
Combining Linear Logic and Size Types for
Implicit Complexity
Patrick Baillot1 and Alexis Ghyselen2

1 Univ Lyon, CNRS, ENS de Lyon, Université Claude-Bernard Lyon 1, LIP,
F-69342, Lyon Cedex 07, France
patrick.baillot@ens-lyon.fr

2 ENS Paris-Saclay, France
ghyselen.alexis@gmail.com

Abstract
Several type systems have been proposed to statically control the time complexity of λ-calculus
programs and characterize complexity classes such as FPTIME or FEXPTIME. A first line of
research stems from linear logic and restricted versions of its !-modality controlling duplication.
A second approach relies on the idea of tracking the size increase between input and output,
and together with a restricted recursion scheme, to deduce time complexity bounds. However
both approaches suffer from limitations : either a limited intensional expressivity, or linearity
restrictions. In the present work we incorporate both approaches into a common type system, in
order to overcome their respective limitations. Our system is based on elementary linear logic
combined with linear size types and leads to characterizations of the complexity classes FPTIME
and 2k-FEXPTIME, for k ≥ 0.

1998 ACM Subject Classification Dummy classification – please refer to http://www.acm.org/
about/class/ccs98-html

Keywords and phrases Linear logic, type systems, polynomial time complexity, size types

Digital Object Identifier 10.4230/LIPIcs.DICE.2018.23

1 Introduction

Controlling the time complexity of programs is a crucial aspect of program development.
Complexity analysis can be performed on the overwhole final program and some automatic
techniques have been devised for this purpose. However if the program does not meet our
expected complexity bound it might not be easy to track which subprograms are responsible
for the poor performance and how they should be rewritten in order to improve the global
time bound. Can one instead investigate some methodologies to program while staying
in a given complexity class? Can one carry such program construction without having to
deal with explicit annotations for time bounds? These are some of the questions that have
been explored by implicit computational complexity, a line of research which defines calculi
and logical systems corresponding to various complexity classes, such as FP, FEXPTIME,
FLOGSPACE . . .

State of the art. A first success in implicit complexity was the recursion-theoretic
characterization of FP [7]. This work on safe recursion leads to languages for polynomial
time [12], for oracle functionals or for probabilistic computation [9, 17]. Among the other
different approaches of implicit complexity one can mention two important threads of work.
The first one is issued from linear logic, which provides a decomposition of intuitionistic logic
with a modality, !, accounting for duplication. By designing variants of linear logic with

© Patrick Baillot and Alexis Ghyselen;
licensed under Creative Commons License CC-BY

International Workshop on Developments in Implicit Computational Complexity.
Editors: P. Baillot and A. Ghyselen; Article No. 23; pp. 23:1–23:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.acm.org/about/class/ccs98-html
http://www.acm.org/about/class/ccs98-html
http://dx.doi.org/10.4230/LIPIcs.DICE.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Combining Linear Logic and Size Types for Implicit Complexity

weak versions of the ! modality one obtains systems corresponding to different complexity
classes, like light linear logic (LLL) for the class FP [11] and elementary linear logic (ELL)
for the classes k-FEXPTIME, for k ≥ 0. [11, 2, 10]. These logical systems can be seen as
type systems for some variants of lambda-calculi. A key feature of these systems, and the
main ingredient for proving their complexity properties, is that they induce a stratification
of the typed program into levels. We will thus refer to them as level-based systems. Their
advantage is that they deal with a higher-order language, and that they are also compatible
with polymorphism. Unfortunately they have a critical drawback: only few and very specific
programs are actually typable, because the restrictions imposed to recursion by typing
are in fact very strong... A second thread of work relies on the idea of tracking the size
increase between the input and the output of a program. This approach is well illustrated by
Hofmann’s Non-size-increasing (NSI) type system [13] : here the types carry information
about the input/output size difference, and the recursion is restricted in such a way that
typed programs admit polynomial time complexity. An important advantage with respect
to LLL is that the system is algorithmically more expressive, that is to say that far more
programs are typable. Of course such a simple system cannot be expected to recognize
programs which are polynomial time for subtle reasons, but it enlightens interesting situations
where the complexity can be deduced from this simple size analysis. A similar idea is also
explored by the line of work on quasi-interpretations [8, 4], with a slightly different angle:
here the kind of dependence between input and output size can be more general but the
analysis is more of a semantic nature and in particular no type system is provided to derive
quasi-interpretations. The type system d`T of [3] can be thought of as playing this role of
describing the dependence between input and output size, and it allows to derive sharp time
complexity bounds, even though these are not limited to polynomial bounds. Altogether
we will refer to these approaches as size-based systems. Unfortunately they also have a
limitation: they do not deal with a full-fledge higher-order language, in the sense that
functional arguments have to be used linearly, that is to say at most once.

Problematic. So on the one hand level-based systems manage higher-order but have a
poor expressivity, and on the other hand sized-based systems have a good expressivity but do
not deal with general higher-order. . . This is not a mere historical incident, in the sense that
on both sides some attempts have been made to repair these defects but only with modest
success: in [5] for instance LLL is extended to a language with recursive definitions, but the
main expressivity problem remains; in [4] quasi-interpretations are defined for a higher-order
language, but a linearity condition still has to be imposed on functional arguments. The
goal of the present work is precisely to try to remedy to this problem by reconciliating
the level-based and the size-based approaches. From a practical point of view we want to
design a system which would bring together the advantages of the two approaches. From a
fundamental point of view we want to understand how the levels and the input/output size
dependencies are correlated, and for instance if one of these two characteristics subsumes the
other one.

2 Elementary Affine Logic with Sizes

One way to bridge these two approaches could be to start with a level-based system such as
LLL, and try to extend it with more typing rules so as to integrate in it some size-based
features. However a technical difficulty for that is that the complexity bounds for LLL and
variants of this system are usually obtained by following specific term reduction strategies
such as the level-by-level strategy. Enriching the system while keeping the validity of such

P. Baillot and A. Ghyselen 23:3

reduction strategies turns out to be very intricate. For instance this has been done in [5]
for dealing with recursive definitions with pattern-matching, but at the price of technical
and cumbersome reasonings on the reduction sequences. Our methodology to overcome this
difficulty is to choose a variant of linear logic for which we can prove the complexity bound
by using a measure which decreases for any reduction step. So in this case there is no need
for specific reduction strategy, and the system is more robust to extensions. For that purpose
we use elementary linear logic (ELL), and more precisely the elementary lambda-calculus
studied in [16].

2.1 Elementary Linear Logic
Let us recall that ELL is essentially obtained from linear logic by dropping the two axioms
!A(A and !A(!!A for the ! functor (the co-unit and co-multiplication of the comonad).
We call elementary affine logic (EAL) the logic ELL with weakening. Basically, if we consider
in EAL the family of types W (!iW (where W is a type for binary words), the larger
the integer i, the more computational power we get... This results in a system that can
characterize the classes k-FEXPTIME, for k ≥ 0 [2]. More precisely, we can characterize
the class k-EXPTIME with terms of type !W (!k+2B (where B is a type for booleans). The
paper [16] gives a reformulation of the principles of EAL in an extended lambda-calculus
with constructions for !. It also incorporates other features (references and multithreading)
which we are not interested in here. In [16], a proof of termination in elementary time of
this λ-calculus is given. The proof relies on the description of a function associating to each
term a measure that strictly decreases for any reduction step. This function depends on a
primordial notion in elementary linear logic: the depth, which is closely linked with the use
of the "!" modality in terms. The advantage of this proof is robustness: by giving a large
upper-bound on the number of reduction steps for a term, we obtain a local proof that does
not rely on a particular strategy. This makes it easier to adapt this proof to extended version
of the calculus.

2.2 Our Language : sEAL
Here, we define informally our language, denoted sEAL for Elementary Affine Logic with
sizes. The idea behind sEAL is to enrich the elementary lambda-calculus by a kind of
bootstrapping, consisting in adding more terms to the "basic" type W (W. We first observed
that the proof in [16] is robust enough to support an extension of EAL that consists in
adding polynomial functions in this type. Following this observation, we plan to give this
type enough terms for representing all polynomial time functions. The way we implement
this is by using a second language. We believe that several equivalent choices could be
made for this second language, and here we adopt for simplicity a variant of the language
d`T from [3], a descendant of previous work on linear dependent types [15]. This language
is a linear version of system T, that is to say a lambda-calculus with recursion, with types
annotated with size expressions. Actually the type system of our second language can be
thought of as a linear cousin of sized types [14, 1] and we call it s`T. The polynomial bound
on this calculus is obtained by restricting the size expressions to polynomial expressions. The
language s`T is used for tuning first-order intensional expressivity: any first order term in
s`T can be represented in sEAL. Then, constructors from EAL can be used in sEAL, this
allows us to deal with higher-order computation, non-linear use of functional arguments and
non-polynomial iterations.

As for elementary linear logic, we can characterize some complexity classes in sEAL: for

DICE 2018

23:4 Combining Linear Logic and Size Types for Implicit Complexity

k ≥ 0, the class 2k-FEXPTIME is characterized by the terms of type !W (!k+1W. The
difference of computational power between sEAL and EAL is explained by the fact that
in EAL, in the type N (N (N being the type for integers), we have only polynomials of
degree 1, whereas in sEAL, we have all polynomials. This makes the iteration in sEAL more
powerful that the usual one in EAL.

To show that this calculus has a better intensional expressivity and is more natural than
the usual EAL, we work on usual problems that could be written in sEAL. In particular,
we can define terms of type W (!B solving the SAT and the SUBSET-SUM problems. As
expected, the type W (!B shows that we need a non-polynomial iteration (here corresponding
to the exhaustive search) with intermediate polynomial functions defined in s`T. In the same
way, we can also define a term solving QBFk with type W (!B.

Now that we detailed the results obtained with sEAL, let us describe more formally how
the link between s`T and EAL is performed in sEAL.

3 Rule for the s`T Call

We present here a simplified version of a constructor in sEAL called the s`T-call, and we
give a typing rule for this constructor with an integer input. We do not give the complete
definition of s`T and sEAL, but it can be found in the technical report [6].

I Definition 1 (The s`T call). We note (M,M ′, . . .) terms of sEAL, and we note (t, t′, . . .)
terms of s`T. The s`T-call is a constructor in sEAL with the form [λx.t](M)

Intuitively, [λx.t](M) represents the application of the function described by λx.t to M .
For example, if M →∗ n with n encoding the integer n, and t[x := n]→∗ m then we have
[λx.t](M)→∗ m.

Now, for the typing, let us give some notations for types.

I Definition 2 (Types). The base type for integers is denoted by N in sEAL. In s`T, as
explained previously, types are annotated with size expressions. We note I, J and we call
indexes those kind of expressions. Indexes contain also variables, that we call index variables,
and usually note a, b, . . . And so, in s`T, integers have a type NI .

The idea behind the typing rule for the s`T-call is to use those index variables to denote
the (unknown) size of the term M , and then the typing in s`T gives us a bound on the size
of the output for the s`T-call.

Formally, this is expressed by this rule :

· `sEAL M : N x : Na `s`T t : NI

· `sEAL [λx.t](M) : N

`sEAL denotes type derivations in sEAL and `s`T denotes type derivations in s`T. In
our work, this rule is generalized to any first order function λx1, . . . , xn.t, but for the sake of
simplicity, we present here only the case when λx.t : N (N. A difficulty in the computation
of the upper bound on the number of reductions in sEAL is to define a measure for this
rule. This is done by first working on an upper-bound for typed terms in s`T(that depends
on index variables), and then modifying the usual notion of depth in EAL to get rid of the
index variables, still following the main idea behind [16].

P. Baillot and A. Ghyselen 23:5

4 Conclusion

We believe that our main contribution is to define a new methodology to combine size-based
and level-based type systems, which we have illustrated here with the example of s`T and
EAL, but we believe is of more general interest. Can we define a similar system in which we
could move up one level of ! and stay in polynomial time? Can we define a system in which
all levels stay in FPTIME? Beside another condition on indexes, we would also need for that
purpose to replace EAL with another level-based system. Light linear logic [11] would be a
natural candidate, but we would need to find a measure-based argument for its complexity
bound in order to apply the toolbox of the present work, which is a challenging objective.

References
1 Martin Avanzini and Ugo Dal Lago. Automating sized-type inference for complexity ana-

lysis. PACMPL, 1(ICFP):43:1–43:29, 2017.
2 Patrick Baillot. On the expressivity of elementary linear logic: Characterizing ptime and

an exponential time hierarchy. Inf. Comput., 241:3–31, 2015.
3 Patrick Baillot, Gilles Barthe, and Ugo Dal Lago. Implicit computational complexity of

subrecursive definitions and applications to cryptographic proofs (long version). ENS Lyon,
2015.

4 Patrick Baillot and Ugo Dal Lago. Higher-order interpretations and program complexity.
Inf. Comput., 248:56–81, 2016.

5 Patrick Baillot, Marco Gaboardi, and Virgile Mogbil. A polytime functional language from
light linear logic. In ESOP, pages 104–124. Springer, 2010.

6 Patrick Baillot and Alexis Ghyselen. Combining linear logic and size types for implicit
complexity (long version). hal-01687224, [Research Report], 2018.

7 Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the
polytime functions. In Proc. of the 24th annual ACM STOC, pages 283–293. ACM, 1992.

8 Guillaume Bonfante, J-Y Marion, and J-Y Moyen. Quasi-interpretations a way to control
resources. TCS, 412(25):2776–2796, 2011.

9 Ugo Dal Lago and Paolo Parisen Toldin. A higher-order characterization of probabilistic
polynomial time. In FOPARA, pages 1–18. Springer, 2011.

10 Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Inf. Comput.,
183(1):123–137, 2003.

11 Jean-Yves Girard. Light linear logic. Inf. Comput., 143(2):175–204, 1998.
12 Martin Hofmann. A mixed modal/linear lambda calculus with applications to bellantoni-

cook safe recursion. In CSL, pages 275–294. Springer, 1997.
13 Martin Hofmann. Linear types and non-size-increasing polynomial time computation. Inf.

Comput., 183(1):57–85, 2003.
14 John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems

using sized types. In POPL’96: The 23rd ACM SIGPLAN-SIGACT, pages 410–423, 1996.
15 Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative completeness.

LMCS, 8(4), 2011.
16 Antoine Madet and Roberto M Amadio. An elementary affine λ-calculus with multithread-

ing and side effects. In TLCA, pages 138–152. Springer, 2011.
17 John Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization of bounded

oracle computation and probabilistic polynomial time. In FOCS, pages 725–733, 1998.

DICE 2018

	Introduction
	Elementary Affine Logic with Sizes
	Elementary Linear Logic
	Our Language : sEAL

	Rule for the sT Call
	Conclusion

