
Entropy and Complexity Lower Bounds∗

Luc Pellissier1 and Thomas Seiller2

1 LIP, École normale supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France
luc.pellissier@ens-lyon.fr

2 Department of Computer Science, University of Copenhagen, Emil Holms
Kanal 6 – bygning 24, 2300 København S, Denmark
seiller@di.ku.dk

Abstract
Finding lower bounds in complexity theory has proven to be an extremely difficult task. Nowadays,
only one research direction is commonly acknowledged to have the ability to solve current open
problems, namely Mulmuley’s Geometric Complexity Theory programme. Relying on heavy tech-
niques from algebraic geometry, the latter stemmed from a first lower bound result for a variant
of Parallel Random Access Machines (prams).

We analyse this original proof from a semantics point of view, interpreting programs as graph-
ings – generalizations of dynamical systems. We show that Mulmuley’s method can be abstracted
to a more general setting, exploiting the classic notion of topological entropy. This reformula-
tion recentres the proof around dynamical aspects, relegating the use of algebraic geometry to a
model-driven choice rather than a key concept of the method.

1998 ACM Subject Classification F.1.1 Models of Computation; F.1.3 Complexity Measures
and Classes; F.3.2 Semantics of Programming Languages

Keywords and phrases Semantics, Complexity Theory, Dynamical Systems, Algebraic Geometry

Digital Object Identifier 10.4230/LIPIcs.DICE.2016.

1 Introduction

The question of classifying the complexity classes remains one of the most important question
in the field of Complexity Theory. As part of the classification problem, complexity theory
has traditionally been concerned with proving separation results.

Proving that two classes B ⊂ A are not equal can be reduced to finding lower bounds for
problems in A: by proving that certain problems cannot be solved with less than certain
resources on a specific model of computation, one can show that two classes are not equal.
Conversely, proving a separation result B (A provides a lower bound for the problems that
are A-complete [6] – i.e. problems that are in some way universal for the class A.

Alas, the proven lower bound results are very few, and most separation problems remain
as generally accepted conjectures.

The failure of most techniques of proof has been studied in itself, which lead to the
proof of the existence of negative results that are commonly called barriers. Altogether,
these results show that all proof methods we know are ineffective with respect to proving
interesting lower bounds. To this day, only one research program aimed at proving new
separation results is commonly believed to have the ability to bypass all barriers: Mulmuley’s
Geometric Complexity Theory (gct) program [12].

∗ This work was partially supported by the ANR project Elica (ANR-14-CE25-0005) and the European
Commission’s Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2014) 659920 - ReACT.

© Luc Pellissier and Thomas Seiller;
licensed under Creative Commons License CC-BY

Developments in Implicit Computational Complexity (DICE 2018).
Editor: 1; Article No. ; pp. :1–:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DICE.2016.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Semantics, Entropy and Complexity Lower Bounds

1.1 Geometric Complexity Theory (gct)
Geometric Complexity Theory is widely considered to be a promising research program that
might lead to interesting results. It is also widely believed to necessitate new and extremely
sophisticated pieces of mathematics in order to achieve its goal. The research program aims
to prove the Ptime 6= NPtime lower bound by showing that certain algebraic surfaces
(representing the permanent and the discriminant, which are believed [21] to have different
complexity if Ptime 6= NPtime) cannot be embedded one into the other. Recently, some
negative results [10] have closed the easiest path towards it promised by gct.

The gct program was inspired, according to its creators, by a lower bound result obtained
by Mulmuley [11] for a specific parallel model (the pram without bit operations). This
result, despite being the main inspiration of the well-known gct program, remains seldom
cited and has not led to variations applied to other problems. At first sight it relies a lot on
algebraic geometric techniques and results, such as the Milnor-Thom theorem1.

1.2 Semantic icc

1.2.1 Dynamic Semantics
Geometry of interaction (goi) is a research program proposed by Girard [8] shortly after
the inception of linear logic. In opposition to traditional denotational semantics – e.g.
domains –, the goi program aims at giving an account of programs which also interprets their
dynamics, i.e. their execution. This program is well-suited for tackling problems involving
computational complexity, and indeed, geometry of interaction’s first model was used to
prove the optimality of Lamping’s reduction in λ-calculus [9]. More recently, a series of
characterisations of complexity classes were obtained using goi techniques [3, 4, 1, 2].

Among the most recent and full-fledged embodiement of this program lie the second
author’s Interaction Graphs (ig) models [13, 15, 16, 18]. These models, in which programs are
interpreted as graphings – generalisations of dynamical systems –, encompass all previous goi
models introduced by Girard [18]. In particular, ig models allow for modelling quantitative
features of programs [16].

1.2.2 Graphings and Complexity
Based on a study of several Interaction Graphs models characterising complexity classes
[17, 19], the second author has proposed a semantic approach to complexity theory [14]. The
main intuition behind this proposition is to model and study programs as dynamical systems
that acts on a space – thought of as the space of configurations. As dynamical systems are
inherently deterministic, the use of graphings is needed to extend the approach with, e.g.
probabilities, non-determinism. One can then study a program through the geometry of the
associated graphing.

1.3 Graphings and Lower Bounds
The present work reports on a study of Mulmuley’s geometric proof of lower bounds for the
model of pram without bit operations [11] through the prism of graphings.

1 Let us here notice that, even though this is not mentionned by Mulmuley, the Milnor-Thom theorem
was already used to prove lower bounds, c.f. papers by Dobkin and Lipton [7], Steele and Yao [20],
Ben-Or [5], and references therein.

L. Pellissier and T. Seiller XX:3

α(plus(i)) is the map f 7→ Pi ◦ f , with P : (x1, . . . , xd) 7→ (x1, . . . , xi−1,xi + 1, xi+1 . . . , xd);
α(minus(i)) is the map f 7→Mi ◦ f , with M : (x1, . . . , xd) 7→ (x1, . . . , xi−1,xi − 1, xi+1 . . . , xd);
α(copy(i, j)) is the map f 7→ Ci,j ◦ f , with Ci,j : (x1, . . . , xd) 7→ (x1, . . . , xi−1,xj , xi+1 . . . , xd);
α(copy(i,]j)) is the map f 7→ CRi,j ◦ f , with CRi,j : (x1, . . . , xd) 7→ (x1, . . . , xi−1,xxj , xi+1 . . . , xd);
α(copy(]i, j)) is the map f 7→ RCi,j ◦ f , with RCi,j : (x1, . . . , xd) 7→ (x1, . . . , xxi−1,xj , xxi+1 . . . , xd).

Figure 1 Generators for the amc of Random Access Machines.

When studying Mulmuley’s proof, the authors quickly realised that the techniques involved
are somehow of a semantic nature and that algebraic geometry does not play the essential
role Mulmuley seems to believe it did (based on the fact that gct is heavily founded upon
algebraic geometry). More importantly, it became clear that the proof could be seen as a
study of the geometry of the graphing interpretation of pram machines, compared to the
geometry of the maxflow problem.

Viewed in this light, a recast of Mulmuley’s proof in the language of graphings provides
a first useful insight about its geometric contents. It provides a more general and flexible
method for interpreting programs geometrically, as most of the method can be followed for
arbitrary dynamical systems (equivalently, deterministic graphings). Lastly, it shows the use
of methods from algebraic geometry is but an implicit choice taken by Mulmuley (guided by
the specific pram model considered).Other choices could allow for the use of methods from
e.g. differential geometry, greatly widening the scope of geometric methods one could hope
to use to tackle lower bound results.

2 Contributions.

2.1 Abstract Programs
I Definition 1. An abstract model of computation (amc) is defined as a triple (G,R, α),
where 〈G,R〉 is a presentation of a monoid M〈G,R〉 and α is a monoid action M〈G,R〉y X.

I Definition 2. An abstract program A within an amc α : 〈G,R〉y X is defined as a finite set
SA of control states and a graphing [18] GA w.r.t. the monoid action M〈G,R〉×Sk y X×SA.
An abstract program is deterministic if its underlying graphing is deterministic.

First, we show how the second author’s notion of graphing can adequately interpret
random access machines (ram). For this, we consider the amc induced by the action α

on the space θ : Zd → Zω × Zω defined on a set of generators as shown in Figure 1. The
intuition here is that a map θ : Zd → Zω × Zω is a reparametrisation of the input: for each
element ~a ∈ Zd, θ(~a) represents a configuration of the memory blocks. This technical artefact
should not hide that the interpretation of a ram machine acts in fact on Zω × Zω and this
action is then lifted to the space of maps by precomposition. The fact that we consider two
copies of Zω eases the definition of prams: the left-hand copy represents shared registers
while the right-hand copy represents private registers.

2.2 The crew operation
We then introduce a purely algebraic technique, related to the notion of amalgamated free
product of groups to deal with parallelisation of abstract models of computation.

I Definition 3 (Noncommutative Product). Let M〈G,R〉 and M〈G′,R′〉 be representations
of monoids, and let H ⊆ G and H ′ ⊆ G′ be subsets of generators. We define the
noncommutative product of M〈G,R〉 and M〈G′,R′〉 above H,H ′ as the monoid M〈G ×

DICE 2018

XX:4 Semantics, Entropy and Complexity Lower Bounds

G′,R × Id ∪ Id× R′ ∪Q〉 where Q is defined as {(a, a′)(b, b′) = (aa′, bb′) | a, a′ 6∈ H or b, b′ 6∈
H ′}. The resulting monoid is denoted M〈G,R〉 ×H H′ M〈G′,R′〉.

Given a monoid action α of a monoid M on a space X×Y, we define the set Zα(M) of
central elements of M , i.e. elements that act as the identity on X: α(m);πX = α(m). We
write Z̄α(M) the set of non-central elements.

By considering the noncommutative product of amcs above the sets of non-central
elements, one can define the crew operation, which represents the parallelisation of compu-
tational models w.r.t. the the concurrent read, parallel write discipline.

I Definition 4 (The crew operation). Let α : M〈G,R〉y X×Y and β : M〈H,Q〉y X×Z
be amcs. We define the amc crew(α, β) : M〈G,R〉 ×

Z̄α(G) Z̄β(G′) M〈G′,R′〉y X×Y× Z.
by letting crew(α, β)(m,m′) = α(m) ∗ β(m′) on elements of G×G′, where α(m) ∗ β(m′) is
defined as (here ∆ : (x, y, z) 7→ (x, y, x, z) : X×Y× Z→ X×Y×X× Z):

α(m) ∗ β(m′) =
{

∆; [α(m);πY , β(m′)] if m 6∈ Z̄α(G),m′ ∈ Z̄β(G′);
∆; [α(m), β(m′);πZ] otherwise

I Definition 5 (The amc of prams). Let α : M y X ×X be the amc of rams. The amc
of prams is defined as lim−→crewk(α), where crewk−1(α) is identified with a restriction of
crewk(α) through crewk−1(α)(m1, . . . ,mk−1) 7→ crewk(α)(m1, . . . ,mk−1, 1).

I Theorem 6. The representation of prams as graphings is sound.

2.3 Entropy
We then explain how a graphing induces geometric decompositions of the space it acts
on, describing the orbits – the computational traces – of a point through iterations of
the graphing. The geometric decomposition obtained after k iterations is called the k-th
cell decomposition cell(k) of the space w.r.t. the graphing. We generalise the notion of
topological entropy, which quantifies the exponential growth of the number of orbits of a
dynamical system, to define the entropy of a graphing. We then give bounds on the number
of cells of the decomposition as well as on the number of varieties delimiting them (under
additional hypotheses).

I Theorem 7. Let G be a deterministic graphing with entropy h(G). The cardinality c(k)
of cell(k) is asymptotically bounded by g(k) = 2k2h([G]), i.e. c(k) = O(g(k)).

I Theorem 8. Let G be a regular2 deterministic graphing interpreting a pram with p

processors. Then cell(k) is determined by at most 2kpk algebraic varieties.

2.4 Lower Bounds
After that, we show how to associate a partition of a space to a decision problem obtained
from a parametrization of an optimization problem. In particular, the maxflow problem
can be described in such a way. Although the geometry of the problem is fairly simple, we
show that a machine deciding it would need to induce a decomposition of the space whose
complexity3 satisfy a certain relation w.r.t. the complexity of the problem, the number of
processors, and the computation time.

2 Regular graphings are those that preserve algebraic varieties under reverse images.
3 The complexity of a decomposition is here measured by the variations of the varieties that delimitates it.

L. Pellissier and T. Seiller XX:5

After having defined a variation on the pram model allowing to have finer complexity
bounds, we finally show Mulmuley’s result, i.e. a lower bound for the maxflow problem.

I Theorem 9. Let G be a deterministic graphing interpreting a pram without bit operations
with 2O(Nc) processors, where N is the length of the inputs and c any positive integer. Then
G does not decide maxflow in O(N c) steps.

3 Conclusion

This reformulation of Mulmuley’s proof shows that tools from algebraic geometry are only
used to get some bounds on the number of intersections of the surfaces. The essence of the
proof lies elsewhere, in the study of the geometry of a dynamical system. The use of methods
from algebraic geometry is dictated by the presence of polynomials, a consequence of the
fact that prams without bit operations manipulate numbers and not strings of bits.

Our approach is robust in that the cells decomposition induced by a graphing can be
studied, and bounds on its cardinality computed, even when this decomposition is not
naturally delimited by algebraic surfaces.

References
1 C. Aubert, M. Bagnol, P. Pistone, and T. Seiller. Logic programming and logarithmic

space. In APLAS, 2014.
2 C. Aubert, M. Bagnol, and T. Seiller. Unary resolution: Characterizing ptime. In

FOSSACS, 2016.
3 C. Aubert and T. Seiller. Characterizing co-nl by a group action. Mathematical Structures

in Computer Science, 26, 2016.
4 C. Aubert and T. Seiller. Logarithmic space and permutations. Inf. Comp., 248, 2016.
5 M. Ben-Or. Lower bounds for algebraic computation trees. In STOC, 1983.
6 S. Cook. The complexity of theorem-proving procedures. In STOC, 1971.
7 D. Dobkin and R. Lipton. Multidimensional searching problems. SIAM J. Comp., 5, 1976.
8 J.-Y. Girard. Towards a Geometry of Interaction. Contemporary Mathematics, 92, 1989.
9 G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In

Proc. 19th ACM Symposium on Principles of Programming Languages, 1992.
10 C. Ikenmeyer and G. Panova. Rectangular kronecker coefficients and plethysms in geometric

complexity theory. Advances in Mathematics, 319, 2017.
11 K. Mulmuley. Lower bounds in a parallel model without bit operations. SIAM J. Comp.,

28, 1999.
12 K. D. Mulmuley. The gct program toward the p vs. np problem. Commun. ACM, 55, 2012.
13 T. Seiller. Interaction graphs: Multiplicatives. Ann. of Pure and Applied Logic, 163, 2012.
14 T. Seiller. Towards a Complexity-through-Realizability theory. Arxiv:1502.01257, 2015.
15 T. Seiller. Interaction graphs: Additives. Ann. of Pure and Applied Logic, 167, 2016.
16 T. Seiller. Interaction graphs: Full linear logic. In IEEE/ACM LICS, 2016.
17 T. Seiller. Interaction graphs: Nondeterministic automata. Under revision, 2016.
18 T. Seiller. Interaction graphs: Graphings. Ann. of Pure and Applied Logic, 168, 2017.
19 T. Seiller. Interaction graphs: Probabilistic automata. In preparation, 2018.
20 J. M. Steele and A. Yao. Lower bounds for algebraic decision trees. J. Algorithms, 3, 1982.
21 L. G. Valiant. The complexity of computing the permanent. Th. Comp. Sci., 8, 1979.

DICE 2018

http://arxiv.org/pdf/1502.01257

	Introduction
	Geometric Complexity Theory (gct)
	Semantic icc
	Dynamic Semantics
	Graphings and Complexity

	Graphings and Lower Bounds

	Contributions.
	Abstract Programs
	The crew operation
	Entropy
	Lower Bounds

	Conclusion

