
Quick Detection of Top-k Personalized

PageRank Lists

K. Avrachenkov1, N. Litvak2, D. Nemirovsky1, E. Smirnova1, and M. Sokol1

1 INRIA Sophia Antipolis
{k.avrachenkov,dnemirov,esmirnov,msokol}@sophia.inria.fr

2 University of Twente
n.litvak@ewi.utwente.nl

Abstract. We study a problem of quick detection of top-k Personalized
PageRank (PPR) lists. This problem has a number of important appli-
cations such as finding local cuts in large graphs, estimation of similarity
distance and person name disambiguation. We argue that two observa-
tions are important when finding top-k PPR lists. Firstly, it is crucial
that we detect fast the top-k most important neighbors of a node, while
the exact order in the top-k list and the exact values of PPR are by far
not so crucial. Secondly, by allowing a small number of “wrong” elements
in top-k lists, we achieve great computational savings, in fact, without
degrading the quality of the results. Based on these ideas, we propose
Monte Carlo methods for quick detection of top-k PPR lists. We demon-
strate the effectiveness of these methods on the Web and Wikipedia
graphs, provide performance evaluation and supply stopping criteria.

1 Introduction

Personalized PageRank (PPR) or Topic-Sensitive PageRank [15] is a general-
ization of PageRank [10], and is a stationary distribution of a random walk
on an entity graph, with random restart from a given personalization distribu-
tion. Originally designed for personalization of the Web search results [15], PPR
found a large number of network applications, e.g., in finding related entities [11],
graph clustering and finding local cuts [1, 4], link predictions in social networks
[20] and protein-protein interaction networks [23]. The recent application of PPR
to the person name disambiguation problem lead to the first official place in the
WePS 2010 challenge [21]. In most of applications, e.g., in name disambiguation,
one is mainly interested in detecting top-k elements with the largest PPR. This
work on detecting top-k elements is driven by the following two key observations:

Observation 1: Often it is extremely important to detect fast the top-k ele-
ments with the largest PPR, while the exact order in the top-k list as well as
the exact values of the PPR are by far not so important. Application examples
are given in the above mentioned references.



Observation 2: We may apply a relaxation that allows a small number of
elements to be placed erroneously in the top-k list. If the PPR values of these
elements are of a similar order of magnitude as in the top-k list, then such
relaxation does not affect applications, but it enables us to take advantage of
the generic “80/20 rule”: 80% of the result is achieved with 20% of efforts.

We argue that the Monte Carlo approach naturally takes into account the
two key observations. In [9] this approach was proposed for the computation of
the standard PageRank. The estimation of the convergence rate in [9] was very
pessimistic. The implementation of the Monte Carlo approach was improved in
[13] and also applied there to PPR. Both [9] and [13] only use end points of the
random walks to compute the PageRank values. Moreover, [13] requires extensive
precomputation efforts and is very demanding in storage resource. In [5] the
authors have further improved the realization of the Monte Carlo method [13].
In [2] it is shown that Monte Carlo estimation for large PageRank values requires
about the same number of operations as one iteration of the power iteration
method. In this paper we show that the Monte Carlo algorithms require an
incomparably smaller number of operations when our goal is to detect a top-k list
with k not large. In our test on the Wikipedia entity graph with about 2 million
nodes typically few thousands of operations are enough to detect the top-10 list
with just two or three erroneous elements. Hence, we obtain a relaxation of the
top-10 list with just about 1-5% of operations required by one power iteration.
Experimental results on the Web graph appear to be even more striking. In the
present work we provide theoretical justifications for such remarkable efficiency.
We would like to emphasize that the Monte Carlo approach allows easy online
and parallel implementation and does not require the knowledge of the complete
graph.

We consider the present work as an initiation to a new line of research on
quick detection of top-k ranked network central elements. A number of inter-
esting questions will be addressed in the future research: What is the difference
in performance between the randomized algorithms, like the presented Monte
Carlo algorithms, and the non-randomized algorithms, like algorithms in [1] and
[7]? What are efficient practical stopping criteria for the randomized algorithms?
What is the effect of the graph structure on the performance of the randomized
algorithms?

2 Monte Carlo methods

Given a directed or undirected graph connecting some entities, the PPR π(s, c)
with a seed node s and a damping parameter c is defined as a solution of the
following equations

π(s, c) = cπ(s, c)P + (1 − c)1T
s ,

n
∑

j=1

πj(s, c) = 1,

where 1T
s is a row unit vector with one in the sth entry and all the other elements

equal to zero, P is the transition matrix associated with the entity graph and n



is the number of entities. Equivalently, PPR can be given by [19]

π(s, c) = (1 − c)1T
s [I − cP ]−1. (1)

When the values of s and c are clear from the context we shall simply write π.
We note that PPR is often defined with a general distribution v in place of

1T
s . However, typically v has a small support. Then, due to linearity, the problem

of PPR with distribution v reduces to computing PPR with distribution 1T
s [16].

In this work we consider two Monte Carlo algorithms. The first algorithm
is inspired by the following observation. Consider a random walk {Xt}t≥0 that
starts from node s, i.e, X0 = s. Let at each step the random walk terminate
with probability 1 − c and make a transition according to the matrix P with
probability c. Then, the end-points of such a random walk has the distribution
π(s, c).

Algorithm 1 (MC End Point) Simulate m runs of the random walk {Xt}t≥0

initiated at node s. Evaluate πj as a fraction of m random walks which end at
node j ∈ 1, . . . , n.

Next, we exploit the fact that the element (s, j) of the matrix [I − cP ]−1

equals to the expected number of visits to node j by the random walk initiated
at state s with the run time geometrically distributed with parameter c [2]. Thus,
the formula (1) suggests the following estimator for the PPR

π̂j(s, c) = (1 − c)
1

m

m
∑

r=1

Nj(s, r), (2)

where Nj(s, r) is the number of visits to state j during the run r of the random
walk initiated at node s. This leads to our second Monte Carlo algorithm.

Algorithm 2 (MC Complete Path) Simulate m runs of the random walk
{Xt}t≥0 initiated at node s. Evaluate πj as the total number of visits to node j
multiplied by (1 − c)/m.

As outputs of the proposed algorithms we would like to obtain with high
probability either a top-k list of nodes or a top-k basket of nodes.

Definition 1. The top-k list of nodes is a list of k nodes with largest PPR
values arranged in a descending order of their PPR values.

Definition 2. The top-k basket of nodes is a set of k nodes with largest PPR
values with no ordering required.

It turns out that it is beneficial to relax our goal and to obtain a top-k basket
with a small number of erroneous elements.

Definition 3. We call relaxation-l top-k basket a realization when we allow at
most l erroneous elements from top-k basket.



In the present work we aim to estimate the numbers of random walk runs
m sufficient for obtaining top-k list or top-k basket or relaxation-l top-k basket
with high probability. In particular, we demonstrate that ranking converges con-
siderably faster than the values of PPR and that a relaxation-l with quite small
l helps significantly.

Throughout the paper we illustrate the theoretical analysis with the help
of experiments on two large graphs: the Wikipedia entity graph and the Web
graph. There is a number of reasons why we have chosen the Wikipedia entity
graph. Firstly, all elements of PPR can be computed with high precision for the
Wikipedia entity graph with the help of BVGraph/WebGraph framework [8].
Secondly, the Wikipedia graph has already been used in several applications re-
lated to finding top-k semantically related entities. Thirdly, since the Wikipedia
entity graph has a very small average distance [24], it represents a very chal-
lenging test for the Monte Carlo methods. In just 3-4 steps the random walk
can be very far from the starting node. Since the Monte Carlo approach does
not require the knowledge of a complete graph, we can apply our algorithms to
the actual Web graph. However, computing the exact values for the Pesonalized
PageRank of web pages is infeasible in our experiments. We can only obtain
correct top-k lists by Monte Carlo methods with very high probability as in [2,
13] using an ample number of crawls.

Illustrating example with Wikipedia: Following our recent work [21] we
illustrate PPR by application to the person name disambiguation problem. One
of the most common English names is Jackson. We have selected three Jack-
sons who have entries in Wikipedia: Jim Jackson (ice hockey), Jim Jackson
(sportscaster) and Michael Jackson. Two Jacksons have even a common given
name and both worked in ice hockey, one as an ice hockey player and another as
an ice hockey sportscaster. In [3] we provide the exact lists of top-10 Wikipedia
articles arranged according to PPR vectors. We observe that an exact top-10
list identifies quite well its seed node. Next, we run the Monte Carlo End Point
method starting from each seed node. Notice that to obtain a relaxed top-10 list
with two or three erroneous elements we need different number of runs for differ-
ent seed nodes (50000 runs for Michael Jackson vs. 500 runs for Jim Jackson

(ice hockey)). Intuitively, the more immediate neighbours a node has, the
larger number of Monte Carlo steps is required. Indeed, if a seed node has many
immediate neighbours then the Monte Carlo method easily drifts away. In Fig-
ures 1-2.(a) we present examples of typical runs of the Monte Carlo End Point
method for the three different seed nodes. An example of the Monte Carlo Com-
plete Path method for the seed node Michael Jackson is given in Figure 2.(b).
As expected, it outperforms the Monte Carlo End Point method. In the following
sections we shall quantify all the above qualitative observations.

Illustrating example with the Web: We have also tested our two Monte
Carlo methods on the Web. To see the difference in comparison with a
“smaller” Wikipedia graph we have chosen the official Web page of Michael
Jackson http://www.michaeljackson.com and the Web page of the hockey
player statistics Jim Jackson hosted at http://www.hockeydb.com. In Fig-



ures 3.(a) and 3.(b) we present examples of typical runs of the Monte Carlo
Complete Path and End Point methods for, respectively, the Michael Jackson
Web page and the Jim Jackson Web page as a seed node. We have performed
enough steps (6×105) to make sure that the top-k lists of nodes are stabilized so
that we could say with very high certainty that we know the correct top-k lists.
We observe that in comparison to the Wikipedia graph we need longer runs.
However, the amount of computational saving is still very impressive. Indeed,
according to even modest estimates, the size of the Web is more than 1010 pages.
However, to get a good top-k list for the Michael Jackson page we need about
105 steps with MC Complete Path. Thus, we are using only 10−5 fraction of
computational resources which are needed for just one power iteration!

0 100 200 300 400 500
2

3

4

5

6

7

8

9

(a) Seed node Jim Jackson (ice

hockey).

0 1000 2000 3000 4000 5000
1

2

3

4

5

6

7

8

9

10

m

(b) Seed node Jim Jackson

(sportscaster).

Fig. 1. The number of correctly detected elements by MC End Point.

0 1 2 3 4 5 6 7

x 10
4

1

2

3

4

5

6

7

8

9

10

m

(a) Seed node Michael Jackson.

0 1 2 3 4 5 6 7

x 10
4

1

2

3

4

5

6

7

8

9

10

(b) Seed node Michael Jackson.

Fig. 2. The number of correctly detected elements by MC End Point (a) and MC
Complete Path (b).



0 0.5 1 1.5 2 2.5 3

x 10
5

1

2

3

4

5

6

7

8

9

10

m

MC Complete Path
MC End Point

(a) Seed node Michael Jackson
Web page.

0 0.5 1 1.5 2 2.5 3

x 10
5

1

2

3

4

5

6

7

8

9

10

m

MC Complete Path
MC End Point

(b) Seed node Jim Jackson Web
page.

Fig. 3. The number of correctly detected elements by MC End Point.

3 Variance based performance comparison and CLT

approximations

In the MC End Point algorithm the distribution of end points is multinomial
[17]. Namely, if we denote by Lj the number of paths that end at node j after
m runs, then we have

P{L1 = l1, L2 = l2, . . . , Ln = ln} =
m!

l1!l2! · · · ln!
πl1

1 πl2
2 · · ·πln

n . (3)

Thus, the standard deviation of the MC End Point estimator for the kth element
is given by

σ(π̂k) = σ(Lk/m) =
1√
m

√

πk(1 − πk). (4)

An expression for the standard deviation of the MC Complete Path is more
complicated. Define the matrix Z = (zij) = [I − cP ]−1 and let Nj be the
number of visits to node j by the random walk with the run time geometrically
distributed with parameter c. Further, denote by Ei(·) a conditional expectation
provided that the random walk starts at i = 1, . . . , n. From (2), it follows that

σ(π̂k) =
(1 − c)√

m
σ(Nk) =

(1 − c)√
m

√

Es{N2
k} − Ei{Nk}2. (5)

First, we recall that

Es{Nk} = zsk = πk(s)/(1 − c). (6)

Then, from [18], it is known that Es{N2
k} = [Z(2Zdg − I)]sk, where Zdg is a

diagonal matrix having as its diagonal the diagonal of matrix Z and [A]ik is the
(i, k)th element of matrix A. Thus, we write



Es{N2
k} = 1T

s Z(2Zdg − I)1k =
1

1 − c
π(s)(2Zdg − I)1k

=
1

1 − c

(

1

1 − c
πk(s)πk(k) − πk(s)

)

. (7)

Substituting (6) and (7) into (5), we obtain

σ(π̂k) =
1√
m

√

πk(s)(2πk(k) − (1 − c) − πk(s)). (8)

Since πk(k) ≈ 1 − c, we can approximate σ(π̂k) with

σ(π̂k) ≈ 1√
m

√

πk(s)((1 − c) − πk(s)).

Comparing the latter expression with (4), we see that MC End Point requires
approximately 1/(1−c) walks more than MC Complete Path. This was expected
as MC End Point uses only information from end points of the random walks.
We would like to emphasize that 1/(1 − c) can be a significant coefficient. For
instance, if c = 0.85, then 1/(1 − c) ≈ 6.7.

Now, for the MC End Point we can use CLT-type result given e.g. in [22]:

Theorem 1. [22] For large m and
∑n

i=1 li = m, a multivariate normal density
approximation to the multinomial distribution (3) is given by

f(l1, l2, . . . , ln) =

(

1

2πm

)(n−1)/2

×
(

1

nπ1π2 · · ·πn

)1/2

exp

{

−1

2

n
∑

i=1

(li − mπi)
2

mπi

}

.

(9)

For the MC Complete Path, we note that N(s, r) = (N1(s, r), . . . , Nn(s, r)),
r = 1, 2, . . . , form a sequence of i.i.d. random vectors. Hence, we can apply the
multivariate central limit theorem. Denote

N̂(s,m) =
1

m

m
∑

r=1

N(s, r). (10)

Theorem 2. Let m go to infinity. Then, we have the following convergence in
distribution to a multivariate normal distribution

√
m

(

N̂(s,m) − N̄
)

D−→ N (0, Σ(s)),

where N̄(s) = 1T
s Z and Σ(s) = E{NT (s, r)N(s, r)}−N̄T (s)N̄(s) is a covariance

matrix, which can be expressed as

Σ(s) = Ω (s) Z + ZT Ω (s) − Ω (s) − ZT 1s1
T
s Z. (11)

where the matrix Ω(s) = {ωjk(s)} is defined by

ωjk(s) =

{

zsj , if j = k,
0, otherwise.



Proof. See [3].

We would like to note that in both cases we obtain the convergence to rank
deficient (singular) multivariate normal distributions.
Illustrating example with the Web (cont.): In Table 1 we provide means
and standard deviations for the number of hits of MC End Point for top-10
nodes with the Jim Jackson Web page as the seed node for the number of runs
m = 104 and m = 105. We observe that the means are very close to each other
and the standard deviations are significant with respect to the values of the
means. This shows that a direct application of the central limit theorem and the
confidence intervals technique will lead to inadequate stopping criteria. In the
ensuing sections we discuss metrics and stopping criteria which are much more
efficient for the present problem.

Table 1. MC End Point for the Jim Jackson Web page: means and Standard Deviations

nr. runs 10000 100000

rank mean std mean std

1 0.79104 0.012531 0.79748 0.004834

2 0.006329 0.001622 0.006202 0.000569

3 0.005766 0.001075 0.005885 0.000354

4 0.006365 0.002103 0.006561 0.000704

5 0.005183 0.001664 0.005518 0.00055

6 0.005541 0.003766 0.005801 0.001257

7 0.007617 0.003633 0.006243 0.001266

8 0.007566 0.012384 0.005854 0.003969

9 0.006186 0.001468 0.006182 0.000547

10 0.00672 0.003492 0.006223 0.001132

4 Convergence based on order

For the two introduced Monte Carlo methods we aim to calculate or estimate
a probability that after a given number of steps we correctly obtain top-k list
or top-k basket. These are the probabilities P{L1 > · · · > Lk > Lj ,∀j >
k} and P{Li > Lj ,∀i, j : i ≤ k < j} respectively, where Lk, k ∈ 1, . . . , n,
can be either the Monte Carlo estimates or the ranked elements or their CLT
approximations. We refer to these probabilities as the ranking probabilities and
we refer to complementary probabilities as misranking probabilities [6]. Because
of combinatorial explosion, exact calculation of these probabilities is infeasible
in non-trivial cases. Thus, we propose estimation methods based on Bonferroni
inequality. This approach works for reasonably large values of m.

Drawing correctly the top-k basket is defined by the event
⋂

i≤k<j{Li > Lj}.
Applying the Bonferroni inequality P {⋂s As} ≥ 1 − ∑

s P
{

Ās

}

to this event,

we obtain P
{

⋂

i≤k<j{Li > Lj}
}

≥ 1 − ∑

i≤k<j P
{

{Li > Lj}
}

. Equivalently,

we can write the following upper bound for the misranking probability

1 − P







⋂

i≤k<j

{Li > Lj}







≤
∑

i≤k<j

P {Li ≤ Lj} . (12)



We note that the upper bound for the misranking probability is very useful,
because it will provide a guarantee on the performance of our algorithms. Since
in the MC End Point method the distribution of end points is multinomial (see
(3)), for small m we can directly use the formula

P{Li ≤ Lj} =
∑

li+lj≤m, li≤lj

m!

li!lj !(m − li − lj)!
πli

i π
lj
j (1 − πi − πj)

m−li−lj . (13)

For large m it is computationally intractable. Hence, we now turn to the CLT
approximations for the both MC methods. Denote by Lj the original number
of hits at node j and by Yj its CLT approximation. First, we obtain a CLT
based expression for the misranking probability for two nodes P {Yi ≤ Yj}. Since
the event {Yi ≤ Yj} coincides with the event {Yi − Yj ≤ 0} and a difference of
two normal random variables is again a normal random variable, we obtain
P {Yi ≤ Yj} = P {Yi − Yj ≤ 0} = 1 − Φ(

√
mρij), where Φ(·) is the cumulative

distribution function for the standard normal random variable and

ρij =
E[Yi] − E[Yj ]

√

σ2(Yi) − 2cov(Yi, Yj) + σ2(Yj)
.

For large m, the above expression can be bounded by P {Yi ≤ Yj} ≤ 1√
2π

e−
ρ2

ij

2
m.

Since the misranking probability for two nodes P {Yi ≤ Yj} decreases when j in-
creases, we can write

1 − P







⋂

i≤k<j

{Yi > Yj}







≤
k

∑

i=1





j∗

∑

j=k+1

P {Yi ≤ Yj} +
n

∑

j=j∗+1

P {Yi ≤ Yj∗}



 ,

for some j∗. This gives the following upper bound

1−P







⋂

i≤k<j

{Yi > Yj}







≤
k

∑

i=1

j∗

∑

j=k+1

(1−Φ(
√

mρij))+
n − j∗√

2π

k
∑

i=1

e−
ρ2

ij∗

2
m. (14)

Since we have a finite number of terms in the right hand side of expression
(14), we conclude that

Theorem 3. The misranking probability of the top-k basket goes to zero with

geometric rate, 1 − P
{

⋂

i≤k<j{Yi > Yj}
}

≤ Cam, for some C > 0, a ∈ (0, 1).

We note that the multinomial distribution, ρij has a simple expression

ρij =
πi − πj

√

πi(1 − πi) + 2πiπj + πj(1 − πj)
.

For MC Complete Path σ2(Yi) = Σii(s) and cov(Yi, Yj) = Σij(s) where Σii(s)
and Σij(s) can be calculated by (11). Similarly the Bonferroni inequality can be
applied to the top-k list (see [3]).



5 Solution relaxation

In this section we analytically evaluate the relation between the number of ex-
periments m and the average number of correctly identified top-k nodes. We
use the relaxation by allowing the latter number to be smaller than k. We aim
to mathematically justify the observed “80/20 behavior” of the algorithm: 80
percent of the top-k nodes are identified correctly in a very short time.

Let M0 be a number of correctly identified elements in the top-k basket. In
addition, denote by Ki the number of nodes ranked not lower than i. Formally,
Ki =

∑

j 6=i 1{Lj ≥ Li}, i = 1, . . . , k, where 1{·} is an indicator function.
Placing node i in the top-k basket is equivalent to the event {Ki < k}, and thus

E(M0) = E
(

∑k
i=1 1{Ki < k}

)

=
∑k

i=1 P (Ki < k). Direct evaluation of P (Ki <

k) is computationally intractable in realistic scenarios, even with Markov chain
representation techniques [12]. Thus, we use approximation and Poissonisation.

The End Point algorithm is merely an occupancy scheme where each inde-
pendent experiment (random walk) results in placing one ball (visit) to an urn
(node of the graph). Under Poissonisation [14], we assume that the number of
random walks is a Poisson random variable M with given mean m. Because the
number of hits in the Poissonised model is different from the number of original
hits, we use the notation Yi instead of Lj for the number of visits to page j. Note
that Yj is a Poisson random variable with parameter mπj and is independent of
Yi for i 6= j. The imposed independence of Yj ’s greatly simplifies the analysis.

Next to Poissonisation, we also apply approximation of M0 by a closely re-
lated measure M1: M1 = k − ∑k

i=1(K
′
i/k), where K ′

i denotes the number of
pages outside the top-k list that are ranked higher than node i = 1, . . . , k. Note
that K ′

i is the number of mistakes with respect to node i that lead to errors
in the identified top-k list. Then the sum in the definition of M1 is simply the
average number of such mistakes with respect to each of the top-k nodes.

The measure M1 is more tractable than M0 because its average value E(M1) =

k− 1
k

∑k
i=1 E(K ′

i) involves only the average values of K ′
i and not their distribu-

tions, and because K ′
i depends only on the nodes outside the top-k list. Then,

we can make use of the following convenient measure µ(y):

µ(y) := E(K ′
i|Yi = y) =

n
∑

j=k+1

P (Yj ≥ y), i = 1, . . . , k,

which implies E(K ′
i) =

∑∞
y=0 P (Yi = y)µ(y), i = 1, . . . , k. Therefore, we obtain

the following expression for E(M1):

E(M1) = k − 1

k

∞
∑

y=0

µ(y)

k
∑

i=1

P (Yi = y). (15)

Illustrating example with Wikipedia (cont.): Let us calculate E(M1) for
the top-10 basket corresponding to the seed node Jim Jackson (ice hockey).
Using formula (15), for m = 8 × 103; 10 × 103; 15 × 103 we obtain E(M1) =



7.75; 9.36; 9.53. It took 2000 runs to move from E(M1) = 7.75 to E(M1) = 9.36,
but then 5000 runs is needed to advance from E(M1) = 9.36 to E(M1) =
9.53. We see that we obtain quickly 2-relaxation or 1-relaxation of the top-
10 basket but then we need to spend a significant amount of effort to get the
complete basket. This is indeed in agreement with the Monte Carlo runs (see
e.g., Figure 1). In the next theorem we explain this “80/20 behavior” and provide
indication for the choice of m.

Theorem 4. In the Poisonized End Point Monte Carlo algorithm, if all top-k
nodes receive at least y = ma > 1 visits and πk+1 = (1 − ε)a, ε > 1/y, then

(i) to satisfy E(M1) > (1 − α)k it is sufficient to have

n
∑

j=k+1

(mπj)
y

y!
e−mπj

[

1 +
∞
∑

l=1

(mπj)
l

(y + 1) · · · (y + l)

]

< αk.

(ii) Statement (i) is always satisfied if m > 2a−1ε−2[− log(επk+1αk)].

Proof. See [3].

From (i) we can already see that the 80/20 behavior of E(M1) (and, respec-
tively, E(M0)) can be explained mainly by the fact that µ(y) drops drastically
with y because the Poisson probabilities decrease faster than exponentially.

The bound in (ii) shows that m should be roughly of the order 1/πk. The
term ε−2 is not defining since ε does not need to be small. For instance, by
choosing ε = 1/2 we can filter out the nodes with PPR not higher than πk/2.
This often may be sufficient in applications. Obviously, the logarithmic term is
of a smaller order of magnitude.

We note that the bound in (ii) is quite rough because in its derivation (see
[3]) we replaced πj , j > k, by their maximum value πk+1. In realistic examples,
m can be chosen much smaller than in (ii) of Theorem 4. In fact, in our examples
good top-k baskets are obtained if the algorithm is terminated at the point when
for some y, each node in the current top-k basket has received at least y visits
while the rest of the nodes have received at most y − d visits, where d is a
small number, say d = 2. Such choice of m satisfies (i) with reasonably small
α. Without a formal justification, this stopping rule can be understood since we
have mπk+1 = ma(1 − ε) ≈ ma − d, which results in a small value of µ(y).

Acknowledgments: We would like to thank Brigitte Trousse for her very help-
ful remarks and suggestions.

References

1. R. Andersen, F. Chung and K. Lang, “Local graph partitioning using pagerank
vectors”, in Proceedings of FOCS 2006, pp.475-486.

2. K. Avrachenkov, N. Litvak, D. Nemirovsky and N. Osipova, “Monte Carlo methods
in PageRank computation: When one iteration is sufficient”, SIAM Journal on
Numerical Analysis, v.45, no.2, pp.890-904, 2007.



3. K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova and M. Sokol, “Monte
Carlo Methods for Top-k Personalized PageRank Lists and Name Disambiguation”,
INRIA Research Report no.7367, 2010.

4. K. Avrachenkov, V. Dobrynin, D. Nemirovsky, S.K. Pham, and E. Smirnova,
“PageRank Based Clustering of Hypertext Document Collections”, in Proceedings
of ACM SIGIR 2008, pp.873-874.

5. B. Bahmani, A. Chowdhury and A. Goel, “Fast Incremental and Personalized
PageRank”, in Proceedings of VLDB Endow., 2010.

6. C. Barakat, G. Iannaccone, and C. Diot, “Ranking flows from sampled traffic”, in
Proceedings of CoNEXT 2005.

7. P. Berkhin, “Bookmark-Coloring Algorithm for Personalized PageRank Comput-
ing”, Internet Mathematics, v.3, pp.41-62, 2006.

8. P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques”,
in Proceedings of the 13th International World Wide Web Conference (WWW
2004)”, pp.595-601, 2004.

9. L.A. Breyer, “Markovian Page Ranking distributions: Some the-
ory and simulations”, Technical Report 2002, available at
http://www.lbreyer.com/preprints.html.

10. S. Brin, L. Page, R. Motwami, and T. Winograd, “The PageRank citation ranking:
bringing order to the Web”, Stanford University Technical Report, 1998.

11. S. Chakrabarti, “Dynamic Personalized PageRank in entity-relation graphs”, in
Proceedings of WWW2007.

12. C.J. Corrado, “The exact joint distribution for the multinomial maximum and
minimum and the exact distribution for the multinomial range”, SSRN Research
Report, 2007.

13. D. Fogaras, B. Rácz, K. Csalogány and T. Sarlós, “Towards scaling fully personal-
ized Pagerank: Algorithms, lower bounds, and experiments”, Internet Mathemat-
ics, v.2(3), pp.333-358, 2005.

14. A. Gnedin, B. Hansen and J. Pitman, “Notes on the occupancy problem with
infinitely many boxes: general asymptotics and power laws”, Probability Survyes,
v.4, pp.146-171, 2007.

15. T. Haveliwala, “Topic-Sensitive PageRank”, in Proceedings of WWW2002.
16. G. Jeh and J. Widom,“Scaling personalized web search”, in Proceedings of WWW

2003.
17. K.L. Johnson, S. Kotz and N. Balakrishnan, Discrete Multivariate Distributions,

Wiley, New York, 1997.
18. J. Kemeny and J. Snell, Finite Markov Chains, Springer, 1976.
19. A.N. Langville and C.D. Meyer, Google’s PageRank and Beyond: The Science of

Search Engine Rankings, Princeton University Press, 2006.
20. D. Liben-Nowell and J. Kleinberg, “The link prediction problem for social net-

works”, in Proceedings of CIKM 2003.
21. E. Smirnova, K. Avrachenkov and B. Trousse, “Using Web Graph Structure for

Person Name Disambiguation”, in Proceedings of CLEF/WEPS 2010.
22. K. Tanabe and M. Sagae, “An exact Cholesky Decomposition and the generalized

inverse of the variance-covariance matrix of the multinomial distribution, with ap-
plications”, Journal of the Royal Statistical Society (Series B), v.54, no.1, pp.211-
219, 1992.

23. K. Voevodski, S.H. Teng and Y. Xia, “Spectral affinity in protein networks”, BMC
Systems Biology 3:112, 2009.

24. V. Zlatic, M. Bozicevic, H. Stefancic and M. Domazet, “Wikipedias: Collaborative
web-based encyclopedias as complex networks”, Phys. Rev. E, v.74, 2006.


