
Profile-Guided optimization for Dynamic Languages

Manuel Serrano

2020-2021

subject Profile-Guided optimization for Dynamic Languages
supervisor Manuel Serrano
location Inria Sophia-Antipolis
url http://hop.inria.fr

JavaScript is particularly difficult to implement efficiently because most
of its expressions have all sorts of different meanings that involve all sorts
of different executions. To give a single prominent example, the expression
”obj.prop” might denote five radically different operations. It might fetch
the property ”prop” from ”obj”. It might scan the linked list of ”obj”’s pro-
totype chain and access the property ”prop” of one of these objects along the
way. It might involve calling a user defined function if ”prop” is an accessor.
It might involve allocating an object if ”obj” is a primitive value. At last, it
might involve jumping through another component of the standard runtime
system if ”obj” is a proxy object. No syntactic element nor type informa-
tion let the execution engine discover in advance which evaluation schema to
use. Checking all the possible interpretations in sequence and then execute
literally, that is following the prescription of the language specification, the
proper one would deliver very slow performances. All mainstream implemen-
tations use alternative strategies. Amongst all the possible interpretations,
they favor the one that corresponds to the most frequent situation for which
they elaborate a faster execution plan, and, as importantly, for which they
elaborate a fast guard that let them decide as quickly as possible, if the
faster schema would preserve the original semantics or not. Typically, that
what ”inline caches” and ”hidden classes” achieve [2, 1]. Using a single test,
the comparison of the object’s hidden class with the inline cache, the guard
checks if the offset where to read the property is known or not. If it is, the
property is directly fetched using a single indexed memory read. Otherwise,
the slower execution path checking all the possible situations, for instance,
the situation where the property is an accessor, is used.

The common intuition is that dynamic compilers (jit compilers) are in a
better position to use this heuristics-based strategy as they have the program

1



and the data at hand where they have to decide which code to generate. We
disagree with this intuition and we have shown in [3, 4, ?] this is not a
significant advantage because in most common situations simple guesses let
aot compilers infer the most likely types and at the cost of larger codes, they
can generate several versions of the program and select the one to execute
using guards similar to those jit compilers would use. However, it remains
that in some situations, jit compilers can use the precise knowledge about
values to generate better code. For instance, a jit compiler can possibly
inline a closure on a call site if it monitors that a unique function is called
from that location. Gathering such a precise information is most often out of
reach of pure static analyses. This lack of information could be compensated
by profiling techniques. This is the main subject of this PhD thesis.

The objective of this PhD thesis is to combine the static analyses of
the JavaScript hopc compiler with new profile guided optimizations. The
speed of the generated should be improved and the size of the generated
code should be reduced. The techniques developed in this context should
apply to all the high dynamic languages. JavaScript is the main target but
languages such as Python or Ruby could also benefit from this study.

References

[1] R. Artoul. Javascript Hidden Classes and Inline Caching in
V8. http://richardartoul.github.io/jekyll/update/2015/04/26/
hidden-classes.html, Apr. 2015.

[2] C. Chambers and D. Ungar. Customization: Optimizing compiler tech-
nology for SELF, a dynamically-typed object-oriented programming lan-
guage. In Conference Proceedings on Programming Language Design and
Implementation, PLDI ’89, New York, NY, USA, 1989. ACM.

[3] M. Serrano. Javascript aot compilation. In 14th Dynamic Language
Symposium (DLS), Boston, USA, Nov. 2018.

[4] M. Serrano and M. Feeley. Property Caches Revisited. In Proceedings of
the 28th Compiler Construction Conference (CC’19), Washington, USA,
feb 2019.

2


