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Abstract

Our goal is to quickly find top k lists of nodes with the largest de-
grees in large complex networks. If the adjacency list of the network
is known (not often the case in complex networks), a deterministic
algorithm to find the top k list of nodes with the largest degrees re-
quires an average complexity of O(n), where n is the number of nodes
in the network. Even this modest complexity can be very high for
large complex networks. We propose to use the random walk based
method. We show theoretically and by numerical experiments that for
large networks the random walk method finds good quality top lists of
nodes with high probability and with computational savings of orders
of magnitude. We also propose stopping criteria for the random walk
method which requires very little knowledge about the structure of the
network.

1 Introduction

We are interested in quickly detecting nodes with large degrees in very large
networks. Firstly, node degree is one of centrality measures used for the
analysis of complex networks. Secondly, large degree nodes can serve as
proxies for central nodes corresponding to the other centrality measures
as betweenness centrality or closeness centrality [10, 11]. In the present
work we restrict ourself to undirected networks or symmetrized versions of
directed networks. In particular, this assumption is well justified in social
networks. Typically, friendship or acquaintance is a symmetric relation. If
the adjacency list of the network is known (not often the case in complex
networks), a deterministic algorithm to find the top k list of nodes with
the largest degrees requires an average complexity of O(n), where n is the
number of nodes in the network. For instance, if HeapSort is used to find
the top k list of nodes with the largest degrees, the complexity estimation
can be specified as O(n+ k log(n)). We assume that the degree is available
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when accessing a node (if this is not the case, the complexity should be
counted in terms of links). However, even linear complexity can be very
high for very large, possibly varying, complex networks. Furthermore, when
crawling some online social networks like Facebook or Twitter, a crawler
is constrained by a certain limit on the speed of crawling. For example,
Twitter has the limit of one access per minute for the rate of crawling for
one standard account. Thus, to crawl the entire network with more than
500 million users we need more than 950 years. Certainly we would like to
discover nodes with largest degrees well before the entire network is crawled.

In the present work we suggest using random walk based methods for
detecting a small number of nodes with the largest degree. The main idea is
that the random walk very quickly comes across large degree nodes. Thus,
the analysis of our approach is equivalent to the analysis of hitting times
of a random walk. In our numerical experiments random walks outperform
the standard deterministic algorithms by orders of magnitude in terms of
computational complexity. For instance, in our experiments with the web
graph of the UK domain (about 18 500 000 nodes) the random walk method
spends on average only about 5 400 steps to detect the largest degree node.
Potential memory savings are also significant since the method does not
require knowledge of the entire network. In many practical applications we
do not need a complete ordering of the nodes and even can tolerate some
errors in the top list of nodes. We observe that the random walk method
obtains many nodes in the top list correctly and even those nodes that are
erroneously placed in the top list have large degrees. Therefore, as typically
happens in randomized algorithms [14, 15], we trade off exact results for
very good approximate results or for exact results with high probability and
gain significantly in computational efficiency.

The paper is organized as follows: in the next section we introduce our
basic random walk with uniform jumps and demonstrate that it is able
to quickly find large degree nodes. Then, in Section 3 using configuration
model we provide an estimate for the necessary number of steps for the
random walk. In Section 4 we propose stopping criteria that use very little
information about the network. In Section 5 we show the benefits of allowing
few erroneous elements in the top k list. Finally, we conclude the paper in
Section 6.

2 Random walk with uniform jumps

Let us consider a random walk with uniform jumps which serves as a basic
algorithm for quick detection of large degree nodes. The random walk with
uniform jumps is described by the following transition probabilities [1]

pij =

{

α/n+1
di+α , if i has a link to j,
α/n
di+α , if i does not have a link to j,

(1)

2



where di is the degree of node i. The random walk with uniform jumps can
be regarded as a random walk on a modified graph where all the nodes in the
graph are connected by artificial edges with a weight α/n. The parameter α
controls the rate of jumps. Introduction of jumps helps in a number of ways.
As was shown in [1], it reduces the mixing time to stationarity. It also solves
a problem encountered by a random walk on a graph consisting of two or
more components, namely the inability to visit all nodes. The random walk
with jumps also reduces the variance of the network function estimator [1].
This random walk resembles the PageRank random walk. However, unlike
the PageRank random walk, the introduced random walk is reversible. One
important consequence of the reversibility of the random walk is that its
stationary distribution is given by a simple formula

πi(α) =
di + α

2|E|+ nα
∀i ∈ V, (2)

from which the stationary distribution of the unperturbed random walk
can easily be retrieved. We observe that the modification preserves the
monotonicity of the stationary distribution with respect to the node degree,
which is particularly important for our application.

We illustrate on several network examples how the random walk helps
us quickly detect large degree nodes. We consider as examples one syn-
thetic network generated by the preferential attachment rule and two nat-
ural large networks. The Preferential Attachment (PA) network combines
100 000 nodes. It has been generated according to the generalized prefer-
ential attachment mechanism [8]. The average degree of the PA network is
two and the power law exponent is 2.5. The first natural example is the
symmetrized web graph of the whole UK domain crawled in 2002 [5]. The
UK network has 18 520 486 nodes and its average degree is 28.6. The second
natural example is the network of co-authorships of DBLP [6]. Each node
represents an author and each link represents a co-authorship of at least one
article. The DBLP network has 986 324 nodes and its average degree is 6.8.

We carry out the following experiment: we initialize the random walk
(1) at a node chosen according to the uniform distribution and continue the
random walk until we hit the largest degree node. The largest degrees for
the PA, UK and DBLP networks are 138, 194 955, and 979, respectively.
For the PA network we have made 10 000 experiments and for the UK and
DBLP networks we performed 1 000 experiments (these networks were too
large to perform more experiments).

In Figue 1 we plot the histograms of hitting times for the PA network.
The first remarkable observation is that when α = 0 (no restart) the av-
erage hitting time, which is equal to 123 000 steps, is nearly three orders
of magnitude larger than 3 720, the hitting time when α = 2. The second
remarkable observation is that 3 720 is of the same order of magnitude as
the value 1/πmax(α) = (2|E| + nα)/(dmax + α) = 2 857, which corresponds
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to the average return time to the largest degree node in the random walk
with jumps.
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Figure 1: Histograms of hitting times in the PA network.

We were not able to collect a representative number of experiments for
the UK and DBLP networks when α = 0. The reason for this is that the ran-
dom walk gets stuck either in disconected or weakly connected components
of the networks. For the UK network we were able to make 1 000 experi-
ments with α = 0.001 and obtain the average hitting time 30 750. Whereas
if we take α = 28.6 for the UK network, we obtain the average hitting time
5 800. Note that the expected return time to the largest degree node in the
UK network is given by 1/πmax(α) = (2|E| + nα)/(dmax + α) = 5 432. For
the DBLP graph we conducted 1 000 experiments with α = 0.00001 and
obtained an average hitting time of 41 131. Whereas if we take α = 6.8,
we obtain an average hitting time of 14 200. The expected return time
to the largest degree node in the DBLP network is given by 1/πmax(α) =
(2|E|+nα)/(dmax+α) = 13 607. The two natural network examples confirm
our guess that the average hitting time for the largest degree node is fairly
close to the average return time to the largest degree node, which is recip-
rocal to the value of the stationary distribution at the largest degree node.
Next, using asymptotic analysis, we show that if α is sufficiently large, the
principal term in the asymptotic expansion for the expected hitting time is
close to the expected return time. Denote by Hj the hitting time to node j.

Theorem 1 Without loss of generality, index the nodes such that node 1 is a
node under consideration, (1, i) ∈ E, i = 2, ..., s, s = d1+1, and let ν denote
the initial distribution of the random walk with jumps. Then, for sufficiently
large α and small α/n, the expected hitting time to node 1 starting from an
arbitrary initial distribution ν is given by

Eν [H1] =

∑n
i=2 di + (n− 1)α

d1 + 2α(1 − 1/n)
+O(1). (3)
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Proof: The expected hitting time from distribution ν to node 1 is given by
the formula

Eν [H1] = ν[I − P−1]
−11, (4)

where P−1 is a taboo probability matrix (i.e., matrix P with the 1-st row
and 1-st column removed). The matrix P−1 is substochastic but is very
close to stochastic. Let us represent it as a stochastic matrix minus some
perturbation term:

P−1 = P̃ − εQ = P̃ −

























1+2α/n
d2+α 0 0

0
. . .

1+2α/n
ds+α

2α/n
ds+1+α

. . . 0

0 0 2α/n
dn+α


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
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

We add missing probability mass to the diagonal of P̃ , which corresponds to
an increase in the weights for self-loops. The matrix P̃ represents a reversible
Markov chain with the stationary distribution

π̃j =
dj + α

∑n
i=2 di + (n− 1)α

.

Now we can use the following result from the perturbation theory (see
Lemma 1 in [2]):

[I − P̃ + εQ]−1 =
1π̃

π̃(εQ)1
+X0 + εX1 + ... , (5)

where π̃ is the stationary distribution of the stochastic matrix P̃ . In our
case, the quantity maxi=2,...,s{1/(di + α), 1/n} will play the role of ε. We
apply the series (5) to approximate the expected hitting time. Towards this
goal, we calculate

π̃(εQ)1 =

n
∑

j=2

π̃jεqjj

=

s
∑

j=2

dj + α
∑n

i=2 di + (n− 1)α

1 + 2α/n

dj + α
+

n
∑

j=s+1

dj + α
∑n

i=2 di + (n− 1)α

2α/n

dj + α

=
d1(1 + 2α/n) + (n− d1 − 1)(2α/n)

∑n
i=2 di + (n− 1)α

=
d1 + 2α(1− 1/n)
∑n

i=2 di + (n− 1)α
.

Observing that ν1π̃1 = 1, we obtain (3).
�
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Indeed, the asymptotic expression (3) is very close to (2|E|+nα)/(d1+α),
which is the expected return time to node 1.

Based on the notion of the hitting time we propose an efficient method
for quick detection of the top k list of largest degree nodes. The algorithm
maintains a top k candidate list. Note that once one of the k nodes with
the largest degrees appears in this candidate list, it remains there subse-
quently. Thus, we are interested in hitting events. We propose the following
algorithm for detecting the top k list of largest degree nodes.

Algorithm 1 Random walk with jumps and candidate list

1. Set k, α and m.

2. Execute a random walk step according to (1). If it is the first step,
pick the initial node arbitrarily (in particular, the initial node can be
chosen by the uniform distribution).

3. Check if the current node has a larger degree than one of the nodes in
the current top k candidate list. If it is the case, insert the new node
in the top-k candidate list and remove the worst node out of the list.

4. If the number of random walk steps is less than m, return to Step 2 of
the algorithm. Stop, otherwise.

The value of parameter α is not crucial. In our experiments, we have
observed that as long as the value of α is neither too small nor too big, the
algorithm performs well. According to our observations, a good option for
the choice of α is a value around the average node degree. Let us explain
this choice.

Consider a random walk {Wt}
∞
t=0 with transition probabilities (1). We

denote by Pν(·) the probability distribution of this Markov chain with initial
distribution ν. Now assume that the Markov chain is in a stationary regime
(the stationary regime is achieved quickly when the parameter α is not too
small [1]). Then by the Bayes formula we derive two remarkable equations:

Pπ[Wt = i|jump] =
Pπ[Wt = i, jump]

Pπ[jump]
=

Pπ[Wt = i]Pπ[jump|Wt = i]
∑n

j=1 Pπ[Wt = j]Pπ[jump|Wt = j]

=

di+α
2|E|+nα

α
di+α

∑n
j=1

dj+α
2|E|+nα

α
dj+α

=
1

n
, (6)

Pπ[Wt = i|no jump] =
Pπ[Wt = i,no jump]

Pπ[no jump]

=
Pπ[Wt = i]Pπ[no jump|Wt = i]

∑n
j=1 Pπ[Wt = j]Pπ [no jump|Wt = j]

=

di+α
2|E|+nα

di
di+α

∑n
j=1

dj+α
2|E|+nα

dj
dj+α
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=
di

2|E|
= πi(0), i = 1, 2, . . . , n. (7)

Thus, in a stationary distribution, given that no jump occurred, the proba-
bility that [Wt = i] is exactly πi(0)!

Next observe thatWt is a regenerative process, where regeneration points
are the jumps to the uniform distribution, and the regenerating cycles are
independent. Concerning the choice of α, there is a clear trade-off: if α
is too small, then regenerating cycles are long and a random walk can get
entangled in some part of the network; but if α is too large, then the cycle
will often consist only of one step corresponding to a jump. Thus, we would
like to maximize the long-run fraction of independent observations from
π(0). To this end, we note that given m′ cycles, the mean total number of
steps is

m′E[cycle length] = m′(Pπ[jump])−1.

Out of the random walk run with m′ cycles, m′ independent observations
from π are generated, from which on average m′Pπ[jump] observations co-
incide with a jump. As will be discussed in Section 4, we need to maximize
the long-run fraction of independent observations, that are not a jump, in a
sample compared to the number of steps of a random walk:

m′ −m′Pπ[ jump]

m′(Pπ[ jump])−1
= Pπ[ jump](1− Pπ[ jump]) → max .

Obviously, the maximum is achieved when

Pπ[jump] =
1

2
.

It remains to rewrite Pπ[jump] in terms of the algorithm parameters:

Pπ[jump] =

n
∑

j=1

Pπ[Wt = j]Pπ[jump|Wt = j]

=

n
∑

j=1

dj + α

2|E|+ nα

α

dj + α
=

nα

2|E|+ nα
=

α

d̄+ α
, (8)

where d̄ := 2|E|/n is the average degree. For the maximal efficiency, the
last fraction above must be equal to 1/2, which gives the optimal value for
the parameter α

α∗ = d̄.

With this choice of α, the random walk contains the maximal possible frac-
tion of independent observations from the distribution πi(0).

The average degree is not necessarily known in advance. However, we
may chose α based on our knowledge of samples of similar nature, and
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then estimate the average degree using (8) and the observed cycle length.
Specifically, we can use the equation

Eu[T ] =
1

Pπ[jump]
=

2|E|/n + α

α
. (9)

Then we can adjust α to its optimal value.
Theorem 1 demonstrates that the expected hitting time to a large degree

node is approximately equal to the reciprocal of the stationary probability.
Next, under technical but natural assumptions we show that in fact the
reciprocal of the stationary probability is an upper bound on the expected
hitting time. Without loss of generality, let us consider node k from the
top-k list (d1 ≥ ... ≥ dk ≥ dk+1 ≥ ...). Assume also that the initial node is
chosen according to the uniform distribution. Let Hk be the hitting time to
node k and let T be the time of the first jump (to the uniform distribution).
Then, using Wald’s identity, we can write

Eu[Hk] = Eu[#jumps on [0,Hk]]Eu[min{T,Hk}], (10)

where Eu[·] is the expectation given the random walk starts from the uniform
distribution. We note that

Eu[min{T,Hk}] ≤ Eu[T ]. (11)

Next, we also note that

Eu[#jumps on [0,Hk]] =
1

Pu[Hk ≤ T ]
. (12)

To estimate the probability Pu[Hk ≤ T ], we assume that node k can be
visited at most once during any cycle. This is a natural technical assumption,
if α is not too small, and consequently, the cycles are not too large. In
particular, this is the case if we choose the value of α as the average degree.
Then, we have

Pu[Hk ≤ T ] = Pu[node k is on a cycle]

= Eu[#visits to k before and incl. T ] = πk(α)Eu[T ].

Combining the above equation with (10), (11) and (12), we obtain

Eu[Hk] ≤
1

πk(α)
=

2|E|+ nα

dk + α
. (13)

In particular, choosing α = d̄ in (13) yields

Eu[Hk] ≤
2d̄n

dk + d̄
. (14)
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The number of random walk steps, m, is a crucial parameter. Our
experiments indicate that we obtain a top k list with many correct elements
with high probability if we take the number of random walk steps to be
twice or thrice as large as the expected hitting time of the nodes in the top
k list. This observation can be made rigorous thanks to the result from [7,
Ch.9,p.333] that we can adapt for our situation as follows.

Proposition 1 Let H1, ...,Hk denote the hitting times to the top-k nodes
with the largest degrees (d1 ≥ ... ≥ dk ≥ dk+1 ≥ ...). Then, the expected time,
Eu[H̃], for the random walk with transition probabilities (1) and starting
from the uniform distribution to detect a fraction β of top-k nodes is bounded
by

Eu[H̃] ≤
1

1− β
Eu[Hk]. (15)

From Theorem 1 or bound (14), we know that the expected hitting time
of a large degree node is related to the value of the node’s degree. Thus,
the problem of choosing m reduces to the problem of estimating the values
of the largest degrees. We address this problem in the following section.

3 Estimating the largest degrees in the configura-

tion network model

The estimations for the values of the largest degrees can be derived in the
configuration network model [9] with a power law degree distribution. In
some applications the knowledge of the power law parameters might be
available to us. For instance, it is known that web graphs have power law
degree distribution and we know typical ranges for the power law parameters
(see e.g., [4]).

We assume that the node degrees D1, . . . ,Dn are i.i.d. random vari-
ables with a power law distribution F and finite expectation E[D]. Let us
determine the number of links contained in the top k nodes. Denote

F (x) = P [D ≤ x], F̄ (x) = 1− F (x), x ≥ 0.

Further let D(1) ≥ . . . ≥ D(n) be the order statistics of D1, . . . ,Dn. Under
the assumption that Dj’s obey a power law, we use the results from the
extreme value theory as presented in [13], to state that there exist sequences
of constants (an) and (bn) and a constant δ such that

lim
n→∞

nF̄ (anx+ bn) = (1 + δx)−1/δ . (16)

This implies the following approximation for high quantiles of F , with ex-
ceedance probability close to zero [13]:

xp ≈ an
(pn)−δ − 1

δ
+ bn.
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For the jth largest degree, where j = 2, . . . , k, the estimated exceedance
probability equals (j − 1)/n, and thus we can use the quantile x(j−1)/n to
approximate the degree D(j) of this node:

D(j) ≈ an
(j − 1)−δ − 1

δ
+ bn. (17)

The sequences (an) and (bn) are easy to find for a given shape of the tail
of F . Below we derive the corresponding results for the commonly accepted
Pareto tail distribution of D, that is,

F̄ (x) = Cx−γ for x > x′, (18)

where γ > 1 and x′ is a fixed sufficiently large number so that the power
law degree distribution is observed for nodes with degree larger than x′. In
that case we have

lim
n→∞

nF̄ (anx+ bn) = lim
n→∞

nC(anx+ bn)
−γ

= lim
n→∞

(C−1/γn−1/γanx+ C−1/γn−1/γbn)
−γ ,

which directly gives (16) with

δ = 1/γ, an = δCδnδ, bn = Cδnδ. (19)

Substituting (19) into (17) we obtain the following prediction for D(j), j =
2, . . . , k, in the case of the Pareto tail of the degree distribution:

D(j) ≈ C1/γ(j − 1)−1/γn1/γ . (20)

It remains to find an approximation for D(1), the maximal degree in the
graph. From the extreme value theory it is well known that if D1, . . . ,Dn

obey a power law then

lim
n→∞

P

(

D(1) − bn

an
≤ x

)

= Hδ(x) = exp(−(1 + δx)−1/δ),

where, for Pareto tail, an, bn and δ are defined in (19). Thus, as an approx-
imation for the maximal node degree we can choose anx + bn where x can
be chosen as either a mean, a median or a mode of Hδ(x). If we choose the
mode, ((1 + δ)−δ − 1)/δ, then we obtain an approximation, which is smaller
than the one for the 2nd largest degree. Further, the mean (Γ(1− δ)− 1)/δ
is very sensitive to the value of δ = 1/γ, especially when γ is close to one,
which is often the case in complex networks. Besides, the parameter γ is
hard to estimate with high precision. Thus, we suggest to choose the median
(log(2))−δ − 1)/δ, which is less sensitive to the value of δ. This yields

D(1) ≈ an
(log(2))−δ − 1

δ
+ bn = C1/γ(log(2))−1/γn1/γ . (21)
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For instance, in the PA network γ = 2.5 and C = 3.7, which gives accord-
ing to (21) D(1) ≈ 195. (This is a reasonably good prediction even though
the PA network is not generated according to the configuration model. We
also note that even though the extremum distribution in the preferential
attachment model is different from that of the configuration model their
ranges seem to be quite close [12].) This in turn suggests that for the PA
network m should be chosen in the range 6 000-18 000 if α = 2. As we can
see from Figure 2 this is indeed a good range for the number of random walk
steps. In the UK network γ = 1.7 and C = 90, which gives D(1) ≈ 329 820
and suggests a range of 20 000-30 000 for m if α = 28.6. Figure 3 confirms
that this is a good choice. The degree distribution of the DBLP network
does not follow a power law so we cannot apply the above reasoning to it.

We conclude this section with a remark that from equation (20), bound
(14) and Proposition 1, it follows that we can find a β fraction of top-k
largest degree nodes in sublinear expected time in the configuration model.
That is, we have

Eu[H̃ ] ≤
1

1− β

(

2E[D]n

C1/γ(k − 1)−1/γn1/γ + E[D]

)

∼ C̃n
γ−1

γ .

In particular, if γ is close to one (which is often the case in complex net-
works), the computational savings with respect to the deterministic ap-
proach can be very significant. For instance, for the UK network with k = 10
and β = 0.8 the bound (15) gives

Eu[H̃] ≤ 72531,

which means at least 255 fold computational savings.

4 Stopping criteria

Suppose now that we do not have any information about the range for
the largest k degrees. In this section we design stopping criteria that do
not require knowledge about the structure of the network. As we shall
see, knowledge of the order of magnitude of the average degree might help,
but this knowledge is not imperative for a practical implementation of the
algorithm.

Let us now assume that node j can be sampled independently with
probability πj(α) as in (2). There are at least two ways to achieve this
practically. The first approach is to run the random walk for a significant
number of steps until it reaches the stationary distribution. If one chooses
α reasonably large, say the same order of magnitude as the average degree,
then the mixing time becomes quite small [1] and we can be sure to reach the
stationary distribution in a small number of steps. Then, the last step of a
run of the random walk will produce an i.i.d. sample from a distribution very
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close to (2). The second approach is to run the random walk uninterruptedly,
also with a significant value of α, and then perform Bernoulli sampling with
probability q after a small initial transient phase. If q is not too large, we
shall have nearly independent samples following the stationary distribution
(2). In our experiment, q ∈ [0.2, 0.5] gives good results when α has the same
order of magnitude as the average degree.

We now estimate the probability of detecting correctly the top k list of
nodes after m i.i.d. samples from (2). Denote by Xi the number of hits at
node i after m i.i.d. samples. We note that if we use the second approach to
generate i.i.d. samples, we spend approximately m/q steps of the random
walk. We correctly detect the top k list with the probability given by the
multinomial distribution

P [X1 ≥ 1, ...,Xk ≥ 1] =

∑

i1≥1,...,ik≥1

m!

i1! · · · ik!(m− i1 − ...− ik)!
πi1
1 · · · πik

k (1−

k
∑

i=1

πi)
m−i1−...−ik

but it is not feasible for any realistic computations. Therefore, we propose to
use the Poisson approximation. Let Yj, j = 1, ..., n be independent Poisson
random variables with means πjm. That is, the random variable Yj has
the following probability mass function P [Yj = r] = e−mπj (mπj)

r/r!. It is
convenient to work with the complementary event of not detecting correctly
the top k list. Then, we have

P [{X1 = 0} ∪ ... ∪ {Xk = 0}] ≤ 2P [{Y1 = 0} ∪ ... ∪ {Yk = 0}]

= 2(1− P [{Y1 ≥ 1} ∩ ... ∩ {Yk ≥ 1}]) = 2(1−
k
∏

j=1

P [{Yj ≥ 1}])

= 2(1−
k
∏

j=1

(1− P [{Yj = 0}])) = 2(1−
k
∏

j=1

(1− e−mπj )) =: a, (22)

where the first inequality follows from [14, Thm 5.10]. In fact, in our nu-
merical experiments we observed that the factor 2 in the first inequality is
very conservative. For large values of m, the Poisson bound without 2 works
very well as proper approximation.

For example, if we would like to obtain the top 10 list with at most
10% probability of error, we need to have on average 4.5 hits per each top
element. This can be used to design the stopping criteria for our random
walk algorithm. Let ā ∈ (0, 1) be the admissible probability of an error in
the top k list. Now the idea is to stop the algorithm after m steps when the
estimated value of a for the first time is lower than the critical number ā.
Clearly,

âm = 2(1−

k
∏

j=1

(1− e−Xj ))
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is the maximum likelihood estimator for a, so we would like to choose m
such that âm ≤ ā. The problem, however, is that we do not know which
Xj ’s are the realisations of the number of visits to the top k nodes. Then
let Xj1 , ...,Xjk be the number of hits to the current elements in the top k
candidate list and consider the estimator

âm,0 = 2(1 −
k
∏

i=1

(1− e−Xji )),

which is the maximum likelihood estimator of the quantity

2(1−

k
∏

i=1

(1− e−mπji )) ≥ a.

(Here πji is a stationary probability of the node with the score Xji , i =
1, . . . , k). The estimator âm,0 is computed without knowledge of the top
k nodes or their degrees, and it is an estimator of an upper bound of the
estimated probability that there are errors in the top k list. This leads to
the following stopping rule.

Stopping rule 0. Stop at m = m0, where

m0 = argmin{m : âm,0 ≤ ā}.

The above stopping criterion can be simplified even further to avoid
computation of âm,0. Since

âm,1 := 2(1− (1− e−Xjk )k) ≥ âm,0 ≥ â,

where Xjk is the number of hits of the worst element in the candidate list.
The inequality âm ≤ ā is guaranteed if âm,1 ≤ ā. This leads to the following
stopping rule for the random walk algorithm.

Stopping rule 1. Compute x0 = argmin{x ∈ N : (1 − e−x)k ≥ 1 − ā/2.}
Stop at

m1 = argmin{m : Xjk = x0}.

We have observed in our numerical experiments that we obtain the best
trade off between the number of steps of the random walk and the accuracy if
we take α around the average degree and the sampling probability q around
0.5. Specifically, if we take ā/2 = 0.15 (x0 = 4) in Stopping rule 1 for top 10
list, we obtain 87% accuracy for an average of 47 000 random walk steps for
the PA network; 92% accuracy for an average of 174 468 random walk steps
for the DBLP network; and 94% accuracy for an average of 247 166 random
walk steps for the UK network. We have averaged over 1000 experiments to
obtain tight confidence intervals.
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5 Relaxation of top k lists

In the stopping criteria of the previous section we have strived to detect
all nodes in the top k list. This costs us a lot of steps of the random walk.
We can significantly gain in performance by relaxing this strict requirement.
For instance, we could just ask for list of k nodes that contains 80% of top
k nodes [3]. This way we can take an advantage of a generic 80/20 rule that
80% of result can be achieved with 20% of effort.

Let us calculate the expected number of top k elements observed in the
candidate list up to trial m. Define by Xj the number of times we have
observed node j after m trials and

Hj =

{

1, node j has been observed at least once,
0, node j has not been observed.

Assuming we sample in i.i.d. fashion from the distribution (2), we can write

E[

k
∑

j=1

Hj] =

k
∑

j=1

E[Hj] =

k
∑

j=1

P [Xj ≥ 1]

=

k
∑

j=1

(1− P [Xj = 0]) =

k
∑

j=1

(1− (1− πj)
m). (23)

In Figure 2 we plot E[
∑k

j=1Hj ] (the curve “I.I.D. sample”) as a function
of m for k = 10 for the PA network with α = 0 and α = 2. In Figure 3
we plot E[

∑k
j=1Hj] as a function of m for k = 10 for the UK network with

α = 0.001 and α = 28.6. The results for the UK and DBLP networks are
similar in spirit.

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

m

 

 

Random Walk
I.I.D. sample

(a) α = 0

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

7

8

9

10

m

 

 

Random Walk
I.I.D. sample

(b) α = 2

Figure 2: Average number of correctly detected elements in top-10 for PA.

Here again we can use the Poisson approximation

E[

k
∑

j=1

Hj] ≈

k
∑

j=1

(1− e−mπj).
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Figure 3: Average number of correctly detected elements in top-10 for UK.

In fact, the Poisson approximation is so good that if we plot it on Fig-
ures 2 and 3, it nearly covers exactly the curves labeled “I.I.D. sample”,
which correspond to the exact formula (23). Similarly to the previous sec-
tion, we can propose stopping criteria based on the Poisson approximation.
Denote

bm =
k

∑

i=1

(1− e−Xji ).

Stopping rule 2. Stop at m = m2, where

m2 = argmin{m : bm ≥ b̄}.

Now if we take b̄ = 7 in Stopping rule 2 for top-10 list, we obtain on
average 8.89 correct elements for an average of 16 725 random walk steps for
the PA network; we obtain on average 9.28 correct elements for an average of
66 860 random walk steps for the DBLP network; and we obtain on average
9.22 correct elements for an average of 65 802 random walk steps for the UK
network. (We have averaged over 1000 experiments for each network.) This
makes for the UK network the gain of more than two orders of magnitude
in computational complexity with respect to the deterministic algorithm.

6 Conclusions and future research

We have proposed the random walk method with the candidate list for quick
detection of largest degree nodes and analyzed the complexity of the method
by means of random walk hitting times. We have also supplied stopping
criteria which do not require knowledge of the graph structure. In the case
of large networks, our algorithm finds top-k list of largest degree nodes with
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few mistakes with the running time orders of magnitude faster than the
deterministic algorithms. In future research we plan to obtain estimates
for the required number of steps for various types of complex networks and
to design methods for directed networks. In particular, it is interesting to
analyze in more detail how assortativity and clustering of networks affects
the performance of the method.
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