
Automated Complexity Analysis of
Term Rewrite Systems

Martin Avanzini (martin.avanzini@inria.fr)

ISR 2019, July 5–6, 2019

martin.avanzini@inria.fr

Introduction

1 let (◦) f g = fun z → f (g z) ;;
2 let rec walk = function
3 | [] → id
4 | x::xs → walk xs ◦ (fun ys → x::ys) ;;
5 let rev l = walk l [] ;;

Question: what is the runtime of rev?

depends on cost model

1. Ideally, Worst Case Execution Time (µs on machine X)
– analysis depends on compiler, OS, processor (caches, pipelines, branch
prediction,…), etc.

2. analysis of symbolic cost, e.g., #reduction steps

– oMen informative enough while asymptotic precise
– rewriting techniques can help inferring such bounds, automatically

Introduction

1 let (◦) f g = fun z → f (g z) ;;
2 let rec walk = function
3 | [] → id
4 | x::xs → walk xs ◦ (fun ys → x::ys) ;;
5 let rev l = walk l [] ;;

Question: what is the runtime of rev? depends on cost model

1. Ideally, Worst Case Execution Time (µs on machine X)
– analysis depends on compiler, OS, processor (caches, pipelines, branch
prediction,…), etc.

2. analysis of symbolic cost, e.g., #reduction steps

– oMen informative enough while asymptotic precise
– rewriting techniques can help inferring such bounds, automatically

Introduction

1 let (◦) f g = fun z → f (g z) ;;
2 let rec walk = function
3 | [] → id
4 | x::xs → walk xs ◦ (fun ys → x::ys) ;;
5 let rev l = walk l [] ;;

Question: what is the runtime of rev? depends on cost model

1. Ideally, Worst Case Execution Time (µs on machine X)
– analysis depends on compiler, OS, processor (caches, pipelines, branch
prediction,…), etc.

2. analysis of symbolic cost, e.g., #reduction steps

– oMen informative enough while asymptotic precise
– rewriting techniques can help inferring such bounds, automatically

Introduction

1 let (◦) f g = fun z → f (g z) ;;
2 let rec walk = function
3 | [] → id
4 | x::xs → walk xs ◦ (fun ys → x::ys) ;;
5 let rev l = walk l [] ;;

Question: what is the runtime of rev? depends on cost model

1. Ideally, Worst Case Execution Time (µs on machine X)
– analysis depends on compiler, OS, processor (caches, pipelines, branch
prediction,…), etc.

2. analysis of symbolic cost, e.g., #reduction steps

– oMen informative enough while asymptotic precise
– rewriting techniques can help inferring such bounds, automatically

Setup

P
runtime bound

“unknown”

JPKfrontend analyse

Fully Automated Rewriting Tools

⋆ AProVE http://aprove.informatik.rwth-aachen.de

⋆ CaT http://cl-informatik.uibk.ac.at/software/cat

⋆ Matchbox http://dfa.imn.htwk-leipzig.de/matchbox

⋆ TCT http://cl-informatik.uibk.ac.at/software/tct

⋆ Prolog
C. Otto et al. “Automated Termination Analysis of Java Bytecode by Term Rewriting”.
In Proc. of 21st RTA, pp. 259–276, 2010.

⋆ Java / JBC
J. Giesl et al. “Symbolic Evaluation Graphs and Term Rewriting - A General
Methodology for Analyzing Logic Programs”. In Proc. of 22nd LOPSTR, p. 1, 2012.

G. Moser and M. Schaper. “From Jinja Bytecode to Term Rewriting: A Complexity
Reflecting Transformation”. IC, 2017.

⋆ OCaml
M. Avanzini, U. Dal Lago, and G. Moser. “Analysing the Complexity of Functional
Programs: Higher-Order Meets First-Order”. In Proc. of 20th ICFP, pp. 152–164, 2015.

http://aprove.informatik.rwth-aachen.de
http://cl-informatik.uibk.ac.at/software/cat
http://dfa.imn.htwk-leipzig.de/matchbox
http://cl-informatik.uibk.ac.at/software/tct

Setup

P
runtime bound

“unknown”

JPKfrontend analyse

Fully Automated Rewriting Tools

⋆ AProVE http://aprove.informatik.rwth-aachen.de

⋆ CaT http://cl-informatik.uibk.ac.at/software/cat

⋆ Matchbox http://dfa.imn.htwk-leipzig.de/matchbox

⋆ TCT http://cl-informatik.uibk.ac.at/software/tct

⋆ Prolog
C. Otto et al. “Automated Termination Analysis of Java Bytecode by Term Rewriting”.
In Proc. of 21st RTA, pp. 259–276, 2010.

⋆ Java / JBC
J. Giesl et al. “Symbolic Evaluation Graphs and Term Rewriting - A General
Methodology for Analyzing Logic Programs”. In Proc. of 22nd LOPSTR, p. 1, 2012.

G. Moser and M. Schaper. “From Jinja Bytecode to Term Rewriting: A Complexity
Reflecting Transformation”. IC, 2017.

⋆ OCaml
M. Avanzini, U. Dal Lago, and G. Moser. “Analysing the Complexity of Functional
Programs: Higher-Order Meets First-Order”. In Proc. of 20th ICFP, pp. 152–164, 2015.

http://aprove.informatik.rwth-aachen.de
http://cl-informatik.uibk.ac.at/software/cat
http://dfa.imn.htwk-leipzig.de/matchbox
http://cl-informatik.uibk.ac.at/software/tct

Setup

P
runtime bound

“unknown”

JPKfrontend analyse

Fully Automated Rewriting Tools

⋆ AProVE http://aprove.informatik.rwth-aachen.de

⋆ CaT http://cl-informatik.uibk.ac.at/software/cat

⋆ Matchbox http://dfa.imn.htwk-leipzig.de/matchbox

⋆ TCT http://cl-informatik.uibk.ac.at/software/tct

⋆ Prolog
C. Otto et al. “Automated Termination Analysis of Java Bytecode by Term Rewriting”.
In Proc. of 21st RTA, pp. 259–276, 2010.

⋆ Java / JBC
J. Giesl et al. “Symbolic Evaluation Graphs and Term Rewriting - A General
Methodology for Analyzing Logic Programs”. In Proc. of 22nd LOPSTR, p. 1, 2012.

G. Moser and M. Schaper. “From Jinja Bytecode to Term Rewriting: A Complexity
Reflecting Transformation”. IC, 2017.

⋆ OCaml
M. Avanzini, U. Dal Lago, and G. Moser. “Analysing the Complexity of Functional
Programs: Higher-Order Meets First-Order”. In Proc. of 20th ICFP, pp. 152–164, 2015.

http://aprove.informatik.rwth-aachen.de
http://cl-informatik.uibk.ac.at/software/cat
http://dfa.imn.htwk-leipzig.de/matchbox
http://cl-informatik.uibk.ac.at/software/tct

Today’s Lecture

From Termination to Derivational Complexity Analysis

1. termination techniques and their induced complexity
2. inferring polynomial bounds

Rewriting as a Computational Model and Runtime Complexity

3. runtime complexity as a reasonable cost model
4. basic methods for polynomial runtime analysis

Tomorrow’s Lecture

From Theory to Automation

5. towards a modular runtime complexity analysis
6. case study: TCT, its complexity framework

Applications to Program Analysis

8. case study: higher-order functional programs

Seminal Paper on Derivational Complexity

D. HoOauer and C. Lautemann. “Termination Proofs and the
Length of Derivations”. In Proc. of 3rd RTA, pp. 167–177, 1989.

Definition (induced derivational complexity)

Method X induces derivational complexity from class C if

“R terminating by X” =⇒ dcR ∈ C .

Theorem (HoOauer & Lautemann, RTA’89)

Polynomial Interpretations induced double-exponential derivational
complexity.

Seminal Paper on Derivational Complexity

D. HoOauer and C. Lautemann. “Termination Proofs and the
Length of Derivations”. In Proc. of 3rd RTA, pp. 167–177, 1989.

Definition (induced derivational complexity)

Method X induces derivational complexity from class C if

“R terminating by X” =⇒ dcR ∈ C .

Theorem (HoOauer & Lautemann, RTA’89)

Polynomial Interpretations induced double-exponential derivational
complexity.

Seminal Paper on Derivational Complexity

D. HoOauer and C. Lautemann. “Termination Proofs and the
Length of Derivations”. In Proc. of 3rd RTA, pp. 167–177, 1989.

Definition (induced derivational complexity)

Method X induces derivational complexity from class C if

“R terminating by X” =⇒ dcR ∈ C .

Theorem (HoOauer & Lautemann, RTA’89)

Polynomial Interpretations induced double-exponential derivational
complexity.

Derivational Complexity (DC)

Definition (derivation height, derivational complexity)

consider ARS→ ⊆ A × A over objects A equipped with size : A→ N
⋆ derivation height function wrt. → is

dh→ : A→ N ∪ {∞}
dh→(a) ≜ sup{ℓ | ∃(a1, . . . , aℓ). a→ a1 → . . . → aℓ }

⋆ derivational complexity function wrt. → and start objects S ⊆ A is

dc→,S : N→ N ∪ {∞}
dc→,S(n) ≜ sup{ dh→(a) | a ∈ S, size(a) ≤ n } .

⋆ for TRS R over terms T , derivational complexity is

dcR(n) ≜ dc−→R,T (n) .

Derivational Complexity (DC)

Definition (derivation height, derivational complexity)

consider ARS→ ⊆ A × A over objects A equipped with size : A→ N
⋆ derivation height function wrt. → is

dh→ : A→ N ∪ {∞}
dh→(a) ≜ sup{ℓ | ∃(a1, . . . , aℓ). a→ a1 → . . . → aℓ }

⋆ derivational complexity function wrt. → and start objects S ⊆ A is

dc→,S : N→ N ∪ {∞}
dc→,S(n) ≜ sup{ dh→(a) | a ∈ S, size(a) ≤ n } .

⋆ for TRS R over terms T , derivational complexity is

dcR(n) ≜ dc−→R,T (n) .

Derivational Complexity (DC)

Definition (derivation height, derivational complexity)

consider ARS→ ⊆ A × A over objects A equipped with size : A→ N
⋆ derivation height function wrt. → is

dh→ : A→ N ∪ {∞}
dh→(a) ≜ sup{ℓ | ∃(a1, . . . , aℓ). a→ a1 → . . . → aℓ }

⋆ derivational complexity function wrt. → and start objects S ⊆ A is

dc→,S : N→ N ∪ {∞}
dc→,S(n) ≜ sup{ dh→(a) | a ∈ S, size(a) ≤ n } .

⋆ for TRS R over terms T , derivational complexity is

dcR(n) ≜ dc−→R,T (n) .

Derivational Complexity (DC)

Example

→ A size dc→,A

>N N id

n
>Z Z | · |

∞

>Q Q≥0 ⌈·⌉

∞

>
prod
N Nk

∑k
i=1 ni

n

R dcR(n)

a(a(x))→ a(b(a(x)))

O(n)

a(b(x))→ b(a(x))

O(n2)

Derivational Complexity (DC)

Example

→ A size dc→,A

>N N id n
>Z Z | · |

∞
>Q Q≥0 ⌈·⌉

∞

>
prod
N Nk

∑k
i=1 ni

n

R dcR(n)

a(a(x))→ a(b(a(x)))

O(n)

a(b(x))→ b(a(x))

O(n2)

Derivational Complexity (DC)

Example

→ A size dc→,A

>N N id n
>Z Z | · | ∞
>Q Q≥0 ⌈·⌉

∞
>
prod
N Nk

∑k
i=1 ni

n

R dcR(n)

a(a(x))→ a(b(a(x)))

O(n)

a(b(x))→ b(a(x))

O(n2)

Derivational Complexity (DC)

Example

→ A size dc→,A

>N N id n
>Z Z | · | ∞
>Q Q≥0 ⌈·⌉ ∞
>
prod
N Nk

∑k
i=1 ni

n

R dcR(n)

a(a(x))→ a(b(a(x)))

O(n)

a(b(x))→ b(a(x))

O(n2)

Derivational Complexity (DC)

Example

→ A size dc→,A

>N N id n
>Z Z | · | ∞
>Q Q≥0 ⌈·⌉ ∞
>
prod
N Nk

∑k
i=1 ni n

R dcR(n)

a(a(x))→ a(b(a(x)))

O(n)
a(b(x))→ b(a(x))

O(n2)

Derivational Complexity (DC)

Example

→ A size dc→,A

>N N id n
>Z Z | · | ∞
>Q Q≥0 ⌈·⌉ ∞
>
prod
N Nk

∑k
i=1 ni n

R dcR(n)

a(a(x))→ a(b(a(x))) O(n)
a(b(x))→ b(a(x))

O(n2)

Derivational Complexity (DC)

Example

→ A size dc→,A

>N N id n
>Z Z | · | ∞
>Q Q≥0 ⌈·⌉ ∞
>
prod
N Nk

∑k
i=1 ni n

R dcR(n)

a(a(x))→ a(b(a(x))) O(n)
a(b(x))→ b(a(x)) O(n2)

Reduction Orders

Definition (rewrite order, reduction order)

⋆ a rewrite order is a proper order ≻ on that is:
1. closed under substitutions: s ≻ t =⇒ sσ ≻ tσ
2. closed under contexts: s ≻ t =⇒ C[s] ≻ C[t]

⋆ a reduction order is a well-founded rewrite order

Example

Knuth-Bendix Order, Multiset Path Order, Lexicographic Path Orders,
Recursive Path Order, Interpretation Method, …

Lemma
If rewrite order ≻ is compatible with TRS R , i.e. R ⊆ ≻, then

s −→R t =⇒ s ≻ t .

Question: why?

Reduction Orders

Definition (rewrite order, reduction order)

⋆ a rewrite order is a proper order ≻ on that is:
1. closed under substitutions: s ≻ t =⇒ sσ ≻ tσ
2. closed under contexts: s ≻ t =⇒ C[s] ≻ C[t]

⋆ a reduction order is a well-founded rewrite order

Example

Knuth-Bendix Order, Multiset Path Order, Lexicographic Path Orders,
Recursive Path Order, Interpretation Method, …

Lemma
If rewrite order ≻ is compatible with TRS R , i.e. R ⊆ ≻, then

s −→R t =⇒ s ≻ t .

Question: why?

Reduction Orders

Definition (rewrite order, reduction order)

⋆ a rewrite order is a proper order ≻ on that is:
1. closed under substitutions: s ≻ t =⇒ sσ ≻ tσ
2. closed under contexts: s ≻ t =⇒ C[s] ≻ C[t]

⋆ a reduction order is a well-founded rewrite order

Example

Knuth-Bendix Order, Multiset Path Order, Lexicographic Path Orders,
Recursive Path Order, Interpretation Method, …

Lemma
If rewrite order ≻ is compatible with TRS R , i.e. R ⊆ ≻, then

s −→R t =⇒ s ≻ t .

Question: why?

Reduction Orders (II)

Theorem (Termination Via Reduction Orders)

TRS R is terminating iff there exists a compatible reduction order ≻.

Proof of Soundness (⇐).

⋆ if ≻ is a rewrite order compatible with R , then each reduction
t −→R t1 −→R t2 −→R · · · ,

translates to t ≻ t1 ≻ t2 ≻ · · · .

⋆ if ≻ is well-founded, this sequence must be finite □

Theorem

If R is compatible with reduction order ≻ then

dcR(n) ≤ dc−→R∩≻,T (n) ≤ dc≻,T (n) .

Reduction Orders (II)

Theorem (Termination Via Reduction Orders)

TRS R is terminating iff there exists a compatible reduction order ≻.

Proof of Soundness (⇐).

⋆ if ≻ is a rewrite order compatible with R , then each reduction
t −→R t1 −→R t2 −→R · · · ,

translates to t ≻ t1 ≻ t2 ≻ · · · .

⋆ if ≻ is well-founded, this sequence must be finite □

Theorem

If R is compatible with reduction order ≻ then

dcR(n) ≤ dc−→R∩≻,T (n) ≤ dc≻,T (n) .

Induced DC

⋆ interpretation method
– polynomial and matrix interpretations

⋆ multiset path orders

⋆ dependency pair method

InterpretationMethod

Definition (well-founded monotone algebra, >A)

⋆ well-founded monotone algebra (WMA) (A, >) with carrier A
consists of
– well-founded proper order > ⊆ A × A, and
– strictly monotone interpretations fA : Ak → A for every k-ary f

ai > b =⇒ fA(a1, . . . , ai, . . . , ak) > fA(a1, . . . , b, . . . , ak)

⋆ induced order >A on terms is

s >A t :⇐⇒ JsKαA > JtKαA for all assignments α
where JsKαA is interpretation of s wrt. algebraA and assignment α.

Lemma

If (A, >) is a WMA then >A is a reduction order.

InterpretationMethod

Definition (well-founded monotone algebra, >A)

⋆ well-founded monotone algebra (WMA) (A, >) with carrier A
consists of
– well-founded proper order > ⊆ A × A, and
– strictly monotone interpretations fA : Ak → A for every k-ary f

ai > b =⇒ fA(a1, . . . , ai, . . . , ak) > fA(a1, . . . , b, . . . , ak)

⋆ induced order >A on terms is

s >A t :⇐⇒ JsKαA > JtKαA for all assignments α
where JsKαA is interpretation of s wrt. algebraA and assignment α.

Lemma

If (A, >) is a WMA then >A is a reduction order.

InterpretationMethod

Definition (well-founded monotone algebra, >A)

⋆ well-founded monotone algebra (WMA) (A, >) with carrier A
consists of
– well-founded proper order > ⊆ A × A, and
– strictly monotone interpretations fA : Ak → A for every k-ary f

ai > b =⇒ fA(a1, . . . , ai, . . . , ak) > fA(a1, . . . , b, . . . , ak)

⋆ induced order >A on terms is

s >A t :⇐⇒ JsKαA > JtKαA for all assignments α
where JsKαA is interpretation of s wrt. algebraA and assignment α.

Lemma

If (A, >) is a WMA then >A is a reduction order.

Polynomial Interpretations

Definition

Polynomial interpretation (PI) is WMA (A, >N)where all interpretations
fA are strictly monotone polynomials.

Theorem (HoOauer & Lautemann, RTA’89)

PIs induce double-exponential DC. (Bound is tight.)

Question: how to prove this statement?

Polynomial Interpretations

Definition

Polynomial interpretation (PI) is WMA (A, >N)where all interpretations
fA are strictly monotone polynomials.

Example (I)

⋆ Consider the append function:

[] ++ ys→ ys (x :: xs) ++ ys→ x :: (xs ++ ys) .

⋆ terminating with polynomial interpretation?

Yes, e.g.

n ++A m ≜ 2 · n + m []A ≜ 1 n ::A m ≜ n + m .

Theorem (HoOauer & Lautemann, RTA’89)

PIs induce double-exponential DC. (Bound is tight.)

Question: how to prove this statement?

Polynomial Interpretations

Definition

Polynomial interpretation (PI) is WMA (A, >N)where all interpretations
fA are strictly monotone polynomials.

Example (I)

⋆ Consider the append function:

[] ++ ys→ ys (x :: xs) ++ ys→ x :: (xs ++ ys) .

⋆ terminating with polynomial interpretation? Yes, e.g.

n ++A m ≜ 2 · n + m []A ≜ 1 n ::A m ≜ n + m .

Theorem (HoOauer & Lautemann, RTA’89)

PIs induce double-exponential DC. (Bound is tight.)

Question: how to prove this statement?

Polynomial Interpretations

Definition

Polynomial interpretation (PI) is WMA (A, >N)where all interpretations
fA are strictly monotone polynomials.

Example (II)

⋆ Consider Ackermann function:

ack(0, y)→ s(y) ack(s(x), s(y))→ ack(x, ack(s(x), y))
ack(s(x), 0)→ ack(x, s(0))

⋆ terminating with polynomial interpretation?

No, because …

Theorem (HoOauer & Lautemann, RTA’89)

PIs induce double-exponential DC. (Bound is tight.)

Question: how to prove this statement?

Polynomial Interpretations

Definition

Polynomial interpretation (PI) is WMA (A, >N)where all interpretations
fA are strictly monotone polynomials.

Example (II)

⋆ Consider Ackermann function:

ack(0, y)→ s(y) ack(s(x), s(y))→ ack(x, ack(s(x), y))
ack(s(x), 0)→ ack(x, s(0))

⋆ terminating with polynomial interpretation? No, because …

Theorem (HoOauer & Lautemann, RTA’89)

PIs induce double-exponential DC. (Bound is tight.)

Question: how to prove this statement?

Polynomial Interpretations

Definition

Polynomial interpretation (PI) is WMA (A, >N)where all interpretations
fA are strictly monotone polynomials.

Example (II)

⋆ Consider Ackermann function:

ack(0, y)→ s(y) ack(s(x), s(y))→ ack(x, ack(s(x), y))
ack(s(x), 0)→ ack(x, s(0))

⋆ terminating with polynomial interpretation? No, because …

Theorem (HoOauer & Lautemann, RTA’89)

PIs induce double-exponential DC. (Bound is tight.)

Question: how to prove this statement?

Polynomial Interpretations

Definition

Polynomial interpretation (PI) is WMA (A, >N)where all interpretations
fA are strictly monotone polynomials.

Example (II)

⋆ Consider Ackermann function:

ack(0, y)→ s(y) ack(s(x), s(y))→ ack(x, ack(s(x), y))
ack(s(x), 0)→ ack(x, s(0))

⋆ terminating with polynomial interpretation? No, because …

Theorem (HoOauer & Lautemann, RTA’89)

PIs induce double-exponential DC. (Bound is tight.)

Question: how to prove this statement?

Polynomial Interpretations (II)

Definition (Upper-Bound)

Function u : N→ N is upper-bound for PI (A, >N) over signature F if:

∀f ∈ F . ∀a ∈ A. fA(a, . . . , a) ≤ u(a) .

shape upper-bound induced DC

additive u(a) = a+ d O(n)
linear u(a) = c · a+ d O(2n)
polynomial u(a) = c · ak + d O(22n)

Table: induced derivational complexity by shape; bounds are tight.

Polynomial Interpretations (II)

Definition (Upper-Bound)

Function u : N→ N is upper-bound for PI (A, >N) over signature F if:

∀f ∈ F . ∀a ∈ A. fA(a, . . . , a) ≤ u(a) .

Lemma
Define α0(x) ≜ 0. Suppose TRS R compatible with (A, >N). Then:

∀t. dhR(t) ≤ JtKα0

A ≤ u
size(t)(0), hence dcR(n) ≤ un(0) .

shape upper-bound induced DC

additive u(a) = a+ d O(n)
linear u(a) = c · a+ d O(2n)
polynomial u(a) = c · ak + d O(22n)

Table: induced derivational complexity by shape; bounds are tight.

Polynomial Interpretations (II)

Definition (Upper-Bound)

Function u : N→ N is upper-bound for PI (A, >N) over signature F if:

∀f ∈ F . ∀a ∈ A. fA(a, . . . , a) ≤ u(a) .

Lemma
Define α0(x) ≜ 0. Suppose TRS R compatible with (A, >N). Then:

∀t. dhR(t) ≤ JtKα0

A ≤ u
size(t)(0), hence dcR(n) ≤ un(0) .

shape upper-bound induced DC

additive u(a) = a+ d O(n)
linear u(a) = c · a+ d O(2n)
polynomial u(a) = c · ak + d O(22n)

Table: induced derivational complexity by shape; bounds are tight.

Polynomial Interpretations (II)

Example

TRS R++ consisting of rules

[] ++ ys→ ys (x :: xs) ++ ys→ x :: (xs ++ ys) .

terminating with polynomial interpretation

n ++A m ≜ 2 · n + m []A ≜ 1 n ::A m ≜ n + m .

linear shape⇒ classified exponential DC

shape upper-bound induced DC

additive u(a) = a+ d O(n)
linear u(a) = c · a+ d O(2n)
polynomial u(a) = c · ak + d O(22n)

Table: induced derivational complexity by shape; bounds are tight.

Matrix Interpretations

Definition
Matrix interpretation (MI) of degree d is WMA (A,≫) over Nd where
⋆ all interpretations fA are of the form

fA(x⃗1, . . . , x⃗k) = M1 · x⃗1 + · · ·+Mk · x⃗k + V

where V ∈ Nd andM1, . . . ,Mk ∈ Nd×d with (Mi)1,1 ⩾ 1

⋆ x⃗ ≫ y⃗ :⇐⇒ x1 > y1 ∧ x⃗ ⩾ y⃗

Example

One-ruled TRS Raa
a(a(x))→ a(b(a(x)))

compatible with matrix interpretation

aA(n⃗) ≜
[
1 1
0 0

]
· n⃗+

[
0
1

]
bA(n⃗) ≜

[
1 0
0 0

]
· n⃗ .

D. HoOauer and J. Waldmann. “Termination of String Rewriting with Matrix
Interpretations”. In Proc. of 17th RTA, pp. 328–342, 2006.

Matrix Interpretations

Definition
Matrix interpretation (MI) of degree d is WMA (A,≫) over Nd where
⋆ all interpretations fA are of the form

fA(x⃗1, . . . , x⃗k) = M1 · x⃗1 + · · ·+Mk · x⃗k + V

where V ∈ Nd andM1, . . . ,Mk ∈ Nd×d with (Mi)1,1 ⩾ 1

⋆ x⃗ ≫ y⃗ :⇐⇒ x1 > y1 ∧ x⃗ ⩾ y⃗

Example

One-ruled TRS Raa
a(a(x))→ a(b(a(x)))

compatible with matrix interpretation

aA(n⃗) ≜
[
1 1
0 0

]
· n⃗+

[
0
1

]
bA(n⃗) ≜

[
1 0
0 0

]
· n⃗ .

Matrix Interpretations (II)

Theorem (HoOauer & Waldmann, RTA’06)

MIs induce exponential DC.

Definition (Upper-triangular interpretation)

MatrixM is upper-triangular if

∀i.Mi,i ≤ 1 and ∀i > j.Mi,j = 0 .

Theorem (Middeldorp et al. CAI’11)

MIs induce DC O(nd) if all coefficients are upper-triangular with
diagonal sum at most d.

D. HoOauer and J. Waldmann. “Termination of String Rewriting with Matrix
Interpretations”. In Proc. of 17th RTA, pp. 328–342, 2006.

Matrix Interpretations (II)

Theorem (HoOauer & Waldmann, RTA’06)

MIs induce exponential DC.

Definition (Upper-triangular interpretation)

MatrixM is upper-triangular if

∀i.Mi,i ≤ 1 and ∀i > j.Mi,j = 0 .

Theorem (Middeldorp et al. CAI’11)

MIs induce DC O(nd) if all coefficients are upper-triangular with
diagonal sum at most d.

A. Middeldorp et al. “Joint Spectral Radius Theory for Automated Complexity
Analysis of Rewrite Systems”. In Proc. of 4th CAI, pp. 1–20, 2011.

D. HoOauer and J. Waldmann. “Termination of String Rewriting with Matrix
Interpretations”. In Proc. of 17th RTA, pp. 328–342, 2006.

Matrix Interpretations

Example

One-ruled TRS Raa
a(a(x))→ a(b(a(x)))

compatible with matrix interpretation

aA(n⃗) ≜
[
1 1
0 0

]
· n⃗+

[
0
1

]
bA(n⃗) ≜

[
1 0
0 0

]
· n⃗ .

Question: induced derivational complexity?

linear

Matrix Interpretations

Example

One-ruled TRS Raa
a(a(x))→ a(b(a(x)))

compatible with matrix interpretation

aA(n⃗) ≜
[
1 1
0 0

]
· n⃗+

[
0
1

]
bA(n⃗) ≜

[
1 0
0 0

]
· n⃗ .

Question: induced derivational complexity? linear

Matrix Interpretations

Example

TRS R++ consisting of rules

[] ++ ys→ ys (x :: xs) ++ ys→ x :: (xs ++ ys) .

terminating with polynomial interpretation

[]A ≜
[
7
1

]
x⃗ ::A x⃗s ≜

[
1 0
0 0

]
· x⃗+

[
1 0
0 1

]
· x⃗s+

[
10
1

]

x⃗s ++A y⃗s ≜
[
1 9
0 1

]
· x⃗s+

[
1 0
0 1

]
· y⃗s .

⋆ induced derivational complexity? Quadratic

⋆ Question: bound asymptotic tight?

Yes: [e1, . . . , en] ++ · · · ++︸ ︷︷ ︸
m times

[]

Matrix Interpretations

Example

TRS R++ consisting of rules

[] ++ ys→ ys (x :: xs) ++ ys→ x :: (xs ++ ys) .

terminating with polynomial interpretation

[]A ≜
[
7
1

]
x⃗ ::A x⃗s ≜

[
1 0
0 0

]
· x⃗+

[
1 0
0 1

]
· x⃗s+

[
10
1

]

x⃗s ++A y⃗s ≜
[
1 9
0 1

]
· x⃗s+

[
1 0
0 1

]
· y⃗s .

⋆ induced derivational complexity? Quadratic

⋆ Question: bound asymptotic tight? Yes: [e1, . . . , en] ++ · · · ++︸ ︷︷ ︸
m times

[]

TheMultiset Path Ordering (MPO)

Definition (Multiset Path Order)

⋆ given precedence > (proper, total order on function symbols)
⋆ induced multiset path order >mpo is least order on terms s.t.

∃i.si ⩾mpo t
f(s1, . . . , si, . . . , sk) >mpo t

f
>mpo

f > g ∀j.f(s1, . . . , sk) >mpo tj
f(s1, . . . , sk) >mpo g(t1, . . . , tk)

f g
>mpo

{{s1, . . . , sk}} >mulmpo {{t1, . . . , tk}}
f(s1, . . . , sk) >mpo f(t1, . . . , tk)

f f
>mpo

Theorem

>mpo is a reduction order.

TheMultiset Path Ordering (MPO)

Definition (Multiset Path Order)

⋆ given precedence > (proper, total order on function symbols)
⋆ induced multiset path order >mpo is least order on terms s.t.

∃i.si ⩾mpo t
f(s1, . . . , si, . . . , sk) >mpo t

f
>mpo

f > g ∀j.f(s1, . . . , sk) >mpo tj
f(s1, . . . , sk) >mpo g(t1, . . . , tk)

f g
>mpo

{{s1, . . . , sk}} >mulmpo {{t1, . . . , tk}}
f(s1, . . . , sk) >mpo f(t1, . . . , tk)

f f
>mpo

Theorem

>mpo is a reduction order.

MPO Characterizes Primitive Recursive Functions

Definition (Primitive Recursive Functions)

Class of primitive recursive functions (PR) is least set of functions over
N s.t.
1. containing initial functions

zero() ≜ 0 succ(x) ≜ x+ 1 πi,k(x1, . . . , xk) ≜ xi (∀0 < i ≤ k ∈ N) ,

2. closed under composition

h, g1, . . . , gk ∈ PR =⇒ f(⃗x) ≜ h(g1(⃗x), . . . , gk(⃗x)) ∈ PR ,

3. closed under primitive recursion

g, h ∈ PR =⇒
(f(0, x⃗) ≜ g(⃗x)
f(z+ 1, x⃗) ≜ h(⃗x, f(z, x⃗))

)
∈ PR .

MPO Characterizes Primitive Recursive Functions

Definition (Rewriting Characterization of PR)

signature FPR and (infinite) rewrite system RPR inductively defined by:
1. constant 0 ∈ FPR, unary symbol s ∈ FPR and

proji,k∈ FPR proji,k(x1, . . . , xk)→ xi ∈ RPR (∀0 < i ≤ k ∈ N) ,

2. if h, g⃗ ∈ FPR then

comp[g⃗, h]∈ FPR comp[g⃗, h](⃗x)→ h(g1(⃗x), . . . , gk(⃗x))∈ RPR ,

3. if g, h ∈ FPR then

rec[g, h]∈ FPR
(rec[g, h](0, x⃗)→ g(⃗x)
rec[g, h](z+ 1, x⃗)→ h(⃗x, rec[g, h](z, x⃗))

)
∈ RPR .

E. A. Cichon and A. Weiermann. “Term Rewriting Theory for the Primitive Recursive
Functions”. APAL, Vol. 83, pp. 199–223, 1997.

MPO Characterizes Primitive Recursive Functions

Theorem (PR⇒MPO compatible)

Every f ∈ PR is computed by some TRS compatible with MPO.

Proof Outline.
1. Every f ∈ PR is “computed” by finite Rf ⊊ RPR.
2. Rf ⊆ ≻mpo where ≻ defined s.t.

comp[. . . , h, . . .] ≻ h , rec[g, h] ≻ g, h . □

Theorem (HoOauer, TCS’92)

MPO induces primitive recursive DC.

Corollary (MPO compatible⇒ PR)

If R “computes a function” f : Nk → N and R is compatible with MPO
then f ∈ PR.D. HoOauer. “Termination Proofs by Multiset Path Orderings Imply Primitive

Recursive Derivation Lengths”. TCS, Vol. 105, pp. 129–140, 1992.

MPO Characterizes Primitive Recursive Functions

Theorem (PR⇒MPO compatible)

Every f ∈ PR is computed by some TRS compatible with MPO.

Proof Outline.
1. Every f ∈ PR is “computed” by finite Rf ⊊ RPR.
2. Rf ⊆ ≻mpo where ≻ defined s.t.

comp[. . . , h, . . .] ≻ h , rec[g, h] ≻ g, h . □

Theorem (HoOauer, TCS’92)

MPO induces primitive recursive DC.

Corollary (MPO compatible⇒ PR)

If R “computes a function” f : Nk → N and R is compatible with MPO
then f ∈ PR.

D. HoOauer. “Termination Proofs by Multiset Path Orderings Imply Primitive
Recursive Derivation Lengths”. TCS, Vol. 105, pp. 129–140, 1992.

MPO Characterizes Primitive Recursive Functions

Theorem (PR⇒MPO compatible)

Every f ∈ PR is computed by some TRS compatible with MPO.

Proof Outline.
1. Every f ∈ PR is “computed” by finite Rf ⊊ RPR.
2. Rf ⊆ ≻mpo where ≻ defined s.t.

comp[. . . , h, . . .] ≻ h , rec[g, h] ≻ g, h . □

Theorem (HoOauer, TCS’92)

MPO induces primitive recursive DC.

Corollary (MPO compatible⇒ PR)

If R “computes a function” f : Nk → N and R is compatible with MPO
then f ∈ PR.

D. HoOauer. “Termination Proofs by Multiset Path Orderings Imply Primitive
Recursive Derivation Lengths”. TCS, Vol. 105, pp. 129–140, 1992.

Dependency Pairs

Definition (Dependency Pair)

If f(l1, . . . , lm)→ C[g(t1, . . . , tn)] ∈ R with g defined by rule, then

f#(l1, . . . , lm)→ g#(t1, . . . , tn)

is a dependency pair (DP) of R ; DP(R) collects all DPs of R .

Example
Rrev DP(Rrev)

[] ++ ys→ ys
(x :: xs) ++ ys→ x :: (xs ++ ys) (x :: xs) ++# ys→ xs ++# ys

rev([])→ []

rev(x :: xs)→ rev(xs) ++ [x] rev#(x :: xs)→ rev#(xs)
rev#(x :: xs)→ rev(xs) ++# [x]

T. Arts and J. Giesl. “Proving Innermost Normalisation Automatically”. In Proc. of 8th
RTA, pp. 157–171, 1997.

Dependency Pairs

Definition (Dependency Pair)

If f(l1, . . . , lm)→ C[g(t1, . . . , tn)] ∈ R with g defined by rule, then

f#(l1, . . . , lm)→ g#(t1, . . . , tn)

is a dependency pair (DP) of R ; DP(R) collects all DPs of R .

Example
Rrev DP(Rrev)

[] ++ ys→ ys
(x :: xs) ++ ys→ x :: (xs ++ ys) (x :: xs) ++# ys→ xs ++# ys

rev([])→ []

rev(x :: xs)→ rev(xs) ++ [x] rev#(x :: xs)→ rev#(xs)
rev#(x :: xs)→ rev(xs) ++# [x]

T. Arts and J. Giesl. “Proving Innermost Normalisation Automatically”. In Proc. of 8th
RTA, pp. 157–171, 1997.

Dependency Pairs (II)

Theorem

TRS R is terminating iff there is no infinite and minimal chain

f#(s1, . . . , sm) −→DP(R) g#(t1, . . . , tn) −→∗R g#(u1, . . . , un) −→DP(R) . . .

Proof techniques: reduction pairs, usable rules, subterm criterion, rule
removal, narrowing, dependency graph cycle analysis, …

Theorem (Moser & Schnabl, RTA’09)

⋆ DC of R can be double-exponential in length of −→DP(R) · −→
∗
R chains

⋆ non-primitive recursive overhead in dependency pair framework
(subterm criterion + rule removal).

T. Arts and J. Giesl. “Proving Innermost Normalisation Automatically”. In Proc. of 8th
RTA, pp. 157–171, 1997.

Dependency Pairs (II)

Theorem

TRS R is terminating iff there is no infinite and minimal chain

f#(s1, . . . , sm) −→DP(R) g#(t1, . . . , tn) −→∗R g#(u1, . . . , un) −→DP(R) . . .

Proof techniques: reduction pairs, usable rules, subterm criterion, rule
removal, narrowing, dependency graph cycle analysis, …

Theorem (Moser & Schnabl, RTA’09)

⋆ DC of R can be double-exponential in length of −→DP(R) · −→
∗
R chains

⋆ non-primitive recursive overhead in dependency pair framework
(subterm criterion + rule removal).

R. Thiemann. “The DP Framework for Proving Termination of Term Rewriting”. “The
DP Framework for Proving Termination of Term Rewriting”, 2007.

Dependency Pairs (II)

Theorem

TRS R is terminating iff there is no infinite and minimal chain

f#(s1, . . . , sm) −→DP(R) g#(t1, . . . , tn) −→∗R g#(u1, . . . , un) −→DP(R) . . .

Proof techniques: reduction pairs, usable rules, subterm criterion, rule
removal, narrowing, dependency graph cycle analysis, …

Theorem (Moser & Schnabl, RTA’09)

⋆ DC of R can be double-exponential in length of −→DP(R) · −→
∗
R chains

⋆ non-primitive recursive overhead in dependency pair framework
(subterm criterion + rule removal).

G. Moser and A. Schnabl. “The Derivational Complexity Induced by the Dependency
Pair Method”. In Proc. of 20th RTA, pp. 276–290, 2009.

Summary
⋆ direct methods

– Knuth-Bendix order

2-rec, 2000 /

1969
– polynomial interpretations

double-exp, 1989 /

1975

◦ additive

linear, 2011

– lexicographic path order

multi-rec, 1995 /

1980
– multiset path order

prim-rec, 1990 /

1982
– context dependent interpretations

double-exp, 2001 /

2001
– match bounds

linear, 2003 /

2003
– matrix interpretations

double-exp, 2006 /

2006

◦ triangular

polynomial, 2011

– …

⋆ transformation methods
– semantic labeling

arbitrary overhead, 2008 /

1995
– dependency pairs

2-exp overhead, 2011 /

1997
– …

Summary
⋆ direct methods

– Knuth-Bendix order 2-rec, 2000 / 1969
– polynomial interpretations double-exp, 1989 / 1975

◦ additive linear, 2011

– lexicographic path order multi-rec, 1995 / 1980
– multiset path order prim-rec, 1990 / 1982
– context dependent interpretations double-exp, 2001 / 2001
– match bounds linear, 2003 / 2003
– matrix interpretations double-exp, 2006 / 2006

◦ triangular polynomial, 2011

– …

⋆ transformation methods
– semantic labeling arbitrary overhead, 2008 / 1995
– dependency pairs 2-exp overhead, 2011 / 1997
– …

Runtime Complexity Analysis

⋆ rewriting as a model of computation

⋆ invariance theorem

⋆ methods for assessing polynomial runtime

Derivational Complexity (II)

⋆ consider TRS Rdbl consisting of two rules:
dbl(0)→ 0 dbl(s(x))→ s(s(dbl(x)))

⋆ Rdbl doubles natural numbers n in unary notation n = s(. . . s︸ ︷︷ ︸
n times

(0) . . .)

⋆ complexity of function dbl is linear
⋆ derivational complexity of Rdbl is exponential

dh−→Rdbl
(dbl(n)) = n+ 1

dh−→Rdbl
(dbl(dbl(n))) = (2 · n+ 1) + (n+ 1)

dh−→Rdbl
(dbl(dbl(dbl(n)))) = (4 · n+ 1) + (2 · n+ 1) + (n+ 1)

...

dh−→Rdbl
(dblk(n)) =

k−1∑
i=0

(2k · n+ 1)

Derivational Complexity (II)

⋆ consider TRS Rdbl consisting of two rules:
dbl(0)→ 0 dbl(s(x))→ s(s(dbl(x)))

⋆ Rdbl doubles natural numbers n in unary notation n = s(. . . s︸ ︷︷ ︸
n times

(0) . . .)

⋆ complexity of function dbl is linear
⋆ derivational complexity of Rdbl is exponential

dh−→Rdbl
(dbl(n)) = n+ 1

dh−→Rdbl
(dbl(dbl(n))) = (2 · n+ 1) + (n+ 1)

dh−→Rdbl
(dbl(dbl(dbl(n)))) = (4 · n+ 1) + (2 · n+ 1) + (n+ 1)

...

dh−→Rdbl
(dblk(n)) =

k−1∑
i=0

(2k · n+ 1)

Runtime Complexity of TRS

Definition (runtime complexity function)

Runtime complexity rcR : N→ N ∪ {∞} of TRS R is

rcR(n) ≜ dc−→R,B(n) with B ≜ {f(v1, . . . , vk) | f ∈ D, vi ∈ Val}︸ ︷︷ ︸
basic terms

,

where
⋆ signature partitioned into defined symbolsD and constructors C

– usually,D given implicitly by roots of leM-hand sides

⋆ valuesVal are terms build from constructors C

Example

Runtime of Rdbl is linear.

N. Hirokawa and G. Moser. “Complexity, Graphs, and the Dependency Pair Method”.
In Proc. of 15th LPAR, pp. 652–666, 2008.

Runtime Complexity of TRS

Definition (runtime complexity function)

Runtime complexity rcR : N→ N ∪ {∞} of TRS R is

rcR(n) ≜ dc−→R,B(n) with B ≜ {f(v1, . . . , vk) | f ∈ D, vi ∈ Val}︸ ︷︷ ︸
basic terms

,

where
⋆ signature partitioned into defined symbolsD and constructors C

– usually,D given implicitly by roots of leM-hand sides

⋆ valuesVal are terms build from constructors C

Example

Runtime of Rdbl is linear.

N. Hirokawa and G. Moser. “Complexity, Graphs, and the Dependency Pair Method”.
In Proc. of 15th LPAR, pp. 652–666, 2008.

Rewriting as a Model of Computation

Definition (computation)

TRS R computes relation Rf ⊆ Valk ×Val for each f ∈ D s.t.

(v1, . . . , vk) Rf w ⇐⇒ f(v1, . . . , vk) −→! w ∈ Val .

Note: if R is confluent, Rf is a k-ary function

Question: is runtime complexity a reasonable cost model?

1. counting #reduction steps is natural 3

2. related to the cost of an “implementation” ?

Rewriting as a Model of Computation

Definition (computation)

TRS R computes relation Rf ⊆ Valk ×Val for each f ∈ D s.t.

(v1, . . . , vk) Rf w ⇐⇒ f(v1, . . . , vk) −→! w ∈ Val .

Note: if R is confluent, Rf is a k-ary function

Question: is runtime complexity a reasonable cost model?

1. counting #reduction steps is natural 3

2. related to the cost of an “implementation” ?

Rewriting as a Model of Computation

Definition (computation)

TRS R computes relation Rf ⊆ Valk ×Val for each f ∈ D s.t.

(v1, . . . , vk) Rf w ⇐⇒ f(v1, . . . , vk) −→! w ∈ Val .

Note: if R is confluent, Rf is a k-ary function

Question: is runtime complexity a reasonable cost model?

1. counting #reduction steps is natural 3

2. related to the cost of an “implementation” ?

Rewriting as a Model of Computation

Definition (computation)

TRS R computes relation Rf ⊆ Valk ×Val for each f ∈ D s.t.

(v1, . . . , vk) Rf w ⇐⇒ f(v1, . . . , vk) −→! w ∈ Val .

Note: if R is confluent, Rf is a k-ary function

Question: is runtime complexity a reasonable cost model?

1. counting #reduction steps is natural 3

2. related to the cost of an “implementation” ?

Invariance Thesis

“…reasonable universal machines can simulate each
other within a polynomially bounded overhead in time and
a constant-factor overhead in space.”

P. Van Emde Boas. “Machine Models and Simulation”. In Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity (A), pp. 1–66, 1990.

Invariance Thesis

⋆ invariance long lasting open question for rewriting based calculi
– a single rewrite step may copy arbitrarily large terms
– terms may grow exponential in the length of derivations

−→ −→ −→ . . .

⋆ implementation via graph rewriting avoids space explosion
– copying replaced by sharing
– size-growth constant in length of derivation

−→ −→ −→ . . .

Invariance Thesis

⋆ invariance long lasting open question for rewriting based calculi
– a single rewrite step may copy arbitrarily large terms
– terms may grow exponential in the length of derivations

−→ −→ −→ . . .

⋆ implementation via graph rewriting avoids space explosion
– copying replaced by sharing
– size-growth constant in length of derivation

−→ −→ −→ . . .

Graph Rewriting in a Nutshell

1. terms represented as graphs

graphs

×
D D
+ +

0

⩾
×

D D
+

0

⩾
×
D
+

0

represent D(x + x) × D(x + x)

2. rules are graph with two designated roots for LHS f and RHS g

– unlabelled leafs act as variables

f
s
·

f
c

·
represents f(s(x1), x2)→ f(x1, c(x2, x2))

3. rule application replaces homomorphic copy of LHS with RHS
f

s

s

0

c

⊥

−→
f

c

s

0

c

⊥

Graph Rewriting in a Nutshell

1. terms represented as graphs

graphs

×
D D
+ +

0

⩾
×

D D
+

0

⩾
×
D
+

0

represent D(x + x) × D(x + x)

2. rules are graph with two designated roots for LHS f and RHS g

– unlabelled leafs act as variables

f
s
·

f
c

·
represents f(s(x1), x2)→ f(x1, c(x2, x2))

3. rule application replaces homomorphic copy of LHS with RHS
f

s

s

0

c

⊥

−→
f

c

s

0

c

⊥

Graph Rewriting in a Nutshell

1. terms represented as graphs

graphs

×
D D
+ +

0

⩾
×

D D
+

0

⩾
×
D
+

0

represent D(x + x) × D(x + x)

2. rules are graph with two designated roots for LHS f and RHS g

– unlabelled leafs act as variables

f
s
·

f
c

·
represents f(s(x1), x2)→ f(x1, c(x2, x2))

3. rule application replaces homomorphic copy of LHS with RHS
f

s

s

0

c

⊥

−→
f

c

s

0

c

⊥

Discrepancies to Term Rewriting

1. shared redexes cause parallel rewrites

on terms, −→ −→ ,

but −→ on graphs

2. graph matching based on pointer equality

LHS · matches but matches not

Discrepancies to Term Rewriting

1. shared redexes cause parallel rewrites

on terms, −→ −→ ,

but −→ on graphs

2. graph matching based on pointer equality

LHS · matches but matches not

Implementing Term via Graph Rewriting

Folklore: term rewriting can be implemented via graph rewriting
1. translate each rewrite rule l→ r to graph rule

·
2. unfold & fold graph before rule application

⩽ ⩾ −→

⋆ unfolding must be handled with care to avoid space-explosion

⋆ observation gives rise to reduction relation −→on graphs
– restricted unfolding copies only shared nodes along path to redex
– restricted folding introduces maximal sharing strictly below redex

M. Avanzini and G. Moser. “Closing the Gap Between Runtime Complexity and
Polytime Computability”. In Proc. of 21st RTA, pp. 33–48, 2010.

Implementing Term via Graph Rewriting

Folklore: term rewriting can be implemented via graph rewriting
1. translate each rewrite rule l→ r to graph rule

·
2. unfold & fold graph before rule application

⩽ ⩾ −→

⋆ unfolding must be handled with care to avoid space-explosion

⋆ observation gives rise to reduction relation −→on graphs
– restricted unfolding copies only shared nodes along path to redex
– restricted folding introduces maximal sharing strictly below redex

M. Avanzini and G. Moser. “Closing the Gap Between Runtime Complexity and
Polytime Computability”. In Proc. of 21st RTA, pp. 33–48, 2010.

Implementing Term via Graph Rewriting

Folklore: term rewriting can be implemented via graph rewriting
1. translate each rewrite rule l→ r to graph rule

·
2. unfold & fold graph before rule application

⩽ ⩾ −→

⋆ unfolding must be handled with care to avoid space-explosion

⋆ observation gives rise to reduction relation −→on graphs
– restricted unfolding copies only shared nodes along path to redex
– restricted folding introduces maximal sharing strictly below redex

M. Avanzini and G. Moser. “Closing the Gap Between Runtime Complexity and
Polytime Computability”. In Proc. of 21st RTA, pp. 33–48, 2010.

Space Efficient Implementation of Term Rewriting

Theorem (Adequacy Theorem)

S −→ T ⇐⇒ term(S) −→ term(T)

Lemma (Time Lemma)

S −→ T =⇒ T computable from S in almost cubic time on TM

Lemma (Space Lemma)

S −→ T =⇒ size(T) ∈ O(ℓ · size(S) + ℓ2)

Invariance Theorem

Theorem (Invariance Theorem)

Let R be a confluent rewrite system with runtime g(n).
Any function computed by R is computable in time p(n, g(n)) on a
deterministic Turing machine, where

p(n, ℓ) ∈ O
(
log(ℓ + n)3 · (ℓ · n3 + ℓ4)

)

Corollary (Polytime Invariance)

Let R be a confluent rewrite system with polynomially bounded
runtime.
Then the functions computed by R are in FPTime.

Invariance Theorem

Theorem (Non-deterministic Invariance Theorem)

Let R be a rewrite system with runtime g(n).
Any relation computed by R is computable in time p(n, g(n)) on a
non-deterministic Turing machine, where

p(n, ℓ) ∈ O
(
log(ℓ + n)3 · (ℓ · n3 + ℓ4)

)

Corollary (Non-deterministic Polytime Invariance)

Let R be a rewrite system with polynomially bounded runtime.
Then the function problem associated with any relation computed by
R is in FNPTime.

Methods That Classify Polynomial RC

⋆ polynomial & matrix interpretations, revisited

⋆ usable argument positions

⋆ polynomial path orders

Interpretations, Revisited

Central Observation:
⋆ R ⊆ >A =⇒ dh−→R

(f(v1, . . . , vk)) ≤ fA(Jv1Kα0

A , . . . , JvkKα0

A)

⋆ for basic start terms, sufficient to control interpretations of
constructors

Theorem

interpretation of constructors induced RC characterisation

additive O(nd) (†) PTime
linear O(2n) ETime
polynomial O(22n) E2Time

(†) d is maximum degree of interpretations fA for f ∈ D .

⋆ similar for MIs, induced RC controlled by restricting interpretation of
constructors

G. Bonfante et al. “Algorithms with Polynomial Interpretation Termination Proof”.
JFP, Vol. 11, pp. 33–53, 2001.

Interpretations, Revisited

Central Observation:
⋆ R ⊆ >A =⇒ dh−→R

(f(v1, . . . , vk)) ≤ fA(Jv1Kα0

A , . . . , JvkKα0

A)

⋆ for basic start terms, sufficient to control interpretations of
constructors

Theorem

interpretation of constructors induced RC characterisation

additive O(nd) (†) PTime
linear O(2n) ETime
polynomial O(22n) E2Time

(†) d is maximum degree of interpretations fA for f ∈ D .

⋆ similar for MIs, induced RC controlled by restricting interpretation of
constructors

G. Bonfante et al. “Algorithms with Polynomial Interpretation Termination Proof”.
JFP, Vol. 11, pp. 33–53, 2001.

Interpretations, Revisited

Central Observation:
⋆ R ⊆ >A =⇒ dh−→R

(f(v1, . . . , vk)) ≤ fA(Jv1Kα0

A , . . . , JvkKα0

A)

⋆ for basic start terms, sufficient to control interpretations of
constructors

Theorem

interpretation of constructors induced RC characterisation

additive O(nd) (†) PTime
linear O(2n) ETime
polynomial O(22n) E2Time

(†) d is maximum degree of interpretations fA for f ∈ D .

⋆ similar for MIs, induced RC controlled by restricting interpretation of
constructors

G. Bonfante et al. “Algorithms with Polynomial Interpretation Termination Proof”.
JFP, Vol. 11, pp. 33–53, 2001.

Interpretations, Revisited

Example

TRS R++ consisting of rules

[] ++ ys→ ys (x :: xs) ++ ys→ x :: (xs ++ ys) .

terminating with polynomial interpretation

n ++A m ≜ 2 · n + m []A ≜ 1 n ::A m ≜ n + m .

⋆ linear shape⇒ classified linear RC

Usable Argument Positions

Example

TRS R÷ consists of rules

x − 0→ 0 0 ÷ s(y)→ 0
s(x) − s(y)→ x − y s(x) ÷ s(y)→ s((x − y) ÷ s(y))

⋆ Question: orientable by PI? No, due to last rule

⋆ monotonicity required for closure under contexts:

s −→R t ∧ JsKA > JtKA =⇒ Jf(. . . , s, . . .)KA > Jf(. . . , t, . . .)KA .
⋆ second argument of − never reducible in reduction from basic term
⇒ J−KA required monotonic only in first argument

⋆ intuition formalised in notion of usable replacement map

Usable Argument Positions

Example

TRS R÷ consists of rules

x − 0→ 0 0 ÷ s(y)→ 0
s(x) − s(y)→ x − y s(x) ÷ s(y)→ s((x − y) ÷ s(y))

⋆ Question: orientable by PI?

No, due to last rule

⋆ monotonicity required for closure under contexts:

s −→R t ∧ JsKA > JtKA =⇒ Jf(. . . , s, . . .)KA > Jf(. . . , t, . . .)KA .
⋆ second argument of − never reducible in reduction from basic term
⇒ J−KA required monotonic only in first argument

⋆ intuition formalised in notion of usable replacement map

Usable Argument Positions

Example

TRS R÷ consists of rules

x − 0→ 0 0 ÷ s(y)→ 0
s(x) − s(y)→ x − y s(x) ÷ s(y)→ s((x − y) ÷ s(y))

⋆ Question: orientable by PI? No, due to last rule

⋆ monotonicity required for closure under contexts:

s −→R t ∧ JsKA > JtKA =⇒ Jf(. . . , s, . . .)KA > Jf(. . . , t, . . .)KA .
⋆ second argument of − never reducible in reduction from basic term
⇒ J−KA required monotonic only in first argument

⋆ intuition formalised in notion of usable replacement map

Usable Argument Positions

Example

TRS R÷ consists of rules

x − 0→ 0 0 ÷ s(y)→ 0
s(x) − s(y)→ x − y s(x) ÷ s(y)→ s((x − y) ÷ s(y))

⋆ Question: orientable by PI? No, due to last rule

⋆ monotonicity required for closure under contexts:

s −→R t ∧ JsKA > JtKA =⇒ Jf(. . . , s, . . .)KA > Jf(. . . , t, . . .)KA .

⋆ second argument of − never reducible in reduction from basic term
⇒ J−KA required monotonic only in first argument

⋆ intuition formalised in notion of usable replacement map

Usable Argument Positions

Example

TRS R÷ consists of rules

x − 0→ 0 0 ÷ s(y)→ 0
s(x) − s(y)→ x − y s(x) ÷ s(y)→ s((x − y) ÷ s(y))

⋆ Question: orientable by PI? No, due to last rule

⋆ monotonicity required for closure under contexts:

s −→R t ∧ JsKA > JtKA =⇒ Jf(. . . , s, . . .)KA > Jf(. . . , t, . . .)KA .
⋆ second argument of − never reducible in reduction from basic term
⇒ J−KA required monotonic only in first argument

⋆ intuition formalised in notion of usable replacement map

Usable Argument Positions

Example

TRS R÷ consists of rules

x − 0→ 0 0 ÷ s(y)→ 0
s(x) − s(y)→ x − y s(x) ÷ s(y)→ s((x − y) ÷ s(y))

⋆ Question: orientable by PI? No, due to last rule

⋆ monotonicity required for closure under contexts:

s −→R t ∧ JsKA > JtKA =⇒ Jf(. . . , s, . . .)KA > Jf(. . . , t, . . .)KA .
⋆ second argument of − never reducible in reduction from basic term
⇒ J−KA required monotonic only in first argument

⋆ intuition formalised in notion of usable replacement map

Usable Arguments

Definition (Usable Replacement Map)

consider mapping µ s.t. µ(f) ⊆ {1, . . . , k} for every k-ary f ∈ F

⋆ µ-positions Posµ(t) ⊆ Pos(t) in term t are

Posµ(x) ≜ {ϵ }
Posµ(f(t1, . . . , tk)) ≜ {ϵ } ∪ {i · p | i ∈ µ(f), p ∈ Posµ(ti)} .

⋆ Tµ(→) is set of terms where only subterms at µ-positions are
reducible wrt. →

t ∈ Tµ(→) :⇐⇒ ∀p ∈ Pos(t) \ Posµ(t). t|p ∈ NF(→) .

⋆ µ is usable replacement map (URM) for TRS R on set of terms T

−→∗R(T) ⊆ Tµ(−→R) .

N. Hirokawa and G. Moser. “Automated Complexity Analysis Based on
Context-Sensitive Rewriting”. In Proc. of 25th RTA and 12th TLCA, pp. 257–271, 2014.

Usable Arguments

Definition (Usable Replacement Map)

consider mapping µ s.t. µ(f) ⊆ {1, . . . , k} for every k-ary f ∈ F
⋆ µ-positions Posµ(t) ⊆ Pos(t) in term t are

Posµ(x) ≜ {ϵ }
Posµ(f(t1, . . . , tk)) ≜ {ϵ } ∪ {i · p | i ∈ µ(f), p ∈ Posµ(ti)} .

⋆ Tµ(→) is set of terms where only subterms at µ-positions are
reducible wrt. →

t ∈ Tµ(→) :⇐⇒ ∀p ∈ Pos(t) \ Posµ(t). t|p ∈ NF(→) .

⋆ µ is usable replacement map (URM) for TRS R on set of terms T

−→∗R(T) ⊆ Tµ(−→R) .

N. Hirokawa and G. Moser. “Automated Complexity Analysis Based on
Context-Sensitive Rewriting”. In Proc. of 25th RTA and 12th TLCA, pp. 257–271, 2014.

Usable Arguments

Definition (Usable Replacement Map)

consider mapping µ s.t. µ(f) ⊆ {1, . . . , k} for every k-ary f ∈ F
⋆ µ-positions Posµ(t) ⊆ Pos(t) in term t are

Posµ(x) ≜ {ϵ }
Posµ(f(t1, . . . , tk)) ≜ {ϵ } ∪ {i · p | i ∈ µ(f), p ∈ Posµ(ti)} .

⋆ Tµ(→) is set of terms where only subterms at µ-positions are
reducible wrt. →

t ∈ Tµ(→) :⇐⇒ ∀p ∈ Pos(t) \ Posµ(t). t|p ∈ NF(→) .

⋆ µ is usable replacement map (URM) for TRS R on set of terms T

−→∗R(T) ⊆ Tµ(−→R) .

N. Hirokawa and G. Moser. “Automated Complexity Analysis Based on
Context-Sensitive Rewriting”. In Proc. of 25th RTA and 12th TLCA, pp. 257–271, 2014.

Usable Arguments

Definition (Usable Replacement Map)

consider mapping µ s.t. µ(f) ⊆ {1, . . . , k} for every k-ary f ∈ F
⋆ µ-positions Posµ(t) ⊆ Pos(t) in term t are

Posµ(x) ≜ {ϵ }
Posµ(f(t1, . . . , tk)) ≜ {ϵ } ∪ {i · p | i ∈ µ(f), p ∈ Posµ(ti)} .

⋆ Tµ(→) is set of terms where only subterms at µ-positions are
reducible wrt. →

t ∈ Tµ(→) :⇐⇒ ∀p ∈ Pos(t) \ Posµ(t). t|p ∈ NF(→) .

⋆ µ is usable replacement map (URM) for TRS R on set of terms T

−→∗R(T) ⊆ Tµ(−→R) .

N. Hirokawa and G. Moser. “Automated Complexity Analysis Based on
Context-Sensitive Rewriting”. In Proc. of 25th RTA and 12th TLCA, pp. 257–271, 2014.

Usable Arguments (II)

Definition (well-founded µ-monotone algebra)

well-founded µ-monotone algebra (WµMA) (A, >) with carrier A
consists of
⋆ well-founded proper order > ⊆ A × A, and
⋆ strictly µ-monotone interpretations fA : Ak → A for every k-ary f

ai > b ∧ i ∈ µ(f) =⇒ fA(a1, . . . , ai, . . . , ak) > fA(a1, . . . , b, . . . , ak)

Theorem

Let µ be a URM for R on basic terms B. If WµMA (A, >) orients R then

rcR(n) ≤ dc>A,B(n) .

Usable Arguments (III)

Example

Reconsider TRS R÷:
x − 0→ 0 0 ÷ s(y)→ 0

s(x) − s(y)→ x − y s(x) ÷ s(y)→ s((x − y) ÷ s(y))

⋆ Question: which maps constitute a URM for R÷?

symbol µ1 µ2 µ3 µ4

s ∅ ∅ {1} {1}
− ∅ ∅ ∅ {1, 2}
÷ ∅ {1} {1} {1, 2}

⋆ oriented by µ3-monotone polynomial interpretation

0A ≜ 1 sA(x) ≜ x+ 2 x−A y ≜ x+ 1 x÷A y ≜ 3 · x

⋆ induced runtime complexity is linear

Usable Arguments (III)

Example

Reconsider TRS R÷:
x − 0→ 0 0 ÷ s(y)→ 0

s(x) − s(y)→ x − y s(x) ÷ s(y)→ s((x − y) ÷ s(y))

⋆ Question: which maps constitute a URM for R÷?

symbol µ1 µ2 µ3 µ4

s ∅ ∅ {1} {1}
− ∅ ∅ ∅ {1, 2}
÷ ∅ {1} {1} {1, 2}

⋆ oriented by µ3-monotone polynomial interpretation

0A ≜ 1 sA(x) ≜ x+ 2 x−A y ≜ x+ 1 x÷A y ≜ 3 · x

⋆ induced runtime complexity is linear

Usable Arguments (III)

Example

Reconsider TRS R÷:
x − 0→ 0 0 ÷ s(y)→ 0

s(x) − s(y)→ x − y s(x) ÷ s(y)→ s((x − y) ÷ s(y))

⋆ Question: which maps constitute a URM for R÷?

symbol µ1 µ2 µ3 µ4

s ∅ ∅ {1} {1}
− ∅ ∅ ∅ {1, 2}
÷ ∅ {1} {1} {1, 2}

⋆ oriented by µ3-monotone polynomial interpretation

0A ≜ 1 sA(x) ≜ x+ 2 x−A y ≜ x+ 1 x÷A y ≜ 3 · x

⋆ induced runtime complexity is linear

Recursive Path Orders and Polynomial RC

Motivation:
⋆ recursive path orders (e.g., MPO, LPO, KBO) fast to synthesise

⋆ can these orders be tamed to induce polynomial RC?

Yes!
⋆ polynomial path orders embody predicative recursion on MPO

⋆ induce (innermost) runtime complexity is polynomial

Predicative Recursion on Notation

Definition (predicative recursive functions)

BC is least set of functions over binary words s.t.
1. containing certain initial functions

2. closed under predicative composition

h, g1, . . . , gk+l ∈ BC
=⇒ f(⃗x; y⃗) ≜ h(g1(⃗x;), . . . , gk(⃗x;); gk+1(⃗x; y⃗), . . . , gk+l(⃗x; y⃗)) ∈ BC ,

3. closed under predicative recursion on notation

g, h0, h1 ∈ BC =⇒
(f(ϵ, x⃗; y⃗) ≜ g(⃗x; y⃗)
f(i · z, x⃗; y⃗) ≜ hi(⃗x; y⃗, f(z, x⃗; y⃗))

)
∈ BC .

Theorem
BC = FPTime .

S. Bellantoni and S. Cook. “A new Recursion-Theoretic Characterization of the
Polytime Functions”. CC, Vol. 2, pp. 97–110, 1992.

Predicative Recursion on Notation

Definition (predicative recursive functions)

BC is least set of functions over binary words s.t.
1. containing certain initial functions

2. closed under predicative composition

h, g1, . . . , gk+l ∈ BC
=⇒ f(⃗x; y⃗) ≜ h(g1(⃗x;), . . . , gk(⃗x;); gk+1(⃗x; y⃗), . . . , gk+l(⃗x; y⃗)) ∈ BC ,

3. closed under predicative recursion on notation

g, h0, h1 ∈ BC =⇒
(f(ϵ, x⃗; y⃗) ≜ g(⃗x; y⃗)
f(i · z, x⃗; y⃗) ≜ hi(⃗x; y⃗, f(z, x⃗; y⃗))

)
∈ BC .

Theorem
BC = FPTime .

S. Bellantoni and S. Cook. “A new Recursion-Theoretic Characterization of the
Polytime Functions”. CC, Vol. 2, pp. 97–110, 1992.

Polynomial Path Orders (POP∗)
Ingredients:
1. precedence > on signature
2. for each symbol f, separation of argument positions

normal(f) ⊎ safe(f) = {1, . . . , ar(f)} .

M. Avanzini and G. Moser. “Polynomial Path Orders”. LMCS, Vol. 9, 2013.

Polynomial Path Orders (POP∗)
Ingredients:
1. precedence > on signature
2. for each symbol f, separation of argument positions

normal(f) ⊎ safe(f) = {1, . . . , ar(f)} .

Definition (auxiliary order >pop)

auxiliary order >pop is least order on terms s.t.

∃i. si ⩾pop t f ∈ D =⇒ i ∈ normal(f)
f(s1, . . . , sk) >pop t

f > g ∀i. f(⃗x) >pop ti
f(⃗s) >pop g(t1, . . . , tk)

M. Avanzini and G. Moser. “Polynomial Path Orders”. LMCS, Vol. 9, 2013.

Polynomial Path Orders (POP∗)
Ingredients:
1. precedence > on signature
2. for each symbol f, separation of argument positions

normal(f) ⊎ safe(f) = {1, . . . , ar(f)} .

Definition (auxiliary order >pop)

auxiliary order >pop is least order on terms s.t.

∃i. si ⩾pop t f ∈ D =⇒ i ∈ normal(f)
f(s1, . . . , sk) >pop t

f > g ∀i. f(⃗x) >pop ti
f(⃗s) >pop g(t1, . . . , tk)

Example

If f > g then f(s(; x); y) >pop g(x;) but f(s(; x); y) ̸>pop g(x; y)

M. Avanzini and G. Moser. “Polynomial Path Orders”. LMCS, Vol. 9, 2013.

Polynomial Path Orders (POP∗)
Ingredients:
1. precedence > on signature
2. for each symbol f, separation of argument positions

normal(f) ⊎ safe(f) = {1, . . . , ar(f)} .

Definition (polynomial path order >pop∗)

polynomial path order >pop∗ is least order on terms s.t.

∃i. si ⩾pop∗ t
f(s1, . . . , sk) >pop∗ t

f occurs at most once in g(t1, . . . , tk)
f > g ∀i ∈ normal(g). f(⃗x) >pop ti ∀i ∈ safe(g). f(⃗x) >pop∗ ti

f(⃗s) >pop∗ g(t1, . . . , tk)

{{s1, . . . , sk}} >mulpop∗ {{t1, . . . , tk}} ∃i, j ∈ normal(f). si >pop∗ tj
f(s1, . . . , sk) >pop∗ f(t1, . . . , tk)

M. Avanzini and G. Moser. “Polynomial Path Orders”. LMCS, Vol. 9, 2013.

Induced Runtime of POP∗

Definition

Constructor TRS R is predicative recursive if compatible with >pop∗.

Example
TRS

bt(0;)→ L bt(s(;n);)→ dup(; bt(n;)) dup(; t)→ N(; t, t) ,

is predicative recursive but has exponential runtime.

Definition (Innermost Runtime Complexity (iRC))

rciR(n) ≜ dc i−→R,B(n) .

Theorem (A. & Moser, TCS’13)

If R predicative recursive, rciR(n) ≤ p(n) for some polynomial p.

Induced Runtime of POP∗

Definition

Constructor TRS R is predicative recursive if compatible with >pop∗.

Example
TRS

bt(0;)→ L bt(s(;n);)→ dup(; bt(n;)) dup(; t)→ N(; t, t) ,

is predicative recursive but has exponential runtime.

Definition (Innermost Runtime Complexity (iRC))

rciR(n) ≜ dc i−→R,B(n) .

Theorem (A. & Moser, TCS’13)

If R predicative recursive, rciR(n) ≤ p(n) for some polynomial p.

Induced Runtime of POP∗

Definition

Constructor TRS R is predicative recursive if compatible with >pop∗.

Example
TRS

bt(0;)→ L bt(s(;n);)→ dup(; bt(n;)) dup(; t)→ N(; t, t) ,

is predicative recursive but has exponential runtime.

Definition (Innermost Runtime Complexity (iRC))

rciR(n) ≜ dc i−→R,B(n) .

Theorem (A. & Moser, TCS’13)

If R predicative recursive, rciR(n) ≤ p(n) for some polynomial p.

Further Notes on Recursive Path Orders

⋆ class of predicative recursive, confluent TRSs characterise FPTime

⋆ predicative recursive TRSs with single defined function can reach
arbitrary iRC due to multiset status

⋆ restriction sPOP∗ (product status, weakened composition) of POP∗

induces bounds O(n“recursion depth”)
⋆ allowing multiple recursive calls retains FPTime characterisation via
memoization

⋆ extending sPOP∗ with lexicographic status yields characterisation of
exponential time functions

M. Avanzini, N. Eguchi, and G. Moser. “A new Order-theoretic Characterisation of the
Polytime Computable Functions”. TCS, Vol. 585, pp. 3–24, 2015.

J.-Y. Marion. “Analysing the Implicit Complexity of Programs”. IC, Vol. 183, pp. 2–18,
2003.

M. Avanzini, N. Eguchi, and G. Moser. “A Path Order for Rewrite Systems that
Compute Exponential Time Functions”. In Proc. of 22nd RTA, pp. 123–138, 2011.

Further Notes on Recursive Path Orders

⋆ class of predicative recursive, confluent TRSs characterise FPTime

⋆ predicative recursive TRSs with single defined function can reach
arbitrary iRC due to multiset status

⋆ restriction sPOP∗ (product status, weakened composition) of POP∗

induces bounds O(n“recursion depth”)

⋆ allowing multiple recursive calls retains FPTime characterisation via
memoization

⋆ extending sPOP∗ with lexicographic status yields characterisation of
exponential time functions

M. Avanzini, N. Eguchi, and G. Moser. “A new Order-theoretic Characterisation of the
Polytime Computable Functions”. TCS, Vol. 585, pp. 3–24, 2015.

J.-Y. Marion. “Analysing the Implicit Complexity of Programs”. IC, Vol. 183, pp. 2–18,
2003.

M. Avanzini, N. Eguchi, and G. Moser. “A Path Order for Rewrite Systems that
Compute Exponential Time Functions”. In Proc. of 22nd RTA, pp. 123–138, 2011.

Further Notes on Recursive Path Orders

⋆ class of predicative recursive, confluent TRSs characterise FPTime

⋆ predicative recursive TRSs with single defined function can reach
arbitrary iRC due to multiset status

⋆ restriction sPOP∗ (product status, weakened composition) of POP∗

induces bounds O(n“recursion depth”)
⋆ allowing multiple recursive calls retains FPTime characterisation via
memoization

⋆ extending sPOP∗ with lexicographic status yields characterisation of
exponential time functions

M. Avanzini, N. Eguchi, and G. Moser. “A new Order-theoretic Characterisation of the
Polytime Computable Functions”. TCS, Vol. 585, pp. 3–24, 2015.

J.-Y. Marion. “Analysing the Implicit Complexity of Programs”. IC, Vol. 183, pp. 2–18,
2003.

M. Avanzini, N. Eguchi, and G. Moser. “A Path Order for Rewrite Systems that
Compute Exponential Time Functions”. In Proc. of 22nd RTA, pp. 123–138, 2011.

Further Notes on Recursive Path Orders

⋆ class of predicative recursive, confluent TRSs characterise FPTime

⋆ predicative recursive TRSs with single defined function can reach
arbitrary iRC due to multiset status

⋆ restriction sPOP∗ (product status, weakened composition) of POP∗

induces bounds O(n“recursion depth”)
⋆ allowing multiple recursive calls retains FPTime characterisation via
memoization

⋆ extending sPOP∗ with lexicographic status yields characterisation of
exponential time functions

M. Avanzini, N. Eguchi, and G. Moser. “A new Order-theoretic Characterisation of the
Polytime Computable Functions”. TCS, Vol. 585, pp. 3–24, 2015.

J.-Y. Marion. “Analysing the Implicit Complexity of Programs”. IC, Vol. 183, pp. 2–18,
2003.

M. Avanzini, N. Eguchi, and G. Moser. “A Path Order for Rewrite Systems that
Compute Exponential Time Functions”. In Proc. of 22nd RTA, pp. 123–138, 2011.

Experimental Evaluation

$ cat lcs.raml
firstline : L(int) -> L(int)
firstline(l) = match l with

| nil -> nil
| (x::xs) -> +0::firstline xs;

newline : (int,L(int),L(int)) -> L(int)
newline (y,lastline,l) =

match l with
| nil -> nil
| (x::xs) -> match lastline with

| nil -> nil
| (belowVal::lastline') ->

let nl = newline(y,lastline',xs) in
let rightVal = right nl in
let diagVal = right lastline' in
let elem = if x == y then diagVal+1 else max(belowVal,rightVal)
in elem::nl;

right : L(int) -> int
right l = match l with | nil -> +0 | (x::xs) -> x;

lcstable : (L(int),L(int)) -> L(L(int))
lcstable (l1,l2) = match l1 with

| nil -> [firstline l2]
| (x::xs) -> let m = lcstable (xs,l2) in

match m with
| nil -> nil
| (l::ls) -> (newline (x,l,l2))::l::ls;

lcs : (L(int),L(int)) -> int
lcs(l1,l2) = let m = lcstable(l1,l2) in

match m with | nil -> +0 | (l1::_) -> (match l1 with | nil -> +0 | (len::_) -> len);

Experimental Evaluation

$ raml2trs lcs.raml
(STARTTERM CONSTRUCTOR-BASED)
(STRATEGY INNERMOST)
(VAR

@_ @a @b @belowVal @diagVal @elem @l @l1 @l2 @lastline @lastline2 @len @ls @m @nl @rightVal
@x @x_1 @x_2 @xs @y @y_1 @y_2)

(RULES
firstline(@l) -> firstline#1(@l)
firstline#1(::(@x,@xs)) -> ::(#abs(#0()),firstline(@xs))
firstline#1(nil) -> nil
newline(@y,@lastline,@l) -> newline#1(@l,@lastline,@y)
newline#1(::(@x,@xs),@lastline,@y) -> newline#2(@lastline,@x,@xs,@y)
newline#1(nil,@lastline,@y) -> nil
newline#2(::(@belowVal,@lastline2),@x,@xs,@y) ->

newline#3(newline(@y,@lastline2,@xs),@belowVal,@lastline2,@x,@y)
newline#2(nil,@x,@xs,@y) -> nil
newline#3(@nl,@belowVal,@lastline2,@x,@y) ->

newline#4(right(@nl),@belowVal,@lastline2,@nl,@x,@y)
newline#4(@rightVal,@belowVal,@lastline2,@nl,@x,@y) ->

newline#5(right(@lastline2),@belowVal,@nl,@rightVal,@x,@y)
newline#5(@diagVal,@belowVal,@nl,@rightVal,@x,@y) ->

newline#6(newline#7(#equal(@x,@y),@belowVal,@diagVal,@rightVal),@nl)
newline#6(@elem,@nl) -> ::(@elem,@nl)
newline#7(#false(),@belowVal,@diagVal,@rightVal) -> max(@belowVal,@rightVal)
newline#7(#true(),@belowVal,@diagVal,@rightVal) -> +(@diagVal,#pos(#s(#0())))
right(@l) -> right#1(@l)
right#1(::(@x,@xs)) -> @x
right#1(nil) -> #abs(#0())
lcs(@l1,@l2) -> lcs#1(lcstable(@l1,@l2))
lcs#1(@m) -> lcs#2(@m)

[...]

Experimental Evaluation
Input #rules orders

iterative DT+iterative+simps

TCT

appendAll 12 O(n2)

O(n2) O(n2)

O(n)
bfs 57 ?

? O(n1)

O(n)
bft mmult 59 ?

? ?

O(n3)
bitonic 78 ?

? ?

O(n4)
bitvectors 148 ?

? ?

O(n2)
clevermmult 39 ?

? ?

O(n2)
duplicates 37 ?

O(n2) O(n2)

O(n2)
dyade 31 ?

? O(n2)

O(n2)
eratosthenes 74 ?

O(n3) O(n2)

O(n2)
flatten 31 ?

? ?

O(n2)
insertionsort 36 ?

O(n3) O(n2)

O(n2)
listsort 56 ?

? ?

O(n2)
lcs 87 ?

? ?

O(n2)
matrix 74 ?

? ?

O(n3)
mergesort 35 ?

? ?

O(n3)
minsort 26 ?

O(n3) O(n2)

O(n2)
queue 35 ?

? ?

O(n5)
quicksort 46 ?

? ?

O(n2)
rationalPotential 14 O(n)

O(n) O(n1)

O(n)
splitandsort 70 ?

? ?

O(n3)
subtrees 8 ?

O(n2) O(n2)

O(n2)
tuples 33 ?

? ?

?

Figure: Analysis of translated resource aware ML programs.

Summary

⋆ RC is a reasonable cost model for rewriting

⋆ termination methods can be suited so as to induce polynomial RC

– amounts to “whole program analysis”
⇒ intensionally weak

Next Lecture: strengthen the analysis through modularity

1. combination of different techniques

2. analyse program parts (almost) independently

Summary

⋆ RC is a reasonable cost model for rewriting

⋆ termination methods can be suited so as to induce polynomial RC

– amounts to “whole program analysis”
⇒ intensionally weak

Next Lecture: strengthen the analysis through modularity

1. combination of different techniques

2. analyse program parts (almost) independently

	Introduction and Motivation
	From Termination to Derivational Complexity Analysis
	Rewriting as a Computational Model and Runtime Complexity

