
Parametrised second-order complexity theory with
applications to interval computation
Eike Neumann
Aston University
Birmingham, UK

Florian Steinberg1

INRIA
Sophia Antipolis, France

A full version of this paper is available on the arXiv [13]. This abstract is kept fairly brief
and assumes familiarity with many of the notions central to its topic. A nice and exhaustive
introduction to the topic can be found in [6]. Other sources for lookup of details are [15] and
the full version of this paper.

Computable analysis is an extension of the theory of computation over the natural
numbers to continuous data, such as real numbers and real functions, based on the Turing
machine model of computation. Computability of real numbers is studied already in Turing’s
paper [17] on the halting problem. Any algorithm based on computable analysis can be
implemented directly on a physical computer. It consists of a rigorous specification of input
and output, so that it precisely describes the steps that have to be taken to obtain the desired
result to a given accuracy. Software packages based on computable analysis include iRRAM
[12], Ariadne [1], AERN [9], and RealLib [10].

For the study of practical algorithms it is clear that computational complexity should
play a central role. Whilst the notion of computability over continuous data is robust, well
understood, and universally accepted in the computable analysis community, computational
complexity in analysis is far less developed and even some basic definitions are the subject
of ongoing debate. One of the main reasons for such a notion not being available until
recently was the lack of an accepted notion of feasibility for second-order functionals. A
candidate solution had been proposed by Mehlhorn already in 1975 [11], but it remained a
point of debate for a long time to which extent this class fully captures the intuitive notion
of feasibility [3]. A characterization of this class by means of resource bounded oracle Turing
machines due to Kapron and Cook [5] opened the field up for applications. Based on this
characterization, Kawamura and Cook introduced a framework for complexity of operators
in analysis [7].

However, there remains a gap between theory and practice. Within the framework
of Kawamura and Cook it is impossible to model the behaviour of software based on
computable analysis such as the libraries mentioned above. The reason for this is that
all these implementations are based on interval arithmetic or extensions thereof, such as
Taylor models. The encodings that underlie these approaches are known to exhibit highly
pathological behaviour within the framework of Kawamura and Cook [8, 16] and the encodings
that are used as substitutes do not reflect the behaviour of the software appropriately. For
instance, in the Kawamura-Cook model any encoding of the space of continuous functions
which renders evaluation polytime computable also allows for the computation of some
modulus of continuity of a given function in polynomial time. In iRRAM this requires an
exponential exhaustive search [2]. The present work is an attempt to bridge this gap by
extending the framework of Kawamura and Cook in order to develop a meaningful complexity

1 This author was partially funded by the ANR project FastRelax(ANR-14-CE25-0018-01) of the French
National Agency for Research.

© Eike Neumann and Florian Steinberg;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Parameterised second-order complexity

theory for a broader class of encodings.

1 Second-order complexity theory

Let M? be an oracle machine, where an oracle is an element of Baire space B := Σ∗Σ∗ . For a
fixed oracle ϕ such that the machine converges on all inputs, let Mϕ denote the function it
computes. Every such machine computes a partial operator on Baire space via ϕ 7→Mϕ. In
second-order complexity theory, the oracle ϕ is considered an input of the computation and
a function bounding the time consumption is allowed to depend on the size of the oracle.
The size of an oracle is the worst-case length-increase from input to output and denoted by
|ϕ| : N→ N. A time bound for an oracle machine should thus be of type NN × N→ N.

The class of second-order polynomials is the smallest class of functions NN × N→ N
containing all constant functions returning a polynomial, closed under point-wise addition and
multiplication and closed under application of the functional argument. A partial operator
F : ⊆ B → B is polytime computable, if there is an oracle machine M? that computes F
and a second-order polynomial P which bounds its running time. It was proved by Kapron
and Cook [5] that a total operator is polytime computable in this sense if and only if the
corresponding functional is basic feasible or polytime in the sense of Mehlhorn [11].

For more general spaces representations are used: A representation ξ of a set X is a
partial surjective function ξ : ⊆ B → X. Here, Baire space may be replaced with spaces of
functions on easily encodable sets like N→ Q. A represented space is a pair X = (X, ξX)
of a set and a representation of that set. For x ∈ X, the elements of ξ−1

X (x) are called the
names of x. A realiser of f : X→ Y is some operator F : ⊆ B → B that maps names of x
to names of f(x), i.e., ξY(F (ϕ)) = f(ξX(ϕ)) for all ϕ from the domain of ξX. A function
between represented spaces is called computable if it has a computable realiser. It is called
polytime computable if it has a polytime computable realiser.

2 Complexity on the reals

Define the Cauchy representation of R as follows: A function ϕ : N→ D from the naturals
to the dyadic rational numbers is a name of a real number x if and only if |ϕ(n)− x| ≤ 2−n

for all n ∈ N. While the Cauchy representation is straightforward to realize on a physical
computer, a naive implementation can suffer exponential overhead in many calculations if
aliased branches of a computation tree need to be evaluated twice to the same accuracy. Any
serious implementation has to rely on caching- and memoisation-techniques, which introduces
conceptual complexity, and tends to lead to high memory consumption. The algorithms
in rigorous numerical analysis and exact real computation are usually based on interval
methods. Let ID denote the set of closed intervals with dyadic rational endpoints.

I Definition 1. A sequence (In)n∈N ⊆ ID is a ξRi
-name of x ∈ R if it is monotone, i.e.

In+1 ⊆ In for all n, and such that {x} =
⋂

n∈N In.

The use of the interval representation is avoided in real complexity theory as it does not
lead to a good notion of complexity: Every real number has names that keep the sequence of
intervals constant for an arbitrary long time and these names are of slowly increasing size. As
a consequence, the represented space has very pathological complexity theoretical properties.

E. Neumann and F. Steinberg XX:3

3 Parametrised spaces

Let ξ : ⊆ B → X be a representation. A parameter for ξ is a single-valued total map µ
from dom(ξ) to NN with monotone values. A triple (X, ξ, µ) is called a preparametrised
space. A familiar class of parameters are restrictions of the size function ϕ 7→ |ϕ|. For any
representation, the restriction of the size function to its domain is a parameter and is called
the standard parameter for the representation.

I Definition 2. Let (X, ξX , µX) and (Y, ξY , µY) be preparametrised spaces. A function
f : X → Y is called computable in polynomial time if there is an oracle machineM? that
fulfills the following three conditions: Firstly it computes a realizer of f . Secondly, there exists
a second-order polynomial P that bounds its running time, i.e., timeM?(ϕ,a) ≤ P (µX(ϕ), |a|).
And finally there exists another second-order polynomial Q that bounds its parameter blowup,
i.e., µY (Mϕ)(n) ≤ Q(µX(ϕ), n).

We call a realiser F : ⊆ B → B computed by a machine as in Definition 2 a witness for
the polytime computability of f . In the case where both spaces come with the standard
parameter, a realiser F is a witness for the polytime computability of the function f if and
only if it is polytime computable in the usual sense: The second condition from the previous
definition turns into the usual time constraint and the third one becomes automatic, as
writing the output takes time.

Definition 2 does not guarantee the identity to be polytime computable.

I Definition 3. A preparametrised space X = (X, ξX, µX) is called a parametrised space,
if the identity function idX : X→ X, x 7→ x is polytime computable.

If the parameter is a restriction of the size function, the identity on Baire space is always a
witness for the polytime computability of the identity. Definition 3 implicitly connects the
parameter to the size function: While for an arbitrary name there need not be any relation
between its parameter and its size, another name of the same element whose size is bounded
polynomially in its parameter may be found in polytime by applying a witnesses for the
polytime of the identity function. The definition thus requires the existence of an efficient
normalisation procedure which reduces the size of excessively large names. This connection
is in particular important as it guarantees the stability under small changes in the model of
computation.

I Theorem 4. Let X, Y and Z be parameterised spaces and f : X → Y and g : Y → Z
polytime functions. Then the composition g ◦ f : X→ Z is also polytime.

A product of parametrised spaces can be constructed in a straightforward way.

4 A parametrised space of real numbers

Let diam denote the diameter of an interval and lb the binary logarithm function. Recall the
interval representation ξRi

of the real numbers from Definition 1. For a ξRi
-name (In)n∈N of

x ∈ R, define the parameter µRi
by

µRi((In)n∈N)(n) := min{N | diam(IN) ≤ 2−n}+ dlb(|x|+ 1)e.

This parameter mainly encodes the rate of convergence of the sequence of intervals and
we call the triple Ri = (R, ξRi

, µRi
) the parametrised space of interval reals. Small

parameter blowup for a realiser of a function f : Ri → Ri means that the rate of convergence
of the output sequence is similar to that of the input sequence.

DICE 2018

XX:4 Parameterised second-order complexity

I Lemma 5 (Ri ' Rc). The reals with Cauchy representation and standard parameter and
the space of interval reals are polytime isomorphic as parametrised spaces.

The following is a property that distinguishes Ri from the Cauchy reals and is therefore
not preserved under isomorphism.

I Theorem 6. Whenever f : Ri → Ri is polytime computable, then f can be computed by an
oracle machine M? such that there eixsts a C ∈ N and a second-order polynomial P satisfying
timeM?(ϕ,a) ≤ C · |a|+ C and µi(Mϕ)(n) ≤ P (µX(ϕ), n).

The proof uses a construction that was invented to show that the interval representation,
when equipped with the restriction of the size function, is complexity theoretically ill-behaved
[14, 8, 16]. In contrast to the size, the parameter contains meaningful information about
a name. Thus, the construction that used to remove computational cost with respect to
the size, now trades time needed to produce approximations against convergence behaviour.
This eliminates the use of higher-order bounds in the time constraint while maintaining a
reasonable convergence behaviour.

5 A parametrised space of continuous functions

Let I = [0, 1] denote the closed unit interval. Define the interval function represent-
ation ξif as follows: ψ : ID → ID is a name of f ∈ C(I) if for any monotone sequence
of intervals Jn that intersects to a singleton set {x}, the sequence ψ(Jn) is monotone
and intersects to {f(x)}. That is, if the operator (Jn)n∈N 7→ (ψ(Jn))n∈N is a realiser
of f with respect to the interval representation. Let µif be defined by µif (ψ)(n) :=
min

{
N ∈ N | ∀J ∈ ID : diam(J) ≤ 2−N ⇒ diam(ψ(J)) ≤ 2−n

}
+dlb(‖ξif (ψ)‖∞+1)e. That

is: the parameter is an appropriate bound on the modulus of continuity and the supremum
norm of the encoded function. We call the space C(I)i = (C(I), ξif , µif) the parametrised
space of interval functions.

I Lemma 7. Evaluation as function from C(I)i × I to Ri is polytime computable.

The parametrised representation (ξif , µif) is the “correct” representation for C(I), viewed
as a function space, as it contains the least amount of information among those representations
which render evaluation polytime computable.

I Theorem 8 (Minimality). A parametrised representation (ξ, µ) of C(I) renders evaluation
polytime computable if and only if it is polytime translatable to (ξif , µif).

I Theorem 9. Arithmetic operations and composition are polytime on C(I)i.

6 Comparison to Kawamura and Cook

The most used and best developed framework for complexity considerations in computable
analysis is the framework of Kawamura and Cook. This framework is based on second-
order complexity theory as presented in the first section. Kawamura and Cook add the
assumption of length-monotonicity. We call a parametrised space with a length-monotone
representation and the standard parameter a Kawamura-Cook space. These spaces can
also be characterised as follows:

I Theorem 10. A parametrised space is polytime isomorphic to a Kawamura-Cook space if
and only if it is polytime isomorphic to a space whose parameter is polytime.

E. Neumann and F. Steinberg XX:5

Within their framework, Kawamura and Cook have introduced the a representation δ�
of C(I). Kawamura and Cook have proven this representation to be minimal with the
property that evaluation is possible in polytime within the class of Kawamura-Cook spaces.
This representation is currently the standard representation for complexity theoretical
considerations about continuous functions for this reason.

I Theorem 11. The representation δ� can be translated to interval function representation
in polynomial time. No polytime translation in the other direction exists.

The reason for the non-existence of a backwards translation is that computing a modulus
of continuity takes exponential time with respect to the interval representation. From
the minimality of the Kawamura-Cook representation it follows that the space of interval
functions is not isomorphic to any Kawamura-Cook space.

Future work

All of [8], [14] and [16] use constructions that produce representation with highly pathological
properties. For parametrised spaces these constructions can be adjusted and turn into useful
tools. Theorem 6 is a special case of this and a detailed description of the general case will
be part of future work. Recently there has been some interest in exponentiable objects in
the category of represented spaces and polytime functions [8, 4]. We hope that the study of
parametrised spaces can shed some light on this, as these seem to allow for more natural
exponential constructions.

References

1 Luca Benvenuti, Davide Bresolin, Alberto Casagrande, Pieter Collins, Alberto Ferrari,
Emanuele Mazzi, Alberto Sangiovanni-Vincentelli, and Tiziano Villa. Reachability com-
putation for hybrid systems with Ariadne. IFAC Proceedings Volumes, 41(2):8960 – 8965,
2008. 17th IFAC World Congress.

2 Franz Brauße and Florian Steinberg. A minimal representation for continuous functions.
https://arxiv.org/abs/1703.10044, 2017. preprint.

3 Stephen A. Cook. Computability and Complexity of Higher Type Functions, pages 51–72.
Springer New York, 1992. doi:10.1007/978-1-4612-2822-6_3.

4 Hugo Férée and Mathieu Hoyrup. Higher order complexity in analysis, 2013. CCA. URL:
https://hal.inria.fr/hal-00915973/document.

5 B. M. Kapron and S. A. Cook. A new characterization of type-2 feasibility. SIAM J.
Comput., 25(1):117–132, 1996. doi:10.1137/S0097539794263452.

6 Akitoshi Kawamura. Computational Complexity in Analysis and Geometry. PhD thesis,
University of Toronto, 2011.

7 Akitoshi Kawamura and Stephen Cook. Complexity theory for operators in analysis. ACM
Trans. Comput. Theory, 4(2):5:1–5:24, May 2012. doi:10.1145/2189778.2189780.

8 Akitoshi Kawamura and Arno Pauly. Function spaces for second-order polynomial time.
In Language, life, limits, volume 8493 of Lecture Notes in Comput. Sci., pages 245–254.
Springer, Cham, 2014. doi:10.1007/978-3-319-08019-2_25.

9 Michal Konečný. A Haskell library for Approximating Exact Real Numbers (AERN). https:
//github.com/michalkonecny/aern2, retrieved 6th November 2017, 16:00.

10 Branimir Lambov. The basic feasible functionals in computable analysis. J. Complexity,
22(6):909–917, 2006. doi:10.1016/j.jco.2006.06.005.

DICE 2018

https://arxiv.org/abs/1703.10044
http://dx.doi.org/10.1007/978-1-4612-2822-6_3
https://hal.inria.fr/hal-00915973/document
http://dx.doi.org/10.1137/S0097539794263452
http://dx.doi.org/10.1145/2189778.2189780
http://dx.doi.org/10.1007/978-3-319-08019-2_25
https://github.com/michalkonecny/aern2
https://github.com/michalkonecny/aern2
http://dx.doi.org/10.1016/j.jco.2006.06.005

XX:6 Parameterised second-order complexity

11 Kurt Mehlhorn. Polynomial and abstract subrecursive classes. J. Comput. System Sci.,
12(2):147–178, 1976. Sixth Annual ACM Symposium on the Theory of Computing (Seattle,
Wash., 1974).

12 Norbert Th. Müller. iRRAM - Exact Arithmetic in C++. http://irram.uni-trier.de/,
https://github.com/norbert-mueller/iRRAM, 2017. [Online; accessed 6-January-2017].

13 Eike Neumann and Florian Steinberg. Parametrised second-order complexity theory with
applications to the study of interval computation. preprint. URL: https://arxiv.org/
abs/1711.10530.

14 Matthias Schröder. Spaces allowing type-2 complexity theory revisited. MLQ Math. Log.
Q., 50(4-5):443–459, 2004. doi:10.1002/malq.200310111.

15 Matthias Schröder and Florian Steinberg. Bounded time computation on metric spaces
and Banach spaces. 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), 00:1–12, 2017. doi:doi.ieeecomputersociety.org/10.1109/LICS.2017.
8005139.

16 Florian Steinberg. Computational Complexity Theory for Advanced Function Spaces in
Analysis. PhD thesis, Technische Universität Darmstadt, 2016.

17 Alan Mathison Turing. On computable numbers, with an application to the Entscheidung-
sproblem. J. of Math, 58(345-363):5, 1936.

https://arxiv.org/abs/1711.10530
https://arxiv.org/abs/1711.10530
http://dx.doi.org/10.1002/malq.200310111
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/LICS.2017.8005139
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/LICS.2017.8005139

	Second-order complexity theory
	Complexity on the reals
	Parametrised spaces
	A parametrised space of real numbers
	A parametrised space of continuous functions
	Comparison to Kawamura and Cook

