
Sharing Equality is Linear
Beniamino Accattoli1, Andrea Condoluci2, and Claudio Sacerdoti
Coen2

1 INRIA & LIX, École Polytechnique, France, beniamino.accattoli@inria.fr
2,3 Department of Computer Science and Engineering, University of Bologna,

Italy, claudio.sacerdoticoen@unibo.it, andrea.condoluci@unibo.it

Abstract
The λ-calculus is a handy formalism to specify the evaluation of higher-order programs. It
is not very handy, however, when one interprets the specification as an execution mechanism,
because terms can grow exponentially with the number of β-steps. This is why implementations
of functional languages and proof assistants always rely on some form of sharing of subterms.

These frameworks however do not only evaluate λ-terms, they also have to compare them
for equality. In presence of sharing, one is actually interested in equality—or more precisely
α-conversion—of the underlying unshared λ-terms. The literature contains algorithms for such
a sharing equality, that are polynomial in the sizes of the shared terms.

This paper improves the bounds in the literature by presenting the first linear time algorithm.
As others before us, we are inspired by Paterson and Wegman’s algorithm for first-order unific-
ation, itself based on representing terms with sharing as DAGs, and sharing equality as bisim-
ulation of DAGs. Beyond the improved complexity, a distinguishing point of our work is a
dissection of the involved concepts. In particular, we show that the algorithm computes the
smallest bisimulation between the given DAGs, if any.

Digital Object Identifier 10.4230/LIPIcs.DICE.2018.

This work is currently submitted to LICS 2018.
The full version can be found on the first author’s webpage.

Origin and Downfall of the Problem
For as strange as it may sound, the λ-calculus is not a good setting for evaluating and
representing higher-order programs. It is an excellent specification framework, but—it is
simply a matter of fact—no tool based on the λ-calculus implements it as it is.

Reasonable evaluation and sharing. Fix a dialect λX of the λ-calculus with a
deterministic evaluation strategy →X , and note nfX(t) the normal form of t with respect to
→X . If the λ-calculus were a reasonable execution model then one would at least expect
that mechanizing an evaluation sequence t →n

X nfX(t) on random access machines (RAM)
would have a cost polynomial in the size of t and in the number n of β-steps. In this way
a program of λX evaluating in a polynomial number of steps can indeed be considered as
having polynomial cost.

Unfortunately, this is not the case, at least not literally. The problem is called size
explosion: there are families of terms whose size grows exponentially with the number of
evaluation steps, obtained by nesting duplications one inside the other—simply writing down
the result nfX(t) may then require cost exponential in n.

In many cases sharing is the cure because size explosion is based on unnecessary duplica-
tions of subterms, that can be avoided if such subterms are instead shared, and evaluation is
modified accordingly.

The idea is to introduce an intermediate setting λshX where λX is refined with sharing (we
are vague about sharing on purpose) and evaluation in λX is simulated by some refinement

© B. Accattoli, A. Condoluci, and C. Sacerdoti Coen;
licensed under Creative Commons License CC-BY

Developments in Implicit Computational Complexity.
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DICE.2018.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 A Sample LIPIcs Article

→shX of →X . A term with sharing t represents the ordinary term t↓ obtained by unfolding
the sharing in t—the key point is that t can be exponentially smaller than t↓ . Evaluation
in λshX produces a shared normal form nfshX(t) that is a compact representation of the
ordinary result, that is, such that nfshX(t)↓ = nfX(t). The situation can then be refined as
in the following diagram:

λX RAM

λshX

polynomial

polynomial polynomial

Let us explain it. One says that λX is reasonably implementable if both the simulation of λX
in λshX up to sharing and the mechanization of λshX can be done in time polynomial in the
size of the initial term t and of the number n of β-steps. If λX is reasonably implementable
then it is possible to reason about it as if it were not suffering of size explosion. The main
consequence of such a schema is that the number of β-steps in λX then becomes a reasonable
complexity measure—essentially the complexity class P defined in λX coincides with the one
defined by RAM or Turing machines.

The first result in this area appeared only in the nineties and for a special case—Blelloch
and Greiner showed that weak (that is, not under abstraction) call-by-value evaluation is
reasonably implementable [5]. The strong case, where reduction is allowed everywhere, has
received a positive answer only in 2014, when Accattoli and Dal Lago have shown that
leftmost-outermost evaluation is reasonably implementable [4].

Reasonable conversion and sharing. Some higher-order settings need more than
evaluation of a single term. They often also have to check whether two terms t and s are
→X -convertible—for instance to implement the equality predicate, as in Ocaml, or for type
checking in settings using dependent types, typically in Coq. These settings usually rely
on a set of folklore and ad-hoc heuristics for conversion, that quickly solve many frequent
special cases. In the general case, however, the only known algorithm is to first evaluate
t and s to their normal forms nfX(t) and nfX(s) and then check nfX(t) and nfX(s) for
equality—actually, for α-equivalence because terms in the λ-calculus are identified up to α.
One can then say that conversion in λX is reasonable if checking nfX(t) =α nfX(s) can be
done in time polynomial in the sizes of t and s and in the number of β steps to evaluate
them.

Sharing is the cure for size explosion during evaluation... but what about conversion?
Size explosion forces reasonable evaluations to produce shared results. Equality in λX
unfortunately does not trivially reduce to equality in λshX , because a single term admits
many different shared representations in general. Therefore, one needs to be able to test
sharing equality, that is to decide whether t↓ =α s↓ given two shared terms t and s.

For conversion to be reasonable, sharing equality has to be testable in time polynomial in
the sizes of t and s. The obvious algorithm that extracts the unfoldings t↓ and s↓ and then
checks α-equivalence is of course too naïve, because computing the unfolding is exponential.
The tricky point therefore is that sharing equality has to be checked without unfolding the
sharing.

In these terms, the question has first been addressed by Accattoli and Dal Lago in [2],
where they provide a quadratic algorithm for sharing equality. Consequently, conversion is
reasonable.

A closer look to the costs. Once established that strong evaluation and conversion are
both reasonable it is natural to wonder how efficiently can they be implemented. Accattoli
and Sacerdoti Coen in [1] essentially show that strong evaluation can be implemented within



B. Accattoli, A. Condoluci, and C. Sacerdoti Coen XX:3

a bilinear overhead, i.e. with overhead linear in the size of the initial term and in the number
of β-steps. Their technique has then been simplified by Accattoli and Guerrieri in [3]. Both
works actually address open evaluation, which is a bit simpler than strong evaluation—the
moral however is that evaluation is bilinear. Consequently, the size of the computed result is
bilinear.

The bottleneck for conversion then seemed to be Accattoli and Dal Lago’s quadratic
algorithm for sharing equality. The literature actually contains also other algorithms, studied
with different motivations or for slightly different problems (discussed below). None of these
algorithms however matches the complexity of evaluation.

In this work we provide the first algorithm for sharing equality that is linear in the size of
the shared terms, improving over the literature. Therefore, the complexity of sharing equality
matches the one of evaluation, providing a combined bilinear algorithm for conversion, that
is the real motivation behind this work.

Computing Sharing Equality

Sharing as DAGs. Sharing can be added to λ-terms in different forms. In this work we
adopt a graphical approach. Roughly, a λ-term can be seen as a (sort of) directed tree whose
root is the topmost constructor and whose leaves are the (free) variables. A λ-term with
sharing is more generally a DAG. Sharing of a subterm t is then the fact that the root node
r of t is the child of more than one node.

This is essentially the same sharing of calculi with explicit substitution, environment-based
abstract machines, or linear logic—the details are different but all these approaches provide
different incarnations of the same notion of sharing. It is instead different of so called sharing
graphs [12] that are graphs implementing Lévy’s optimal evaluation and providing a deeper
form of sharing than our DAGs. To our knowledge, sharing equality for sharing graphs has
never been studied—it is not even known whether it is reasonable.

Sharing equality as bisimilarity. When λ-terms with sharing are represented as
DAGs, a natural way of checking sharing equality is to test DAGs for bisimilarity. Careful
here: the transition system under study is the one given by the directed edges of the DAG, and
not the one given by β-reduction steps, as in applicative bisimilarity—our DAGs may have
β-redexes but we do not reduce them here, that is an orthogonal issue (namely, evaluation).
Essentially, two DAGs represent the same unfolded λ-term if they have the same structural
paths, just arranged differently.

To be precise, sharing equality is based on what we call sharing equivalences, that are
bisimulations plus some additional requirements about names—for α-equivalence—and the
requirement that they are equivalence relations.

Binders, cycles, and domination. A key point of our problem is the presence of
binders, i.e. abstractions, and the fact that equality on λ-terms is α-equivalence. Graphically,
it is standard to see abstractions as getting a backward edge from the variable they bound—
this approach is also supported by the strong relationship between λ-calculus and linear logic
proof nets.

Therefore, binders introduce a form of cycle in DAGs. Technically speaking these are
only half-cycles: the cycle can be easily avoided by reversing the backward edge (and we
shall do so), but its essence does not disappear: while two free variables are bisimilar
only if they coincide, two bound variables are bisimilar only when also their binders are
bisimilar, suggesting that λ-terms with sharing are, as directed graphs, structurally closer to
deterministic finite automata (DFA), that may have cycles, than to DAGs. The problem

DICE 2018



XX:4 A Sample LIPIcs Article

with cycles is that in general bisimilarity is not linear—Hopcroft and Karp’s algorithm [11],
the best one, is only pseudo-linear, that is, with an inverse Ackermann factor.

At the same time, these half-cycles induced by binders are of a very special form, being a
graphical representation of scopes. They are indeed characterized by a structural property
called domination—exploring the DAG from the root one necessarily visits the binder before
the bound variable. Domination turns out to be the key ingredient for a linear algorithm in
presence of binders.

Related problems. There are various problems that are closely related to sharing
equality, and that are also treated with bisimilarity-based algorithms. Let us list similarities
and differences:

First-order unification. On the one hand the problem is more general, because unification
roughly allows to substitute variables with terms not present in the original DAGs, while
in sharing equality this is not possible. On the other hand, the problem is less general,
because it does not allow binders and does not test α-equivalence. There are basically
two linear algorithm for first-order unification, Paterson and Wegman’s (shortened PW)
[17] and Martelli and Montanari’s (MM) [15]. Both rely on sharing to be linear. PW
even takes terms with sharing as inputs, while MM deals with sharing in a less direct
way, except in its less known variant [14] that takes in input terms shared using the
Boyer-Moore technique [6].
Nominal unification. This is unification up to α-equivalence (but not up to β or η
equivalence) of λ-calculi extended with name swapping, in the nominal tradition. It has
been studied by two groups, Calvès & Fernández and Levy & Villaret, adapting PW and
MM form first-order unification. It is very close to sharing equality, but the known best
algorithms [8, 13] are only quadratic. See [7] for a unifying presentation.
Pattern unification. Miller’s pattern unification [16] can also be stripped down to test
sharing equality. Qian presents a PW-inspired algorithm, claiming linear complexity [18],
that seems to work only on unshared terms. We say claiming because the algorithm is
very involved and the proofs are far from being clear. Moreover, according to Levy and
Villaret in [13]: it is really difficult to obtain a practical algorithm from the proof described
in [18]. We believe that is fair to say that Qian’s work is hermetic (please try to read it!).
Nominal Matching. Calvès & Fernández in [9] present an algorithm for nominal matching
(a special case of unification) that is linear, but only on unshared input terms.
Equivalence of DFA. Automata do not have binders, and yet they are structurally
more general than λ-terms with sharing, since they allow arbitrary directed cycles, not
necessarily dominated. As already pointed out, the best equivalence algorithm is only
pseudo-linear [11].

Previous work. For what concerns sharing equality itself, in the literature there are only
two algorithms explicitly addressing it. First, the already cited quadratic one by Accattoli
and Dal Lago. Second, a O(n logn) algorithm by Grabmayer and Rochel [10] (where n is
the sum of the sizes of the shared terms to compare, and the input of the algorithm is a
graph), obtained by a reduction to equivalence of DFAs and treating the more general case
of λ-terms with letrec.

Contributions: a theory and a 2-levels linear algorithm. This work is divided in
two parts. The first part develops a re-usable, self-contained, and clean theory of sharing
equality, independent of the algorithm that computes it. Some of its concepts are implicitly
used by other authors, but never emerged from the collective unconscious before (propagated
queries in particular)—others instead are new. The theory culminates with the sharing



B. Accattoli, A. Condoluci, and C. Sacerdoti Coen XX:5

equality theorem that connects α-equivalence on terms with sharing equivalences for DAG-
based sharing of λ-terms, under suitable conditions.

The second part studies a linear algorithm for sharing equality by adapting PW linear
algorithm for first-order unification to λ-terms with sharing. Our algorithm is actually
composed by a 2-levels, modular approach, pushing further the modularity suggested—but
not implemented—by Calvès & Fernández in [8]:

Blind sharing check: a reformulation of PW from which we removed the management of
meta-variables for unification. It is used as a first-order test on λ-terms with sharing, to
check that the unfolded terms have the same skeleton, ignoring variable names.
Name check: a straightforward algorithm executed after the previous one, testing α-
equivalence by checking that bisimilar bound variables have bisimilar binders and that
two different free variables are never shared.

The decomposition plus the correctness and the completeness of the checks crucially rely on
the theory developed in the first part.

The value of the work. It is delicate to explain the value of our work. Three features
are obvious: 1) the improved complexity of the problem, 2) the consequent downfall on the
complexity of β-conversion, and 3) the isolation of a theory of sharing equality. At the same
time, however, our algorithm looks as an easy adaptation of PW, and binders do not seem
to play much of a role. Let us then draw attention to the following points:

Identification of the problem: the literature presents similar studied and techniques, and
yet we are the first to formulate and study the problem per se (unification is different,
and it is usually not formulated on terms with sharing), directly (i.e. without reducing it
to DFAs, like in Grabmayer and Rochel), and with a fine-grained look at the complexity
(Accattoli and Dal Lago only tried not to be exponential).
The role of binders: the fact that binders can be treated straightforwardly is—we believe—
an insight and not a weakness of our work. Essentially, domination allows to reduce
sharing equality in presence of binders to the blind sharing check, under mild but key
assumptions on the context in which terms are tested.
Minimality. The set of shared representations of an ordinary λ-term t is a lattice: the
bottom element is t itself, the top element is the (always existing) maximally sharing
of t, and for any two terms with sharing there exist inf and sup. Essentially, Accattoli
& Dal Lago and Grabmayer & Rochel address sharing equality by computing the top
elements of the lattices of the two λ-terms with sharing, and then comparing them for
α-equivalence. We show that our blind sharing check—and morally every PW-based
algorithm—computes the sup of t and s, that is, the term having all and only the sharing
in t or s, that is the smallest sharing equivalence between the two DAGs. This insight,
first pointed out in PW’s original paper to caracterize most general unifiers, is a prominent
concept in our theory of sharing equality as well.
Proofs, invariants, and detailed development. We provide detailed correctness, complete-
ness, and linearity proofs, based on finely tuned invariants of the algorithm, to a level of
preciseness that is unmatched in the literature. We also provide detailed treatment of
the relationship between α-equivalence on terms and sharing equivalences on DAGs. Our
work is therefore self-contained, but for the fact that most details are in the Appendix.
Concrete implementation. We implemented our algorithm and verified its linear complexity.
The code is available on the third author’s webpage.

Acknowledgements. This work has been partially funded by the ANR JCJC grant COCA
HOLA (ANR-16-CE40-004-01).

DICE 2018



XX:6 A Sample LIPIcs Article

References
1 B. Accattoli and C. S. Coen. On the relative usefulness of fireballs. In LICS 2015, pages

141–155, 2015.
2 B. Accattoli and U. Dal Lago. On the invariance of the unitary cost model for head

reduction. In RTA, pages 22–37, 2012.
3 B. Accattoli and G. Guerrieri. Implementing open call-by-value. In FSEN 2017, Tehran,

Iran, April 26-28, 2017, Revised Selected Papers, pages 1–19, 2017.
4 B. Accattoli and U. D. Lago. Beta reduction is invariant, indeed. In CSL-LICS ’14, pages

8:1–8:10, 2014.
5 G. E. Blelloch and J. Greiner. Parallelism in sequential functional languages. In FPCA,

pages 226–237, 1995.
6 R. S. Boyer and J. S. Moore. The sharing of structure in theorem-proving programs.

Machine intelligence, 7:101–116, 1972.
7 C. Calvès. Unifying Nominal Unification. In RTA 2013, volume 21, pages 143–157, 2013.
8 C. Calvès and M. Fernández. The first-order nominal link. LOPSTR’10, pages 234–248,

2011.
9 C. Calvès and M. Fernández. Matching and alpha-equivalence check for nominal terms.

Journal of Computer and System Sciences, 76(5):283 – 301, 2010.
10 C. Grabmayer and J. Rochel. Maximal sharing in the lambda calculus with letrec. In ICFP

2014, pages 67–80, 2014.
11 J. Hopcroft and R. Karp. A linear algorithm for testing equivalence of finite automata.

Technical Report 0, Dept. of Computer Science, Cornell U, December 1971.
12 J. Lamping. An algorithm for optimal lambda calculus reduction. In POPL, pages 16–30,

1990.
13 J. Levy and M. Villaret. An efficient nominal unification algorithm. In RTA 2010, pages

209–226, Edinburgh, Scottland, UK, 2010.
14 A. Martelli and U. Montanari. Theorem proving with structure sharing and efficient uni-

fication. IJCAI’77, pages 543–543, 1977.
15 A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans. Program.

Lang. Syst., 4(2):258–282, Apr. 1982.
16 D. Miller. A logic programming language with lambda-abstraction, function variables, and

simple unification. J. Log. Comput., 1(4):497–536, 1991.
17 M. Paterson and M.Wegman. Linear unification. Journal of Computer and System Sciences,

16(2):158 – 167, 1978.
18 Z. Qian. Linear unification of higher-order patterns. In TAPSOFT’93: Theory and Practice

of Software Development, pages 391–405, 1993.


