
The Interpretation Method for Probabilistic
Systems
Martin Avanzini1, Ugo Dal Lago2, and Akihisa Yamada3

1 INRIA Sophia Antipolis, France
martin.avanzini@inria.fr

2 INRIA Sophia Antipolis, France & University of Bologna, Italy
ugo.dallago@unibo.it

3 National Institute of Informatics, Japan
akihisa.yamada@uibk.ac.at

1 Introduction

This abstract extends the abstract A Simplified Framework for Probabilistic Reductions in the
Presence of Nondeterminism in two directions. First, we follow Bournez and Garnier [4] in
defining probabilistic term rewrite systems (PTRSs) on top of probabilistic abstract reduction
systems (PARSs). Second, we study whether any of the well-known techniques for termination
of term rewrite systems can be generalized to the probabilistic setting, and whether they
can be automated. We give positive answers to these two questions, by describing how
polynomial and matrix interpretations can indeed be turned into instances of probabilistic
ranking functions, thus generalizing them to the more general context of probabilistic term
rewriting. In correspondence to the non-probabilistic setting (e.g., [3, 9]), suitable restrictions
of these methods can be used to assess polynomial bounds on the (expected) runtime of
investigated systems. We have also implemented these new techniques into the termination
tool NaTT [10].

2 Probabilistic Abstract Reduction Systems and Ranking Functions

An abstract reduction system (ARS) is a binary (transition) relation → ⊆ A× A on a set
of objects A, with a→ b indicating that a reduces to b in one step. We follow Bournez and
Garnier [4] and define probabilistic ARSs (PARSs) similar to ARSs, where however reducts b
are sampled from a probability distribution d, i.e., mappings from A to the positive reals
R≥0 so that

∑
a∈A d(a) = 1. For simplicity, we restrict ourselfs to distributions d with finite

support Supp(d) := {a ∈ A | d(a) > 0}. Such a distribution d is sometimes also denoted by
{d(a1) : a1, . . . , d(an) : an} where Supp(d) = {a1, . . . , an}.

I Definition 1 (Probabilistic ARS [4]). A probabilistic ARS (PARS) A over objects A consists
of a (usually infinite) set of transitions of the form a→ d for a ∈ A and d a distribution over
A.

The intended meaning of a→ d ∈ A is that a reduces b ∈ Supp(d) with propability d(b).

I Example 2 (Random walk). A random walk over N is modeled by the PARS W consisting
of the probabilistic transition

n+ 1→ {p : n, 1− p : n+ 2} for all n ∈ N.

In the case p = 1
2 , equally likely, positive natural numbers n are incremented or decremented

by one in each transition step, i.e., the walk is unbiased.
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In contrast to Bournez and Garnier [4] that describe reductions as stochastic sequences,
we give dynamics to PARSs via a reduction relation on multidistributions, a generalization of
distributions. The two notions are equiexpressive. For motivation and intuitions, we kindly
refer the reader to the extended version [1].

A multidistribution on A is a finite multiset µ of pairs of a ∈ A and 0 ≤ p ≤ 1, written p : a,
such that |µ| :=

∑
p:a∈µ p ≤ 1. We denote the set of multidistributions on A by FMDist(A).

We identify distributions {p1 : a1, . . . , pn : an} with multidistribution {{p1 : a1, . . . , pn : an}}
as no confusion can arise. We define scalar multiplication by p · {{q1 : a1, . . . , qn : an}} :=
{{p · q1 : a1, . . . , p · qn : an}}, which yields a multidistribution whenever 0 ≤ p ≤ 1. More
generally, multidistributions are closed under convex multiset unions

⊎n
i=1 pi · µi, where

p1, . . . , pn ≥ 0 and p1 + · · ·+ pn ≤ 1.

I Definition 3 (Probabilistic Reduction). Given a PARS A over objects A, we define the
probabilistic reduction relation  A ⊆ FMDist(A) × FMDist(A) such that µ  A ν holds if
µ = {{p1 : a1, . . . , pn : an}}, νi =

⊎n
i=1 pi · νi where, for all 1 ≤ i ≤ n, either ai → di ∈ A for

some distribution di and νi = di, or otherwise, νi = ∅.

We denote by A(µ) the set of all possible reduction sequences from µ, i.e., {µi}i∈N ∈ A(µ)
iff µ0 = µ and µi  A µi+1 for any i ∈ N.

Concerning the random walk depicted in Example 2 we have:

{{1 : 1}} W 1
2
{{ 1

2 : 0, 1
2 : 2}} W 1

2
{{ 1

4 : 1, 1
4 : 3}} W 1

2
{{ 1

8 : 0, 1
8 : 2, 1

8 : 2, 1
8 : 4}} W 1

2
. . .

To measure the runtime of reductionsM , we extend the unitary measure, which attributes
a cost of one to a transition a→ b, to the probabilistic setting by measuring the mean-length
of transition sequences underlying M . The mean-length can actually be expressed as follows:

I Definition 4 (Expected Derivation Length, Height). We define the expected derivation length
edl(M) ∈ R ∪ {∞} of M = (µ0  A µ1  A · · · ) by edl(M) :=

∑
i≥1 |µi| and the expected

derivation height edhA(a) ∈ R ∪ {∞} of an object a ∈ A by supM∈A({{1:a}}) edl(M).

PARSs constitute a conservative extention of ARSs, and this observation in particular
carries over to the notion of (expected) derivation length and height [1].

Probabilistic Ranking Functions

Bournez and Garnier [4] generalized ranking functions to PARS. We give here a simpler but
equivalent definition, taking advantage of the notion of multidistribution.

For a (multi)distribution µ over real numbers, the expected value of µ is denoted by
E(µ) :=

∑
p:x∈µ p · x. A function f : A → R is naturally generalized to f : FMDist(A) →

FMDist(R), so for µ ∈ FMDist(A), E(f(µ)) =
∑
p:x∈µ p · f(x). For ε > 0 we define the order

>ε on R by x >ε y iff x ≥ ε+ y.

I Definition 5. For a PARS A on A, we say that a function f : A→ R≥0 is a (probabilistic, or
Lyapunov) ranking function if there exists ε > 0 such that a→ d ∈ A implies f(a) >ε E(f(d)).

I Theorem 6. Let f be a ranking function for a PARS A over A. Then there is ε > 0 such
that edl(M) ≤ E(f(µ))

ε for all M ∈ A(µ). In particular, edhA(a) ≤ f(a)
ε for all a ∈ A.

3 Probabilistic Term Rewrite Systems and the Interpretation Method

We assume (modest) familiarity with term rewriting [2] and just introduce notations. With
T (F, V ) we denote the set of terms over a signature F and variables V . With σ and C
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we denote substitutions and contexts, respectively. Substitutions and context applications
are extended homomorphically to multidistributions: for µ = {{p1 : t1, . . . , pn : tn}}, µσ :=
{{p1 : t1σ, . . . , pn : tnσ}} and C[µ] := {{p1 : C[t1], . . . , pn : C[tn]}}. Note that, even for a
distribution d, dσ may fail to be a distribution; e.g., consider { 1

2 : x, 1
2 : y}σ with xσ = yσ.

Hence, we approximate multidistribution µ by a mapping µ defined by µ(a) :=
∑
p:a∈µ p,

which form a distribution if |µ| = 1.

I Definition 7 (Probabilistic Term Rewriting [4]). A probabilistic rewrite rule is a pair of
l ∈ T (F, V ) and d ∈ FDist(T (F, V )), written l → d. A probabilistic term rewrite system
(PTRS) is a (typically finite) set of probabilistic rewrite rules. We write R̂ for the PARS
consisting of a probabilistic transition C[lσ] → C[ dσ ] for every probabilistic rewrite rule
l→ d ∈ R, context C, and substitution σ.

I Example 8. Encoding natural numbers as tally-sequences, the random walk of Example 2
can be modeled by a PTRS consisting of a single rule s(x)→ {p : x, 1− p : s(s(x))}. Notice
that for p ≤ 1

2 the expected runtime of this system is unbounded, for p > 1
2 we derive a

bound in Example 13 below.

The Interpretation Method

In the non-probabilistic case, the interpretation method refers to a class of termination
methods that use monotone F -algebras to embed reduction sequences into a well-founded
order �. This method is not only sound and complete for proving strong normalisation, but,
using suitable F -algebras they can also be used to assess polynomial bounds on runtimes
(e.g., [3, 9]). The following notion is standard.

I Definition 9 (monotone, F -Algebra). A monotone F -algebra (X ,�) on a non-empty carrier
set X consists of an F -algebra X , i.e., interpretation fX : Xar(f) → X of each function
symbol f ∈ F , and an order � on X so that all interpretations are monotone wrt. �: x � y
implies fX (. . . , x, . . . ) � fX (. . . , y, . . . ) for every f ∈ F .

Given an assignment α : V → X, the interpretation of a term is defined by JxKαX := α(x)
if x is a variable, and Jf(t1, . . . , tn)KαX := fX (Jt1KαX , . . . , JtnK

α
X ). If t is ground, i.e., contains

no variables, we may drop the assignment α. We write s �X t iff JsKαX � JtKαX for every α.

Suppose a TRS R satisfies the orientation condition l �X r for all l → r ∈ R. Then,
for every (ground) term t, the interpretation J·KX embeds R-reduction steps into �, and
consequently the length of reduction sequences starting from t can be estimated via an
analysis of �-descending sequences starting from JtKX . To assess the latter, a standard way
is to require an embedding of � into the natural order, i.e., x � y implies G(x) >N G(y)
for some G : X → N (cf. [6]). Consequently, G(JtKαX ) binds the runtime of R on t. Slightly
generalising this idea, we call the order � ε-collapsible if there is a function G : X → R≥0
embedding � into >ε. To lift the interpretation method to the probabilistic setting, we equip
the carrier set X with a barycentric operation EX : FDist(X )→ X . We call X a barycentric
domain. Of particular interest in this work will be the barycentric domains R and Rm with
barycentric operations E({p1 : a1, . . . , pn : an}) =

∑n
i=1 pi · ai.

Recall that a function f : R→ R is concave if for all 0 ≤ p ≤ 1, f(p · x+ (1− p) · y) ≥
p · f(x) + (1− p) · f(y) for all x, y. For instance, affine functions are (trivially) concave. This
notion can be generalized to functions f : X → Y with barycentric domains X and Y : f is
concave wrt. an order � on Y if f(EX(d)) < EY (f(d)), where < is the reflexive closure of �.

I Definition 10 (Barycentric F -Algebra). A barycentric F -algebra (X ,�) consists of an
F -algebra X on a barycentric domain X and an order � on X, such that for every f ∈ F ,
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fX is monotone and concave with respect to �. We define the relation �E ⊆ X × FDist(X)
by x �E d iff x � EX(d).

I Theorem 11. Suppose R is oriented by a barycentric F -algebra (X ,�), i.e., l �E d for all
rules l→ d ∈ R, and that � is ε-collapsible by a concave function G. Then edhR̂(t) ≤ G(JtKX )

ε

for every ground term t.

This result can be proven with Theorem 6. We remark that its conditions are all necessary.

Instances of Prebarycentric Algebras

I Definition 12 (Polynomial Interpretation [7, 8]). A polynomial interpretation is an F -algebra
X on R≥0 such that fX is a polynomial for every f ∈ F . We say X is restricted if every fX
is of the following form with cV ∈ R≥0:

fX (x1, . . . , xn) =
∑

V⊆{x1,...,xn}

cV ·
∏
xi∈V

xi .

Restricted polynomial interpretations X are monotone and concave by definition, hence
(X , >ε) forms a barycentric F -Algebra. These subsume a similar notion introduced in [4].
Noteworthy, the context decrease condition in [4] rules out interpretations such as fX (x) = 2x.
Note that >ε is ε-collapsible using as G the identity.

I Example 13 (Example 8 Continued). Define X such that 0X := 0 and sX (x) := x+ 1. Fix
p > 1

2 and pick ε ≤ 1− 2p. Then

Js(x)KαX = x+ 1 >ε p · x+ (1− p) · (x+ 2) = E(J{p : x, 1− p : s(s(x))}KαX ) .

Hence the tally representation n of n ∈ N reduces to normal form in at most JnKX
ε = n

ε steps
on average, by Theorem 11.

I Definition 14 (Matrix Interpretation [5]). A (real) matrix interpretation is an F -algebra X
on Rm≥0 such that for every f ∈ F , fX is of the form

fX (~x1, . . . , ~xn) =
n∑
i=1

Ci · ~xi + ~c , (1)

where ~c ∈ Rm≥0, and Ci ∈ Rm×m≥0 . The order �ε ⊆ Rm≥0 × Rm≥0 is defined by

(x1, . . . , xm)T �ε (y1, . . . , ym)T :⇐⇒ x1 >ε y1 and xi ≥ yi for all i = 2, . . . ,m.

Since matrix interpretations are affine, they are always concave. Furthermore, monotonicity
can be ensured if (1) satisfies (Ci)1,1 ≥ 1 for all i, cf. [5]. Thus, if Y is such a matrix
interpretation, (X ,�ε) forms a barycentric F -algebra, with�ε ε-collapsible using as mapping
G : Rm≥0 → R≥0 the projection to the first argument.

I Example 15. Consider the PTRS consisting of the single probabilistic rule

a(a(x))→ {p : a(a(a(x))), 1− p : a(b(a(x)))} .

It can be shown that the two-dimensional matrix interpretation Y with

JaKαY(~x) =
[
1 1
0 0

]
· ~x+

[
0
1

]
, JbKαY(~x) =

[
1 0
0 0

]
· ~x ,

orients the PTRS for 0 < ε ≤ 1 − 2p. The interpretation falls into a class defined in [9,
Theorem 16] with (JtKY)1 linearly related to the size of t. Consequently, the expected runtime
of the PTRS is bounded by a linear function, by Theorem 11.
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4 Conclusion

This is a study on how much of the classic interpretation-based techniques well known in
term rewriting can be extended to probabilistic term rewriting, and to what extent they
remain automatable. The obtained results are quite encouraging, although finding ways to
combine techniques is crucial if one wants to capture a reasonably large class of systems,
similarly to what happens in ordinary term rewriting.
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