
On Linear Dependent Types and Probabilistic
Termination
Ugo Dal Lago1 and Alexis Ghyselen2

1 Università di Bologna, Italy & INRIA Sophia Antipolis, France
ugo.dallago@unibo.it

2 ENS Paris-Saclay, France
ghyselen.alexis@gmail.com

Abstract
Linear dependent types have been shown to be a very powerful methodology for inferring the
time complexity of deterministic functional programs. We present some preliminary results on
the application of linear dependency to probabilistic functional programs. We will in particular
give some hints at how linear dependent types offer a leverage towards guaranteeing almost sure
termination.

1998 ACM Subject Classification Dummy classification – please refer to http://www.acm.org/
about/class/ccs98-html

Keywords and phrases λ-calculus, probabilistic termination, linear dependent types

Digital Object Identifier 10.4230/LIPIcs.DICE.2018.23

1 Introduction

Interactions between computer science and probability theory are very pervasive and fruitful.
Probability theory offers models that enable system abstraction, but also suggests a new model
of computation, like in randomized computation or cryptography [5]. All this has stimulated
the study of probabilistic programming languages: probabilistic imperative languages and
λ-calculi [10], have indeed been introduced and studied for at least forty years. Among the
many ways probabilistic choice can be modeled in programming, the simplest one consists
in endowing the language of programs with an operator modeling sampling from (one or
many) distributions. Fair, binary, probabilistic choice is for example perfectly sufficient to
get universality if the underlying programming language is itself universal [11, 4]. This is
precisely what happened in the realm of the λ-calculus [10, 7].

Termination is a crucial property of programs, and remains desirable in a probabilistic
setting, e.g. in probabilistic programming [6] where inference algorithms often rely on the
underlying program to terminate. However, one needs first of all to understand what it
means for a probabilistic computation to terminate, i.e., how termination should be defined.
If one wants to stick to a qualitative definition, almost-sure termination is a well-known
answer: a probabilistic computation is said to almost-surely terminate iff divergence, although
possible, has null probability. One could even go beyond and require positive almost-sure
termination, which asks the average time to termination to be finite. This is well-known
to be stronger than almost sure termination. Recursion-theoretically, checking (positive)
almost-sure termination is harder than checking termination in deterministic computation,
where termination is at least recursively enumerable, although undecidable: in a universal
probabilistic imperative programming language, almost sure termination is Π0

2 complete,
while positive almost-sure termination is Σ0

2 complete [8].
© Ugo Dal Lago and Alexis Ghyselen;
licensed under Creative Commons License CC-BY

International Workshop on Developments in Implicit Computational Complexity.
Editors: U. Dal Lago and A. Ghyselen; Article No. 23; pp. 23:1–23:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.acm.org/about/class/ccs98-html
http://www.acm.org/about/class/ccs98-html
http://dx.doi.org/10.4230/LIPIcs.DICE.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 On Linear Dependent Types and Probabilistic Termination

A few works analyze how termination analysis can be carried out automatically, despite
its recursion-theoretic hardness. The only attempt to do that via types is due to the first
author and Grellois [9], and is based on size types. In that setting, monadic affine sized
types are shown sound for almost sure termination. In a purely deterministic setting, on
the other hand, linear dependent types are well-known to be quite powerful, to the point of
being relatively complete as a methodology for complexity analysis [2].

In this paper, we study how linear dependent types can be turned into a sound methodology
for almost sure termination. The object language is an affine variation on Plotkin’s PCF
enriched with an operator for binary probabilistic choice. The language and its operational
semantics are described in the following section.

2 A Simple Probabilistic Functional Programming Language

We consider an affine λ-calculus with constructors for integers, a fixpoint and a binary
probabilistic choice operator. For the sake of simplicity, we present here an ordinary fixpoint
operator, but we can extend this work to an operator for simultaneous fixpoints, to increase
expressivity. We adopt a call-by-value evaluation, and so we distinguish terms and values.

I Definition 1 (Terms and Values). Terms and values are defined as follows :

t, u, s ::= x | v | t u | succ(t) | pred(t) | ifz s then u else t | t⊕p u

v ::= n | λx.t | fix x.t

with p ∈ Q∩ [0, 1] . An integer n ∈ N is represented in this calculus by the constant n. Terms
which are not values are said to be active.

For example, the term describing the random walk that stops when it reaches 0, with a
probability 2

3 to decrease at each step is fixf.λx.ifz x then 0 else f pred(x)⊕ 2
3
f succ(x)

I Definition 2 (Types). We consider usual simple types for the λ-calculus with a base type
Nat for integers: T,U ::= Nat | T (U

We impose affinity in the calculus for higher-order types. This means that all variables with
a type T (U appears at most once in any probabilistic branch. Defining the operational
semantics of the just introduced language requires introducing the notion of distribution.

I Definition 3 (Distributions). A distribution D on a countable set X is a function X → [0, 1]
such that

∑
D =

∑
x∈X D(x) ≤ 1. A distribution is finite when its support {x | D(x) > 0} is

finite. We denote a distribution D by {(x)D(x) | x ∈ X}. With this notation, we often omit
some elements with probability 0. For a distribution D and 0 ≤ p ≤ 1, we write p · D for the
distribution {xp·D(x) | x ∈ X}. For two distributions D, E on X, we note D + E the function
{(x)D(x)+E(x) | x ∈ X}. Then, we note D ⊕p E the distribution p · D + (1− p) · E . Finally,
we say that D ≤ E if ∀x ∈ X,D(x) ≤ E(x).

Any term distribution can be split into two components, the first having a support made of
values, the second a support made of active terms.

I Definition 4 (Value Decomposition). We define the value decomposition of a distribution
on terms D as the pair (Dv,Dt) where Dv is the restriction of D to values, while Dt is the
restriction of the function D to active terms. We write D =vd Dv +Dt to denote that (Dv,Dt)
is the value decomposition of D.

U. Dal Lago and A. Ghyselen 23:3

(λx.t) v → {(t[x := v])1} succ(n)→ {(n+ 1)1}

pred(n)→ {(pred(n))1} ifz 0 then t else u→ {t1}

ifz n+ 1 then t else u→ {u1} t⊕p u→ {tp, u1−p}

(fix x.t) v → {(t[x := fix x.t] v)1}
t→ {tpi

i | i ∈ I}
t u→ {(ti u)pi | i ∈ I}

u→ {upi

i | i ∈ I}
v u→ {(v ui)pi | i ∈ I}

t→ {tpi

i | i ∈ I}
succ(t)→ {succ(ti)pi | i ∈ I}

s→ {spi

i | i ∈ I}
ifz s then t else u→ {(ifz si then t else u)pi | i ∈ I}

t→ {tpi

i | i ∈ I}
pred(t)→ {pred(ti)pi | i ∈ I}

D =vd Dv + {tpi

i | i ∈ I} ∀i ∈ I, ti → Ei

D → Dv +
∑

i∈I pi · Ei

Figure 1 Reductions Rules on Distributions

We are now in a position to define a reduction relation → between distributions. The
rules are described in Figure 1. Term substitution t[x := v] is defined is the usual way.
This relation is first defined for terms and then lifted to distributions with the last rule.
We note →∗ the reflexive and transitive closure of →. We also need another relation
⇒V . If D →∗ E and E =vd (Ev + Et), then we have D ⇒V Ev. The rules give us that if
(E =vd Ev + Et)→∗ (F =vd Fv + Ft) then Ev ≤ Fv. We can then define the semantics:

I Definition 5 (Semantics of a Term). The semantics of a term is a distribution on values
defined as JtK = sup{D | t⇒V D}. This is a well-posed definition because distributions form
an ωCPO.

3 Linear Dependency: Some Typing Rules

We define a linear dependent type system in order to control the reduction procedure in our
calculus. Linear dependent types were first introduced by Gaboardi and the first author [2]
and later adapted to call-by-value PCF [3]. The type system can be seen as a variation of
affine sized types for almost sure termination introduced by Grellois and the first author [9].

I Definition 6 (Linear Dependent Types). Linear dependent types σ, τ are defined by :

σ, τ ::= A | Nat[I, J] A,B ::= σ (τ I ::= a | f(I1, . . . , In)

An expression I is called an index. The notations f in indexes denote functions f : Nn → N.
They are defined by a fixed set of rewriting rules and include the addition and the subtraction.
Informally, given an instantiation of all index variables by integers, an index denotes an
integer, and the type Nat[I, J] denotes the set of all integers n such that I ≤ n ≤ J . The
substitution of the occurrences of a in I by J , denoted I{J/a}, is defined in the usual way.

A typing judgment has the form φ; Φ; Γ | Θ ` t : σ. φ is the set of all index variables free
in Φ,Γ,Θ and σ. Φ is a set of constraints on indexes. This is used for example in the typing
rule for ifz, in which choosing a branch restraints the possible value of the integer, and thus
imposes a constraint on indexes. Γ is a sequence of hypotheses y1 : σ1, . . . , ym : σm. And Θ
is a distribution context, that we will describe briefly for the fixpoint rule.

Let us sketch the most important rule for the typing system, the fixpoint rule.

DICE 2018

23:4 On Linear Dependent Types and Probabilistic Termination

p : {−k . . . , 0, . . . , k} → [0, 1] is a probability distribution
(b, φ); Φ; `Γ | x : {1 ≤ b ∧ b+ l ≥ 0, B{b+ l/b})p(l) | −k ≤ l ≤ k} ` t : B

φ; Φ; `Γ | · ` fix x.t : B{I/b}

In this rule, `Γ is a sequence of hypotheses y1 : Nat[I1, J1], . . . , ym : Nat[Im, Jm]. b denotes
a fresh index variable that is used in order to describe the recursive calls. For example, in
the random walk defined previously, b would represent the current state of the random walk.
Then, we instantiate this index variable b by an actual index I. x is given a type of a special
kind: a distribution of the form {(Cl, Bl)p(l) | −k ≤ l ≤ k}. Informally, that means that x
has probability p(l) to have type Bl if you can prove the condition Cl. In the typing rule, this
condition expresses that when b = 0 the computation must terminate and that one cannot
decrease b below 0. This particular kind of context is also important for the probabilistic
choice, in which we can separate such a distribution Θ into two distributions Ψ1 and Ψ2 such
that Θ = Ψ1 ⊕p Ψ2.

To any instance of this typing rule, we associate a particular probabilistic process.
Informally, this process describes the values taken by b throughout a computation. For the
fixpoint expressed above, we construct an infinite Markov chain on integers, with for all
integers n 6= 0 those outgoing transitions, with the convention that we identify nodes with
negative values and the zero node :

nn− 1· · ·n− k n+ 1 · · · n+ k

p(0)

p(−1)

p(−k)

p(1)

p(k)

For a fixpoint with one variable, this process is a random walk on N with transitions
modifying the integer by a bounded value. For the simultaneous fixpoint, we work with
discrete-time quasi-birth-deaths processes (QBD), or equivalently, probabilistic one-counter
automata. QBDs are a generalization of random walks on N to Markov chains on Q×N. Q is
a finite set of states representing here the different variables in the simultaneous fixpoint, and
the integer is used as an unbounded counter. We say that a QBD of this kind almost surely
terminates when the probability of reaching the value 0 for the counter is 1, independently
of the initial state. Please notice that checking whether a QBD almost surely terminates is
known to be decidable. In fact, it can be checked in polynomial time [1].

4 Almost Sure Termination

We show in this section how to get to almost sure termination in this calculus by modifying
the fixpoint rule defined previously. First, let us define almost sure termination.

I Definition 7 (Almost Sure Termination (AST)). We say that a term t is almost surely
terminating when

∑
JtK = 1.

With the typing rule for fixpoint defined previously, we can find typable terms that are
not AST, such as fix x.x. In a non-probabilistic setting, termination of the calculus could
be ensured by restricting fixpoints to terminating fixpoints. In the same way, what matters if
one wants our system to guarantee AST is that fixpoints are AST. Consequently, we modify
the fixpoint rule: we impose that the random walk, or more generally the QBD, associated
to the fixpoint rule is itself AST. We can then prove that the typing system satisfies an
essential propriety for the λ-calculus, subject reduction.

U. Dal Lago and A. Ghyselen 23:5

I Theorem 8 (Subject Reduction). If φ; Φ; Γ | Θ ` t : σ and t → {tpi

i | i ∈ I} then ∀i ∈ I,
there exists Θi such that φ; Φ; Γ | Θi ` ti : σ and Θ =

∑
i∈I pi ·Θi.

Then, using a reducibility argument greatly inspired from [9], we can prove that almost
sure termination holds for typed terms.

I Theorem 9 (Almost Sure Termination). Suppose that φ; Φ; · | · ` t : σ, if Φ is satisfiable
then t is AST.

5 Conclusion

We are currently exploring further questions about linear dependent types and probabilistic
termination: we will report about that at the workshop in case we reach a definite conclusion
about those.

First, we are looking at a form of completeness of our calculus with respect to discrete-time
QBDs, provided an operator for simultaneous fixpoints is available. In other words, it seems
that any state-transforming map which can be computed by QBDs can also be computed by
a term of our calculus.

Moreover, we are looking at whether one could ensure positive almost sure termination
by way of linear dependent types, that is to say not only that the probability of divergence
should be null, but that the average computation time must be finite. This property is harder
to guarantee than almost sure termination, in the sense that it is not even compositional: the
composition of two positive almost sure terminating functions is not necessarily positively
almost surely terminating. This means that some sophisticated combinatorial arguments is
indeed necessary to get the constraint that we need.

References
1 Tomás Brázdil, Václav Brožek, Kousha Etessami, Antonín Kučera, and Dominik Wojtczak.

One-counter markov decision processes. In Proc. of SODA, pages 863–874, 2010.
2 Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative completeness. In

LICS, pages 133–142, 2011.
3 Ugo Dal Lago and Barbara Petit. Linear dependent types in a call-by-value scenario. SCP,

84:77–100, 2014.
4 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda

calculus. RAIRO: ITA., 46(3):413–450, 2012.
5 Shafi Goldwasser and Silvio Micali. Probabilistic encryption. JCSS, 28(2):270–299, 1984.
6 Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.

Tenenbaum. Church: a language for generative models. In UAI, pages 220–229, 2008.
7 Claire Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In LICS,

pages 186–195, 1989.
8 Benjamin Lucien Kaminski and Joost-Pieter Katoen. On the hardness of almost-sure ter-

mination. In MFCS, volume 9234 of LNCS, pages 307–318, 2015.
9 Ugo Dal Lago and Charles Grellois. Probabilistic termination by monadic affine sized

typing. In Prof. of ESOP 2017, pages 393–419, 2017.
10 Nasser Saheb-Djahromi. Probabilistic LCF. In MFCS, pages 442–451, 1978.
11 Eugene S Santos. Probabilistic Turing machines and computability. Proc. of the AMS,

22(3):704–710, 1969.

DICE 2018

	Introduction
	A Simple Probabilistic Functional Programming Language
	Linear Dependency: Some Typing Rules
	Almost Sure Termination
	Conclusion

