
Multi Types, Evaluation Lengths, and Normal
Forms (Work in Progress)
Beniamino Accattoli1, Delia Kesner2, and Stéphane
Graham-Lengrand3

1 INRIA & LIX, École Polytechnique, France, beniamino.accattoli@inria.fr
3 CNRS, INRIA & LIX, École Polytechnique, France,

lengrand@lix.polytechnique.fr
2 IRIF, CNRS and Université Paris-Diderot, France, kesner@irif.fr

Abstract
Multi types—aka non-idempotent intersection types—have been used to obtain quantitative
bounds on higher-order programs, as pionereed by De Carvalho. Notably, they bound at the
same time the number of evaluation steps and the size of the result. Recent results show that
the number of steps can be taken as a reasonable time complexity measure. At the same time,
however, these results show that multi types provide quite lax complexity bounds, because the
size of the result can be exponentially bigger than the number of steps.

Starting from this observation, we refine a technique introduced by Bernadet & Lengrand to
study the maximal strategy, in two directions. First, our type systems give separate information
about evaluation lengths and result sizes. Second, we provide exact bounds for various evaluation
strategies, both in the λ-calculus and in the linear substitution calculus, to stress the modularity
of the approach.

Our works aims at both revisiting the literature and extending it with new results. Concerning
the literature, it unifies De Carvalho and Bernadet & Lengrand via a uniform technique and a
complexity-based perspective. The two main novelties, instead, are exact bounds for the leftmost
strategy—the only strong strategy known to provide a reasonable complexity measure—and the
discovery that the computing device hidden behind multi types is exactly the linear substitution
calculus.

Digital Object Identifier 10.4230/LIPIcs.DICE.2018.

Background

Intersection types and multi types. Most type systems for the λ-calculus ensure
termination. One of the cornerstones of the theory of λ-calculus is that intersection types
characterise termination: not only typed programs terminate, but all terminating programs
are typable as well [8, 9, 17]. In fact, the λ-calculus comes with different notions of evaluation
(e.g. call-by-name, call-by-value, to weak / head / full normal form, etc) and different notions
of termination (weakly or strongly normalizing) and, accordingly, with different systems of
intersection types.

Intersection types are a flexible tool and, even when one fixes notions of evaluation and
termination, the type system can be formulated in various ways. A flavor that became quite
fashionable in the last 10 years is that of non-idempotent intersection types [13, 10] (a survey
can be found in [7]), where the intersection A ∩A is not equivalent to A. Non-idempotent
intersections can be seen as multi-sets [6], which is why, to ease the language, we prefer to
call them multi types rather than non-idempotent intersection types.

Multi types have two main features:
© B. Accattoli, D. Kesner, and S. Graham Lengrand;
licensed under Creative Commons License CC-BY

Developments in Implicit Computational Complexity.
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DICE.2018.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 A Sample LIPIcs Article

1. Bounds on evaluation lengths: they go beyond simply characterising termination, as
typing derivations provide bounds on the length of evaluation (i.e., on the number of
β-steps). Therefore, they give intensional insights on programs, and seem to provide a
tool for complexity guarantees about programs.

2. Linear logic interpretation: multi types are deeply linked to linear logic. The relational
model of linear logic (often considered as a sort of canonical model of linear logic) is based
on multi-sets and multi types can be seen as a syntactic presentation of the relational
model of the λ-calculus induced by the interpretation into linear logic. Morally, multi
types are collections of linear typings, and their bounding capability comes from the fact
that linear resources have to be used exactly once.

These two facts together have a potential, fascinating consequence: they suggest that
denotational semantics may provide abstract tools for complexity analyses, and in a way
that is theoretically solid, being grounded on linear logic.

Reasonable cost models. Various works in the literature explore the bounding power
of multi types [14, 15, 16]. They apply a measure to typing derivations and show that the
measure provides a bound on the length of the evaluation of the typed term. A further step,
is to show that for some carefully chosen derivations the measure gives the exact number
of β-steps [11, 3, 4] (or cut-elimination steps in proof nets [12]). A criticism often raised
against these works is, or rather was, that the number of β-steps of the bounded evaluation
strategies might not be a reasonable cost model, that is, it might not be a reliable complexity
measure. Such a criticism was however light. Not because it is not a serious point, but
because no reasonable cost models for the λ-calculus were known at the time (only solutions
to very special cases were known)—the problem, essentially, was not specific to multi types
but, more generally, it concerned the whole theory of λ-calculus.

The understanding of cost models for the λ-calculus made significant progress in the last
few years. Since the nineties, it is known that the number of steps for weak strategies (i.e. not
reducing under abstraction) is a reasonable cost model [5] (where reasonable precisely means
polynomially related to the cost model of Turing machines). It is only in 2014, however, that
a solution for the general case has been obtained: the length of leftmost evaluation to normal
form is a reasonable cost model, as shown by Accattoli and Dal Lago [1]. As it often happens
with long-standing problems, progress required new techniques and a new understanding of
the problem. In this work we essentially update the study of the bounding power of multi
types with the insights coming from the study of reasonable cost models. In particular, we
try to answer to the just mentioned criticism and to provide new elements to the question of
whether denotational semantics can really be used as a tool for complexity analyses.

Size explosion and lax bounds. The answer to the criticism, is now available, and yet
it is somewhat unexpected. It is true, indeed, that the number of β-steps for the considered
strategies is a reasonable cost model. Therefore, the historical criticism to the information
provided by multi types was not justified. On the other hand, the study of cost models
made clear that the information contained in multi typings is too generous, because they also
bound the size of the normal form. To explain this point properly, let us make a step back.

The skepticism about taking the number of β-steps as a reliable complexity measure
comes from the size explosion problem, that is, the fact that in the λ-calculus the size of
terms can grow exponentially with the number of β-steps. Precisely, in the λ-calculus there
are families of terms {tn}n∈N where tn has size linear in n, it evaluates to normal form in n
β-steps, and produces a result pn of size Ω(2n), i.e. exponential in n. Moreover, the size
explosion problem is extremely robust, as there are families for which the size explosion
is independent of the evaluation strategy. The difficulty in proving that the length of a



B. Accattoli, D. Kesner, and S. Graham Lengrand XX:3

given strategy provides a reasonable cost model is precisely the fact that one needs a way to
simulate the strategy (with some graph rewriting, explicit substitutions, or abstract machine
mechanism) without explicitly computing the full normal form, that is huge and would be
too expensive, but only a compact representation of it.

Now, multi typings do bound the number of β-steps of reasonable strategies, but they
always also bound the size of the normal form. Therefore, even minimal typings provide a
bound that in some cases is exponentially worse than the number of β-steps. And there is
even worse: even the minimum type itself, not only the typing derivation, bounds the size of
the normal form. Note that there is no contradiction with the literature: previous work used
to apply measures to typings, and the role of these measures, among other things, was to
subtract the size of the normal form from the size of the typing.

Our observation is that the typing themselves are in fact much bigger, and so the
widespread point of view for which multi types—and so the relational model of linear
logic—faithfully capture evaluation lengths, or even the complexity, is misleading.

Contributions

The tightening technique. Our starting point is the refinement of a technique introduced
by Bernadet & Lengrand in a technical report [2]. Our type systems are capable of bounding
separately the number of β-steps and the size of the normal form. The key point is the
use of some tight type constants with dedicated typing rules, that isolate the part of the
typing derivation contributing to the normal form. Every typing derivation provides a
bound, but tight derivations—that are derivations whose concluding sequent has only tight
constants—provide exact separate bounds for evaluation lengths and normal forms.

It is natural to wonder how natural the tightening technique is—a malicious reader
may indeed suspect that we are cooking up an ad-hoc way of measuring evaluation lengths,
betraying the linear-logic-in-disguise spirit of multi types. To remove any doubt, we show
that our tight typings are actually isomorphic to minimal multi typings withouth tight
constants. Said differently, the tightening technique turns out to be a way of characterizing
minimal typings. Let us point out that, in the literature, there are characterizations of
minimal typings only for normal forms, and they extend to non-normal terms only indirectly,
that is, by subject expansion of those for normal forms. Our approach, instead, provides a
direct description, for any typable term.

New results: (head and) leftmost evaluation. Our first application of the tightening
technique is to the head and leftmost evaluation strategies. The head case is the simplest
possible one. The leftmost case is the natural iteration of the head one, and the only
known strong strategy whose number of steps provides a reasonable cost model. Multi types
characterising leftmost normalizing terms have been studied by Kesner and Ventura, but
somewhat surprisingly the number of steps taken by the leftmost strategy has not been
measured via multi-types before—therefore, this is a new result.

Literature: de Carvalho’s work. The study of the head and the leftmost strategies,
at first sight, seems to be a minor reformulation of de Carvalho’s results about measuring
via multi types the length of executions of Krivine abstract machine (shortened KAM)—
implementing weak head evaluation—and of the iterated KAM—that implements leftmost
evaluation [11]. The study of cost models is here enlightening: de Carvalho’s iterated KAM
does implement leftmost evaluation, but the overhead of the machine (that is taken into
account by de Carvalho) is exponential in the number of β-steps, while we only measure
the number of β-steps, thus providing a much more parsimonious measure, and the only

DICE 2018



XX:4 A Sample LIPIcs Article

meaningful one (according to the current understanding of reasonable cost models for the
λ-calculus).

Literature: Bernadet & Lengrand. We also apply the technique to the maximal
strategy, that is, the strategy taking the maximum number of steps to normal form, if any,
and diverging otherwise. The maximal strategy has been measured by Bernadet & Lengrand
in [3], and it is also the case for which a preliminary form of the thightening technique was
developed in [2].

With respect to their work, here we provide a simpler technical development. On the one
hand, because we employ a λ-calculus with a memory operator, in the style of Klop. On
the other hand, because the study of the other cases inspires a more uniform and smooth
development. We also show how to obtain the same results without the memory operator,
and discuss the technical challenges posed by the maximal case.

New results: the linear substitution calculus. Last, we apply the tightening
technique to linear head evaluation (lh for short), formulated in the linear substitution
calculus (LSC). The literature contains a characterization of lh-normalizable terms due to
Kesner and Ventura [14], and de Carvalho’s measure of the executions of the KAM can be
interpreted as a measure of lh-evaluations. What we show however is stronger, and somewhat
unexpected.

To bound lh-evaluation, in fact, we do not have to change almost anything. The result for
the exact bounds for head evaluation takes into account, for the bounds, only the number of
abstraction and application typing rules. For linear head evaluation, we simply need to count
also the axioms, that is, the rules typing variable occurrences, nothing else. It turns out then
that the length of a linear head evaluation plus the size of the linear head normal form is
exactly the size of the tight typing. Said differently, multi typings simply code evaluations in
the LSC.

Let us stress it once more, differently. We do not have to adapt multi types to the LSC,
as for instance de Carvalho does to deal with the KAM. It actually is the other way around.
As they are, multi typings naturally measure evaluations in the LSC. To measure evaluations
in the λ-calculus, instead, one has to forget the role of the axioms. One may say that multi
types then fit better the LSC than the λ-calculus. The best way to put it, probably, is that
the LSC is the computing device behind multi types.

Acknowledgements. This work has been partially funded by the ANR JCJC grant COCA
HOLA (ANR-16-CE40-004-01).

References
1 B. Accattoli and U. D. Lago. (Leftmost-Outermost) Beta-Reduction is Invariant, Indeed.

LMCS, 12(1), 2016.
2 A. Bernadet and S. Graham-Lengrand. A big-step operational semantics via non-

idempotent intersection types, 2013.
3 A. Bernadet and S. Lengrand. Complexity of strongly normalising λ-terms via non-

idempotent intersection types. In FOSSACS 2011, pages 88–107, 2011.
4 A. Bernadet and S. Lengrand. Non-idempotent intersection types and strong normalisation.

Logical Methods in Computer Science, 9(4), 2013.
5 G. E. Blelloch and J. Greiner. Parallelism in sequential functional languages. In FPCA,

pages 226–237, 1995.
6 A. Bucciarelli, D. Kesner, and S. R. D. Rocca. The inhabitation problem for non-idempotent

intersection types. In IFIP TCS 2014, pages 341–354, 2014.



B. Accattoli, D. Kesner, and S. Graham Lengrand XX:5

7 A. Bucciarelli, D. Kesner, and D. Ventura. Non-idempotent intersection types for the
lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

8 M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms. Archive
for Mathematical Logic, 19:139–156, 1978.

9 M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for
the λ-calculus. Notre Dame Journal of Formal Logic, 4:685–693, 1980.

10 D. de Carvalho. Sémantiques de la logique linéaire et temps de calcul. These de doctorat,
Université Aix-Marseille II, 2007.

11 D. de Carvalho. Execution time of lambda-terms via denotational semantics and intersec-
tion types. CoRR, abs/0905.4251, 2009.

12 D. de Carvalho, M. Pagani, and L. Tortora de Falco. A semantic measure of the execution
time in linear logic. Theor. Comput. Sci., 412(20):1884–1902, 2011.

13 P. Gardner. Discovering needed reductions using type theory. In TACS ’94, pages 555–574,
1994.

14 D. Kesner and D. Ventura. Quantitative types for the linear substitution calculus. In IFIP
TCS 2014, pages 296–310, 2014.

15 D. Kesner and D. Ventura. A resource aware computational interpretation for herbelin’s
syntax. In ICTAC 2015, pages 388–403, 2015.

16 D. Kesner and P. Vial. Types as resources for classical natural deduction. In FSCD 2017,
pages 24:1–24:17, 2017.

17 J.-L. Krivine. λ-calcul, types et modèles. Masson, 1990.

DICE 2018


