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Today’s Lecture

From Theory to Automation

1. complexity pairs and relative rewriting
2. dependency pairs for complexity analysis
3. case study: TCT, its complexity framework

Applications to Program Analysis

4. case study: higher-order functional programs



Experimental Evaluation
Input #rules orders

iterative DT+iterative+simps

TCT

appendAll 12 O(n2)

O(n2) O(n2)

O(n)
bfs 57 ?

? O(n1)

O(n)
bft mmult 59 ?

? ?

O(n3)
bitonic 78 ?

? ?

O(n4)
bitvectors 148 ?

? ?

O(n2)
clevermmult 39 ?

? ?

O(n2)
duplicates 37 ?

O(n2) O(n2)

O(n2)
dyade 31 ?

? O(n2)

O(n2)
eratosthenes 74 ?

O(n3) O(n2)

O(n2)
flatten 31 ?

? ?

O(n2)
insertionsort 36 ?
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listsort 56 ?
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O(n2)
lcs 87 ?
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O(n2)
matrix 74 ?
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O(n3)
mergesort 35 ?

? ?

O(n3)
minsort 26 ?

O(n3) O(n2)

O(n2)
queue 35 ?

? ?

O(n5)
quicksort 46 ?

? ?

O(n2)
rationalPotential 14 O(n)

O(n) O(n1)

O(n)
splitandsort 70 ?

? ?

O(n3)
subtrees 8 ?

O(n2) O(n2)

O(n2)
tuples 33 ?

? ?

?

Figure: Analysis of translated resource aware ML programs.



Towards a Modular Analysis

⋆ complexity pairs and relative rewriting

⋆ weak dependency pairs/dependency tuples

⋆ safe reduction pairs



Complexity Analysis via Relative Rewriting

Definition (relative reduction relation)

⋆ for to ARSs→ and⇝ over carrier A, define

→/⇝ ≜ ⇝∗ · → ·⇝∗ .
⋆ for two TRSs R and S,

−→R/S ≜ −→R/−→S
i−→R/S ≜

R ∪ S−−−−−→R/
R ∪ S−−−−−→S

– C[f(l1σ, . . . , lkσ)] Q−−→R C[rσ] if f(l1, . . . , lk)→ r ∈ R and liσ ∈ NF(−→Q).

Theorem
dc→∪⇝,S ⩽ dc→/⇝,S+dc⇝/→,S .

Example

For a→ b and a⇝ c, dh→∪⇝(a) = 1 < 2 = dh→/⇝(a) + dh⇝/→(a).



Complexity Analysis via Relative Rewriting

Definition (relative reduction relation)

⋆ for to ARSs→ and⇝ over carrier A, define

→/⇝ ≜ ⇝∗ · → ·⇝∗ .
⋆ for two TRSs R and S,

−→R/S ≜ −→R/−→S
i−→R/S ≜

R ∪ S−−−−−→R/
R ∪ S−−−−−→S

– C[f(l1σ, . . . , lkσ)] Q−−→R C[rσ] if f(l1, . . . , lk)→ r ∈ R and liσ ∈ NF(−→Q).

Theorem
dc→∪⇝,S ⩽ dc→/⇝,S+dc⇝/→,S .

Example

For a→ b and a⇝ c, dh→∪⇝(a) = 1 < 2 = dh→/⇝(a) + dh⇝/→(a).



Complexity Analysis via Relative Rewriting

Definition (relative reduction relation)

⋆ for to ARSs→ and⇝ over carrier A, define

→/⇝ ≜ ⇝∗ · → ·⇝∗ .
⋆ for two TRSs R and S,

−→R/S ≜ −→R/−→S
i−→R/S ≜

R ∪ S−−−−−→R/
R ∪ S−−−−−→S

– C[f(l1σ, . . . , lkσ)] Q−−→R C[rσ] if f(l1, . . . , lk)→ r ∈ R and liσ ∈ NF(−→Q).

Theorem
dc→∪⇝,S ⩽ dc→/⇝,S+dc⇝/→,S .

Example

For a→ b and a⇝ c, dh→∪⇝(a) = 1 < 2 = dh→/⇝(a) + dh⇝/→(a).



Complexity Pairs

Definition (Zankl & Korp, LMCS’14)

⋆ Complexity pair (CP) is pair (≻,≿) of rewrite orders s.t. ≿ · ≻ · ≿ ⊆ ≻.
⋆ Compatibility with relative TRS R/S if R ⊆ ≻ and S ⊆ ≿.

Theorem (Soundness)

If CP (≻,≿) compatible with R/S then

dc−→R/S,T
(n) ≤ dc≻,T(n) .

Theorem (Iterative Complexity Analysis)

If CP (≻,≿) compatible with R1/R2 ∪ S then

dc−→R1∪R2/S,T
(n) ≤ dc≻,T(n) + dc−→R2/R1∪S,T

(n) .

Note: remains valid for rewriting under strategies
H. Zankl and M. Korp. “Modular Complexity Analysis for Term Rewriting”. LMCS,
Vol. 10, pp. 1–33, 2014.
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Figure: Analysis of translated resource aware ML programs.



Dependency Pairs and RC

Theorem
TRS R is terminating iff there is no infinite and minimal chain

f#(s1, . . . , sm) −→DP(R)/R g#(t1, . . . , tn) −→DP(R)/R . . .

Corollary

TRS R is terminating on B iff
∀n ∈ N. rc#

DP(R)/R(n) ≜ dc−→DP(R)/R,B#(n) ∈ N .

Pros:
1. gets rid of nasty monotonicity requirements

2. DP framework enables true modular analysis

Questions:
1. is there a “small” f : N→ N s.t. rcR(n) ≤ f(rc#

DP(R)/R(n))?

2. what about techniques from the DP framework?



Dependency Pairs and RC

Theorem
TRS R is terminating iff there is no infinite and minimal chain

f#(s1, . . . , sm) −→DP(R)/R g#(t1, . . . , tn) −→DP(R)/R . . .

Corollary

TRS R is terminating on B iff
∀n ∈ N. rc#

DP(R)/R(n) ≜ dc−→DP(R)/R,B#(n) ∈ N .

Pros:
1. gets rid of nasty monotonicity requirements

2. DP framework enables true modular analysis

Questions:
1. is there a “small” f : N→ N s.t. rcR(n) ≤ f(rc#

DP(R)/R(n))?

2. what about techniques from the DP framework?



Dependency Pairs and RC

Theorem
TRS R is terminating iff there is no infinite and minimal chain

f#(s1, . . . , sm) −→DP(R)/R g#(t1, . . . , tn) −→DP(R)/R . . .

Corollary

TRS R is terminating on B iff
∀n ∈ N. rc#

DP(R)/R(n) ≜ dc−→DP(R)/R,B#(n) ∈ N .

Pros:
1. gets rid of nasty monotonicity requirements

2. DP framework enables true modular analysis

Questions:
1. is there a “small” f : N→ N s.t. rcR(n) ≤ f(rc#

DP(R)/R(n))?

2. what about techniques from the DP framework?



Dependency Pairs and RC

Theorem
TRS R is terminating iff there is no infinite and minimal chain

f#(s1, . . . , sm) −→DP(R)/R g#(t1, . . . , tn) −→DP(R)/R . . .

Corollary

TRS R is terminating on B iff
∀n ∈ N. rc#

DP(R)/R(n) ≜ dc−→DP(R)/R,B#(n) ∈ N .

Pros:
1. gets rid of nasty monotonicity requirements

2. DP framework enables true modular analysis

Questions:
1. is there a “small” f : N→ N s.t. rcR(n) ≤ f(rc#

DP(R)/R(n))?

2. what about techniques from the DP framework?



Dependency Pairs and RC (II)

Example

Consider R

f(s(x))→ s(f(f(x))) f(x)→ dup(x, x) ,

with DP(R)

f#(s(x))→ f#(f(x)) f#(s(x))→ f#(x) .

Then rc#
DP(R)/R is linear whereas rcR(n) grows double-exponential.

Question: Reasons that cause this blow-up?

1. DPs track single path in “calls graph”

2. DPs do not account for duplication
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Weak Dependency Pairs and Dependency Tuples

⋆ Weak Dependency Pairs WDP(R) [Hirokawa & Moser, IJCAR’08]
1. bundle outermost function calls in weak dependency pair

f#(l1, . . . , lk)→ cn(r
#
1 , . . . , r

#
n ) for each f(l1, . . . , lk)→ C[r1, . . . , rn] ∈ R

where Cmaximal constructor-context
2. impose non-duplication & weight-gap condition

⋆ Dependency Pair Tuples DT(R) [Noschinksi et al., CADE’11]
1. bundle all function calls in dependency tuple
2. restricted to innermost rewriting

N. Hirokawa and G. Moser. “Automated Complexity Analysis Based on the
Dependency Pair Method”. In Proc. of 4th IJCAR, pp. 364–380, 2008.

L. Noschinski, F. Emmes, and J. Giesl. “A Dependency Pair Framework for Innermost
Complexity Analysis of Term Rewrite Systems”. In Proc. of 23rd CADE, pp. 422–438,
2011.
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Dependency Tuples

Definition (dependency tuples, Noschinski et. al, CADE’11)

⋆ dependency tuple of f(l1, . . . , lm)→ r is

f#(l1, . . . , lm)→ ck(g#
1 (⃗t1), . . . , g#

k (⃗tk)) ,

where g1(⃗t1), . . . , gk(⃗tk) are all subterms of r with defined root;

⋆ DT(R) collects DTs of rules in R

Example R DT(R)

[ ] ++ ys→ ys [ ] ++# → c0
(x :: xs) ++ ys→ x :: (xs ++ ys) (x :: xs) ++# ys→ c1(xs ++# ys)

rev([ ])→ [ ] rev#([ ])→ c0
rev(x :: xs)→ rev(xs) ++ [x] rev#(x :: xs)→ c2(rev(xs) ++# [x], rev#(xs))

L. Noschinski, F. Emmes, and J. Giesl. “A Dependency Pair Framework for Innermost
Complexity Analysis of Term Rewrite Systems”. In Proc. of 23rd CADE, pp. 422–438,
2011.
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Dependency Tuples (II)

Lemma

Reduction sequence

f(v1, . . . , vk)
i−→R t1

i−→R t2
i−→R . . . ,

simulated step-wise by reduction

f#(v1, . . . , vk)
i−→DT(R)/R C1 [⃗s1]

i−→DT(R)/R C2 [⃗s2]
i−→DT(R)/R . . . ,

with s⃗i marked innermost redexes in ti.



Dependency Tuples (III)

Example

Sequence

rev([1, 2]) i−→Rrev rev([3]) ++ [1] i−→Rrev (rev([ ]) ++ [2]) ++ [1] i−→Rrev . . . ,

translates to

rev#([1, 2]) i−→DT(Rrev)/Rrev C1[rev([3]) ++# [1], rev#([3])]
i−→DT(Rrev)/Rrev C2[(rev([ ]) ++ [2]) ++# [1], rev([ ]) ++# [2], rev#([ ])]

i−→DT(Rrev)/Rrev . . . .

Theorem (Soundness of DTs (Noschinski et. al, CADE’11))

rcR(n) ≤ rc#
DT(R)/R(n) .

Question: What about inverse, i.e., completeness?

⋆ rcR(n) = rc#
DT(R)/R(n) if R is confluent
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Safe Reduction Pairs

Definition (Hirokawa & Moser, IJCAR’08)

⋆ Safe reduction pair is pair (≻,≿) of orders on terms s.t.
– ≻ is closed under substitutions and monotone on compound symbols ci
introduced by WDPs/DTs

– ≿ is a rewrite order
– ≿ · ≻ · ≿ ⊆ ≻

⋆ compatible with P/R if P ⊆ ≻ and R ⊆ ≿.

Theorem

If (≻,≿) compatible with P/R then

rc#
P/R(n) ≤ dc≻,B# .

Note: As for complexity pairs, can be applied in iterative way
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Figure: Analysis of translated resource aware ML programs.



Case Study: TCT

⋆ complexity problems and processors
⋆ complexity processors

– dependency graph decomposition
– usable rules
– complexity pairs & relative rewriting



Tyrolean Complexity Tool
History

2008 version 1.0 extension to termination prover TTT2
⋆ 4 dedicated complexity techniques (POP∗, WDPs, safe
reduction pairs, usable rules)

2009 version 1.5 first dedicated implementation
⋆ 9 methods implemented

2013 version 2.0 Gödel award at FLOC Olympic Games
⋆ 23 methods implemented

⋆ modular complexity framework

2015 version 3.3 current version
⋆ certification support through CeTA

⋆ frontends for functional and imperative programs



Complexity Framework Underlying TCT

1. complexity problem is tuple P = ⟨S,W,Q,T ⟩
– S,W and Q define rewrite relation Q−−→S∪W of P
– T is set of starting terms

2. complexity function of P is

cpP(n) ≜ dc Q−→S/W,T (n) ,

3. complexity processor is inference rule

⊢ P1 : f1 · · · ⊢ Pn : fn
⊢ P : f

– judgement ⊢ P : f valid if cpP(n) ∈ O(f(n))
– processor sound if validity of judgements preserved

4. complexity proof is deduction using sound processors and axiom

⊢ ⟨∅,W,Q,T ⟩ : f
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cpP(n) ≜ dc Q−→S/W,T (n) ,

3. complexity processor is inference rule

⊢ P1 : f1 · · · ⊢ Pn : fn
⊢ P : f

– judgement ⊢ P : f valid if cpP(n) ∈ O(f(n))
– processor sound if validity of judgements preserved

4. complexity proof is deduction using sound processors and axiom

⊢ ⟨∅,W,Q,T ⟩ : f
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Canonical Complexity Problems

Definition (canonical complexity problem)

Let R be a TRS over terms T and basic terms B

full innermost

derivational ⟨R,∅,∅,T ⟩ ⟨R,∅,R,T ⟩
runtime ⟨R,∅,∅,B⟩ ⟨R,∅,R,B⟩
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Dependency Tuples in TCT

Theorem (Dependency Tuple Transformation)

The following processor is sound

⊢ ⟨DT(S),DT(W) ∪ S ∪W,Q,B#⟩ : f NF(Q) ⊆ NF(S ∪W)

⊢ ⟨S,W,Q,B⟩ : f DT



Example: Initial IRC Problem

current: ⟨S,W,Q,B⟩

S [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

W ∅

Q [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]



Example: DT Transformation

current: ⟨S,W,Q,B#⟩

S [ ] ++# ys→ c0 rev#([ ])→ c0

(x :: xs) ++# ys→ c1(xs ++# ys) rev#(x :: xs)→ c2(rev(xs) ++# [x], rev#(xs))

W [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

Q [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]
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Complexity Pairs & Relative Rewriting

Theorem (Relative Decomposition Processor)

The following processor is sound:

⊢ ⟨S1,S2 ∪W,Q,T ⟩ : f ⊢ ⟨S2,S1 ∪W,Q,T ⟩ : g
⊢ ⟨S1 ∪ S2,W,Q,T ⟩ : f+ g RD

Theorem (Complexity Pair Processor)

The following processor is sound:

W⊆ ≿ S ⊆ ≻
⊢ ⟨S,W,Q,T ⟩ : dc≻,T

CP

where (≿, ≻) is (ν, µ)-monotone complexity pair with
Q−→∗S∪W(T ) ⊆ Tν( Q−→W) Q−→∗S∪W(T ) ⊆ Tµ( Q−→S) .

⋆ CP-processor encompasses safe reduction pairs Question: why?
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Dependency Graphs

Definition (dependency graph (DG))

dependency graph of (DP) problem P = ⟨S,W,Q,T ⟩ is graph where
⋆ nodes are dependency pairs of P
⋆ there is an edge labeled i from s→ ck(t1, . . . , tk) to u→ cl(v1, . . . , vl)
if tiσ

Q−→∗S∪W uτ holds for some substitutions σ, τ

⋆ DG reflects order of dependency pair application
⋆ not computable in general⇒ over-approximations exist

R. Thiemann. “The DP Framework for Proving Termination of Term Rewriting”. “The
DP Framework for Proving Termination of Term Rewriting”, 2007.
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Example: Dependency Graph

current: ⟨S,W,Q,B#⟩

S (1) [ ] ++# ys→ c0 (3) rev#([ ])→ c0

(2) (x :: xs) ++# ys→ c1(xs ++# ys)(4) rev#(x :: xs)→ c2(rev(xs) ++# [x], rev#(xs))

W [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

Q [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]4

2

1

3

2

2
1

1

1



DG Decomposition: Intuitions

rev#([1, 2, 3])

rev([2, 3]) ++# [1]

[3, 2] ++# [1]

[2] ++# [1]

[] ++# [1]

c0

rev#([2, 3])

rev([3]) ++# [2]

[3] ++# [2]

[] ++# [2]

c0

rev#([3])

rev([]) ++# [3]

[] ++# [3]

c0

rev#([])

c0

⊢ ⟨{ 1 , 2 }, { 3 , 4 } ∪W,Q,B#⟩ : f ⊢ ⟨{ 3 , 4 }, { 1 , 2 } ∪W,Q,B#⟩ : g
⊢ ⟨{ 3 , 4 } ∪ { 1 , 2 },W,Q,B#⟩ : f+ g

RD

C (4
1−→ 2) rev#(x :: xs)→ rev(xs) ++# [x] (4

2−→ 4) rev#(x :: xs)→ rev#(xs)

4
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DG Decomposition: Intuitions
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⊢ ⟨{ 1 , 2 }, C ∪W,Q,B#⟩ : f ⊢ ⟨{ 3 , 4 },W,Q,B#⟩ : g
⊢ ⟨{ 3 , 4 } ∪ { 1 , 2 },W,Q,B#⟩ : f × g DGD
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Example: DG Decomposition

current: ⟨S⇓, C ∪W,Q,B#⟩ and ⟨S⇑,W,Q,B#⟩

S⇓
(1) [ ]++#ys→ c0

(2) (x :: xs)++#ys→ c1(xs++#ys)

S⇑
(3) rev#([ ])→ c0

(4) rev#(x :: xs)→ c2(rev(xs)++#[x], rev#(xs))

C
rev#(x :: xs)→ rev(xs)++#[x]

rev#(x :: xs)→ rev#(xs)

W [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

Q [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

4

2

1

3

2
2

1

1

1



DG Decomposition

Theorem (DG Decomposition)

The following processor is sound:

⊢ ⟨S⇓, sep(S⇑ ∪W⇑) ∪W⇓ ∪W,Q,B#⟩ : f ⊢ ⟨S⇑,W⇑ ∪W,Q,B#⟩ : g
⊢ ⟨S⇓ ∪ S⇑,W⇓ ⊎W⇑ ∪W,Q,B#⟩ : f × g

where
⋆ S⇓,S⇑,W⇓,W⇑ are DPs:

1. S⇓ ∪W⇓ is forward closed set of DPs in the DG
2. DG-predecessors of S⇓ ∪W⇓ are in S⇑

⋆ sep(R) ≜ {l→ ri | l→ ck(r1, . . . , rk) ∈ R}

M. Avanzini and G. Moser. “A Combination Framework for Complexity”. Information
and Computation, Vol. 248, pp. 22–55, 2016.
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Simplifications: Guided by DG

Theorem (simplify RHSs, remove weak suffix, predecessor estimation)

The following processors are sound:
⋆ Simplify RHSs:

⊢ ⟨simp(S), simp(W),Q,B#⟩ : f
⊢ ⟨S,W,Q,B#⟩ : f SIMP−RHS

where simp drops ri if DP l→ ck(r1, . . . , ri, . . . , rk) has no outgoing
edge labeled by i

⋆ Remove weak suffix:

W⇓ forward-closed DPs ⊢ ⟨S,W,Q,B#⟩ : f
⊢ ⟨S,W⊎W⇓,Q,B#⟩ : f RWS

⋆ Predecessor estimation:

DG-predecessors of S1 ⊆ S2 ⊢ ⟨S2,W,Q,B#⟩ : f
⊢ ⟨S1 ∪ S2,W,Q,B#⟩ : f PE



Simplifications: Usable Rules

Theorem (Usable Rules Processor, Semantic Version)

Usable rulesUP(R) ⊆ R of TRS R wrt. P = ⟨S,W,Q,T ⟩ are those that
can be applied in P-derivation from T .
The following processor is sound:

⊢ ⟨UP(S),UP(W),Q,T ⟩ : f
⊢ ⟨S,W,Q,T ⟩ : f UR

Notes:
⋆ non-usable rules ≈ dead code
⋆ usable rules not computable in general
⋆ over-approximated, e.g. using tree automata or via usable symbols

– f ▷ g iff f(⃗l)→ r ∈ P and g ∈ D(r)
– usable symbols of terms T areUSP(T ) ≜ {g | ∃f ∈ D(T ). f ▷∗ g}
– approximated usable rules areUP(R) ≜ {f(⃗l)→ r ∈ R | f ∈ USP(T )}



Example: Simplifications

current: ⟨S⇓, C ∪W,Q,B#⟩ and ⟨S⇑,W,Q,B#⟩

S⇓
(1) [ ]++#ys→ c0

(2) (x :: xs)++#ys→ c1(xs++#ys)

S⇑
(3) rev#([ ])→ c0

(4) rev#(x :: xs)→ c1(rev(xs)++#[x], rev#(xs))

C
(4a) rev#(x :: xs)→ rev(xs)++#[x]
(4b) rev#(x :: xs)→ rev#(xs)

W [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

Q [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

4
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4b
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Example: Simplifications

current: ⟨S⇓, C ∪W,Q,B#⟩ and ⟨S⇑,W,Q,B#⟩

S⇓
(1) [ ]++#ys→ c0

(2) (x :: xs)++#ys→ c1(xs++#ys)

S⇑
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W [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

Q [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]
predecessor estimation
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Example: Simplifications

current: ⟨S⇓, C ∪W,Q,B#⟩ and ⟨S⇑,W,Q,B#⟩

S⇓

(1) [ ]++#ys→ c0

(2) (x :: xs)++#ys→ c1(xs++#ys)

S⇑

(3) rev#([ ])→ c0

(4) rev#(x :: xs)→ c2(rev(xs)++#[x], rev#(xs))

C
(4a) rev#(x :: xs)→ rev(xs)++#[x]
(4b) rev#(x :: xs)→ rev#(xs)

W [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

Q [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]
simplify RHSs
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Example: Simplifications

current: ⟨S⇓, C ∪W,Q,B#⟩ and ⟨S⇑,W,Q,B#⟩

S⇓

(1) [ ]++#ys→ c0

(2) (x :: xs)++#ys→ c1(xs++#ys)

S⇑

(3) rev#([ ])→ c0

(4) rev#(x :: xs)→ c1(rev#(xs))

C
(4a) rev#(x :: xs)→ rev(xs)++#[x]
(4b) rev#(x :: xs)→ rev#(xs)

W [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

Q [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]
usable rules
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Example: Simplifications

current: ⟨S⇓, C ∪W,Q,B#⟩ and ⟨S⇑,∅,Q,B#⟩

S⇓

(1) [ ]++#ys→ c0

(2) (x :: xs)++#ys→ c1(xs++#ys)

S⇑

(3) rev#([ ])→ c0

(4) rev#(x :: xs)→ c1(rev#(xs))

C
(4a) rev#(x :: xs)→ rev(xs)++#[x]
(4b) rev#(x :: xs)→ rev#(xs)

W [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

Q [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]
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Example: Finishing the Proof

(2) ⊆ >A Rrev ⊆ ≥A

⊢ ⟨(2), C ∪ Rrev,Rrev,B#⟩ : ?
⊢ ⟨S⇓, C ∪ Rrev,Rrev,B#⟩ : ? SIMPS

(4) ⊆ >spop∗

⊢ ⟨(4),∅,Rrev,B#⟩ : ?
⊢ ⟨S⇑,Rrev,Rrev,B#⟩ : ? SIMPS

⊢ ⟨DT(Rrev),Rrev,Rrev,B#⟩ : ? DGD

⊢ ⟨Rrev,∅,Rrev,B⟩ : ?
DT

(2) (x :: xs)++#ys→ c1(xs++#ys) (4) rev#(x :: xs)→ c1(rev#(xs))

C
(4a) rev#(x :: xs)→ rev(xs)++#[x]
(4b) rev#(x :: xs)→ rev#(xs)

Rrev [ ] ++ ys→ ys rev([ ])→ [ ]

(x :: xs) ++ ys→ x :: (xs ++ ys) rev(x :: xs)→ rev(xs) ++ [x]

[ ]A ≜ 0

x ::A xs ≜ 1 + xs
revA(xs) ≜ xs
xs ++A ys ≜ xs + ys

rev#
A(xs) ≜ xs

xs ++#
A ys ≜ xs
c1(t) ≜ t

⋆ normal(rev#) ≜ {1}
⋆ rev# > c1
⋆ recursion depth 1
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Example: Finishing the Proof
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⊢ ⟨Rrev,∅,Rrev,B⟩ : n2
DT

(2) (x :: xs)++#ys→ c1(xs++#ys) (4) rev#(x :: xs)→ c1(rev#(xs))
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Implementation notes

⋆ implementing complexity pairs



Complexity Pairs in TCT

⋆ polynomial, matrix, arctic interpretations and (small) polynomial
path orders (modulo argument filtering) implemented in TCT

⋆ RD-processor, CP-processor and UR-processor combined in one

UP,≻(S1) ⊆ ≻ UP,≻(S2 ∪W) ⊆ ≿ ⊢ ⟨S2,S1 ∪W,Q,T ⟩ : g
⊢ ⟨S1 ∪ S2,W,Q,T ⟩ : dc≻,T +g

– usable rulesUP,≻ take problem P and order ≻ into account
– “function usable” only if occurs in right-hand-side “inspected by” (≻,≿)
– specific definition depends on kind of order

⋆ search via encoding to SAT modulo theories (SMT)



Complexity Pairs in TCT

⋆ polynomial, matrix, arctic interpretations and (small) polynomial
path orders (modulo argument filtering) implemented in TCT

⋆ RD-processor, CP-processor and UR-processor combined in one

UP,≻(S1) ⊆ ≻ UP,≻(S2 ∪W) ⊆ ≿ ⊢ ⟨S2,S1 ∪W,Q,T ⟩ : g
⊢ ⟨S1 ∪ S2,W,Q,T ⟩ : dc≻,T +g

– usable rulesUP,≻ take problem P and order ≻ into account
– “function usable” only if occurs in right-hand-side “inspected by” (≻,≿)
– specific definition depends on kind of order

⋆ search via encoding to SAT modulo theories (SMT)



Complexity Pairs in TCT
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Example: Synthesis PI

⋆ fix abstract shape of interpretations…

fA(x) = cx
f · x + cf gA(x, y) = cxy

g · x · y + cx
g · x + cy

g · y + cg

…and liM algebraic operations and interpretation of terms:

Jf(g(x, y))K = cx
f · c

xy
g · x · y + cx

f · cx
g · x + cx

f · c
y
g · y + cx

f · cg + cf

Jf(g(x, y))K − Jf(x)K = cx
f · c

xy
g · x · y+ cx

f · (cx
g − 1) · x+ cx

f · c
y
g · y+ cx

f · cg

⋆ (weak) orientation of rule f(l1, . . . , lk)→ r expressible as

f(l1, . . . , lk) ZA r ≜ Jf(l1, . . . , lk)KA − JrKA Z 0

where (Z ∈ {>N, ≥N})
– approximated via absolute positiveness condition on coefficients

Jf(g(x, y))K >A Jf(x)K = cx
f · c

xy
g ≥N 0 ∧ cx

f · (cx
g − 1) ≥N 0 ∧ cx

f · c
y
g ≥N 0

∧ cx
f · cg ≥N 1
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Example: Synthesis PI (II)

⋆ µ-monotonicity of fA encoded via

mono(fA, µ) ≜
∧

cx
f∈coeff(f)

cx
f ≥N 0 ∧

∧
i∈µ(f)

cxi
f ≥N 1

where fA(x1, . . . , xk) =
∑

x⊆{x1,...,xk } c
x
f · x

⋆ usable rules of R wrt. start terms T encoded with atoms ul→r via

URs(R,T ) ≜
∧
l→r∈R

rt(l)∈Fun(T )

ul→r ∧
∧
l→r∈R

(ul→r → ϕ(r))

where

ϕ(x) ≜ ⊤
ϕ(f(t1, . . . , tk)) ≜

∧
l→r∈R,rt(l)=f

ul→r ∧
∧

1≤i≤k
(π(f, i)→ ϕ(ti)) π(f, i) ≜

∨
cx

f∈coeff(f),xi∈x

cx
f ≥N 1
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Example: Synthesis PI (III)

⋆ weak orientation of TRS R via

orient(R) ≜
∧
l→r∈R

ul→r → JlKA − JrKA ≥N ml→r

with fresh integer variablesml→r ≥ 0 for each l→ r ∈ R

⋆ extended RP processor for ⟨S,W,Q,T ⟩ implementable as∧
f∈F

mono(fA, µ ∪ ν) ∧ URs(S ∪W,T ) ∧ orient(S ∪W) ∧ Φ

– formula Φ enforces which rules in R ⊆ S should be oriented strictly, e.g.,

Φ ≜
∧
l→r∈S

ml→r ≥N 1 or Φ ≜
∨
l→r∈S

ml→r ≥N 1

– open sub-problem: ⟨S \ R,W∪R,Q,T ⟩ where R determined from
assignment of variablesml→r
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Summary

⋆ TCT build on top of a modular framework for complexity analysis

⋆ decomposition techniques such as DG decomposition key to
strength of analysis

⋆ ultimately, analysis boils down to synthesising a “ranking function”
(reduction orders) via SMT

⋆ currently, tools give asymptotic bounds, but more precise bounds
could be extracted

⋆ automated tools can treat non-trivial examples, fully automatically

⋆ proofs requiring semantic arguments are beyond reach for fully
automated analysis
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Applications to Program Analysis

⋆ Case study: higher-order functional programs



Motivation

1 let (◦) f g = fun z → f (g z) ;;
2 let rec walk = function
3 | [] → id
4 | x::xs → walk xs ◦ (fun ys → x::ys) ;;
5 let rev l = walk l [] ;;

Goal: Runtime Complexity Analysis of Higher-Order Programs
Main Challenge: applied functions not statically known



Direct Approaches: Rewriting Techniques

⋆ Higher-Order Polynomial Interpretations

JmapK = λϕ.λn.n × (ϕ n) : (N→ N)→ N→ N

P. Baillot and U. Dal Lago. “Higher-Order Interpretations and Program
Complexity”. In Proc. of 26th CSL, pp. 62–76, 2012.



Direct Approaches: Type Systems

⋆ Amortized Resource Analysis

Γ ⊢k map : (Np
1−→ Nq) 0−→ Ls c−→ Lt

S. Jost et al. “Static Determination of Quantitative Resource Usage for
Higher-order Programs”. In Proc. of 37th POPL, pp. 223–236, 2010.

J. Hoffmann, A. Das, and S-C. Weng. “Towards Automatic Resource Bound
Analysis for OCaml”. In Proc. of 44th POPL, pp. 359–373, 2017.

⋆ Sized types and instrumentation with clock

Γ ⊢ map : ∀lk. (∀i.Ni
f(i)
−−→ Ng(i))

0−→ Ll(Nk)
(f(k)+1)·l
−−−−−−−−→ Lg(Nf(k))

M. Avanzini and U. Dal Lago. “Automating Sized-Type Inference for
Complexity Analysis”. In Proc. of 22nd ICFP, 2017.



Program Transformations for Complexity Analysis

P complexity
certificateJPKT

existing
first-order

tool

Constraints on Transformation T:

1. certificate can be relayed back to input program P

– complexity reflecting: runtime of P ≤ runtime of T(P)
– ideally, complexity preserving: runtime of T(P) ≤ runtime of P

2. transformed program JPK suitable for analysis by existing tools
Natural Candidate: Reynold’s defunctionalization
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P complexity
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– complexity reflecting: runtime of P ≤ runtime of T(P)
– ideally, complexity preserving: runtime of T(P) ≤ runtime of P

2. transformed program JPK suitable for analysis by existing tools
Natural Candidate: Reynold’s defunctionalization



From Programs to Rewrite Systems

Input:
⋆ “PCF + constructors”

M,N ::= x | MN | λx.M | fix(x.M) | C(M1, . . . ,Mk)

| matchM with {C1(x⃗1) 7→ M1 | · · · | Cn(x⃗n) 7→ Mn}

⋆ usual call-by-value reduction semantics

Output: applicative term rewrite system (ATRS)



From Programs to Rewrite Systems

Definition (defunctionalization to ATRS)

⋆ ⟨x⟩ ≜ x
⋆ ⟨MN⟩ ≜ ⟨M⟩ @ ⟨N⟩
⋆ ⟨C(M1, . . . ,Mk)⟩ ≜ C(⟨M1⟩, . . . , ⟨Mk⟩)
⋆ ⟨λx.M⟩ ≜ Lamx.M(⃗y) where y⃗ = FVar(λx.M)

Lamx.M(⃗y) @ x→ ⟨M⟩

⋆ ⟨fix(x.M)⟩ ≜ Fixx.M(⃗y) where y⃗ = FVar(fix(x.M))

Fixx.M(⃗y) @ z→ ⟨M⟩{Fixx.M(⃗y)/x} @ z

⋆ ⟨matchM with cs⟩ = Matchcs(⃗y) @ ⟨M⟩ where y⃗ = FVar(cs)
Matchcs(⃗y) @ Ci(x⃗i)→ ⟨Mi⟩ (1 ≤ i ≤ n, cs = {· · · | Ci(x⃗i) 7→ Mi | . . . })

U. Dal Lago and S. Martini. “On Constructor Rewrite Systems and the
Lambda-Calculus”. In Proc. of 36th ICALP, pp. 163–174, 2009.
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From Programs to Rewrite Systems (II)

Theorem

LetAPCF collect all rules defined synchronous to ⟨·⟩.
1. APCF implements PCF in a step-by-step manner (call-by-value)

2. on first-order inputs, finite restrictionAP ⊊ APCF sufficient to
implement P = λx⃗.M.



ATRSArev

1 let (◦) f g = fun z → f (g z) ;;
2 let rec walk = function
3 | [] → id
4 | x::xs → walk xs ◦ (fun ys → x::ys) ;;
5 let rev l = walk l [] ;;

⇓ desugar + defunctionalize
(1) Rev @ l→ Fixw @ l @ [] (6) (◦) @ f→ (◦)1(f)
(2) Fixw @ l→ Lam1 @ l (7) (◦)1(f) @ g→ Lam3(f, g)
(3) Lam1 @ l→ Matchw @ l (8) Lam3(f, g) @ z→ f @ (g @ z)
(4) Matchw @ []→ Id (9) Id @ ys→ ys
(5) Matchw @ (x::xs)→ (◦) @ (Fixw @ xs) @ Lam2(x) (10) Lam2(x) @ ys→ x::ys
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in suitable format for analysis by first-order tools



Experimental Evaluation

⋆ Implementation: http://cbr.uibk.ac.at/tools/hoca/
⋆ FOP: TCTv2 for complexity, TTT2 for termination (SN)
⋆ Testbed: 25 higher-order functions from literature on FP

– higher-order sorting functions, list & tree traversals (maps, folds, …),
Okasaki’s parser combinators, …

constant linear quadratic poly SN

RaML # systems 2 4 8 — —
avg. ET (secs) 2.79 0.32 1.55 — —

Defunctionalize# systems 2 5 5 5 8
FOP avg. ET (secs) 1.71 4.82 4.82 4.82 1.38

Simplify # systems 2 14 18 20 25
HoCA avg. ET (secs) 2.28 0.54 0.43 0.42 0.87
FOP avg. ET (secs) 0.51 2.53 6.30 10.94 1.43

Table: Experimental evaluation on 25 higher-order examples. Defunctionalize:
Amortized, type-based analysis with RaML prototoype (http://raml.co/).
Simplify: FOP on defunctionalized ATRS.

RaML: FOP on defunctionalized &
simplified ATRS.

http://cbr.uibk.ac.at/tools/hoca/
http://raml.co/
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1 let (◦) f g = fun z → f (g z) ;;
2 let rec walk = function
3 | [] → id
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⇓ desugar + defunctionalize
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⋆ recursive structure of translated ATRSs apparently too complicated

1. defines one global function @
2. computation entirely driving by data
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Governing the Chaos

program transformations can remedy the situations

1. inlining

– remove unnecessary indirections introduced by rigid transformation

2. dead code elimination

– eliminate inlined functions

3. instantiation

– specialize “higher-order variables” via control/data flow analysis

4. uncurrying

– effectively replaces global apply function with specialized ones



Inlining & Dead Code Elimination

⋆ inlining is optimization that replaces function calls by bodies

⋆ dead code elimination removes non-reachable code

(2) Fixw @ l→ Lam1 @ l
(3) Lam1 @ l→ Matchw @ l
(4) Matchw @ []→ Id
(5) Matchw @ (x::xs)→ (◦) @ (Fixw @ xs) @ Lam2(x)

⇓ inline Lam1

(2) Fixw @ l→ Matchw @ l
(4) Matchw @ []→ Id
(5) Matchw @ (x::xs)→ (◦) @ (Fixw @ xs) @ Lam2(x)

⇓ inline Matchw

(2a) Fixw @ []→ Id
(2b) Fixw @ (x::xs)→ (◦) @ (Fixw @ xs) @ Lam2(x)



Inlining

Definition (inlining + narrowing)

replaces a rule l→ C[f(t1, . . . , tk)] ∈ A by

{(l→ C[r])µ | ∃f(l1, . . . , lk)→ r ∈ A, f(t1, . . . , tk)≈µf(l1, . . . , lk)} .

Traps
1. mixes evaluation-order
2. not cost-neutral in general, even asymptotically

– inline f(n)→ 0 in g(m)→ f(g(m))

3. narrowing cause subtle issue when inlined function partially defined
– inline f(n, 0)→ n in g(S(m))→ f(g(m),m)

Theorem

For non-ambiguousA, redex-preserving inlining of sufficiently defined
function f is asymptotic complexity-reflecting.
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Overall…

(1) Rev @ l→ Fixw @ l @ [] (6) (◦) @ f→ (◦)1(f)
(2) Fixw @ l→ Lam1 @ l (7) (◦)1(f) @ g→ Lam3(f, g)
(3) Lam1 @ l→ Matchw @ l (8) Lam3(f, g) @ z→ f @ (g @ z)
(4) Matchw @ []→ Id (9) Id @ ys→ ys
(5) Matchw @ (x::xs)→ (◦) @ (Fixw @ xs) @ Lam2(x) (10) Lam2(x) @ ys→ x::ys

⇓
(1) Rev @ l→ Fixw @ l @ [] (8) Lam3(f, g) @ z→ f @ (g @ z)

(2a) Fixw @ []→ Id (9) Id @ ys→ ys
(2b) Fixw @ (x::xs)→ Lam3(Fixw @ xs, Lam2(x)) (10) Lam2(x) @ ys→ x::ys

⋆ runtime of Rev coincide, up to constant speed-up

⋆ Implementation Trap: inlining blows up program size/diverge
– inline conservatively (calls to Lam∗, Match∗, and constants)

⋆ troublesome rule (8) still present
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⋆ Implementation Trap: inlining blows up program size/diverge
– inline conservatively (calls to Lam∗, Match∗, and constants)

⋆ troublesome rule (8) still present



Instantiation of Higher-Order Variables

(1) Rev @ l→ Fixw @ l @ [] (8) Lam3(f, g) @ z→ f @ (g @ z)
(2a) Fixw @ []→ Id (9) Id @ ys→ ys
(2b) Fixw @ (x::xs)→ Lam3(Fixw @ xs, Lam2(x)) (10) Lam2(x) @ ys→ x::ys

Central Observation:
⋆ seen in isolation, variables f and g can be instantiated arbitrarily

⋆ not so when considering only calls to Rev

⋆ determining precise set of instances undecidable

⋆ but can be efficiently approximated, e.g., with tree automata
techniques

N. D. Jones. “Flow Analysis of Lazy Higher-order Functional Programs”.
TCS, Vol. 375, pp. 120–136, 2007.

J. Kochems and L. Ong. “Improved Functional Flow and Reachability
Analyses Using Indexed Linear Tree Grammars”. In Proc. of 22nd RTA,
pp. 187–202, 2011.
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Instantiation of Higher-Order Variables

(1) Rev @ l→ Fixw @ l @ [] (8) Lam3(f, g) @ z→ f @ (g @ z)
(2a) Fixw @ []→ Id (9) Id @ ys→ ys
(2b) Fixw @ (x::xs)→ Lam3(Fixw @ xs, Lam2(x)) (10) Lam2(x) @ ys→ x::ys

S→ Rev @ ⋆ ⋆→ [] | ⋆::⋆

(1) R1 → R8 | R9 L1 → ⋆
(2a) R2a → Id
(2b) R2b → Lam3(R2a, Lam2(X2b)) X2b → ⋆ XS2b → ⋆

| Lam3(R2b, Lam2(X2b))
(8) R8 → R8 | R10 F8 → R2a | R2b G8 → Lam2(X2b) Z8 → [] | R10
(9) R9 → [] | X10 | YS10 YS9 → [] | R10
(10) R10 → [] | X10 | YS10 X10 → X2b YS10 → [] | R10

Tree automaton over-approximating collecting semantics.

f 7→ Id | Lam3(f, g) g 7→ Lam2(x)

Variable bindings extracted from tree automaton.
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Instantiation of Higher-Order Variables (II)

(1) Rev @ l→ Fixw @ l @ [] (8) Lam3(f, g) @ z→ f @ (g @ z)
(2a) Fixw @ []→ Id (9) Id @ ys→ ys
(2b) Fixw @ (x::xs)→ Lam3(Fixw @ xs, Lam2(x)) (10) Lam2(x) @ ys→ x::ys

+

f 7→ Id | Lam3(f, g) g 7→ Lam2(x)

⇓ instantiate (8)
(1) Rev @ l→ Fixw @ l @ []

(2a) Fixw @ []→ Id
(2b) Fixw @ (x::xs)→ Lam3(Fixw @ xs, Lam2(x))
(8a) Lam3(Id, Lam2(x)) @ z→ Id @ (Lam2(x) @ z)
(8b) Lam3(Lam3(f, g), Lam2(x)) @ z→ Lam3(f, g) @ (Lam2(x) @ z)
(9) Id @ ys→ ys
(10) Lam2(x) @ ys→ x::ys

⋆ resulting ATRS head-variable free; applied functions statically known
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Uncurrying

C(⃗s) @ t1 @ · · · @ tn =⇒ Cn(⃗s, t1, . . . , tn)

(1) Rev @ l→ Fixw @ l @ []
(2a) Fixw @ []→ Id
(2b) Fixw @ (x::xs)→ Lam3(. . . )

...

=⇒

(1) Rev1(l)→ Fix2
w(l, [])

(2a) Fix1
w([])→ Id

(2b) Fix1
w(x::xs)→ Lam3(. . . )

...

+ η-saturate

(2a′) Fixw @ [] @ z→ Id @ z
(2b′) Fixw @ (x::xs) @ z→ Lam3(. . . ) @ z

=⇒ (2a′) Fix2
w([], z)→ Id(z)

(2b′) Fix2
w(x::xs, z)→ Lam1

3(. . . , z)

N. Hirokawa, A. Middeldorp, and H. Zankl. “Uncurrying for Termination”. In
Proc. of 15th LPAR, 2008.
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Uncurrying (II)

Definition (η-saturation)

⋆ application arity aa(C) is maximal number of arguments applied to C

⋆ ATRSA is η-saturated if

C(⃗s) @ t1 @ · · · @ tn → r ∈ A =⇒ C(⃗s) @ t1 @ · · · @ tn @ z→ r @ z ∈ A

whenever n < aa(C), with z fresh variable
⋆ η-saturation ofA is least η-saturated extension ofA

Theorem (η-Saturation & Uncurrying)

1. η-saturation finite ifA “well-typed”

2. η-saturation is complexity preserving & reflecting

3. uncurrying head-variable free, η-saturated ATRS is complexity
preserving & reflecting
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Uncurry (III)

(1) Rev1(l)→ Fix2
w(l, [])

(2a) Fix1
w([])→ Id

(2b) Fix1
w(x::xs)→ Lam3(Fix1

w(xs), Lam2(x))

(2a′) Fix2
w([], z)→ Id1(z)

(2b′) Fix2
w(x::xs, z)→ Lam1

3(Fix1
w(xs), Lam2(x), z)

(8a) Lam1
3(Id, Lam2(x), z)→ x::z

(8b) Lam1
3(Lam3(f, g), Lam2(x), z)→ Lam1

3(f, g, Lam1
2(x, z))

(9) Id1(ys)→ ys

⇓ simplify & rename
(1a) rev([])→ []
(1b) rev(x::xs)→ eval(walk(xs), Cons(x), [])

(2a) walk([])→ Id
(2b) walk(x::xs)→ Comp(walk(xs), Cons(x))

(8a) eval(Id, Cons(x), z)→ x::z
(8b) eval(Comp(f, g), Cons(x), z)→ eval(f, g, x::z)

1b1a

2b

2a

8b

8a
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Experimental Evaluation

⋆ Implementation: http://cbr.uibk.ac.at/tools/hoca/
⋆ FOP: TCTv2 for complexity, TTT2 for termination (SN)
⋆ Testbed: 25 higher-order functions from literature on FP

– higher-order sorting functions, list & tree traversals (maps, folds, …),
Okasaki’s parser combinators, …

constant linear quadratic poly SN

RaML # systems 2 4 8 — —
avg. ET (secs) 2.79 0.32 1.55 — —

Defunctionalize# systems 2 5 5 5 8
FOP avg. ET (secs) 1.71 4.82 4.82 4.82 1.38

Simplify # systems 2 14 18 20 25
HoCA avg. ET (secs) 2.28 0.54 0.43 0.42 0.87
FOP avg. ET (secs) 0.51 2.53 6.30 10.94 1.43

Table: Experimental evaluation on 25 higher-order examples. Defunctionalize:
Amortized, type-based analysis with RaML prototoype (http://raml.co/).
Simplify: FOP on defunctionalized ATRS. RaML: FOP on defunctionalized &
simplified ATRS.

http://cbr.uibk.ac.at/tools/hoca/
http://raml.co/


Some Relevant Cases

⋆ standard examples from literature on functional programming
– the presented reverse function
– insert sort defined by fold; comparison passed as argument
– DFS tree flattening via difference lists
– maximum sequence sum defined viascanr
– …

⇒ optimal asymptotic bound could be inferred for all examples

⋆ examples where we can only show termination
– merge sort

◦ instantiation of higher-order divide and conquer combinator [Bird’89]

– Okasaki’s parsing combinators [Okasaki’98]

◦ combinators reach order 7

– lazy/memoized computation of Fibonacci numbers
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Conclusion

higher-order functional programs can be effectively analysed
with first order tools

Pros:
⋆ fully automatic analysis; no user annotation required

⋆ to date, most expressive runtime complexity analysis for
higher-order programs

Cons:
⋆ defunctionalisation and CFA analysis⇒ translation non-modular

– nowadays, no problem even for compilers (e.g., MLton)
– modularity within the back-end

⋆ fully automatic analysis; no user annotation possible

⋆ same applies to other approaches (e.g. for JBC or Prolog)
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Thank You!

⋆ HoCA http://cbr.uibk.ac.at/tools/hoca

⋆ TCT http://cl-informatik.uibk.ac.at/software/tct

http://cbr.uibk.ac.at/tools/hoca
http://cl-informatik.uibk.ac.at/software/tct
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