Probing
-
An optimal {$O(n \log n)$} algorithm for contour reconstruction from rays .
P. D. Alevizos and J.-D. Boissonnat and M. Yvinec
Proceedings of 3rd Annu. ACM Sympos. Comput. Geom, 1987, 162--170.
-
Probing non-convex polygons
P. D. Alevizos and J.-D. Boissonnat and M. Yvinec
Proc. 6th IEEE Internat. Conf. Robot. Autom, 1989, 202--208.
-
Non-convex contour reconstruction
P. D. Alevizos and J.-D. Boissonnat and M. Yvinec
J. Symbolic Comput., 10, 225--252, 1990.
-
Probing a scene of non-convex polyhedra
J.-D. Boissonnat and M. Yvinec
Proc. 5th Annu. ACM Sympos. Comput. Geom.<\em>, 1989, 237--246
Algorithmica <\em>, 8, 1992, 321--342.
Randomized Algorithms
-
Applications of random sampling to on-line algorithms in
computational geometry.
J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec.
Discrete Comput. Geom.
, 8:51-71, 1992.
Research Report 1285, INRIA, BP93, 06902 Sophia-Antipolis, France,
1992.
-
Dynamic location in an arrangement of line segments in the plane
O. Devillers and M. Teillaud and M. Yvinec
Algorithms Rev.<\em>,2 , 1992, 89--103
Research Report 1558, INRIA, BP93, 06902 Sophia-Antipolis, France,
1992.
-
Remembering conflicts in history yields dynamic algorithms
K. Dobrindt and M. Yvinec
Proc. 4th Annu. Internat. Sympos. Algorithms Comput. (ISAAC 93)<\em>,
Lecture Notes in Computer Science, 762, Springer-Verlag, 1993, 21--30
Miscelleanous
-
Voronoi Diagrams in Higher Dimensions Under Certain Polyhedra Distance Functions
J.-D. Boissonnat and M. Sharir and B. Tagansky and M. Yvinec
Proc. 11th Annu. ACM Sympos. Comput. Geom.<\em>, 1995.
-
Evaluating signs of determinants using single-precision arithmetic.
F. Avnaim, J-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec.
Research Report 2306, INRIA, BP93, 06902 Sophia-Antipolis, France,
1994.
-
Evaluation of a new method to compute signs of determinants
F. Avnaim and J.-D. Boissonnat and O. Devillers and F. Preparata and M. Yvinec
Communication at the 11th Annu. ACM Sympos. Comput. Geom., 1995.
-
An algorithm for constructing the convex hull of a set of spheres in
dimension d .
J-D. Boissonnat, A. Cérézo, O. Devillers, J. Duquesne, and M. Yvinec.
Proc. 4th Canad. Conf. Comput. Geom, 1992, 269--273.
To appear in Comput. Geometry~: Theory and Applications
Research Report 2080, INRIA, BP93, 06902 Sophia-Antipolis, France, 1993.
-
Convex tours of bounded curvature.
J-D. Boissonnat, J. Czyzowicz, O. Devillers, J-M. Robert, and M. Yvinec.
Proc. 2nd Annu. European Sympos. Algorithms (ESA '94), 1994.
Research Report 2375, INRIA, BP93, 06902 Sophia-Antipolis, France, 1994.
-
Circular separability of polygon.
J-D. Boissonnat, J. Czyzowicz, O. Devillers, and M. Yvinec.
Proc. 6th ACM-SIAM Sympos. Discrete Algorithms (SODA), 1995.
Research Report 2406, INRIA, BP93, 06902 Sophia-Antipolis, France, 1994.
-
Computation of the axial view of a set of isothetic parallelepipeds
F. P. Preparata and J. S. Vitter and M. Yvinec
ACM Trans. Graph, 9, 1990, 278--300
-
Output-sensitive generation of the perspective view of isothetic parallelepipeds
F. P. Preparata and J. S. Vitter and M. Yvinec
Proc. 2nd Scand. Workshop Algorithm Theory,
Lecture Notes in Computer Science, 447, Springer-Verlag, 1990, 71--84
Algorithmica, 8, 1992, 257--283
-
Triangulation in {2D} and {3D} Space (Survey paper)
M. Yvinec
Geometry and Robotics Workshop Proceedings, Toulouse France, 26--28 May 1988 Lecture Notes in Computer Science, 391, Springer-Verlag, 1989, 275--291