𝑍 : { 𝑝 } f {𝑞 }) ∈ Γ
Γ ⊢ 𝑍 : { 𝑝 } f {𝑞 } [ass]

(proc f(x) C; return E) ∈ P
Γ; 𝑍 : { 𝑝 } f {𝑞 } ⊢ 𝑍 : { 𝜆𝑧𝑚. 𝑚𝑙 =𝑚

0
𝑙
[x/𝑚 x] | 𝑝 𝑧 (𝑚𝑔,𝑚 x) } C { 𝜆𝑧𝑚. 𝑞 𝑧 (𝑚𝑔, JEK𝑚) }

Γ ⊢ { 𝑝 } f {𝑞 } [proc]

Γ ⊢ 𝑍 ′: { 𝑝′ } f {𝑞′ }
∀𝑚𝑔 𝑣 𝑑. (∀𝑧′ ∈ 𝑍 ′ . E𝑑 [(𝑞′ 𝑧′)] ≤ 𝑝′ 𝑧′ (𝑚𝑔, 𝑣)) ⇒ (∀𝑧 ∈ 𝑍 . E𝑑 [𝑞 𝑧] ≤ 𝑝 𝑧 (𝑚𝑔, 𝑣))

Γ ⊢ 𝑍 : { 𝑝 } f {𝑞 } [conseqP]

Fig. 10. Changes to eHOARE to account for recursion.

by Figure 9. □

B RECURSION
Semantics. To incorporate recursion, the semantics of statements C ∈ Stmt now take the form

JCK𝜂𝑚 where
𝜂 : Fun→ GMem × Val→ D (GMem × Val)

is a procedure environment. The interpretation of statements remains as is, procedures though are
interpreted via a lookup within the environment

JfK𝜂𝑚𝑔
𝑣 ≜ 𝜂 f (𝑚𝑔, 𝑣)

Aprogram P can now be interpreted as a procedure environment, defined through its approximations

JPK ≜ sup
𝑖∈N

𝜂 (𝑖)

where

𝜂 (0) f ≜ 𝜆(𝑚𝑔, 𝑣). fail

𝜂 (𝑖+1) f ≜ 𝜆(𝑚𝑔, 𝑣).dlet𝑚′ ← (JCK𝜂
(𝑖)

𝑚𝑔⊎𝑚0
𝑙
[x/𝑣]) in dunit (𝑚′𝑔, JEK𝑚′)

Note that 𝜂 (𝑖) corresponds to the semantics that permit 𝑖 unfoldings of procedures, failing when
the threshold 𝑖 has been reached. When 𝜂 = JPK we abbreviate JCK𝜂 and JfK𝜂 by JCK and JfK,
respectively.

Logic. Judgements take now the form

Γ ⊢ 𝑍 : { 𝑝 } f {𝑞 } and Γ ⊢ 𝑍 : { 𝑓 } C {𝑔 }

where Γ = 𝑍1: { 𝑝1 } f1 {𝑞1 }; . . . ; 𝑍𝑘 : { 𝑝𝑘 } f𝑘 {𝑞𝑘 } is a sequence of judgements on Fun. The
rules of the logic remain mostly the same, with Γ remaining constant. What changes

is Rule (proc) which now permits assuming the judgement that is to be derived. Further, we add
an assumption rule, and a rule of consequence for procedures. The latter is strictly speaking not
necessary (for completeness), but convenient and slightly simplifies the presentation of proofs.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1:34 Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele Vanoni

With an eye on proofs, we parameterise validity of judgements by a procedure environment
𝜂 ⊨ 𝑍 : { 𝑓 } C {𝑔 } :⇔ ∀𝑚𝑧. EJCK𝜂𝑚 [𝑔 𝑧] ≤ 𝑓 𝑧𝑚
𝜂 ⊨ 𝑍 : { 𝑝 } f {𝑞 } :⇔ ∀𝑚𝑔 𝑣 𝑧. EJfK𝜂𝑚𝑔 𝑣

[(𝑞 𝑧)] ≤ 𝑝 𝑧 (𝑚𝑔, 𝑣)

When 𝜂 = JPK, we may omit 𝜂 from the left-hand side; recovering the expected notion of validity.
Note that entailment is antitone in the environment, in the following sense.

Lemma B.1.
𝜂 ≤ 𝜁 ∧ 𝜁 ⊨ 𝑍 : { 𝑝 } f {𝑞 } ⇒ 𝜂 ⊨ 𝑍 : { 𝑝 } f {𝑞 }

Proof. If 𝜂 ≤ 𝜁 then J𝑓 K𝜂𝑚𝑔
𝑣 is a sub-distribution of J𝑓 K𝜁𝑚𝑔

𝑣 , for all𝑚𝑔 ∈ GMem and 𝑣 ∈ Val.
Consequently, EJfK𝜂𝑚𝑔 𝑣

[𝑞 𝑧] ≤ EJfK𝜁𝑚𝑔 𝑣
[𝑞 𝑧] ≤ 𝑝 𝑧 (𝑚𝑔, 𝑣). □

We extend validity to contexts by stipulating ⊨ Γ iff ⊨ 𝑍 : { 𝑝 } f {𝑞 } for all (𝑍 : { 𝑝 } f {𝑞 }) ∈ Γ
and finally define

Γ ⊨ 𝑍 : { 𝑓 } C {𝑔 } :⇔ ⊨ Γ ⇒ ⊨ 𝑍 : { 𝑓 } C {𝑔 }
Γ ⊨ 𝑍 : { 𝑝 } f {𝑞 } :⇔ ⊨ Γ ⇒ ⊨ 𝑍 : { 𝑝 } f {𝑞 }

Soundness. Again we define soundness as derivability implies validity, now however, for any
context Γ. The central technical lemma states soundness wrt. to approximations.

Lemma B.2. Let 𝜂 (𝑖) be the 𝑖-th approximant of JPK. For all 𝑖 ∈ N, 𝜂 (𝑖) ⊨ Γ, then
(1) Γ ⊢ 𝑍 : { 𝑝 } f {𝑞 } ⇒ 𝜂 (𝑖) ⊨ 𝑍 : { 𝑝 } f {𝑞 }.
(2) Γ ⊢ 𝑍 : { 𝑓 } C {𝑔 } ⇒ 𝜂 (𝑖) ⊨ 𝑍 : { 𝑓 } C {𝑔 }; and
Proof. We prove the two statements simultaneously. To this end, suppose Γ ⊢ 𝑍 : { 𝑓 } C {𝑔 } or

Γ ⊢ 𝑍 : { 𝑓 } C {𝑔 }, we prove 𝜂 (𝑖) ⊨ 𝑍 : { 𝑝 } f {𝑞 } and 𝜂 (𝑖) ⊨ 𝑍 : { 𝑓 } C {𝑔 }, respectively. The proof
is by induction on the size of the deriviation plus 𝑖 . □

Theorem B.3 (Soundness).
Γ ⊢ 𝑍 : { 𝑝 } f {𝑞 } ⇒ Γ ⊨ 𝑍 : { 𝑝 } f {𝑞 }

Proof. □

Completeness. For f ∈ Fun, we define
MGJ f ≜ GMem × Val→ R+∞: { 𝜆ℎ (𝑚𝑔, 𝑣). EJfK𝑚𝑔 𝑣

[ℎ] } f { 𝜆ℎ (𝑚𝑔, 𝑣). ℎ (𝑚𝑔, 𝑣) }

This judgement is most general, in the following sense:
Lemma B.4.

Γ ⊢ MGJ f ∧ ⊨ 𝑍 : { 𝑝 } f {𝑞 } ⇒ Γ ⊢ 𝑍 : { 𝑝 } f {𝑞 }
Proof. Suppose Γ ⊢ MGJ f and ⊨ 𝑍 : { 𝑝 } f {𝑞 }. We conclude Γ ⊢ 𝑍 : { 𝑝 } f {𝑞 } by one

application of Rule ??. To this end, we discharge the condition
∀𝑚𝑔 𝑣 𝑑. (∀ℎ ∈ GMem × Val→ R+∞ . E𝑑 [ℎ] ≤ EJfK𝑚𝑔 𝑣

[ℎ]) ⇒ (∀𝑧 ∈ 𝑍 . E𝑑 [(𝑞 𝑧)] ≤ 𝑝 𝑧 (𝑚𝑔, 𝑣))
using

E𝑑 [𝑞 𝑧] ≤ EJfK𝑚𝑔 𝑣
[𝑞 𝑧] ≤ 𝑝 𝑧 (𝑚𝑔, 𝑣)

specializing ℎ in the premise to 𝑞 𝑧. □

Lemma B.5. ⊢ MGJ f

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 A bird's-eye view on our methodology
	4 A Probabilistic Programming Language
	5 Expectation Hoare Logic
	6 Average Case Complexity of Skip Lists
	6.1 A Dictionary Implementation on Top of Skip Lists
	6.2 Outline of the Formalization

	7 Adversaries and applications to cryptographic proofs
	8 Implementation
	9 Conclusion
	Acknowledgments
	References
	A Soundness and Completeness Proof of Expectation Hoare Logic
	A.1 Soundness
	A.2 Completeness

	B Recursion

