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Abstract. Semi-supervised learning methods constitute a category of
machine learning methods which use labelled points together with unla-
belled data to tune the classifier. The main idea of the semi-supervised
methods is based on an assumption that the classification function should
change smoothly over a similarity graph, which represents relations among
data points. This idea can be expressed using kernels on graphs such as
graph Laplacian. Different semi-supervised learning methods have differ-
ent kernels which reflect how the underlying similarity graph influences
the classification results. In the present work, we analyse a general fam-
ily of semi-supervised methods, provide insights about the differences
among the methods and give recommendations for the choice of the ker-
nel parameters and labelled points. In particular, it appears that it is
preferable to choose a kernel based on the properties of the labelled
points. We illustrate our general theoretical conclusions with an analyti-
cally tractable characteristic example, clustered preferential attachment
model and classification of content in P2P networks.

1 Introduction

The first principal idea of the semi-supervised learning methods is to use few
labelled points (points with known classification) together with the unlabelled
data to tune the classifier. This drastically reduces the size of the training set.
The second principal idea of the semi-supervised learning methods is to use a
(weighted) similarity graph. If two data points are connected by an edge, this
indicates some similarity of these points. Then, the weight of the edge, if present,
reflects the degree of similarity. Later in the paper we show how the similarity
graph can be constructed in a specific application. Each class has a classifica-
tion function defined over all data points which gives a degree of relevance to
the class for each data point. The third principal idea of the semi-supervised
learning methods is that the classification function should change smoothly over
the similarity graph. Intuitively, nodes of the similarity graph that are closer
together in some sense are more likely to have the same label. This idea of clas-
sification function smoothness can be expressed using graph Laplacian or its
modification. In particular, the authors of [14] proposed transductive learning, a
semi-supervised learning method based on the Standard Laplacian. The authors
of [13] and [15] used the Normalized Laplacian (or diffusion kernel). And the



authors of [3] used the Markov kernel. We observe that if one takes the method
of [1] for detecting local cuts and takes seeds in [1] as the labelled data and con-
siders sweeps as classification functions, then because the degrees of data points
in different sweeps are the same, the resulting method will be equivalent to the
semi-supervised method proposed in [3]. Recently in [5], the authors proposed
a generalized optimization formulation which gives the above mentioned meth-
ods as particular cases. In the present work we provide more insights about the
differences among the semi-supervised methods based on random walk theory,
and give recommendations on how to choose the kernel and labelled points (of
course, when there is some freedom in the choice of labelled points). It appears
that the choice of labelled points influences the choice of kernel. In particular, we
show that if the labelled points are chosen uniformly at random, the PageRank
based method is the best choice for the semi-supervised kernel. On the other
hand, if one can choose labelled points with large degrees or we know that la-
belled points given to us have large degrees, the Standard Laplacian method is
the best choice.

The paper is organized as follows: In the next section we briefly describe
the graph-based semi-supervised learning methods. We refer readers interested
in more details on semi-supervised methods to several excellent surveys [8, 16,
17]. In Section 3 we provide general theoretical insights about semi-supervised
learning methods and suggest how to choose the kernel and labelled points.
Then, in Section 4 we illustrate the theoretical conclusions on an analytically
tractable characteristic network example, on clustered preferential attachment
model and with application to P2P content classification. In particular, for this
specific application we show that with the right combination of labelled points
and kernel one can achieve 95% precision with as little as 50 points per class
for several hundred thousands unlabelled points. Finally, in Section 5 we give
conclusions and provide directions for future research.

2 Semi-supervised learning methods

Suppose we need to classify N data points into K classes and assume P data
points are labelled. That is, we know the class to which each labelled point
belongs. Denote by Vk, the set of labelled points in class k = 1, ...,K. Thus,
|V1|+ ...+ |VK | = P .

The graph-based semi-supervised learning approach uses a weighted graph
connecting data points. The weight matrix, or similarity matrix, is denoted by
W . Here we assume that W is symmetric and the underlying graph is connected.
Each element wi,j represents the degree of similarity between data points i and
j. Denote by D a diagonal matrix with its (i, i)-element equal to the sum of the

i-th row of matrix W : di =
∑N

j=1
wi,j . Later in the paper we demonstrate how

to construct the similarity matrix for a specific application.
Define an N ×K matrix Y as

Yik =

{

1, if i ∈ Vk, i.e., point i is labelled as a class k point,

0, otherwise.



We refer to each column Y∗k of matrix Y as a labeling function. Also define an
N ×K matrix F and call its columns F∗k classification functions. The general
idea of the graph-based semi-supervised learning is to find classification functions
so that on the one hand they will be close to the corresponding labeling function
and on the other hand they will change smoothly over the graph associated
with the similarity matrix. This general idea can be expressed by means of the
following optimization formulation [5]:

min
F

{

N
∑

i=1

N
∑

j=1

wij‖di
σ−1Fi∗ − dj

σ−1Fj∗‖
2 + µ

N
∑

i=1

di
2σ−1‖Fi∗ − Yi∗‖

2}, (1)

where µ is a regularization parameter. In fact, the parameter µ represents a
trade-off between the closeness of the classification function to the labeling func-
tion and its smoothness.

The first order optimality condition gives explicit expressions for the classi-
fication functions

F∗k =
µ

2 + µ

(

I −
2

2 + µ
D−σWDσ−1

)−1

Y∗k, k = 1, ...,K. (2)

Once the classification functions are obtained, the points are classified according
to the rule

Fik > Fik′ , ∀k′ 6= k ⇒ Point i is classified into class k.

The ties can be broken in arbitrary fashion. We would like to note that our
general scheme allows us to retrieve as particular cases:

– The Standard Laplacian method (σ = 1), [14]:

F∗k =
µ

2 + µ

(

I −
2

2 + µ
D−1W

)−1

Y∗k,

– The Normalized Laplacian method (σ = 1/2), [13]:

F∗k =
µ

2 + µ

(

I −
2

2 + µ
D−

1

2WD−
1

2

)−1

Y∗k,

– The PageRank based method (σ = 0), [3]:

F∗k =
µ

2 + µ

(

I −
2

2 + µ
WD−1

)−1

Y∗k.

In the present work we try to answer the questions: which kernel (or which
values of σ and µ) one needs to choose? and which points to label if we have some
freedom with respect to labelling points? It turns out that these questions are
not independent and one has to choose the kernel depending on the information
available while labelling the points.



3 General theoretical considerations

First, let us transform the expression (2) to a more convenient form.

F∗k =
µ

2 + µ

(

I −
2

2 + µ
D−σWDσ−1

)−1

Y∗k

=
µ

2 + µ

(

D−σ

(

I −
2

2 + µ
WD−1

)

Dσ

)−1

Y∗k

=
µ

2 + µ
D−σ

(

I −
2

2 + µ
WD−1

)−1

DσY∗k.

Denoting α = 2/(2 + µ), transposing and using the fact that W is symmetric,
we obtain

FT
∗k = (1− α)Y T

∗kD
σ
(

I − αD−1W
)−1

D−σ. (3)

Next we apply to the above expression the Blackwell series expansion [7, 12]

(1− α)
(

I − αD−1W
)−1

= 1π + (1− α)H + o(1− α), (4)

where π is the stationary distribution of the standard random walk (πD−1W =
π), 1 is a vector of ones of appropriate dimension and H = (I − D−1W +
1π)−1 − 1π is the deviation matrix. We note that since the similarity matrix
W is symmetric, the random walk governed by the transition matrix D−1W is
time-reversible and its stationary distribution is given in the explicit form

π = (1TD1)−11TD. (5)

Combining (3), (4) and (5), we can write

FT
∗k = (1TD1)−1Y T

∗kD
σ11TD1−σ + (1− α)Y T

∗kD
σHD−σ + o(1− α).

In particular, we have

Fik =
d1−σ
i

∑N

j=1
dj

∑

p∈Vk

dσp + (1− α)d−σ
i

∑

p∈Vk

dσpHpi + o(1− α), (6)

and, consequently, if
∑

p∈Vk
dσp 6=

∑

p∈V ′

k

dσp for some k and k′, in the case when

the parameter α is close to 1 (equivalently when µ is close to 0), then all points
will be classified into the classes with the largest value of

∑

p∈Vk
dσp . An inter-

esting exception is the case when σ = 0 and |Vk| = const(k). In such a case,
the zero order terms in the Blackwell expansions for the classification functions
are the same for all classes and we need to compare the first order terms. Re-
call [10] that there is a connection between the mean first passage time of the
standard random walk from node i to node j, mij , and the elements of the de-
viation matrix, namely, mij = (δij +Hjj −Hij)/πj , where δij is the Kronecker



delta. If σ = 0 and |Vk| = const(k), substituting (6) into Fik − Fik′ > 0 with
Hpi = Hii − πimpi for i 6= p results in the condition

∑

s∈V
k′

msi >
∑

p∈Vk

mpi.

This condition has a clear probabilistic interpretation: point i is classified into
class k if the sum of mean passage times from the labelled points to point i is
smallest for class k over all classes.

In addition to the standard random walk, it will also be helpful to consider
a random walk with absorption {St ∈ {1, ..., N}, t = 0, 1, ...}. At each step
with probability α the random walk chooses next node among its neighbours
uniformly and with probability 1− α goes into the absorbing state. The proba-
bilities of visiting nodes before absorption given the random walk starts at node
j, S0 = j, are provided by the distribution

ppr(j) = (1− α)eTj
(

I − αD−1W
)−1

, (7)

which is the personalized PageRank vector with respect to seed node j [9]. Here
ej denotes the j-th element of the standard basis.

Now we are ready to formulate the first result explaining the classification
by the semi-supervised learning methods.

Theorem 1 Data point i is classified by the generalized semi-supervised learning

method (1) into class k, if
∑

p∈Vk

dσpqpi >
∑

s∈V
k′

dσs qsi, ∀k′ 6= k, (8)

where qpi is the probability of reaching state i before absorption if S0 = p.

Proof: Since Y T
∗k =

∑

p∈Vk
eTp and Fik = FT

∗kei, from (3) we obtain

Fik =
∑

p∈Vk

dσp (1− α)eTp
(

I − αD−1W
)−1

eid
−σ
i =

1

dσi

∑

p∈Vk

dσpppri(p). (9)

It has been shown in [6] that

(

I − αD−1W
)−1

pi
= qpi

(

I − αD−1W
)−1

ii
,

where (·)−1

pi denotes the (p, i)-element of the inverse matrix. Multiplying the
above equation by (1− α) yields

ppri(p) = qpippri(i). (10)

Thus, using relation (10) and equation (9), we conclude that for point i to be
classified into class k we need

Fik − Fik′ =
ppri(i)

dσi





∑

p∈Vk

dσpqpi −
∑

s∈V
k′

dσs qsi



 > 0, ∀k′ 6= k,



or, equivalently (8). ut

Let us discuss the implications of Theorem 1. First, it is very interesting to
observe that, using (8), one can decouple the effects from the choice of α and σ. A
change in the value of α only influences the factor qpi and a change in the value of
σ only affects the factor dσp . Second, the results of Theorem 1 are consistent with
the conclusions obtained with the help of the Blackwell expansion. When α goes
to one, qpi goes to one and indeed classes with the largest value of

∑

p∈Vk
dσp

attract all points. Thus, the case of σ = 0 and |Vk| = const(k) is especially
interesting. In this case there is stability of classification even when α is close
to one. Third, if σ = 0 and |Vk| = const(k), one can expect that smaller classes
will attract a larger number of “border points” than larger classes. Suppose that
class k is smaller than class k′. Then, it is natural to expect that qpi > qsi with
p ∈ Vk and s ∈ Vk′ . This observation will be confirmed by examples in the next
section. This effect, if needed, can be compensated by increasing σ away from
zero. And finally, fourth, we have the following rather surprising conclusion.

Corollary 1 If labelled points have the same degree (dp = d, p ∈ Vk, k =
1, ...,K), all considered semi-supervised learning methods provide the same clas-

sification.

Now with the help of the following lemma, we can obtain another alternative
condition for semi-supervised learning classification.

Lemma 1 If the graph is undirected (WT = W ), then the following relation

holds

pprj(i) =
dj
di

ppri(j). (11)

Proof: We can rewrite (7) as follows

ppr(i) = (1− α)eTi [D − αW ]−1D,

and hence,

ppr(i)D−1 = (1 − α)eTi [D − αW ]−1.

Since matrix W is symmetric, [D − αW ]−1 is also symmetric and we have

[ppr(i)D−1]j = (1−α)eTi [D−αW ]−1ej = (1−α)eTj [D−αW ]−1ei = [ppr(j)D−1]i.

Thus, pprj(i)/dj = ppri(j)/di, which completes the proof. ut

Theorem 2 Data point i is classified by the generalized semi-supervised learning

method (1) into class k, if

∑

p∈Vk

pprp(i)

d1−σ
p

>
∑

s∈V
k′

pprs(i)

d1−σ
s

, ∀k′ 6= k. (12)



Proof: Follows from equation (9) and Lemma 1. ut
We note that in the statement of Theorem 2 the “reversed” PageRank is

used instead of the PageRank in (9). In particular, this provides another inter-
esting interpretation of the PageRank based method. If we set σ = 0 in (12),
it appears that we need to compare the reversed PageRanks divided by the de-
grees of the labelled points. As already mentioned in the Introduction, if one
considers the sweeps from [1] as classification functions, then the degrees of the
nodes to be classified are cancelled in the sweeps. However, if we now view the
PageRank method in terms of the reversed PageRank, the division by the de-
gree of the PageRank values remains essential. This provides another interesting
interpretation of sweeps defined in [1].

4 Evaluation

Let us illustrate the theoretical results with the help of a characteristic network
example, clustered preferential attachment graph and application to P2P content
classification.
Characteristic network example: Let us first consider an analytically
tractable network example. Despite its simplicity, it clearly demonstrates ma-
jor properties of graph-based semi-supervised learning methods. There are two
classes, A and B with |A| = N1 and |B| = N2. Each class is represented by a
star network. The two classes are connected by a link connecting two leaves. The
graph of the model is given in Figure 2(a).

The central nodes with indices 1 and N1 + N2 are the obvious choice for
labelled points. In order to determine the classification functions analytically,
we need to calculate the matrix Z = [I − αD−1W ]−1. It is easier to calculate
the symmetric matrix C = [D − αW ]−1. Once the matrix C is calculated, we
can immediately retrieve the elements of matrix Z by the formula

Zij = Cijdj . (13)

Thus we need to solve a system of equations [D− αW ]C∗,j = ej . Since we have
chosen the central nodes as labelled points and due to the symmetry of the
graph, we actually need to solve only one system for j = 1 of six equations

(N1 − 1)C1,1 − (N1 − 2)αC2,1 − αCN1,1 = 1
C2,1 = αC1,1

CN1−1,1 = αC1,1

−αC1,1 + 2CN1,1 − αCN1+1,1 = 0
−αCN1,1 + 2CN1+1,1 − αCN1+N2,1 = 0

CN1+2,1 = αCN1+N2,1

−αCN1+1,1 − (N2 − 2)αCN1+2,1 + (N2 − 1)CN1+N2,1 = 0

Solving the above system, in particular, we obtain

CN1,1 =
α(2N2 − 2− α2(2N2 − 3))

R
, (14)



CN1+1,1 =
α2(N2 − 1− α2(N2 − 2))

R
, (15)

with
R = (1− α2)(−2α4N2 − 2α4N1 + 4α4 + α4N2N1 − 9α2

+7α2N2 + 7α2N1 − 5N2α
2N1 + 4N2N1 + 4− 4N1 − 4N2).

Consider first the PageRank based method (σ = 0). According to the theoretical
consideration, it is very likely that some points will be misclassified into a smaller
class. Suppose that N1 < N2 and consider border points. The point N1 + 1 will
be classified into class B by the PageRank based method if and only if

Z1,N1+1

ZN1+N2,N1+1

=
C1,N1+1

CN1+N2,N1+1

< 1.

Using slightly more convenient notation ni = Ni− 1, i = 1, 2, we can rewrite the
above condition as follows:

α(n2 − α2(n2 − 1))

2n1 − α2(2n1 − 1)
< 1,

or, equivalently, (1− n2)α
2 + (2n1 − n2)α+ 2n1 > 0. If 2n1 + 1 > n2, the above

inequality holds for any α ∈ (0, 1). And consequently, for any α ∈ (0, 1) the point
N1+1 is classified into class B. However, if 2n1+1 < n2 (class A is significantly
smaller than class B), for α ∈ (ᾱ, 1) point N1 + 1 will be erroneously classified
into class A. The expression for ᾱ is given by

ᾱ =
−(n2 − 2n1) +

√

(2n1 + n2)2 − 8n1

2(n2 − 1)
.

If we fix the value of n1 and let n2 go to infinity, we get ᾱ → 0. Thus, if the sizes
of A and B are very different, the point N1 + 1 will be misclassified for nearly
all values of the parameter α.

Now we analyse the performance of the Standard Laplacian method (σ =
1). According to the general theoretical considerations, the Standard Laplacian
method has a tendency to classify more points into a larger class. We consider
the classification of the point with index N1 (still assuming N1 < N2). It will be
classified correctly if and only if

ZN1,1

ZN1,N1+N2

> 1,

or, equivalently,
n1(2n2 − α2(2n2 − 1))

n2α(n1 − α2(n1 − 1))
> 1

which results in the following cubic inequality

α3n2(n1 − 1)− α2n1(2n2 − 1)− αn2n1 + 2n2n1 > 0.



Consider a linear scaling n2 = Kn1,K > 1. Then, the above inequality can be
rewritten in the form

α3

(

1−
1

n1

)

− α2

(

2−
1

Kn1

)

− α+ 2 > 0.

This inequality can be regarded as a regularly perturbed inequality with respect
to 1/n1 (see e.g., [2]). If we let n1 go to infinity, the limiting inequality can be
easily factored, i.e.,(1− α)(1 + α)(2− α) > 0. Since the perturbation is regular,
when n1 varies in the vicinity of infinity the roots change slightly. In particular,
using the implicit function theorem, we can find that the root near 1 changes as
follows:

¯̄α = 1−
K − 1

2K

1

n1

+ o

(

1

n1

)

.

In particular, this means that if the sizes of classes are large, the Standard
Laplacian method performs well for nearly all values of α from the interval
(0, 1). This is in contrast with the PageRank based method.

We summarize and illustrate various considered cases by means of numerical
examples presented in Table 1. Our main conclusion from this characteristic
network model is that the PageRank based method is a safe choice as it can
misclassify at most one point in this particular example whereas with α close to
one the Standard Laplacian method can classify all points in the largest class. On
the other hand if parameter α is chosen appropriately, the Standard Laplacian
method gives a perfect classification for nearly all values of α, even when classes
have many points and very different sizes.

N1 N2 PR SL

20 100 vN1+1 7→ A if α ≥ ᾱ = 0.3849 vN1
7→ B if α ≥ ¯̄α = 0.9803, A 7→ B if α ≥ 0.9931

20 200 vN1+1 7→ A if α ≥ ᾱ = 0.1911 vN1
7→ B if α ≥ ¯̄α = 0.9780, A 7→ B if α ≥ 0.9923

200 2000 vN1+1 7→ A if α ≥ ᾱ = 0.1991 vN1
7→ B if α ≥ ¯̄α = 0.9978, A 7→ B if α ≥ 0.9992

Table 1. Comparison between different methods in terms of classification errors

Clustered Preferential Attachment model: Let us now consider a synthetic
graph generated according to the clustered preferential attachment model. Our
model has 5 unbalanced classes (1500 / 240 / 120 / 100 / 50). Once a node is
generated, it has two links which it attaches independently with probability 0.98
within its class and with probability 0.02 outside its class. In both cases a link
is attached to a node with probability proportional to the number of existing
links. First, we test the case of random labelled points. Five labelled points were
chosen randomly for each class and results are averaged over 100 realizations. The
precision of classification for various values of σ and α is given in Figure 1(a).
Then, in each class we have chosen 5 labelled points with maximal degrees.
The results of classification are given in Figure 1(b). We obtain conclusions
consistent with the characteristic network model. If no information is available



for assignment of the labelled points, the PageRank method is a safe choice. If
one can choose labelled points with large degrees, it is better to use the Standard
Laplacian method. There could be a significant gain in precision (roughly from
70% to 95%). It can be observed that the Standard Laplacian method is not too
sensitive to the value of α if we stay well away from α = 1.
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(b) Max Degree Labelled Points

Fig. 1. Clustered Preferential Attachment Model: Precision of classification.

Application to P2P content classification: Finally, we would like to con-
clude the illustration with an application to P2P content classification. For lack
of space, here we just very briefly outline the experiment and the results. An
interested reader can find more details about this application in [4]. Using the
technology developed in [11] we had an access to all world-wide Torrents man-
aged by BitTorrents protocol. In particular, within one week we could observe
200413 different content files. Each file is a data point and we create an edge
between two data points i and j if the same user downloaded two files i and
j. By such a construction, graph has 50726946 edges. Consider an example of
classification of the content by language (e.g., language of a movie or language of
a book). Fortunately, a big portion of the content is tagged, so we can compare
with the ground truth for some content. We have chosen to classify the content
according to five major languages (English, French, Italian, Japanese, Spanish).
For each language we have chosen 50 labelled points with the maximal degree
within the ground truth points. Since we do not have ground truth for all the
points, it is assumed that choosing random points from the ground truth will not
be representative (popular content is more likely to be tagged). The precision of
classification for σ = 0.0; 0.5; 1.0 and various values of α is given in Figure 2(b).
The figure is consistent with Figure 1(b). In Tables 2 and 3 we provide cross-
validation matrices for the Standard Laplacian and PageRank based methods
with α = 0.8. We can observe that as in the previous examples, the PageR-



ank method pulls elements from the largest class to the smaller classes and the
Standard Laplacian method does the opposite. Thus, in the case of unbalanced
classification, by choosing σ, one admits a trade off between precision and recall
for smaller classes.
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(a) Characteristic network model.
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(b) P2P Content Classification.

Fig. 2.

Classified as→ En Fr It Jp Sp

English 36097 22 134 53 159
French 903 909 7 1 4
Italian 308 1 2123 1 17

Japanese 583 7 4 120 6
Spanish 662 1 14 0 1804

Table 2. σ = 1.0, Precision 93.43%

Classified as→ En Fr It Jp Sp

English 22276 3812 3095 6233 1049
French 87 1618 38 63 18
Italian 24 27 2329 40 30

Japanese 45 43 25 568 39
Spanish 124 78 83 52 2144

Table 3. σ = 0.0, precision 65.85%

5 Conclusion, future research and acknowledgements

Using random walk theory, we provide insights about different graph-based semi-
supervised learning methods. We also suggest the following recommendations.
If possible, choose labelled points with large degrees. Then, adopt the Standard
Laplacian method with α in the upper-middle range of the interval (0, 1). If find-
ing large degree points is not feasible or recall is more important than precision
for small classes, choose the PageRank based method. In our near future research
we plan to study in more detail the choice of the regularization parameter.

This research is funded by Inria Alcatel-Lucent Joint Lab. We also would
like to thank P.G. Howlett, J.K. Sreedharan and anonymous reviewers whose
comments helped to improve the presentation of the results.
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5. K. Avrachenkov, P. Gonçalves, A. Mishenin, and M. Sokol. Generalized optimiza-
tion framework for graph-based semi-supervised learning. In Proceedings of SIAM
Conference on Data Mining (SDM’2012), 9 pages, 2012.

6. K. Avrachenkov and N. Litvak. The effect of new links on google pagerank. Stochas-
tic Models, 22(2), 2006.

7. D. Blackwell. Discrete dynamic programming. Ann. Math. Statist., 33:719–726,
1962.

8. Z. Guo, Z. Zhang, E.P. Xing, and C. Faloutsos. Semi-supervised learning based on
semiparametric regularization. In SDM’08 Proceedings, pages 132–142, 2008.

9. T.H. Haveliwala. Topic-sensitive pagerank. In Proceedings of the 11th International
Conference on World Wide Web (WWW’02), pages 517–526, 2002.

10. J.G. Kemeny and J.L. Snell. Finite Markov chains. Springer, 1st edition, 1976.
11. S. Le Blond, A. Legout, F. Lefessant, W. Dabbous, and M.A. Kaafar. Spying

the world from your laptop: identifying and profiling content providers and big
downloaders in bittorrent. In Proceedings of the 3rd USENIX conference on Large-
scale exploits and emergent threats: botnets, spyware, worms, and more, LEET’10,
pages 4–4, Berkeley, CA, USA, 2010. USENIX Association.

12. M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

13. D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, and B. Schölkopf. Learning
with local and global consistency. In Advances in Neural Information Processing
Systems 16, pages 321–328. MIT Press, 2004.

14. D. Zhou and C.J.C. Burges. Spectral clustering and transductive learning with
multiple views. In Proceedings of the 24th international conference on Machine
learning, ICML ’07, pages 1159–1166. ACM, 2007.

15. D. Zhou and B. Schölkopf. A regularization framework for learning from graph
data. In Proceedings of the Workshop on Statistical Relational Learning at Twenty-
first International Conference on Machine Learning, (ICML’2004), Canada, 6
pages, 2004.

16. X. Zhu. Semi-supervised learning literature survey, technical report 1530, depart-
ment of computer sciences, university of wisconsin, madison, 2005.

17. X. Zhu and A.B. Goldberg. Introduction to semi-supervised learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 3(1):1–130, 2009.


