Automated Complexity Analysis of Term Rewrite Systems

Martin Avanzini (martin.avanzini@inria.fr)


```
1 let (o) f g = fun z \rightarrow f (g z) ;;

2 let rec walk = function

3 | [] \rightarrow id

4 | x::xs \rightarrow walk xs \circ (fun ys \rightarrow x::ys) ;;

5 let rev l = walk l [] ;;
```

Question: what is the runtime of rev?


```
1 let (o) f g = fun z \rightarrow f (g z) ;;

2 let rec walk = function

3 | [] \rightarrow id

4 | x::xs \rightarrow walk xs \circ (fun ys \rightarrow x::ys) ;;

5 let rev l = walk l [] ;;
```

Question: what is the runtime of rev? depends on cost model


```
1 let (o) f g = fun z \rightarrow f (g z);;

2 let rec walk = function

3 | [] \rightarrow id

4 | x::xs \rightarrow walk xs \circ (fun ys \rightarrow x::ys);;

5 let rev l = walk l [];;
```

Question: what is the runtime of rev? depends on cost model

- 1. Ideally, Worst Case Execution Time (μs on machine X)
 - analysis depends on compiler, OS, processor (caches, pipelines, branch prediction,...), etc.


```
1 let (o) f g = fun z \rightarrow f (g z);;

2 let rec walk = function

3 | [] \rightarrow id

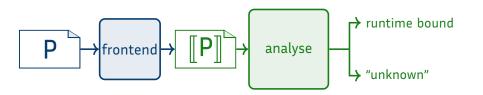
4 | x::xs \rightarrow walk xs \circ (fun ys \rightarrow x::ys);;

5 let rev l = walk l [];;
```

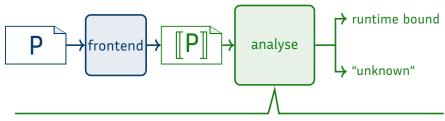
Question: what is the runtime of rev? depends on cost model

- 1. Ideally, Worst Case Execution Time (μs on machine X)
 - analysis depends on compiler, OS, processor (caches, pipelines, branch prediction,...), etc.
- 2. analysis of symbolic cost, e.g., #reduction steps
 - often informative enough while asymptotic precise
 - rewriting techniques can help inferring such bounds, automatically

Setup



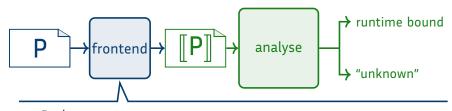
Setup



Fully Automated Rewriting Tools

- ★ AProVE http://aprove.informatik.rwth-aachen.de
- ★ CaT http://cl-informatik.uibk.ac.at/software/cat
- ★ Matchbox http://dfa.imn.htwk-leipzig.de/matchbox
- ★ TCT http://cl-informatik.uibk.ac.at/software/tct

Setup



★ Prolog

C. Otto et al. "Automated Termination Analysis of Java Bytecode by Term Rewriting". In Proc. of 21st RTA, pp. 259–276, 2010.

★ Java / JBC

- J. Giesl et al. "Symbolic Evaluation Graphs and Term Rewriting A General Methodology for Analyzing Logic Programs". In Proc. of 22nd LOPSTR, p. 1, 2012.
- G. Moser and M. Schaper. "From Jinja Bytecode to Term Rewriting: A Complexity Reflecting Transformation". IC, 2017.

⋆ OCaml

M. Avanzini, U. Dal Lago, and G. Moser. "Analysing the Complexity of Functional Programs: Higher-Order Meets First-Order". In Proc. of 20th ICFP, pp. 152–164, 2015.

Today's Lecture

From Termination to Derivational Complexity Analysis

- 1. termination techniques and their induced complexity
- 2. inferring polynomial bounds

Rewriting as a Computational Model and Runtime Complexity

- 3. runtime complexity as a reasonable cost model
- 4. basic methods for polynomial runtime analysis

Tomorrow's Lecture

From Theory to Automation

- 5. towards a modular runtime complexity analysis
- 6. case study: TcT, its complexity framework

Applications to Program Analysis

8. case study: higher-order functional programs

Seminal Paper on Derivational Complexity

D. Hofbauer and C. Lautemann. "Termination Proofs and the Length of Derivations". In Proc. of 3rd RTA, pp. 167–177, 1989.

Seminal Paper on Derivational Complexity

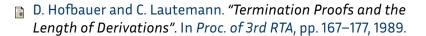
D. Hofbauer and C. Lautemann. "Termination Proofs and the Length of Derivations". In Proc. of 3rd RTA, pp. 167–177, 1989.

Definition (induced derivational complexity)

Method X induces derivational complexity from class C if

" \mathcal{R} terminating by X" \Longrightarrow $dc_{\mathcal{R}} \in C$.

Seminal Paper on Derivational Complexity



Definition (induced derivational complexity)

Method X induces derivational complexity from class C if

" \mathcal{R} terminating by X" \implies $dc_{\mathcal{R}} \in C$.

Theorem (Hofbauer & Lautemann, RTA'89)

Polynomial Interpretations induced double-exponential derivational complexity.

inventeurs du monde numérique

Definition (derivation height, derivational complexity)

consider ARS $\rightarrow \subseteq A \times A$ over objects A equipped with size: $A \rightarrow \mathbb{N}$

★ derivation height function wrt. → is

$$dh_{\rightarrow} : A \rightarrow \mathbb{N} \cup \{\infty\}$$

$$dh_{\rightarrow}(a) \triangleq \sup\{\ell \mid \exists (a_1, \dots, a_{\ell}). \ a \rightarrow a_1 \rightarrow \dots \rightarrow a_{\ell}\}$$

Definition (derivation height, derivational complexity)

consider ARS $\rightarrow \subseteq A \times A$ over objects A equipped with size: $A \rightarrow \mathbb{N}$

 \star derivation height function wrt. \rightarrow is

$$dh_{\rightarrow} : A \rightarrow \mathbb{N} \cup \{\infty\}$$

$$dh_{\rightarrow}(a) \triangleq \sup\{\ell \mid \exists (a_1, \dots, a_{\ell}). \ a \rightarrow a_1 \rightarrow \dots \rightarrow a_{\ell}\}$$

 \star derivational complexity function wrt. → and start objects $S \subseteq A$ is

$$dc_{\rightarrow,S} \colon \mathbb{N} \to \mathbb{N} \cup \{\infty\}$$

$$dc_{\rightarrow,S}(n) \triangleq \sup\{dh_{\rightarrow}(a) \mid a \in S, size(a) \le n\}.$$

Definition (derivation height, derivational complexity)

consider ARS $\rightarrow \subseteq A \times A$ over objects A equipped with size: $A \rightarrow \mathbb{N}$

 \star derivation height function wrt. \rightarrow is

$$\begin{split} \mathsf{dh}_{\to} \colon A &\to \mathbb{N} \cup \{\infty\} \\ \mathsf{dh}_{\to}(a) &\triangleq \mathsf{sup}\{ \textcolor{red}{\ell} \mid \exists (a_1, \ldots, a_\ell). \ a \to a_1 \to \ldots \to a_\ell \} \end{split}$$

 \star derivational complexity function wrt. \to and start objects $S \subseteq A$ is

$$dc_{\rightarrow,S} \colon \mathbb{N} \to \mathbb{N} \cup \{\infty\}$$

$$dc_{\rightarrow,S}(n) \triangleq \sup\{ dh_{\rightarrow}(a) \mid a \in S, size(a) \leq n \}.$$

 \star for TRS $\mathcal R$ over terms $\mathcal T$, derivational complexity is

$$\mathsf{dc}_{\mathcal{R}}(n) \triangleq \mathsf{dc}_{\longrightarrow_{\mathcal{R}},\mathcal{T}}(n)$$
.

\rightarrow	Α	size	$dc_{ o, A}$
>1/	N	id	

\rightarrow	Α	size	$dc_{ o, A}$
>1/	N	id	n
$>_{\mathbb{Z}}$	$\mathbb Z$	•	

\rightarrow	Α	size	$dc_{ o, A}$
>1	N	id	n
$>_{\mathbb{Z}}$	$\mathbb Z$	•	∞
$>_{\mathbb{Q}}$	$\mathbb{Q}_{\geq 0}$	[.]	

\rightarrow	Α	size	$dc_{ o,\mathcal{A}}$
>1/	N	id	n
$>_{\mathbb{Z}}$	$\mathbb Z$	•	∞
$>_{\mathbb{Q}}$	$\mathbb{Q}_{\geq 0}$	[·]	∞
$>_{\mathbb{Q}}^{prod}$	$\mathbb{Q}_{\geq 0}$	$\sum_{i=1}^k n_i$	

\rightarrow	Α	size	$dc_{ o, A}$
>1	N	id	n
$>_{\mathbb{Z}}$	$\mathbb Z$	•	∞
> _Q	$\mathbb{Q}_{\geq 0}$	[·]	∞
$>_{\mathbb{Q}}$	$\mathbb{Q}_{\geq 0}$	$\sum_{i=1}^k n_i$	n

$$\mathcal{R}$$
 $\mathsf{dc}_{\mathcal{R}}(n)$ $\mathsf{a}(\mathsf{a}(x)) \to \mathsf{a}(\mathsf{b}(\mathsf{a}(x)))$

\rightarrow	Α	size	$dc_{\to, A}$
>1/	N	id	n
$>_{\mathbb{Z}}$	$\mathbb Z$	•	∞
> _Q	$\mathbb{Q}_{\geq 0}$	[·]	∞
$>_{\mathbb{Q}}$	\mathbb{N}^k	$\sum_{i=1}^k n_i$	n

\mathcal{R}	$dc_\mathcal{R}(n)$
$ \begin{array}{c} a(a(x)) \to a(b(a(x))) \\ a(b(x)) \to b(a(x)) \end{array} $	<i>O</i> (<i>n</i>)

\rightarrow	Α	size	$dc_{\to, A}$
>1	N	id	n
$>_{\mathbb{Z}}$	$\mathbb Z$	•	∞
> _Q	$\mathbb{Q}_{\geq 0}$	[.]	∞
$>_{\mathbb{Q}}$ $>_{\mathbb{N}}$	\mathbb{N}^k	$\sum_{i=1}^k n_i$	n

$\mathcal R$	$dc_\mathcal{R}(n)$
$ \begin{array}{c} $	$O(n)$ $O(n^2)$

Reduction Orders

Definition (rewrite order, reduction order)

- ★ a rewrite order is a proper order > on that is:
 - 1. closed under substitutions: $s > t \implies s\sigma > t\sigma$
 - 2. closed under contexts: $s > t \implies C[s] > C[t]$
- * a reduction order is a well-founded rewrite order

Reduction Orders

Definition (rewrite order, reduction order)

- ★ a rewrite order is a proper order > on that is:
 - 1. closed under substitutions: $s > t \implies s\sigma > t\sigma$
 - 2. closed under contexts: $s > t \implies C[s] > C[t]$
- * a reduction order is a well-founded rewrite order

Example

Knuth-Bendix Order, Multiset Path Order, Lexicographic Path Orders, Recursive Path Order, Interpretation Method, ...

Reduction Orders

Definition (rewrite order, reduction order)

- ★ a rewrite order is a proper order > on that is:
 - 1. closed under substitutions: $s > t \implies s\sigma > t\sigma$
 - 2. closed under contexts: $s > t \implies C[s] > C[t]$
- * a reduction order is a well-founded rewrite order

Example

Knuth-Bendix Order, Multiset Path Order, Lexicographic Path Orders, Recursive Path Order, Interpretation Method, ...

Lemma

If rewrite order > is compatible with TRS \mathcal{R} , i.e. $\mathcal{R} \subseteq >$, then

$$s \to_{\mathcal{R}} t \implies s > t$$
.

Reduction Orders (II)

Theorem (Termination Via Reduction Orders)

TRS \mathcal{R} is terminating iff there exists a compatible reduction order >.

Proof of Soundness (\Leftarrow).

 \star if > is a rewrite order compatible with \mathcal{R} , then each reduction

$$t \rightarrow_{\mathcal{R}} t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$$

translates to

$$t > t_1 > t_2 > \cdots$$

★ if > is well-founded, this sequence must be finite

Reduction Orders (II)

Theorem (Termination Via Reduction Orders)

TRS \mathcal{R} is terminating iff there exists a compatible reduction order >.

Proof of Soundness (⇐).

 \star if > is a rewrite order compatible with \mathcal{R} , then each reduction

$$t \to_{\mathcal{R}} t_1 \to_{\mathcal{R}} t_2 \to_{\mathcal{R}} \cdots$$

translates to

$$t > t_1 > t_2 > \cdots$$

★ if > is well-founded, this sequence must be finite

Theorem

If R is compatible with reduction order > then

$$\mathsf{dc}_{\mathcal{R}}(n) \leq \mathsf{dc}_{\rightarrow_{\mathscr{Q}} \cap \succ_{\cdot} \mathcal{T}}(n) \leq \mathsf{dc}_{\succ,\mathcal{T}}(n)$$
.

Induced DC

- ★ interpretation method
 - polynomial and matrix interpretations
- ★ multiset path orders
- * dependency pair method

Interpretation Method

Definition (well-founded monotone algebra, $>_{\mathcal{R}}$)

- * well-founded monotone algebra (WMA) $(\mathcal{A}, >)$ with carrier A consists of
 - well-founded proper order $> \subseteq A \times A$, and
 - strictly monotone interpretations $f_{\mathcal{A}}: A^k \to A$ for every k-ary f

$$a_i > b \implies f_{\mathcal{A}}(a_1, \dots, a_i, \dots, a_k) > f_{\mathcal{A}}(a_1, \dots, b, \dots, a_k)$$

Interpretation Method

Definition (well-founded monotone algebra, $>_{\mathcal{A}}$)

- * well-founded monotone algebra (WMA) $(\mathcal{A}, >)$ with carrier A consists of
 - well-founded proper order $> \subseteq A \times A$, and
 - strictly monotone interpretations $f_{\mathcal{A}} \colon A^k \to A$ for every k-ary f

$$a_i > b \implies f_{\mathcal{A}}(a_1, \ldots, a_i, \ldots, a_k) > f_{\mathcal{A}}(a_1, \ldots, b, \ldots, a_k)$$

 \star induced order $>_{\mathcal{A}}$ on terms is

$$s >_{\mathcal{A}} t :\iff [s]_{\mathcal{A}}^{\alpha} > [t]_{\mathcal{A}}^{\alpha} \text{ for all assignments } \alpha$$

where $[\![s]\!]^lpha_{\mathcal{H}}$ is interpretation of s wrt. algebra \mathcal{H} and assignment lpha.

Interpretation Method

Definition (well-founded monotone algebra, $>_{\mathcal{A}}$)

- * well-founded monotone algebra (WMA) $(\mathcal{A}, >)$ with carrier A consists of
 - well-founded proper order $> \subseteq A \times A$, and
 - strictly monotone interpretations $f_{\mathcal{A}}: A^k \to A$ for every k-ary f

$$a_i > b \quad \implies \quad \mathtt{f}_{\mathcal{A}}(a_1, \ldots, a_i, \ldots, a_k) > \mathtt{f}_{\mathcal{A}}(a_1, \ldots, b, \ldots, a_k)$$

 \star induced order $>_{\mathcal{A}}$ on terms is

$$s >_{\mathcal{A}} t : \iff [s]_{\mathcal{A}}^{\alpha} > [t]_{\mathcal{A}}^{\alpha} \text{ for all assignments } \alpha$$

where $[\![s]\!]^{\alpha}_{\mathcal{A}}$ is interpretation of s wrt. algebra \mathcal{A} and assignment α .

Lemma

If $(\mathcal{A}, >)$ is a WMA then $>_{\mathcal{A}}$ is a reduction order.

Definition

Polynomial interpretation (PI) is WMA $(\mathcal{A}, >_{\mathbb{N}})$ where all interpretations $f_{\mathcal{A}}$ are strictly monotone polynomials.

Definition

Polynomial interpretation (PI) is WMA $(\mathcal{A}, >_{\mathbb{N}})$ where all interpretations $f_{\mathcal{A}}$ are strictly monotone polynomials.

Example (I)

★ Consider the append function:

$$[] + ys \rightarrow ys \qquad (x :: xs) + ys \rightarrow x :: (xs + ys).$$

★ terminating with polynomial interpretation?

Definition

Polynomial interpretation (PI) is WMA $(\mathcal{A}, >_{\mathbb{N}})$ where all interpretations $f_{\mathcal{A}}$ are strictly monotone polynomials.

Example (I)

★ Consider the append function:

$$[] + ys \rightarrow ys \qquad (x :: xs) + ys \rightarrow x :: (xs + ys).$$

* terminating with polynomial interpretation? Yes, e.g.

$$n +_{\mathcal{A}} m \triangleq 2 \cdot n + m$$
 [] _{\mathcal{A}} $\triangleq 1$ $n :_{\mathcal{A}} m \triangleq n + m$.

Definition

Polynomial interpretation (PI) is WMA $(\mathcal{A}, >_{\mathbb{N}})$ where all interpretations $f_{\mathcal{A}}$ are strictly monotone polynomials.

Example (II)

* Consider Ackermann function:

$$\begin{array}{ll} \operatorname{ack}(0,y) \to \operatorname{s}(y) & \operatorname{ack}(\operatorname{s}(x),\operatorname{s}(y)) \to \operatorname{ack}(x,\operatorname{ack}(\operatorname{s}(x),y)) \\ \operatorname{ack}(\operatorname{s}(x),0) \to \operatorname{ack}(x,\operatorname{s}(0)) & \end{array}$$

* terminating with polynomial interpretation?

Definition

Polynomial interpretation (PI) is WMA $(\mathcal{A}, >_{\mathbb{N}})$ where all interpretations $f_{\mathcal{A}}$ are strictly monotone polynomials.

Example (II)

* Consider Ackermann function:

$$\begin{array}{ll} \operatorname{ack}(0,y) \to \operatorname{s}(y) & \operatorname{ack}(\operatorname{s}(x),\operatorname{s}(y)) \to \operatorname{ack}(x,\operatorname{ack}(\operatorname{s}(x),y)) \\ \operatorname{ack}(\operatorname{s}(x),0) \to \operatorname{ack}(x,\operatorname{s}(0)) & \end{array}$$

* terminating with polynomial interpretation? No, because ...

Definition

Polynomial interpretation (PI) is WMA $(\mathcal{A}, >_{\mathbb{N}})$ where all interpretations $f_{\mathcal{A}}$ are strictly monotone polynomials.

Example (II)

* Consider Ackermann function:

$$\begin{array}{ll} \operatorname{ack}(0,y) \to \operatorname{s}(y) & \operatorname{ack}(\operatorname{s}(x),\operatorname{s}(y)) \to \operatorname{ack}(x,\operatorname{ack}(\operatorname{s}(x),y)) \\ \operatorname{ack}(\operatorname{s}(x),0) \to \operatorname{ack}(x,\operatorname{s}(0)) & \end{array}$$

* terminating with polynomial interpretation? No, because ...

Theorem (Hofbauer & Lautemann, RTA'89)

PIs induce double-exponential DC.

(Bound is tight.)

Definition

Polynomial interpretation (PI) is WMA $(\mathcal{A}, >_{\mathbb{N}})$ where all interpretations $f_{\mathcal{A}}$ are strictly monotone polynomials.

Example (II)

* Consider Ackermann function:

$$\begin{array}{ll} \operatorname{ack}(0,y) \to \operatorname{s}(y) & \operatorname{ack}(\operatorname{s}(x),\operatorname{s}(y)) \to \operatorname{ack}(x,\operatorname{ack}(\operatorname{s}(x),y)) \\ \operatorname{ack}(\operatorname{s}(x),0) \to \operatorname{ack}(x,\operatorname{s}(0)) & \end{array}$$

* terminating with polynomial interpretation? No, because ...

Theorem (Hofbauer & Lautemann, RTA'89)

PIs induce double-exponential DC.

(Bound is tight.)

Question: how to prove this statement?

Definition (Upper-Bound)

Function $u \colon \mathbb{N} \to \mathbb{N}$ is upper-bound for PI $(\mathcal{A}, >_{\mathbb{N}})$ over signature \mathcal{F} if:

$$\forall f \in \mathcal{F} . \forall a \in A. f_{\mathcal{A}}(a, ..., a) \leq u(a)$$
.

Definition (Upper-Bound)

Function $u: \mathbb{N} \to \mathbb{N}$ is upper-bound for PI $(\mathcal{A}, >_{\mathbb{N}})$ over signature \mathcal{F} if:

$$\forall f \in \mathcal{F}. \forall a \in A. f_{\mathcal{A}}(a, ..., a) \leq u(a).$$

Lemma

Define $\alpha_0(x) \triangleq 0$. Suppose TRS \mathcal{R} compatible with $(\mathcal{A}, >_{\mathbb{N}})$. Then:

$$\forall t. \ \mathsf{dh}_{\mathcal{R}}(t) \leq [t]_{\mathcal{A}}^{\alpha_0} \leq \mathsf{u}^{\mathsf{size}(t)}(0), \ \mathsf{hence} \ \mathsf{dc}_{\mathcal{R}}(n) \leq \mathsf{u}^n(0).$$

Definition (Upper-Bound)

Function $u \colon \mathbb{N} \to \mathbb{N}$ is upper-bound for PI $(\mathcal{A}, >_{\mathbb{N}})$ over signature \mathcal{F} if:

$$\forall f \in \mathcal{F} . \forall a \in A. f_{\mathcal{A}}(a, ..., a) \leq u(a)$$
.

Lemma

Define $\alpha_0(x) \triangleq 0$. Suppose TRS \mathcal{R} compatible with $(\mathcal{A}, >_{\mathbb{N}})$. Then:

$$\forall t. \ \mathsf{dh}_{\mathcal{R}}(t) \leq [\![t]\!]_{\mathcal{A}}^{\alpha_0} \leq \mathsf{u}^{\mathsf{size}(t)}(0), \, \mathsf{hence} \ \mathsf{dc}_{\mathcal{R}}(n) \leq \mathsf{u}^{\mathsf{n}}(0) \, .$$

shape	upper-bound	induced DC
additive	u(a) = a + d	<i>O</i> (<i>n</i>)
linear	$u(a) = \mathbf{c} \cdot a + \mathbf{d}$	$O(2^{n})$
polynomial	$u(a) = \mathbf{c} \cdot a^{\mathbf{k}} + \mathbf{d}$	$O(2^{2^{n'}})$

Table: induced derivational complexity by shape; bounds are tight.

Example

TRS \mathcal{R}_{++} consisting of rules

$$[] + ys \rightarrow ys$$
 $(x :: xs) + ys \rightarrow x :: (xs + ys).$

terminating with polynomial interpretation

$$n +_{\mathcal{A}} m \triangleq 2 \cdot n + m$$
 $[]_{\mathcal{A}} \triangleq 1$ $n :_{\mathcal{A}} m \triangleq n + m$.

linear shape ⇒ classified exponential DC

shape	upper-bound	induced DC
additive	u(a) = a + d	<i>O</i> (<i>n</i>)
linear	$u(a) = \mathbf{c} \cdot a + \mathbf{d}$	$O(2^{n})$
polynomial	$u(a) = \mathbf{c} \cdot a^{\mathbf{k}} + \mathbf{d}$	$O(2^{2^{n'}})$

Table: induced derivational complexity by shape; bounds are tight.

Definition

Matrix interpretation (MI) of degree d is WMA (\mathcal{A}, \gg) over \mathbb{N}^d where

 \bigstar all interpretations $\mathtt{f}_{\mathscr{R}}$ are of the form

$$f_{\mathcal{A}}(\vec{x_1},\ldots,\vec{x_k}) = M_1 \cdot \vec{x_1} + \cdots + M_k \cdot \vec{x_k} + V$$

where $V \in \mathbb{N}^d$ and $M_1, \ldots, M_k \in \mathbb{N}^{d \times d}$ with $(M_i)_{1,1} \ge 1$

 $\star \ \vec{x} \gg \vec{y} : \Longleftrightarrow \ x_1 > y_1 \wedge \vec{x} \geqslant \vec{y}$

Definition

Matrix interpretation (MI) of degree d is WMA (\mathcal{A}, \gg) over \mathbb{N}^d where

 \bigstar all interpretations $\mathtt{f}_{\mathscr{R}}$ are of the form

$$f_{\mathcal{A}}(\vec{x_1},\ldots,\vec{x_{\nu}}) = M_1 \cdot \vec{x_1} + \cdots + M_{\nu} \cdot \vec{x_{\nu}} + V$$

where $V \in \mathbb{N}^d$ and $M_1, \dots, M_k \in \mathbb{N}^{d \times d}$ with $(M_i)_{1,1} \geqslant 1$

$$\star \vec{x} \gg \vec{y} :\iff x_1 > y_1 \land \vec{x} \geqslant \vec{y}$$

Example

One-ruled TRS $\mathcal{R}_{\mathtt{aa}}$ $\mathtt{a}(\mathtt{a}(x)) \to \mathtt{a}(\mathtt{b}(\mathtt{a}(x)))$

compatible with matrix interpretation

 $\mathbf{a}_{\mathcal{A}}(\vec{n}) \triangleq \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \cdot \vec{n} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \qquad \mathbf{b}_{\mathcal{A}}(\vec{n}) \triangleq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \vec{n} \; .$

Matrix Interpretations (II)

Theorem (Hofbauer & Waldmann, RTA'06)

MIs induce exponential DC.

Matrix Interpretations (II)

Theorem (Hofbauer & Waldmann, RTA'06)

MIs induce exponential DC.

Definition (Upper-triangular interpretation)

Matrix M is upper-triangular if

$$\forall i. M_{i,i} \leq 1$$
 and $\forall i > j. M_{i,j} = 0$.

Theorem (Middeldorp et al. CAI'11)

MIs induce $DCO(n^d)$ if all coefficients are upper-triangular with diagonal sum at most d.

- A. Middeldorp et al. "Joint Spectral Radius Theory for Automated Complexity Analysis of Rewrite Systems". In Proc. of 4th CAI, pp. 1–20, 2011.
- D. Hofbauer and J. Waldmann. "Termination of String Rewriting with Matrix Interpretations". In Proc. of 17th RTA, pp. 328–342, 2006.

Example

One-ruled TRS $\mathcal{R}_{\mathtt{aa}}$

$$a(a(x)) \rightarrow a(b(a(x)))$$

compatible with matrix interpretation

$$\mathbf{a}_{\mathcal{H}}(\vec{n}) \triangleq \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \cdot \vec{n} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \mathbf{b}_{\mathcal{H}}(\vec{n}) \triangleq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \vec{n} .$$

Question: induced derivational complexity?

Example

One-ruled TRS $\mathcal{R}_{\mathtt{aa}}$

$$a(a(x)) \rightarrow a(b(a(x)))$$

compatible with matrix interpretation

$$\mathbf{a}_{\mathcal{H}}(\vec{n}) \triangleq \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \cdot \vec{n} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \mathbf{b}_{\mathcal{H}}(\vec{n}) \triangleq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \vec{n} .$$

Question: induced derivational complexity? linear

Example

TRS \mathcal{R}_{++} consisting of rules

$$[] \# ys \rightarrow ys$$
 $(x :: xs) \# ys \rightarrow x :: (xs \# ys).$

terminating with polynomial interpretation

$$[\,]_{\mathcal{A}} \triangleq \begin{bmatrix} 7 \\ 1 \end{bmatrix} \qquad \vec{\mathbf{X}} ::_{\mathcal{A}} \vec{\mathbf{X}} \vec{\mathbf{S}} \triangleq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \vec{\mathbf{X}} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \vec{\mathbf{X}} \vec{\mathbf{S}} + \begin{bmatrix} 10 \\ 1 \end{bmatrix}$$

$$\vec{\mathsf{x}}\vec{\mathsf{s}} +_{\mathcal{A}} \vec{\mathsf{y}}\vec{\mathsf{s}} \triangleq \begin{bmatrix} 1 & 9 \\ 0 & 1 \end{bmatrix} \cdot \vec{\mathsf{x}}\vec{\mathsf{s}} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \vec{\mathsf{y}}\vec{\mathsf{s}} \; .$$

- ★ induced derivational complexity? Quadratic
- ★ Question: bound asymptotic tight?

Example

TRS \mathcal{R}_{++} consisting of rules

$$[] + ys \rightarrow ys \qquad (x :: xs) + ys \rightarrow x :: (xs + ys).$$

terminating with polynomial interpretation

$$[]_{\mathcal{A}} \triangleq \begin{bmatrix} 7 \\ 1 \end{bmatrix} \qquad \vec{\mathbf{x}} ::_{\mathcal{A}} \vec{\mathbf{x}} \hat{\mathbf{s}} \triangleq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \vec{\mathbf{x}} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \vec{\mathbf{x}} \hat{\mathbf{s}} + \begin{bmatrix} 10 \\ 1 \end{bmatrix}$$

$$\vec{\mathsf{x}} \mathbf{s} +_{\mathcal{A}} \vec{\mathsf{y}} \mathbf{s} \triangleq \begin{bmatrix} 1 & 9 \\ 0 & 1 \end{bmatrix} \cdot \vec{\mathsf{x}} \mathbf{s} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \vec{\mathsf{y}} \mathbf{s} \; .$$

- * induced derivational complexity? Quadratic
- * Question: bound asymptotic tight? Yes: $[e_1, ..., e_n] \underbrace{\# \cdots \#}_{m \text{ times}}[]$

The Multiset Path Ordering (MPO)

Definition (Multiset Path Order)

- ★ given precedence > (proper, total order on function symbols)
- ★ induced multiset path order >_{mpo} is least order on terms s.t.

$$\frac{\exists i.s_i \geqslant_{\mathsf{mpo}} t}{\mathtt{f}(s_1, \ldots, s_i, \ldots, s_k) >_{\mathsf{mpo}} t}$$

$$\frac{\mathbf{f} > \mathbf{g} \quad \forall j.\mathbf{f}(s_1, \dots, s_k) >_{\mathsf{mpo}} t_j}{\mathbf{f}(s_1, \dots, s_k) >_{\mathsf{mpo}} \mathbf{g}(t_1, \dots, t_k)}$$

$$\frac{\{s_1, \dots, s_k\} >_{mpo}^{mul} \{t_1, \dots, t_k\}}{f(s_1, \dots, s_k) >_{mpo} f(t_1, \dots, t_k)}$$

The Multiset Path Ordering (MPO)

Definition (Multiset Path Order)

- ★ given precedence > (proper, total order on function symbols)
- ★ induced multiset path order >_{mpo} is least order on terms s.t.

$$\frac{\exists i.s_{i} \geqslant_{\mathsf{mpo}} t}{\mathsf{f}(\mathsf{s}_{1}, \dots, \mathsf{s}_{i}, \dots, \mathsf{s}_{k}) >_{\mathsf{mpo}} t}$$

$$\frac{\mathsf{f} > \mathsf{g} \quad \forall j.\mathsf{f}(\mathsf{s}_{1}, \dots, \mathsf{s}_{k}) >_{\mathsf{mpo}} t_{j}}{\mathsf{f}(\mathsf{s}_{1}, \dots, \mathsf{s}_{k}) >_{\mathsf{mpo}} \mathsf{g}(t_{1}, \dots, t_{k})}$$

$$\frac{\{\mathsf{s}_{1}, \dots, \mathsf{s}_{k}\} >_{\mathsf{mpo}}^{\mathsf{mul}} \{t_{1}, \dots, t_{k}\}}{\mathsf{f}(\mathsf{s}_{1}, \dots, \mathsf{s}_{k}) >_{\mathsf{mpo}} \mathsf{f}(t_{1}, \dots, t_{k})}$$

Theorem

>_{mpo} is a reduction order.

Definition (Primitive Recursive Functions)

Class of primitive recursive functions (PR) is least set of functions over $\mathbb N$ s.t.

1. containing initial functions

$$\mathsf{zero}() \triangleq 0 \quad \mathsf{succ}(x) \triangleq x + 1 \quad \pi_{i,k}(x_1, \dots, x_k) \triangleq x_i \quad (\forall 0 < i \le k \in \mathbb{N})$$
 ,

2. closed under composition

$$h, g_1, \ldots, g_k \in \mathsf{PR} \implies f(\vec{x}) \triangleq h(g_1(\vec{x}), \ldots, g_k(\vec{x})) \in \mathsf{PR}$$
 ,

3. closed under primitive recursion

$$g,h \in \mathsf{PR} \implies \left(\begin{array}{c} f(0,\vec{x}) \triangleq g(\vec{x}) \\ f(z+1,\vec{x}) \triangleq h(\vec{x},f(z,\vec{x})) \end{array} \right) \in \mathsf{PR} \ .$$

Definition (Rewriting Characterization of PR)

signature \mathcal{F}_{PR} and (infinite) rewrite system \mathcal{R}_{PR} inductively defined by:

1. constant $0\in\mathcal{F}_{PR}$, unary symbol $\mathbf{s}\in\mathcal{F}_{PR}$ and

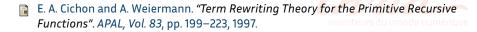
$$\texttt{proj}_{i,k} \in \mathcal{F}_{\texttt{PR}} \qquad \texttt{proj}_{i,k}(x_1, \dots, x_k) {\rightarrow} \ x_i \in \mathcal{R}_{\texttt{PR}} \quad (\forall 0 < i \leq k \in \mathbb{N}) \ \text{,}$$

2. if $h, \vec{g} \in \mathcal{F}_{PR}$ then

$$\mathsf{comp}[\vec{g},h] \in \mathcal{F}_\mathsf{PR} \quad \mathsf{comp}[\vec{g},h](\vec{x}) \to h(g_1(\vec{x}),\dots,g_k(\vec{x})) \in \mathcal{R}_\mathsf{PR}$$
 ,

3. if $g, h \in \mathcal{F}_{PR}$ then

$$\operatorname{rec}[g,h] \in \mathcal{F}_{\operatorname{PR}} \quad \left(\begin{array}{c} \operatorname{rec}[g,h](0,\vec{x}) \to g(\vec{x}) \\ \operatorname{rec}[g,h](z+1,\vec{x}) \to h(\vec{x},\operatorname{rec}[g,h](z,\vec{x})) \end{array} \right) \in \mathcal{R}_{\operatorname{PR}} \; .$$



Theorem ($PR \Rightarrow MPO$ compatible)

Every $f \in PR$ is computed by some TRS compatible with MPO.

Proof Outline.

- 1. Every $f \in PR$ is "computed" by finite $\mathcal{R}_f \subsetneq \mathcal{R}_{PR}$.
- 2. $\mathcal{R}_f \subseteq >_{mpo}$ where > defined s.t.

$$comp[...,h,...] > h$$
, $rec[g,h] > g,h$.

Theorem ($PR \Rightarrow MPO$ compatible)

Every $f \in PR$ is computed by some TRS compatible with MPO.

Proof Outline.

- 1. Every $f \in PR$ is "computed" by finite $\mathcal{R}_f \subsetneq \mathcal{R}_{PR}$.
- 2. $\mathcal{R}_f \subseteq >_{mpo}$ where > defined s.t.

$$comp[...,h,...] > h$$
, $rec[g,h] > g,h$.

Theorem (Hofbauer, TCS'92)

MPO induces primitive recursive DC.

Theorem (PR ⇒ MPO compatible)

Every $f \in PR$ is computed by some TRS compatible with MPO.

Proof Outline.

- 1. Every $f \in PR$ is "computed" by finite $\mathcal{R}_f \subsetneq \mathcal{R}_{PR}$.
- 2. $\mathcal{R}_f \subseteq \succ_{\mathsf{mpo}} \mathsf{where} \succ \mathsf{defined} \mathsf{s.t.}$

$$comp[...,h,...] > h$$
, $rec[g,h] > g,h$.

Theorem (Hofbauer, TCS'92)

MPO induces primitive recursive DC.

Corollary (MPO compatible \Rightarrow PR)

If \mathcal{R} "computes a function" $f: \mathbb{N}^k \to \mathbb{N}$ and \mathcal{R} is compatible with MPO then $f \in PR$.

Dependency Pairs

Definition (Dependency Pair)

If $f(l_1,\ldots,l_m) \to \mathcal{C}[g(t_1,\ldots,t_n)] \in \mathcal{R}$ with g defined by rule, then

$$\mathbf{f}^{\#}(l_1,\ldots,l_m)\to\mathbf{g}^{\#}(t_1,\ldots,t_n)$$

is a dependency pair (DP) of \mathcal{R} ; DP(\mathcal{R}) collects all DPs of \mathcal{R} .

Dependency Pairs

Definition (Dependency Pair)

If $f(l_1, ..., l_m) \rightarrow C[g(t_1, ..., t_n)] \in \mathcal{R}$ with g defined by rule, then

$$f^{\#}(l_1,...,l_m) \to g^{\#}(t_1,...,t_n)$$

is a dependency pair (DP) of \mathcal{R} ; DP(\mathcal{R}) collects all DPs of \mathcal{R} .

Example

 $rev([]) \rightarrow []$

 $\operatorname{rev}(x::xs) \to \operatorname{rev}(xs) + [x] \qquad \operatorname{rev}^{\#}(x::xs) \to \operatorname{rev}^{\#}(xs)$ $\operatorname{rev}^{\#}(x::xs) \to \operatorname{rev}(xs) + [x]$

Dependency Pairs (II)

Theorem

TRS $\mathcal R$ is terminating iff there is no infinite and minimal chain

$$\mathtt{f}^{\#}(s_1,\ldots,s_m) \mathop{\rightarrow}_{\mathsf{DP}(\mathcal{R})} \mathtt{g}^{\#}(t_1,\ldots,t_n) \mathop{\rightarrow}_{\mathcal{R}}^* \mathtt{g}^{\#}(u_1,\ldots,u_n) \mathop{\rightarrow}_{\mathsf{DP}(\mathcal{R})} \ldots$$

Dependency Pairs (II)

Theorem

TRS $\mathcal R$ is terminating iff there is no infinite and minimal chain

$$f^{\#}(s_1,\ldots,s_m) \rightarrow_{\mathsf{DP}(\mathcal{R})} g^{\#}(t_1,\ldots,t_n) \rightarrow_{\mathcal{R}}^* g^{\#}(u_1,\ldots,u_n) \rightarrow_{\mathsf{DP}(\mathcal{R})} \ldots$$

Proof techniques: reduction pairs, usable rules, subterm criterion, rule removal, narrowing, dependency graph cycle analysis, ...

Dependency Pairs (II)

Theorem

TRS $\mathcal R$ is terminating iff there is no infinite and minimal chain

$$f^{\#}(s_1,\ldots,s_m) \rightarrow_{\mathsf{DP}(\mathcal{R})} g^{\#}(t_1,\ldots,t_n) \rightarrow_{\mathcal{R}}^* g^{\#}(u_1,\ldots,u_n) \rightarrow_{\mathsf{DP}(\mathcal{R})} \ldots$$

Proof techniques: reduction pairs, usable rules, subterm criterion, rule removal, narrowing, dependency graph cycle analysis, ...

Theorem (Moser & Schnabl, RTA'09)

- \star DC of $\mathcal R$ can be double-exponential in length of $\to_{\mathsf{DP}(\mathcal R)} \cdot \to_{\mathcal R}^*$ chains
- * non-primitive recursive overhead in dependency pair framework (subterm criterion + rule removal).
 - G. Moser and A. Schnabl. "The Derivational Complexity Induced by the Dependency Pair Method". In Proc. of 20th RTA, pp. 276–290, 2009.

Summary

* direct methods

 Knuth-Bendix order 	1969
 polynomial interpretations 	1975
– lexicographic path order	1980
 multiset path order 	1982
 context dependent interpretations 	2001
 match bounds 	2003
 matrix interpretations 	2006

- ..

* transformation methods

- semantic labeling

- dependency pairs

- ...

Summary

* direct methods

- Knuth-Bendix order
- polynomial interpretations
 - additive
- lexicographic path order
- multiset path order
- context dependent interpretations
- match bounds
- matrix interpretations
 - triangular

- ...

* transformation methods

- semantic labeling
- dependency pairs

- ...

2-rec, 2000 / 1969 double-exp, 1989 / 1975 linear, 2011 multi-rec, 1995 / 1980 prim-rec, 1990 / 1982 double-exp, 2001 / 2001 linear, 2003 / 2003 double-exp, 2006 / 2006

arbitrary overhead, 2008 / 1995 2-exp overhead, 2011 / 1997

nventeurs du monde numérique

Runtime Complexity Analysis

- ★ rewriting as a model of computation
- * invariance theorem
- ★ methods for assessing polynomial runtime

Derivational Complexity (II)

 \star consider TRS \mathcal{R}_{dbl} consisting of two rules:

$$dbl(0) \rightarrow 0$$
 $dbl(s(x)) \rightarrow s(s(dbl(x)))$

* \mathcal{R}_{dbl} doubles natural numbers n in unary notation $\underline{n} = \underbrace{\mathfrak{s}(\dots \mathfrak{s}(0)\dots)}_{n \text{ times}}$

Derivational Complexity (II)

★ consider TRS \mathcal{R}_{dbl} consisting of two rules:

$$dbl(0) \rightarrow 0$$
 $dbl(s(x)) \rightarrow s(s(dbl(x)))$

- * \mathcal{R}_{dbl} doubles natural numbers n in unary notation $\underline{n} = \underbrace{\mathbf{s}(\dots \mathbf{s}(0)\dots)}_{n \text{ times}}$
- ★ complexity of function dbl is linear
- \star derivational complexity of \mathcal{R}_{dbl} is exponential

$$\begin{split} \mathsf{dh}_{\longrightarrow_{\mathcal{R}_{\mathsf{dbl}}}}(\mathsf{dbl}(\underline{n})) &= n+1 \\ \mathsf{dh}_{\longrightarrow_{\mathcal{R}_{\mathsf{dbl}}}}(\mathsf{dbl}(\mathsf{dbl}(\underline{n}))) &= (2 \cdot n+1) + (n+1) \\ \mathsf{dh}_{\longrightarrow_{\mathcal{R}_{\mathsf{dbl}}}}(\mathsf{dbl}(\mathsf{dbl}(\mathsf{dbl}(\underline{n})))) &= (4 \cdot n+1) + (2 \cdot n+1) + (n+1) \end{split}$$

$$\mathsf{dh}_{\to_{\mathcal{R}_{\mathsf{dbl}}}}(\mathsf{dbl}^k(\underline{n})) = \sum_{i=0}^{k-1} (2^k \cdot n + 1)_{\mathsf{Inventeurs}} \, \mathsf{du} \, \mathsf{monde} \, \mathsf{num\acute{e}rique}$$

Runtime Complexity of TRS

Definition (runtime complexity function)

Runtime complexity $rc_{\mathcal{R}} \colon \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ of TRS \mathcal{R} is

$$rc_{\mathcal{R}}(n) \triangleq dc_{\rightarrow_{\mathcal{R}},\mathcal{B}}(n)$$
 with $\underbrace{\mathcal{B}} \triangleq \{f(v_1,\ldots,v_k) \mid f \in \mathcal{D}, v_i \in \mathcal{Val}\}$, where

- \star signature partitioned into defined symbols ${\mathcal D}$ and constructors ${\mathcal C}$
 - usually, ${\mathcal D}$ given implicitly by roots of left-hand sides
- ★ values Val are terms build from constructors C

Runtime Complexity of TRS

Definition (runtime complexity function)

Runtime complexity $rc_{\mathcal{R}} \colon \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ of TRS \mathcal{R} is

$$rc_{\mathcal{R}}(n) \triangleq dc_{\rightarrow_{\mathcal{R}},\mathcal{B}}(n)$$
 with $\underline{\mathcal{B}} \triangleq \{f(v_1,\ldots,v_k) \mid f \in \mathcal{D}, v_i \in \mathcal{V}al\}$,

where

- \star signature partitioned into defined symbols ${\mathcal D}$ and constructors ${\mathcal C}$
 - usually, ${\mathcal D}$ given implicitly by roots of left-hand sides
- ★ values Val are terms build from constructors C

Example

Runtime of \mathcal{R}_{dbl} is linear.

Rewriting as a Model of Computation

Definition (computation)

TRS \mathcal{R} computes relation $R_{\mathbf{f}} \subseteq \mathcal{V}al^k \times \mathcal{V}al$ for each $\mathbf{f} \in \mathcal{D}$ s.t.

$$(v_1, \ldots, v_k) \underset{\mathsf{R}_f}{\mathsf{R}} w \iff \mathsf{f}(v_1, \ldots, v_k) \xrightarrow{!} w \in \mathcal{V}al.$$

Rewriting as a Model of Computation

Definition (computation)

TRS \mathcal{R} computes relation $R_{\mathbf{f}} \subseteq \mathcal{V}al^k \times \mathcal{V}al$ for each $\mathbf{f} \in \mathcal{D}$ s.t.

$$(v_1, \ldots, v_k) \mathrel{R_f} w \iff f(v_1, \ldots, v_k) \rightarrow^! w \in \mathcal{V}al.$$

Note: if R is confluent, R_f is a k-ary function

Rewriting as a Model of Computation

Definition (computation)

TRS \mathcal{R} computes relation $R_{\mathbf{f}} \subseteq \mathcal{V}al^k \times \mathcal{V}al$ for each $\mathbf{f} \in \mathcal{D}$ s.t.

$$(v_1, \ldots, v_k) \mathrel{R_f} w \iff f(v_1, \ldots, v_k) \rightarrow^! w \in \mathcal{V}al.$$

Note: if \mathcal{R} is confluent, R_f is a k-ary function

Question: is runtime complexity a reasonable cost model?

Rewriting as a Model of Computation

Definition (computation)

TRS \mathcal{R} computes relation $R_f \subseteq \mathcal{V}al^k \times \mathcal{V}al$ for each $f \in \mathcal{D}$ s.t.

$$(v_1, \ldots, v_k) \underset{\mathsf{R_f}}{\mathsf{R_f}} w \iff \mathsf{f}(v_1, \ldots, v_k) \xrightarrow{!} w \in \mathcal{V}al.$$

Note: if R is confluent, R_f is a k-ary function

Question: is runtime complexity a reasonable cost model?

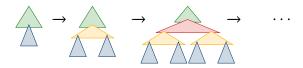
- 1. counting #reduction steps is natural
- 2. related to the cost of an "implementation"

Invariance Thesis

"...reasonable universal machines can simulate each other within a polynomially bounded overhead in time and a constant-factor overhead in space."

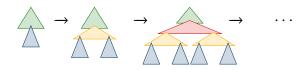
Invariance Thesis

- * invariance long lasting open question for rewriting based calculi
 - a single rewrite step may copy arbitrarily large terms
 - terms may grow exponential in the length of derivations

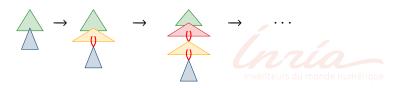


Invariance Thesis

- ★ invariance long lasting open question for rewriting based calculi
 - a single rewrite step may copy arbitrarily large terms
 - terms may grow exponential in the length of derivations

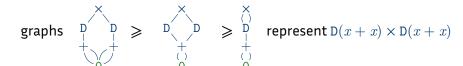


- ★ implementation via graph rewriting avoids space explosion
 - copying replaced by sharing
 - size-growth constant in length of derivation



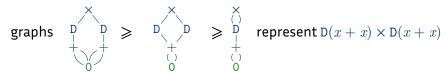
Graph Rewriting in a Nutshell

1. terms represented as graphs



Graph Rewriting in a Nutshell

1. terms represented as graphs

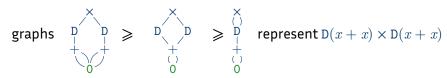


- 2. rules are graph with two designated roots for LHS f and RHS 8
 - unlabelled leafs act as variables

s frepresents
$$f(s(x_1), x_2) \rightarrow f(x_1, c(x_2, x_2))$$

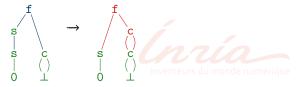
Graph Rewriting in a Nutshell

1. terms represented as graphs



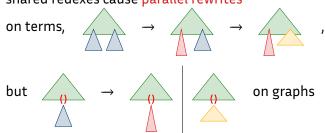
- 2. rules are graph with two designated roots for LHS **f** and RHS **g**
 - unlabelled leafs act as variables

3. rule application replaces homomorphic copy of LHS with RHS



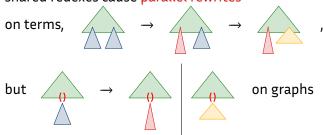
Discrepancies to Term Rewriting

1. shared redexes cause parallel rewrites



Discrepancies to Term Rewriting

1. shared redexes cause parallel rewrites



2. graph matching based on pointer equality

LHS

but matches not

Implementing Term via Graph Rewriting

Folklore: term rewriting can be implemented via graph rewriting

1. translate each rewrite rule $l \rightarrow r$ to graph rule

2. unfold & fold graph before rule application

Implementing Term via Graph Rewriting

Folklore: term rewriting can be implemented via graph rewriting

1. translate each rewrite rule $l \rightarrow r$ to graph rule

2. unfold & fold graph before rule application

★ unfolding must be handled with care to avoid space-explosion

Implementing Term via Graph Rewriting

Folklore: term rewriting can be implemented via graph rewriting

1. translate each rewrite rule $l \rightarrow r$ to graph rule

2. unfold & fold graph before rule application

- ★ unfolding must be handled with care to avoid space-explosion
- ★ observation gives rise to reduction relation ◆→ on graphs
 - restricted unfolding ⊲ copies only shared nodes along path to redex
 - restricted folding ► introduces maximal sharing strictly below redex

Space Efficient Implementation of Term Rewriting

Theorem (Adequacy Theorem)

$$S \longrightarrow T \iff term(S) \rightarrow term(T)$$

Lemma (Time Lemma)

$$S \longrightarrow T \implies T$$
 computable from S in almost cubic time on TM

Lemma (Space Lemma)

$$S \longrightarrow T \implies \operatorname{size}(T) \in O(\ell \cdot \operatorname{size}(S) + \ell^2)$$

Invariance Theorem

Theorem (Invariance Theorem)

Let \mathcal{R} be a confluent rewrite system with runtime g(n).

Any function computed by $\mathcal R$ is computable in time p(n,g(n)) on a deterministic Turing machine, where

$$p(n,\ell) \in O(\log(\ell+n)^3 \cdot (\ell \cdot n^3 + \ell^4))$$

Corollary (Polytime Invariance)

Let $\mathcal R$ be a confluent rewrite system with polynomially bounded runtime.

Then the functions computed by R are in FPTime.

Invariance Theorem

Theorem (Non-deterministic Invariance Theorem)

Let \mathcal{R} be a rewrite system with runtime g(n).

Any relation computed by $\mathcal R$ is computable in time p(n,g(n)) on a non-deterministic Turing machine, where

$$p(n,\ell) \in O(\log(\ell+n)^3 \cdot (\ell \cdot n^3 + \ell^4))$$

Corollary (Non-deterministic Polytime Invariance)

Let R be a rewrite system with polynomially bounded runtime.

Then the function problem associated with any relation computed by $\mathcal R$ is in FNPTime.

Methods That Classify Polynomial RC

- ⋆ polynomial & matrix interpretations, revisited
- ★ usable argument positions
- ★ polynomial path orders

Central Observation:

- $\star \mathcal{R} \subseteq >_{\mathcal{A}} \implies \mathsf{dh}_{\rightarrow_{\mathcal{R}}}(\mathsf{f}(\mathsf{v}_1, \dots, \mathsf{v}_k)) \leq \mathsf{f}_{\mathcal{A}}(\llbracket \mathsf{v}_1 \rrbracket_{\mathcal{A}}^{\alpha_0}, \dots, \llbracket \mathsf{v}_k \rrbracket_{\mathcal{A}}^{\alpha_0})$
- ★ for basic start terms, sufficient to control interpretations of constructors

Central Observation:

- $\star \mathcal{R} \subseteq >_{\mathcal{A}} \implies \mathsf{dh}_{\longrightarrow_{\mathcal{R}}}(\mathsf{f}(\mathsf{v}_1, \dots, \mathsf{v}_k)) \leq \mathsf{f}_{\mathcal{A}}(\llbracket \mathsf{v}_1 \rrbracket_{\mathcal{A}}^{\alpha_0}, \dots, \llbracket \mathsf{v}_k \rrbracket_{\mathcal{A}}^{\alpha_0})$
- ★ for basic start terms, sufficient to control interpretations of constructors

Theorem

interpretation of constructors	induced RC	characterisation
additive	$O(n^d)^{(\dagger)}$	PTime
linear	$O(2^{n})$	ETime
polynomial	$\mathcal{O}(2^{2^n})$	E_2Time

(†) d is maximum degree of interpretations $f_{\mathcal{A}}$ for $f \in \mathcal{D}$.

G. Bonfante et al. "Algorithms with Polynomial Interpretation Termination Proof".

JFP, Vol. 11, pp. 33–53, 2001.

Central Observation:

- $\star \mathcal{R} \subseteq >_{\mathcal{A}} \implies \mathsf{dh}_{\longrightarrow_{\mathcal{R}}}(\mathsf{f}(\mathsf{v}_1, \dots, \mathsf{v}_k)) \leq \mathsf{f}_{\mathcal{A}}(\llbracket \mathsf{v}_1 \rrbracket_{\mathcal{A}}^{\alpha_0}, \dots, \llbracket \mathsf{v}_k \rrbracket_{\mathcal{A}}^{\alpha_0})$
- for basic start terms, sufficient to control interpretations of constructors

Theorem

induced RC	characterisation
$O(n^d)^{(\dagger)}$	PTime
$O(2^{n})$	ETime
$\mathcal{O}(2^{2^n})$	E_2Time
	$O(n^d)^{-(t)}$ $O(2^n)$

- (†) d is maximum degree of interpretations $f_{\mathcal{A}}$ for $f \in \mathcal{D}$.
- ★ similar for MIs, induced RC controlled by restricting interpretation of constructors

Example

TRS \mathcal{R}_{++} consisting of rules

$$[] + ys \rightarrow ys$$
 $(x :: xs) + ys \rightarrow x :: (xs + ys).$

terminating with polynomial interpretation

$$n +_{\mathcal{A}} m \triangleq 2 \cdot n + m$$
 $[]_{\mathcal{A}} \triangleq 1$ $n :_{\mathcal{A}} m \triangleq n + m$.

★ linear shape ⇒ classified linear RC

Example

TRS \mathcal{R}_{\div} consists of rules

$$x - 0 \to 0$$
 $0 \div s(y) \to 0$
 $s(x) - s(y) \to x - y$ $s(x) \div s(y) \to s((x - y) \div s(y))$

Example

TRS \mathcal{R}_{\div} consists of rules

$$x - 0 \to 0$$
 $0 \div s(y) \to 0$
 $s(x) - s(y) \to x - y$ $s(x) \div s(y) \to s((x - y) \div s(y))$

★ Question: orientable by PI?

Example

TRS \mathcal{R}_{\div} consists of rules

★ Question: orientable by PI? No, due to last rule

Example

TRS \mathcal{R}_{\div} consists of rules

- ★ Question: orientable by PI? No, due to last rule
- ★ monotonicity required for closure under contexts:

$$s \to_{\mathcal{R}} t \land [\![s]\!]_{\mathcal{A}} > [\![t]\!]_{\mathcal{A}} \implies [\![f(\ldots,s,\ldots)]\!]_{\mathcal{A}} > [\![f(\ldots,t,\ldots)]\!]_{\mathcal{A}}.$$

Example

TRS \mathcal{R}_{\div} consists of rules

- ★ Question: orientable by PI? No, due to last rule
- ★ monotonicity required for closure under contexts:

$$s \to_{\mathcal{R}} t \wedge [\![s]\!]_{\mathcal{A}} > [\![t]\!]_{\mathcal{A}} \implies [\![f(\ldots,s,\ldots)]\!]_{\mathcal{A}} > [\![f(\ldots,t,\ldots)]\!]_{\mathcal{A}}.$$

★ second argument of – never reducible in reduction from basic term $\Rightarrow [-]_{\mathcal{A}}$ required monotonic only in first argument

Example

TRS \mathcal{R}_{\div} consists of rules

- ★ Question: orientable by PI? No, due to last rule
- ★ monotonicity required for closure under contexts:

$$s \to_{\mathcal{R}} t \wedge [\![s]\!]_{\mathcal{A}} > [\![t]\!]_{\mathcal{A}} \implies [\![f(\ldots,s,\ldots)]\!]_{\mathcal{A}} > [\![f(\ldots,t,\ldots)]\!]_{\mathcal{A}}.$$

- ★ second argument of never reducible in reduction from basic term
 ⇒ [-] _A required monotonic only in first argument
- ★ intuition formalised in notion of usable replacement map

Definition (Usable Replacement Map)

consider mapping μ s.t. $\mu(f) \subseteq \{1, ..., k\}$ for every k-ary $f \in \mathcal{F}$

Definition (Usable Replacement Map)

consider mapping μ s.t. $\mu(f) \subseteq \{1, ..., k\}$ for every k-ary $f \in \mathcal{F}$

 \star μ -positions \mathcal{P} os $_{\mu}(t) \subseteq \mathcal{P}$ os(t) in term t are

$$\begin{split} \mathcal{P} \mathsf{os}_{\mu}(x) \triangleq \{\epsilon\} \\ \mathcal{P} \mathsf{os}_{\mu}(\mathsf{f}(t_1, \dots, t_k)) \triangleq \{\epsilon\} \cup \{i \cdot p \mid i \in \mu(\mathsf{f}), \ p \in \mathcal{P} \mathsf{os}_{\mu}(t_i)\} \;. \end{split}$$

Definition (Usable Replacement Map)

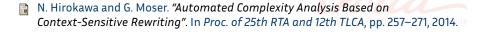
consider mapping μ s.t. $\mu(\mathtt{f}) \subseteq \{1,\ldots,k\}$ for every k-ary $\mathtt{f} \in \mathcal{F}$

 \star μ -positions \mathcal{P} os $_{\mu}(t)\subseteq\mathcal{P}$ os(t) in term t are

$$\begin{split} \mathcal{P} \mathsf{os}_{\mu}(x) \triangleq \{\epsilon\} \\ \mathcal{P} \mathsf{os}_{\mu}(\mathsf{f}(t_1, \dots, t_k)) \triangleq \{\epsilon\} \cup \{i \cdot p \mid i \in \mu(\mathsf{f}), \, p \in \mathcal{P} \mathsf{os}_{\mu}(t_i)\} \;. \end{split}$$

 $\star~\mathcal{T}_{\!\mu}(\to)$ is set of terms where only subterms at $\mu\text{-positions}$ are reducible wrt. \to

$$t \in \mathcal{T}_{\mu}(\to) : \iff \forall p \in \mathcal{P}os(t) \setminus \mathcal{P}os_{\mu}(t). \ t|_{p} \in NF(\to).$$



Definition (Usable Replacement Map)

consider mapping μ s.t. $\mu(f) \subseteq \{1, ..., k\}$ for every k-ary $f \in \mathcal{F}$

 \star μ -positions \mathcal{P} os $_{\mu}(t) \subseteq \mathcal{P}$ os(t) in term t are

$$\begin{split} \mathcal{P} \mathsf{os}_{\mu}(x) \triangleq \{\epsilon\} \\ \mathcal{P} \mathsf{os}_{\mu}(\mathsf{f}(t_1, \dots, t_k)) \triangleq \{\epsilon\} \cup \{i \cdot p \mid i \in \mu(\mathsf{f}), \ p \in \mathcal{P} \mathsf{os}_{\mu}(t_i)\} \;. \end{split}$$

* $\mathcal{T}_{\mu}(\to)$ is set of terms where only subterms at μ -positions are reducible wrt. \to

$$t \in \mathcal{T}_{\mu}(\to) :\iff \forall p \in \mathcal{P} \mathsf{os}(t) \setminus \mathcal{P} \mathsf{os}_{\mu}(t). \ t|_{p} \in \mathsf{NF}(\to) \ .$$

 $\star \mu$ is usable replacement map (URM) for TRS \mathcal{R} on set of terms T

$$\rightarrow_{\mathcal{R}}^*(T) \subseteq \mathcal{T}_{\mu}(\rightarrow_{\mathcal{R}})$$
.

Usable Arguments (II)

Definition (well-founded μ -monotone algebra)

well-founded μ -monotone algebra (W μ MA) ($\mathcal{A},>$) with carrier A consists of

- ★ well-founded proper order $> \subseteq A \times A$, and
- \star strictly μ -monotone interpretations $f_{\mathcal{A}}: A^k \to A$ for every k-ary f

$$a_i > b \land i \in \mu(\mathbf{f}) \implies f_{\mathcal{A}}(a_1, \ldots, a_i, \ldots, a_k) > f_{\mathcal{A}}(a_1, \ldots, b, \ldots, a_k)$$

Theorem

Let μ be a URM for $\mathcal R$ on basic terms $\mathcal B$. If W μ MA $(\mathcal A,>)$ orients $\mathcal R$ then

$$rc_{\mathcal{R}}(n) \leq dc_{>_{\mathcal{A}},\mathcal{B}}(n)$$
.

Usable Arguments (III)

Example

Reconsider TRS \mathcal{R}_{\div} :

$$x - 0 \rightarrow 0$$

$$0 \div s(y) \to 0$$

$$s(x) - s(y) \to x - y$$

$$s(x) \div s(y) \to s((x - y) \div s(y))$$

Usable Arguments (III)

Example

Reconsider TRS \mathcal{R}_{\div} :

$$x - 0 \rightarrow 0$$
 $0 \div s(y) \rightarrow 0$
 $s(x) - s(y) \rightarrow x - y$ $s(x) \div s(y) \rightarrow s((x - y) \div s(y))$

★ Question: which maps constitute a URM for \mathcal{R}_{\div} ?

symbol	μ_1	μ_2	μ_3	μ_4
S	Ø	Ø	{1}	{1}
_	Ø	Ø	Ø	$\{1, 2\}$
÷	Ø	{1}	{1}	$\{1, 2\}$

Usable Arguments (III)

Example

Reconsider TRS \mathcal{R}_{\div} :

$$x - 0 \to 0$$
 $0 \div s(y) \to 0$
 $s(x) - s(y) \to x - y$ $s(x) \div s(y) \to s((x - y) \div s(y))$

★ Question: which maps constitute a URM for \mathcal{R}_{\div} ?

symbol	μ_1	μ_2	μ_3	μ_4
S	Ø	Ø	{1}	{1}
_	Ø	Ø	Ø	$\{1, 2\}$
÷	Ø	{1}	{1}	$\{1, 2\}$

 \star oriented by μ_3 -monotone polynomial interpretation

$$0_{\mathcal{A}} \triangleq 1$$
 $s_{\mathcal{A}}(x) \triangleq x + 2$ $x - {}_{\mathcal{A}}y \triangleq x + 1$ $x \div_{\mathcal{A}}y \triangleq 3 \cdot x$

★ induced runtime complexity is linear

Recursive Path Orders and Polynomial RC

Motivation:

- ★ recursive path orders (e.g., MPO, LPO, KBO) fast to synthesise
- ★ can these orders be tamed to induce polynomial RC?

Yes!

- ★ polynomial path orders embody predicative recursion on MPO
- ★ induce (innermost) runtime complexity is polynomial

Predicative Recursion on Notation

Definition (predicative recursive functions)

BC is least set of functions over binary words s.t.

- 1. containing certain initial functions
- 2. closed under predicative composition

$$\begin{array}{l} h,g_1,\ldots,g_{k+l}\in \mathsf{BC}\\ \implies f(\vec{x};\vec{y})\triangleq h(g_1(\vec{x};),\ldots,g_k(\vec{x};);g_{k+1}(\vec{x};\vec{y}),\ldots,g_{k+l}(\vec{x};\vec{y}))\in \mathsf{BC} \;, \end{array}$$

closed under predicative recursion on notation

$$g, h_0, h_1 \in \mathsf{BC} \implies \left(\begin{array}{c} f(\epsilon, \vec{x}; \vec{y}) \triangleq g(\vec{x}; \vec{y}) \\ f(i \cdot z, \vec{x}; \vec{y}) \triangleq h_i(\vec{x}; \vec{y}, f(z, \vec{x}; \vec{y})) \end{array} \right) \in \mathsf{BC}$$
.

Predicative Recursion on Notation

Definition (predicative recursive functions)

BC is least set of functions over binary words s.t.

- 1. containing certain initial functions
- 2. closed under predicative composition

$$h, g_1, \dots, g_{k+l} \in BC$$

$$\implies f(\vec{x}; \vec{y}) \triangleq h(g_1(\vec{x};), \dots, g_k(\vec{x};); g_{k+1}(\vec{x}; \vec{y}), \dots, g_{k+l}(\vec{x}; \vec{y})) \in BC,$$

closed under predicative recursion on notation

$$g, h_0, h_1 \in BC \implies \begin{pmatrix} f(\epsilon, \vec{x}; \vec{y}) \triangleq g(\vec{x}; \vec{y}) \\ f(i \cdot z, \vec{x}; \vec{y}) \triangleq h_i(\vec{x}; \vec{y}, f(z, \vec{x}; \vec{y})) \end{pmatrix} \in BC.$$

Theorem

$$BC = FPTime$$
.

Ingredients:

- 1. precedence > on signature
- 2. for each symbol f, separation of argument positions

$$normal(f) \uplus safe(f) = \{1, ..., ar(f)\}$$
.

Ingredients:

- 1. precedence > on signature
- 2. for each symbol f, separation of argument positions

$$normal(f) \uplus safe(f) = \{1, ..., ar(f)\}$$
.

Definition (auxiliary order >pop)

auxiliary order >pop is least order on terms s.t.

$$\frac{\exists i. \ \mathsf{s}_i \geqslant_{\mathsf{pop}} t \quad \mathtt{f} \in \mathcal{D} \implies i \in \mathsf{normal}(\mathtt{f})}{\mathtt{f}(\mathsf{s}_1, \dots, \mathsf{s}_k) >_{\mathsf{pop}} t} \qquad \frac{\mathtt{f} > \mathtt{g} \quad \forall i. \ \mathtt{f}(\vec{\mathsf{x}}) >_{\mathsf{pop}} t_i}{\mathtt{f}(\vec{\mathsf{s}}) >_{\mathsf{pop}} \mathtt{g}(t_1, \dots, t_k)}$$

Ingredients:

- 1. precedence > on signature
- 2. for each symbol f, separation of argument positions

$$normal(f) \uplus safe(f) = \{1, ..., ar(f)\}$$
.

Definition (auxiliary order >pop)

auxiliary order >pop is least order on terms s.t.

$$\frac{\exists i. \ \mathsf{s}_i \geqslant_{\mathsf{pop}} t \quad \mathtt{f} \in \mathcal{D} \implies i \in \mathsf{normal}(\mathtt{f})}{\mathtt{f}(\mathsf{s}_1, \dots, \mathsf{s}_k) >_{\mathsf{pop}} t} \qquad \frac{\mathtt{f} > \mathtt{g} \quad \forall i. \ \mathtt{f}(\vec{\mathsf{x}}) >_{\mathsf{pop}} t_i}{\mathtt{f}(\vec{\mathsf{s}}) >_{\mathsf{pop}} \mathtt{g}(t_1, \dots, t_k)}$$

Example

$$\mathsf{lff} > \mathsf{g} \mathsf{then} \ \mathtt{f}(\mathtt{s}(;x); \textcolor{red}{y}) >_{\mathsf{pop}} \mathtt{g}(x;) \ \mathsf{but} \ \mathtt{f}(\mathtt{s}(;x); \textcolor{red}{y}) \not >_{\mathsf{pop}} \mathtt{g}(x; \textcolor{red}{y})$$

Ingredients:

- 1. precedence > on signature
- 2. for each symbol f, separation of argument positions

$$normal(f) \uplus safe(f) = \{1, ..., ar(f)\}.$$

Definition (polynomial path order >pop*)

polynomial path order >pop* is least order on terms s.t.

$$\frac{\exists i. \, s_i \geqslant_{pop*} t}{f(s_1, \ldots, s_k) >_{pop*} t}$$

f occurs at most once in
$$g(t_1, ..., t_k)$$

 $f > g \quad \forall i \in \text{normal}(g). \ f(\vec{x}) >_{pop} t_i \quad \forall i \in \text{safe}(g). \ f(\vec{x}) >_{pop*} t_i$

 $f(\vec{s}) >_{non*} g(t_1, \ldots, t_k)$

$$\frac{\{\mathbf{s}_1, \dots, \mathbf{s}_k\} >_{\mathsf{pop}*}^{\mathsf{mul}} \{t_1, \dots, t_k\} \quad \exists i, j \in \mathsf{normal}(\mathtt{f}). \ \mathbf{s}_i >_{\mathsf{pop}*} t_j}{\mathtt{f}(\mathbf{s}_1, \dots, \mathbf{s}_k) >_{\mathsf{pop}*} \mathtt{f}(t_1, \dots, t_k)}$$

Induced Runtime of POP*

Definition

Constructor TRS \mathcal{R} is predicative recursive if compatible with $>_{pop*}$.

Induced Runtime of POP*

Definition

Constructor TRS \mathcal{R} is predicative recursive if compatible with $>_{pop*}$.

Example

TRS

$$\mathrm{bt}(0;) \to L \qquad \mathrm{bt}(\mathrm{s}(;n);) \to \mathrm{dup}(;\mathrm{bt}(n;)) \qquad \mathrm{dup}(;t) \to \mathbb{N}(;t,t)$$

is predicative recursive but has exponential runtime.

Induced Runtime of POP*

Definition

Constructor TRS \mathcal{R} is predicative recursive if compatible with $>_{pop*}$.

Example

TRS

$$bt(0;) \to L$$
 $bt(s(; n);) \to dup(; bt(n;))$ $dup(; t) \to N(; t, t)$,

is predicative recursive but has exponential runtime.

Definition (Innermost Runtime Complexity (iRC))

$$rci_{\mathcal{R}}(n) \triangleq dc_{\underline{i}_{\varphi},\mathcal{B}}(n)$$
.

Theorem (A. & Moser, TCS'13)

If \mathcal{R} predicative recursive, $\mathrm{rci}_{\mathcal{R}}(n) \leq p(n)$ for some polynomial p.

★ class of predicative recursive, confluent TRSs characterise FPTime

- ★ class of predicative recursive, confluent TRSs characterise FPTime
- predicative recursive TRSs with single defined function can reach arbitrary iRC due to multiset status
- ★ restriction sPOP* (product status, weakened composition) of POP* induces bounds O(n"recursion depth")

In Tianinyenteurs du monde numérique

M. Avanzini, N. Eguchi, and G. Moser. "A new Order-theoretic Characterisation of the Polytime Computable Functions". TCS, Vol. 585, pp. 3–24, 2015.

- ★ class of predicative recursive, confluent TRSs characterise FPTime
- predicative recursive TRSs with single defined function can reach arbitrary iRC due to multiset status
- ★ restriction sPOP* (product status, weakened composition) of POP* induces bounds O(n"recursion depth")
- * allowing multiple recursive calls retains FPTime characterisation via memoization

inventeurs du monde numérique

M. Avanzini, N. Eguchi, and G. Moser. "A new Order-theoretic Characterisation of the Polytime Computable Functions". TCS, Vol. 585, pp. 3–24, 2015.

J.-Y. Marion. "Analysing the Implicit Complexity of Programs". IC, Vol. 183, pp. 2–18, 2003.

- ★ class of predicative recursive, confluent TRSs characterise FPTime
- predicative recursive TRSs with single defined function can reach arbitrary iRC due to multiset status
- ★ restriction sPOP* (product status, weakened composition) of POP* induces bounds O(n"recursion depth")
- * allowing multiple recursive calls retains FPTime characterisation via memoization
- ★ extending sPOP* with lexicographic status yields characterisation of exponential time functions
- M. Avanzini, N. Eguchi, and G. Moser. "A new Order-theoretic Characterisation of the Polytime Computable Functions". TCS, Vol. 585, pp. 3–24, 2015.
- J.-Y. Marion. "Analysing the Implicit Complexity of Programs". IC, Vol. 183, pp. 2–18, 2003.
- M. Avanzini, N. Eguchi, and G. Moser. "A Path Order for Rewrite Systems that Compute Exponential Time Functions". In Proc. of 22nd RTA, pp. 123–138, 2011.

Experimental Evaluation

```
$ cat lcs raml
  firstline : L(int) -> L(int)
  firstline(1) = match 1 with
                   | nil -> nil
                   | (x::xs) -> +0::firstline xs:
  newline : (int,L(int),L(int)) -> L(int)
  newline (v.lastline.1) =
     match 1 with
       | nil -> nil
       | (x::xs) -> match lastline with
                     | nil -> nil
                     | (belowVal::lastline') ->
                          let nl = newline(v.lastline'.xs) in
                          let rightVal = right nl in
                          let diagVal = right lastline' in
                          let elem = if x == v then diagVal+1 else max(belowVal,rightVal)
                          in elem::nl:
  right : L(int) -> int
  right l = match l with | nil -> +0 | (x::xs) -> x:
  lcstable : (L(int),L(int)) -> L(L(int))
  lcstable (11,12) = match 11 with
                      | nil -> [firstline 12]
                      | (x::xs) \rightarrow let m = lcstable (xs.12) in
                                   match m with
                                      | nil -> nil
                                      | (1::ls) -> (newline (x.1.12))::l::ls:
  lcs : (L(int),L(int)) -> int
  lcs(11.12) = let m = lcstable(11.12) in
               match m with | nil -> +0 | (11::) -> (match 11 with | nil -> +0 | (len::) -> len);
```

Experimental Evaluation

Γ...1

```
$ ram12trs lcs ram1
  (STARTTERM CONSTRUCTOR-BASED)
  (STRATEGY INNERMOST)
  (VAR
    @ @a @b @belowVal @diagVal @elem @l @l1 @l2 @lastline @lastline2 @len @ls @m @nl @rightVal
    0x 0x_1 0x_2 0xs 0y 0y_1 0y_2)
  (RIII.ES
    firstline(@1) -> firstline#1(@1)
    firstline#1(::(@x,@xs)) -> ::(#abs(#0()),firstline(@xs))
    firstline#1(nil) -> nil
    newline(@v.@lastline.@l) -> newline#1(@l.@lastline.@v)
    newline#1(::(@x,@xs),@lastline,@y) -> newline#2(@lastline,@x,@xs,@y)
    newline#1(nil.@lastline.@v) -> nil
    newline#2(::(@belowVal.@lastline2).@x.@xs.@v) ->
     newline#3(newline(@y,@lastline2,@xs),@belowVal,@lastline2,@x,@y)
    newline#2(nil,@x,@xs,@y) -> nil
    newline#3(@nl.@belowVal.@lastline2.@x.@v) ->
     newline#4(right(@nl),@belowVal,@lastline2,@nl,@x,@y)
    newline#4(@rightVal,@belowVal,@lastline2,@nl,@x,@y) ->
     newline#5(right(@lastline2).@belowVal.@nl.@rightVal.@x.@v)
    newline#5(@diagVal.@belowVal.@nl.@rightVal.@x.@v) ->
     newline#6(newline#7(#equal(@x,@y),@belowVal,@diagVal,@rightVal),@nl)
    newline#6(@elem.@nl) -> ::(@elem.@nl)
    newline#7(#false(),@belowVal,@diagVal,@rightVal) -> max(@belowVal,@rightVal)
    newline#7(#true(),@belowVal,@diagVal,@rightVal) -> +(@diagVal,#pos(#s(#0())))
    right(@1) -> right#1(@1)
    right#1(::(@x,@xs)) -> @x
    right#1(nil) -> #abs(#0())
    lcs(@11,@12) -> lcs#1(lcstable(@11,@12))
    lcs#1(@m) -> lcs#2(@m)
```

Experimental Evaluation

Input	#rules	orders	Тст
appendAll	12	$O(n^2)$	O(n)
bfs	57	?	O(n)
bft mmult	59	?	$O(n^3)$
bitonic	78	?	$O(n^4)$
bitvectors	148	?	$O(n^2)$
clevermmult	39	?	$O(n^2)$
duplicates	37	?	$O(n^2)$
dyade	31	?	$O(n^2)$
eratosthenes	74	?	$O(n^2)$
flatten	31	?	$O(n^2)$
insertionsort	36	?	$O(n^2)$
listsort	56	?	$O(n^2)$
lcs	87	?	$O(n^2)$
matrix	74	?	$O(n^3)$
mergesort	35	?	$O(n^3)$
minsort	26	?	$O(n^2)$
queue	35	?	$O(n^5)$
quicksort	46	?	$O(n^2)$
rationalPotential	14	O(n)	O(n)
splitandsort	70	?	$O(n^3)$
subtrees	8	?	$O(n^2)$
tuples	33	?	?

Figure: Analysis of translated resource aware ML programs.

Summary

- * RC is a reasonable cost model for rewriting
- ★ termination methods can be suited so as to induce polynomial RC
 - amounts to "whole program analysis"
 - ⇒ intensionally weak

Summary

- ★ RC is a reasonable cost model for rewriting
- ★ termination methods can be suited so as to induce polynomial RC
 - amounts to "whole program analysis"
 - ⇒ intensionally weak

Next Lecture: strengthen the analysis through modularity

- 1. combination of different techniques
- 2. analyse program parts (almost) independently

