
Term rewriting characterisation of LOGSPACE for
finite and infinite data∗

Łukasz Czajka1

1 University of Copenhagen, Denmark
luta@di.ku.dk

Abstract
We show that LOGSPACE is characterised by finite orthogonal tail-recursive cons-free construc-
tor term rewriting systems. This result is non-trivial, because in contrast to previous work on
characterising LOGSPACE by tail-recursive cons-free programs we do not impose any fixed eval-
uation strategy. We provide a LOGSPACE algorithm which computes constructor normal forms.
We then use this algorithm in the proof of our main result: that simple stream term rewrit-
ing systems characterise LOGSPACE-computable stream functions as defined by Ramyaa and
Leivant. This result concerns characterising logarithmic-space computation on infinite streams
by means of infinitary rewriting.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases LOGSPACE, implicit complexity, term rewriting, infinitary rewriting

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

In cons-free programs [4] data constructors cannot occur in function bodies. Put differently,
cons-free programs are read-only: recursive data can only be read from input, but not created
or altered (except taking subterms). Cons-free programming has been used to characterise
a variety of complexity classes [1, 2, 3, 4, 5, 6].

In this paper we extend the cons-free approach to computation on infinite streams.
In [8, 7] Ramyaa and Leivant define the class of LOGSPACE-computable stream functions
and show that it is characterised by ramified corecurrence in two tiers. We provide a char-
acterisation of LOGSPACE-computable stream functions by means of infinitary rewriting.
We show that a stream function is computable in LOGSPACE, in the sense of Ramyaa and
Leivant, if and only if it is definable in a simple stream TRS.

In order to obtain our characterisation of LOGSPACE-computability on streams, we
give an algorithm to compute the (finite) constructor normal form of a (finite) term of
a certain form in a finite orthogonal tail-recursive cons-free constructor TRS. Using this
algorithm we obtain a term rewriting characterisation of LOGSPACE (in the ordinary finite
sense). In previous works [1, 4] LOGSPACE was characterised by tail-recursive cons-free
programs, but in contrast to the present paper only a fixed call-by-value evaluation strategy
was considered. We generalise this to the setting of term rewriting where no fixed reduction
strategy is required. In [2, 5] it has been shown that first-order semi-linear cons-free TRSs
characterise PTIME. This result is similar to ours in that it requires no fixed reduction
strategy. In particular, our method of introducing ⊥-reductions is similar to [5].

∗ This work was supported by

© Łukasz Czajka;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Term rewriting characterisation of LOGSPACE for finite and infinite data

This paper is an extended abstract only stating some of the obtained results. A version
of this work with the proofs is available at www.mimuw.edu.pl/~lukaszcz/logspace.pdf.

2 Term rewriting systems

I Definition 2.1. A term rewriting system (TRS) is a set of rules of the form l → r where
l, r are terms and l is not a variable and Var(r) ⊆ Var(l), where Var(t) denotes the variables
occuring in t. Given a TRS R, the reduction relation →R is the compatible closure of the
contraction relation {(σl, σr) | l → r ∈ R, σ a substitution}. We use →∗ for the transitive-
reflexive closure of →, and →= for the reflexive closure.

A defined symbol in a TRS R is a symbol which occurs at the root of a left-hand side of
a rule in R. A constructor symbol in a TRS R is a symbol which is neither a defined symbol
in R nor a variable. A constructor term is a term which does not contain defined function
symbols (it may contain variables). A constructor normal form is a constructor term which
does not contain variables (so it contains only constructors). A constructor head normal
form (chnf) is a term of the from c(t1, . . . , tn) with c a constructor. A constructor TRS is
a TRS R such that for l → r ∈ R we have l = f(l1, . . . , ln) where l1, . . . , ln are constructor
terms.

A redex is innermost if it does not contain other redexes. A reduction step is innermost
if it contracts an innermost redex.

A decision problem is a set of binary words A ⊆ {0, 1}∗. Assuming the signature contains
the constants 0, 1,nil and a binary constructor symbol cons, every w ∈ {0, 1}∗ may be
represented by a constructor normal form w̄ in an obvious way. A TRS R accepts a decision
problem A if there is a function symbol f such that for every w ∈ {0, 1}∗ we have: f(w̄)→∗R 1
iff w ∈ A.

3 LOGSPACE for finite data

We show that a decision problem is in LOGSPACE iff it is accepted by a finite orthogonal
tail-recursive cons-free constructor TRS. As part of the proof we give an algorithm which
computes the constructor normal form of a term of a certain form, if there exists one, or
rejects otherwise.

I Definition 3.1. A constructor TRS R is cons-free if for each l→ r ∈ R every chnf subterm
of r occurs in l. A constructor TRS R is tail-recursive if there is a preorder & on defined
function symbols such that for every f(u1, . . . , un) → r ∈ R and every defined function
symbol g the following hold:

if r = g(t1, . . . , tk) then f & g,
if g(t1, . . . , tk) is a proper subterm of r then f > g.

A TRS is strictly tail-recursive if it is tail-recursive and each right-hand side of a rule contains
at most one defined function symbol.

I Lemma 3.2. Any problem decidable in LOGSPACE is accepted by a finite orthogonal
tail-recursive cons-free constructor TRS.

Proof. This is a straightforward adaptation of previous work [3, 1]. J

It is more difficult to show the other direction of the characterisation result, i.e., that any
decision problem accepted by a finite orthogonal tail-recursive cons-free constructor TRS is
in LOGSPACE. The non-triviality comes from the fact that we do not impose any fixed

www.mimuw.edu.pl/~lukaszcz/logspace.pdf

Ł. Czajka 23:3

evaluation strategy. Indeed, if the TRS is tail-recursive but not strictly tail-recursive, then
terms which have a constructor normal form may also have arbitrarily large reducts. Con-
sider e.g. the following TRS R:

f(x)→R f(g(x)) h(x)→R a

Then h(f(a))→R a but also h(f(a))→∗R h(f(gn(a))) for any n ∈ N.
We will show that a constructor normal form may always be reached by an eager R⊥-

reduction, denoted→∗R⊥e, which contracts only innermost R-redexes and eagerly (as soon as
possible) replaces by ⊥ (a fresh constant) an innermost subterm with no constructor normal
form in R. For instance, in the example TRS R given above h(f(a)) →⊥ h(⊥) →R a is
an eager R⊥-reduction, but h(f(a)) →R h(f2(a)) is not. The term f(a) does not have a
constructor normal form in R, so it cannot be R-contracted in an eager R⊥-reduction – it
must be contracted to ⊥.

Whether a subterm has a constructor normal form in R may be decided using a constant
number of logarithmic counters. An eager R⊥-reduction has the form

f1(w1
1, . . . , w

1
n1

)→∗R⊥e f1(t11, . . . , t1n1
)→ε

R f2(w2
1, . . . , w

2
n2

)→∗R⊥e f2(t21, . . . , t2n2
)→ε

R . . .

where tji is the constructor normal form w.r.t. eager R⊥-reduction of wji (⊥ is considered to
be a constructor) and fi & fj for i ≤ j. At some point either we reach a constructor normal
form or a term fi(ti1, . . . , tini

) repeats. Because of cons-freeness, there are only polynomially
many such terms. Hence, a logarithmic counter may be used to detect looping. Because
of tail-recursiveness, computing the constructor normal form (w.r.t. eager R⊥-reduction)
tji of wji may be done by a recursive invocation, and the recursion depth will be constant.
Rigorous proofs may be found in the long version of this paper. Here we only state the
definitions and the result.

I Definition 3.3. Let R be a constructor TRS and let ⊥ be a fresh constant, i.e., not
occuring in any of the rules of R. We define the ⊥-contraction relation →ε

⊥ by: t →ε
⊥ ⊥

if t does not R-reduce to a constructor normal form. The ⊥-reduction relation →⊥ is the
compatible closure of →ε

⊥. We set →R⊥ = →R ∪ →⊥. An R⊥-reduction is eager if only
innermost R⊥-redexes are contracted and priority is given to ⊥-reduction, i.e., an R-redex t
such that t→⊥ ⊥ is not R-contracted in the reduction. We use →R⊥e for an eager one-step
R⊥-reduction.

I Theorem 3.4. Let R be a finite orthogonal tail-recursive cons-free constructor TRS. There
is a LOGSPACE algorithm which given a term t = f(t1, . . . , tn), with t1, . . . , tn in construc-
tor normal form not containing ⊥, computes the constructor normal form of t in R if it has
one, or rejects if it doesn’t.

I Corollary 3.5. A decision problem is in LOGSPACE iff it is accepted by a finite orthogonal
tail-recursive cons-free constructor TRS.

The main difference between our results and those of e.g. [1] is that here no evaluation
strategy is assumed. We do use a specific strategy for R⊥-reduction (which includes both
R-reduction and ⊥-reduction) in the proof of Theorem 3.4 as a technical device, but the
statement of the theorem refers to reduction in R. The proof essentially shows that the
eager R⊥-reduction strategy is computable and normalizing, and that it gives the same
constructor normal forms for terms which have a constructor normal form in R.

CVIT 2016

23:4 Term rewriting characterisation of LOGSPACE for finite and infinite data

4 Stream Term Rewriting Systems

I Definition 4.1. A stream TRS is a two-sorted constructor TRS with sorts s (the sort
of streams) and d (the sort of finite data), finitely many defined function symbols, finitely
many data constructors ci : dn → d, and one binary stream constructor cons′ : d × s → s.
Terms of sort s are stream terms. Terms of sort d are data terms. For stream TRSs we allow
terms to be infinite. We write t1 :: t2 instead of cons′ t1 t2.

Stream rules are the rules l → r such that l is a stream term. Data rules are the rules
l→ r such that l is a data term. A stream (resp. data) function symbol is a defined function
symbol of type τ1 × . . .× τn → s (resp. τ1 × . . .× τn → d), where τi ∈ {s, d}.

A simple stream rule has the form:

f(u1, . . . , un)→ t1 :: . . . :: tk :: g(w1, . . . , wm)

where k ≥ 0 and we require:
1. u1, . . . , un are constructor terms,
2. every stream subterm of one of t1, . . . , tk, w1, . . . , wm occurs (as a subterm) in u1, . . . , un,
3. if k = 0 then every data subterm c(v1, . . . , vj) of each of w1, . . . , wm, with c : dj → d a

data constructor, occurs in u1, . . . , un.

The intuitive interpretation of the restrictions of a simple stream rule is that it is cons-
free with respect to stream subterms, and if the rule does not produce a new stream element
then it is also cons-free with respect to data subterms.

I Example 4.2. Here are some examples of simple stream rules, where x, x′ are stream
variables, y is a data variable, a, b, c are data constructors, h is a defined data function
symbol, f, g are stream function symbols:

f(a :: x, y) → a :: f(x, c(y)) f(a :: x) → a :: g(x, c(a))
f(a :: x, b :: x′) → a :: b :: f(b :: x′, a :: x) f(a :: x, y) → f(x, h(y))

Here are some non-examples:

f(a :: x, y) → f(x, c(y)) f(a :: x) → a :: g(b :: x, c(a))
f(a :: x, b :: x′) → a :: b :: f(g(x′), a :: x) f(a :: x, h(y)) → f(x, h(y))

I Definition 4.3. Given a stream TRS R, infinitary R-reduction is defined coinductively.

t→∗R t′

t→∞R t′
t→∗R u :: w w →∞R w′

t→∞R u :: w′

I Theorem 4.4. If R is finite and orthogonal then →∞R is confluent, i.e., if t →∞R t1 and
t→∞R t2 then there exists t′ such that t1 →∞R t′ and t2 →∞R t′.

Let Σ be an alphabet. Assuming all elements of Σ are data constants in the rewriting
system, each word in Σω ∪Σ∗ may be represented as a possibly infinite stream term. For a
term t by |t| we denote the corresponding finite or infinite word in Σω ∪ Σ∗.

I Definition 4.5. A stream function F : (Σω)n → Σω ∪ Σ∗ is defined by an n-ary stream
function symbol f if for any w1, . . . , wn ∈ Σω and s1, . . . , sn with |si| = wi we have
f(s1, . . . , sn)→∞R s with |s| = F (w1, . . . , wn). A stream function is definable in a stream TRS
if it is defined by one of its stream function symbols.

Ł. Czajka 23:5

A stream TRS R is data tail-recursive if the data rules of R form a single-sorted finite
tail-recursive cons-free constructor TRS. A simple stream TRS is a finite orthogonal data
tail-recursive stream TRS with simple stream rules and there exists a unary data constructor
S : d → d such that for every stream rule l → r ∈ R, if t is a data subterm of r such that
Var(t) 6= ∅ then t = S(t′) or t is a variable.

5 LOGSPACE for streams

In this section we show that stream functions definable in simple stream TRSs are exactly
the stream functions computable in LOGSPACE as defined by Ramyaa and Leivant [8, 7].

I Definition 5.1. An n-ary jumping Turing transducer (JTT) is a finite jumping state
transducer with additional read-write work tapes. It has a finite number of states, a read-
only input tape, a write-only output tape, a finite number of read-write work tapes, a finite
number of cursors on the input tape and the work tapes, and a single cursor on the output
tape. The cursors on the input tape may be moved in both directions or set to the position
of another input cursor, but they cannot be compared. The cursor on the output tape may
be moved only to the right. The cursors on the work tapes may be moved in both directions.

The function computed by a JTT is defined in an obvious way. A JTT operates in
space f(n) if the computation for the first n output symbols does not involve work-tapes of
length > f(n). A stream function is computable in LOGSPACE if there is a JTT computing
this function which operates in space O(logn).

I Theorem 5.2. A stream function is definable in a simple stream TRS iff it is computable
in LOGSPACE, as defined by Ramyaa and Leivant.

Proof. In one direction, we encode any JFT with a local counter [8, Proposition 2.4] in
a simple stream TRS, encoding the states as stream function symbols, and the counter
as a data term. In the other direction, we construct a JTT operating in LOGSPACE
which computes the function defined by the stream TRS, using the memory to store a
representation of the data terms and the algorithm from Theorem 3.4 to compute constructor
normal forms of data terms. J

References
1 G. Bonfante. Some programming languages for LOGSPACE and PTIME. In AMAST

2006, pages 66–80, 2006.
2 D. de Carvalho and J. G. Simonsen. An implicit characterization of the polynomial-time

decidable sets by cons-free rewriting. In RTA-TLCA 2014, pages 179–193, 2014.
3 N. D. Jones. LOGSPACE and PTIME characterized by programming languages. Theor.

Comput. Sci., 228(1-2):151–174, 1999.
4 N. D. Jones. The expressive power of higher-order types or, life without CONS. J. Funct.

Program., 11(1):5–94, 2001.
5 C. Kop. On first-order cons-free term rewriting and PTIME. In DICE 2016, 2016.
6 C. Kop and J. G. Simonsen. Complexity hierarchies and higher-order cons-free rewriting.

In FSCD 2016, pages 23:1–23:18, 2016.
7 D. Leivant and R. Ramyaa. The computational contents of ramified corecurrence. In

FoSSaCS 2015, pages 422–435, 2015.
8 R. Ramyaa and D. Leivant. Ramified corecurrence and logspace. Electr. Notes Theor.

Comput. Sci., 276:247–261, 2011.

CVIT 2016

	Introduction
	Term rewriting systems
	LOGSPACE for finite data
	Stream Term Rewriting Systems
	LOGSPACE for streams

