Online Submission ID: 0

TimeClock - Flexible Animation Control in X3D

Abstract

In this paper we propose an alternative approach to create anima-
tions in X3D. This approach allows extended flexibility to control
animations during run-time. Among the extended features, it is pos-
sible to: control the speed of the animation; play the animation
backwards; repeat any specific time interval of the animation and
access any key-frame instantly. In order to illustrate this we pro-
pose a new node called TimeClock node. This node implements
the same functionalities of a TimeSensor node but with the ability
to independently set the time frame, overcoming current X3D lim-
itations in the time model specification for creating animation with
interpolators. We think this approach is useful for both animators,
developers and users: animators can carefully analyze on the fly
their work, users can easily control an animation using a DVD like
interface and developers do not need to worry about creating sev-
eral different interpolators for the same animation. We present our
current results along with some examples of usage.

CR Categories: [.3.6 [Methodology and Techniques]:
Languages—StandardsInteraction Techniques

[.3.7 [Three-Dimensional Graphics and Realism]: Animation—
Virtual reality

Keywords: animation control, X3D, VRML, key-frame anima-
tion, interaction

1 Introduction

The combined use of interpolators, timesensors and route nodes in
X3D allow animations to be created and used in Virtual Environ-
ments. However, once these animations are started, the only level
of interaction provided is the start/pause and stop paradigm. It is
not possible to randomly access a specific frame or jump to a spe-
cific point in the interpolation. Also, it is not possible to play the
animation backwards, from any specific point. The speed in which
the animations are played are fixed too (at design time) so it is not
possible to play them in any desired speed during run-time. This pa-
per proposes an alternative node to the TimeSensor node as a way
to overcome these limitations.

This node provides a flexible and interactive scenario at run-time,
allowing the user to freely control an animation (play, pause, for-
ward, fast forward, rewind, fast rewind, access any frame). The
idea behind this is to overcome the limitation of X3D’s time model
by providing an alternate TimeSensor node that we call TimeClock
node. The TimeClock node mimics the same functionalities of the
TimeSensor node with added features. Since it runs independently
of the regular “world time”, features as variable speed of playback,
backwards playback and random access to any frame of the anima-
tion are available.

These features can be used in different scenarios and applications
such as: only one interpolator is needed for animations that have
an object going back and forth on the same path; animations’ speed
can be interactively changed and visualized at run time; specific
portions of animations can be carefully inspected without the need
to introduce separate interpolators; an X3D interactive scene can be
played with the same features as a DVD movie.

2 Motivation

Over the years the X3D standard has been evolving into a highly
interactive 3D environment. Lots of features have been added since
the introduction of VRML, which opened a wide range of possibil-
ities for applications and uses. The idea of bringing 3D everywhere
is bringing more and more users to adopt X3D. However, building
interactive animations in X3D are not a fluid process. For every
single change in an objects position, color or other attribute, one
interpolator node must be created. Even if the animation consists
of a single object going back and forth on an unique path, two in-
terpolators are needed.

Moreover, each animation has a cycle time it has to be followed.
Currently it is not possible to access a specific frame (or time) dur-
ing the animation cycle at run-time without using complex script-
ing, which are time consuming (implementation and debugging) for
developers and not easy for regular users.

An animation in X3D is made using the nodes inherited from the
abstract X3DInterpolatorNode. These nodes usually receive
an event from a TimeSensor node in order to performe the inter-
polation (animation). According to the definition, the TimeSensor
node generates events as time passes, which means that an anima-
tion is drived continously by feeding the set_fraction fields
of the interpolators through pre-defined routes. This restricts the
way animations are built. For instance, in the case of animating
a notebook being opened and closed, there must be two different
interpolators associated with opening and closing actions. Each of
these interpolators contain almost exactly the same path (keys and
key-values) but they are reversed from one another.

Another example that shows the limitation for building and using
animations today is in the case when the user wants to play ran-
dom portions of it, chosen at run-time. For instance, when using
X3D animations in a biology class, it is up to the students to decide
when to repeat a specific portion of an animation, based on their
doubts. Unless this doubts were predicted at design time, it will not
be possible to play just that specific portion of the animation.

Usually, when authors need to make this option available, a pre-
defined set of interpolators must be programmed at design time,
limiting the interactivity of the animation to this set. This con-
tributes to user frustration because there is no flexibility when
choosing what you want to see. Other authors don’t make this op-
tion available, leading to more user frustration: in order to watch an
specific portion of an animation the user would have to wait until
the animation gets to that specific point. In a worst case scenario,
the user would have to wait the whole animation to see the last few
moments of it.

With these features in mind, the use of X3D for authoring and play-
ing interactive 3D movies would be effectively used. The features
are all available: play, pause, stop, fast forward, fast rewind, access

Online Submission ID: 0

instant ¢ of the "movie”. All of this with the flexibility of watching
the scene from every possible angle imaginable.

From the user’s point of view, flexibility for accessing and playing
an animation is important to understand how and what information
that animation is transmitting to him. A professor teaching a class
cannot predict where the students will have doubts to program dif-
ferent interpolators at that point. A programmer animating a motor
engine running will have to define a lot more interpolators for ob-
jects that goes back and forth in an specific and fixed path.

Choosing at run time the speed an animation will play, at any point,
or playing it backwards, allows added flexibility for both users and
programmers. Accessing and playing repeatedly specific portions
of it, without having to pre-define changes at design time, stim-
ulates developers and users by not restricting them to only a few
actions that can be performed.

The intention of this research work is to provide more flexibility to
create and interact with animations as well as facilitating the cre-
ativity process of animators, by making them concentrate on what
is important. We try to accomplish these by providing an alternate
approach to the TimeSensor node.

3 Previous Work

Literature on this subject have not been extensively found although
it seems to be a very desirable feature for X3D. Most of the work
found is restricted to simple X3D examples available at the world
wide web.

Some of these examples have been done by Bruztman et
al.[Brutzman 2006] and made available to the public at the Sav-
age authoring tools. Some of them try to simulate a DVD player
interface. However, none of them achieved the desired features de-
scribed in this paper. Usually behind the menu GUI, there is a poor
X3D node interface with a hugh set of scripts and programming
supporting it, making it difficult to just use it in any scene. Unfor-
tunately we could not successfully test it with either one of the stan-
dard players available such as BS Contact [Bitmanagement 2006],
Octaga [Octaga 2006], Flux [Medial Machines 2006] or Cosmo-
Player [Karmanaut 2006].

Another approach that simulates one of the desired features, the
backwards playback, can be partially achieved with a combina-
tion of interpolators where the key values are cleverly defined
[LightHouse 3D 2006]. This is accomplished by defining a scalar
interpolator with the key value keyValue = [0,1,0]. These keyVal-
ues generates value_changed events ranging from O to 1 and
then back to 0 again, completing the loop. This scalar interpola-
tor is then used to feed the others interpolators used for animation,
simulating a TimeSensor node going back and forth. However, this
implementation is limited to a continuous playback: It is not possi-
ble to play an specific portion of the animation nor to alter between
forward playback and backward playback at run-time, with differ-
ent speeds.

Very interesting work have been done by Stocker [Stocker 2006].
Using filters theory, stocker proposed a set of nodes that smoothly
creates transitions from one value to another. The proposed features
improves the quality of the interpolation algorithms over those al-
ready included in the X3D standard (linear interpolation). However
it does not introduce any time controlling related characteristic. In
the example of closing and opening a notebook, some script pro-
gramming are still needed to switch between destination values.
However, If used in conjunction with our set of nodes, no program-
ming would be necessary, resulting in a better and clear design.

4 Proposed Node

The most common approach for creating animations within the
X3D standard goes through the TimeSensor node. The suggestion
of a more flexible node for controlling animations over time is nec-
essary due to the limitations associated with the TimeSensor event
generation model.

The TimeClock node intends to provide a new model for driving
animations over time. With some new fields added to its interface,
despite of also generating events as time passes, the user is able to
control how these events are going to be generated. Although it’s
not possible to set how frequently these events are generated, it’s
desired to have more control over their generation and evaluation
over the time.

Actually, the TimeSensor has a very simple event generation
model. The most important event thrown by this node is
the fraction_changed event. The fraction_changed is
thrown for every simulation tick, with values representing the frac-
tion of the cyclelnterval time already elapsed. The TimeClock node
is able to control the behavior of the fraction_changed event
generation, thus, enabling the user to have a more flexibel control
over their animations.

4.1 TimeClock Node

According to the definition of X3D’s Time component
[Web 3D Consortium 2006], browsers that conform to the
specification generates fraction_changed events for Time-
Sensors nodes as time passes. The time stated here is the computers
time relative to 00 : 00 : 00 GMT January 1%, 1970. All events are
generated with a timestamp ¢, and regardless of what happens, any
processing ocurring to timestamp ¢ will generate an event with a
timestamp greater than 7. Here is the simple algorithm that contains
the formula for calculating the fraction_changed field based
on this definition:
time < now
temp = (now — startTime) /cyclelnterval
f = fractionalPartOf (temp)
if (f = 0)AND(now < startTime) then
fraction_changed = 1.0
else
fraction_changed = f

where now represents the time at the current simulation tick.

So, by definition, it is not possible to have the
fraction_.changed field with values smaller than the
ones already processed. This due to the fact that the
fraction_changed field is calculated with the elapsed
time from the beggining of the cycle, using the system clock as its
reference.

Each TimeClock node instance actually implements its own clock,
that runs parallel to the system clock. This implementation allows
the user to setup the speed and the direction of its built-in clock,
thus chaging the behavior of the fraction_changed event gen-
eration. Among other features, the user is able to configure the
speed of the clock and if the time should go forth or back.

Although the TimeClock has a built-in clock, it’s important
to emphasize that every event generated by the node, mainly
those associated with the fields inherited by the abstract node
X3DTimeDependentNode like startTime, stopTime, pauseTime
and resumeTime receive and generate values contaning the time
value for the system clock and not the value of the built-in clock.

Online Submission ID: 0

It’s also important to note that the time value of the built-in
clock is not used for event input/output or event timestamp val-
ues, it’s only used for the purpose of evaluating the value of the
fraction_changed field.

4.2 Interface Description

The TimeClock node is designed to work exactly the same as the
TimeSensor node. The TimeClock nodes possess the same fields
as the TimeSensor, carrying the same functionalities. Thus, if you
simple substitute a TimeSensor node by a TimeClock node, the an-
imation will continue to work as it have been previously working.

However further fields have been added to the TimeClock when
compared to the TimeSensor node. These fields add the desired
flexibility of ”controlling time”.

These are the fields and inheritance of a TimeClock node:

TimeClock : X3DTimeDependentNode, X3DSensorNode {
SFTime [in,out] cyclelnterval 1 (0,0)
SFBool [in, out] enabled TRUE
SFBool [in,out] forward TRUE
SFFloat [in,out] fraction 0.0
SFBool [in,out] loop FALSE
SFNode [in, out] metadata NULL
SFTime [in,out] pauseTime 0 (—o0,00)
SFFloat [in,out] pitch 1.0
SFTime [in,out] resumeTime 0 (—o0,00)
SFTime [in,out] startTime 0 (—o0,00)
SFTime [in,out] stopTime 0 (—o0,00)
SFTime [out] cycleTime
SFTime [out] elapsedTime
SFBool [out] isActive
SFBool [out] isPaused
SFTime [out] time

A TimeClock node has the following extra fields:
e SFBool [in,out] pitch
e SFFloat [in,out] forward
e SFTime [in,out] fraction

The pitch inputOutput field specifies a multiplicative factor
for the speed of the built-in clock node. It determinates the
speed that the TimeClock node will take to run through all the
cyclelInterval time. Valid values for this field are float num-
bers greater than zero. The default speed is pitch = 1, which will
play the animation according to the browser’s current capability of
playing that animation. Increasing this number to 2 will make the
animation play twice as faster as the default, thus taking half of the
time to run through all the cycleInterval time.

The same effect available through the pitch field can be achieved
by changing the cycleInterval value of a TimeSensor node.
However, the pitch field can be used to synchronize with other
audio nodes like AudioClip, thus allowing the sound to always fol-
low the animation speed and time.

The forward inputOutput field indicates the direction that the
built-in clock will run through the cycleInterval time. If
forward field holds the TRUE value, the clock will go forth,
from the current time to the end of the cycle and, therefore, the
fraction_changed event will always throw increasing values,
from 0.0 to 1.0. If forward field holds the FALSE value, the
clock will go back, from the current position to the beginning of

the cycle, therefore, the fraction_changed event will always
throw decreasing values, from 1.0 to 0.0. When a set_forward
event is received while the TimeClock node is paused or stoped, the
TimeClock node will resume from the current time in the direction
specified by the field.

Actually, the forward field can be used as if it were the ”sign” of
the pitch field. If forward is FALSE then pitch will be used
as if it were negative.

The cycleTime outputOnly field event is generated with system
clock time at the beginning of the current cyle. Asthe cycleTime
field is frequently used for synchronization purposes such as sound
with animation, It will only be generated at the beginning of ev-
ery cycle if the forward is with the TRUE value. If the built-
in clock reaches the beginning of the cycle going backward, the
cycleTime event is not generated.

The fraction inputOutput field is responsible for holding the
percentage of the cycle already completed by the built-in clock. The
improved feature over the TimeSensor node is that instead of being
an outputOnly field, the fraction field has input/output capabil-
ities. The fraction_changed event can also be used to feed
the interpolators, but besides of that, the user is also able to use the
set_fraction event to change the current position of the built-
in clock in the cycle. This is a key feature of the TimeClock node:
it allows access to any instant of time over the interval determined
by the cycleInterval field.

The fields inherited by the abstract nodes:
X3DTimeDependentNode and X3DSensorNode works
exactly the same way. For instance, the t ime outputOnly event is
generated with absolute times of the system clock for each tick.

4.3 Implementation

The TimeClock node has a function clock_tick (.) which is
evaluated each simulation tick. This function is responsible for up-
dating the built-in clock and generating the main events for each
tick. The operation of the built-in clock can be represented with a
time line that has the range determined by the cycleInterval
field, in such a way that the time associated with the built-in clock
is always in the range of [0,cycleIntervall.

Our implementation of the TimeClock node considers the instanti-
ation of a TimeSensor node inside its Prototype declaration. This
approach tremendously facilitates the TimeClock implementation
in such a way that every field inherited by the abastract node
X3DTimeDependentNode is directly connected to the Time-
Sensor instance. The TimeSensor instance is acessed through the
t imer variable inside the script implementation.

As X3D browsers don’t necessarily provide a constant frame rate,
the function clock_tick (.) is not called on a regular basis, so
the first thing it does when entered is evaluate the elapsed time since
the last clock tick. This value is stored at the elapsed variable
and it is further used to calculate the new time of the built-in clock.
For details on implementation and example files, see [TimeClock
2006].

function clock_tick(now) {

elapsed = now - lastTick;

The current time of the built-in clock is stored at the
timeCycleInterval variable and its basically used to gener-
ate the fraction_changed event. However, the forward field

Online Submission ID: 0

and the pitch field must be properly taken into account to cor-
rectly update the timeCycleInterval value. The code below
updates the built-in clock for a TRUE value of the forward field.

timeCycleInterval += (pitch % elapsed);
if (timeCyclelInterval > cycleInterval) {
if (loop) {
timeCycleInterval = 0.0;
cycleTime = now;
}
else {
timeCycleInterval = cyclelnterval;
timer.stopTime = now;
return;

}

With the example above, its not difficult to consider the case for
a FALSE value of the forward field. Among other things, it’s
necessary to decrement the value of the timeCycleInterval
considering a negative sign for the pitch field and do the appro-
prite checkings when the timeCycleInterval reaches zero.
It’s also important to note that its not recommended to generate
the cycleTime event in the case of having the forward field as
FALSE.

After the update, the output events must be generated with the sim-
ple instructions below:

fraction = timeCyclelInterval / cyclelnterval;
time = now;

In this example, the fraction inputOutput field should be con-
nected to fraction_changed field in the prototype declaration
of the TimeClock node.

5 Results and Applications

All the nodes developed for this paper, including the TimeClock
node, are available at [TimeClock 2006]. They were developed and
tested using the BS Contact X3D/VRML player, from Bitmanage-
ment [Bitmanagement 2006].

The TimeClock node was also tested in already existent X3D files.
Inserting the extern prototype declaration in the beginning of the
file and simply substituting the TimeSensor node by a TimeClock
node worked well: the X3D files behaved exactly the same. The
TimeClock was also used to enrich common animations available
over the internet, like simple doors or windows that open and close,
elevators that goes up and down, and the like.

Most simple animations available over the internet happens to go
throuth all the animation cycle with a single user interaction. For
instance, the simple example of a door open/close is normaly de-
veloped with only one interpolator (the simplest case), and in this
scenario, the user is able to watch the door opening and just af-
ter closing, by issuing only one click. To allow the user to open
the door with only one click and further close the door with an-
other, the designer would probably need two interpolators and also
some more work for event routing. This can be easily done with the
forward field available in the TimeClock node.

The TimeClock node itself provides enough functionalities to ac-
complish the features proposed above, as going forth and back,
choosing the current time at run-time and setting the speed of the
built-in clock. But in order to make these features easily accessi-
ble to a wide variety of applications, a simple DVD like interface
was developed following the X3D standard. This interface can be

used as a X3D node through the extern prototype declaration and
it is called the TimeMenu node. The TimeMenu node encapsulates
a TimeClock node instance and allows the user to have full control
over a specified animation. The TimeMenu can be easily config-
ured as a HUD (Head Up Display), to be constantly available to the
user.

The TimeMenu node displays a pretty easy user interface that can
be shown or hidden. This interface has the same functionalities of
a DVD player interface: play/pause, stop, fast forward, fast rewind
and a time-slider to access any frame of the timeline.

6 Conclusion and Future Work

In this work we proposed an alternative approach to build anima-
tions in X3D. This approach extends current features for using and
creating animations in the standard. Most importantly, it permits
flexible control of animations in run-time, allowing an animation to
be played with a DVD player like interface. A set of nodes were
developed to show the desired features. The core node developed
was the TimeClock node that mimics the TimeSensor node with the
added flexibility of controlling the time of the built-in clock.

All these resources were created for the purpose of easily having
a more flexibel control over time available in the X3D standard.
These improved features can become a rich tool for both novice and
expert users to explore animations in X3D. We plan to implement
a practical and easy to use set of animation tools for novice users
using the features availables in the TimeClock node.

References

BITMANAGEMENT, 2006. Bs contact vrml/x3d player.
http://www.bitmanagement.de, December.

BRUTZMAN, D., 2006. Authoring and visualization for advanced
graphical environments. https://savage.nps.edu/Savage/, Decem-
ber.

KARMANAUT, 2006. Cosmo player.
http://www.karmanaut.com/cosmo/player/, December.

LIGHTHOUSE 3D, 2006. Vrml inter-
active tutorial, interpolator examples.

http://www.lighthouse3d.com/vrml/tutorial/index.shtml?intex,
December.

MEDIAL MACHINES, 2006. Flux player.
http://www.mediamachines.com/index.php, December.

WEB 3D CONSORTIUM, 2006. X3d time component.
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-
X3DAbstractSpecification/Part01/components/time.html,
December.

OCTAGA, 2006. Octaga player. http://www.octaga.com/, Decem-
ber.

STOCKER, H. 2006. Linear filters: animating objects in a flexible
and pleasing way. 119-129.

TIMECLOCK, 2006. Timeclock example files -
http://www.realidadevirtual.org.br/timeclock, December.

