
PhD thesis proposal: Reactive Web Programming
INRIA Sophia-Méditerranée, Collège de France

supervisors: Manuel Serrano, Gérard Berry

2014-2017

1 Facts
location: Inria Sophia Antipolis
funding: 36 months
date: 2014 - 2017
supervisor: Manuel Serrano & Gérard Berry
pdf: these-hiphop.pdf

2 Introduction

Asynchrony being consubstantial with the Web, asynchronous communication and control patterns are
ubiquitous at multiple scales in Web programs. They are used to program Web clients as well as Web
servers. Browser HTML GUIs raise asynchronous events in reaction to user interactions. The Web
browser DOM (Document Object Model) creates Web page elements asynchronously. Browser-to-
server (AJAX) and server-to-server (program-as-a-service (PAAS) and Web APIs) communications
are physically asynchronous as they involve network traversals that take wall-clock time. Web-of-
things and diffuse robotics applications that are based on device-to-machine communications make
asynchronous event raising even more frequent.

The objective of this PhD thesis is to help programming this family of rich Web applications
by creating a programming language dedicated to deal with asynchronous events and orchestrate the
tasks they trigger or terminate. This language will rely on the former development of synchronous
languages directed towards embedded systems (Esterel, Lustre/SCADE, etc.). Despite the apparent
name antagonism, synchronous languages are very efficient for programming complex reactions to
asynchronous events and synchronize them. They have already be used extensively for robotics and
GUI applications (including full airplane GUIs).

3 Context and Subject

Here is the state of the art w.r.t. web event handling. A myriad of ad-hoc solutions keep emerging
here and there. The popular IFTTT1 platform relies on an overly simple language for programming
recipes. It spawns actions in reaction to events: If This event occurs Then do That action. The events
are generated by Web applications such as Twitter, Facebook, or other any other Web site. Typical

1http://ifttt.com

1



actions are “send me a text message” or “create a status message on Facebook”. Although rudimen-
tary, this system is gaining attraction as it allows non expert users to program simple but useful tasks.
More elaborate solutions require fancier programming languages, usually extensions of JavaScript
that reigns here unchallenged. During the last years, many JavaScript libraries implementing asyn-
chronous operators have been released publicly. Let us name a few: async2, async.js3, bacon.js4,
RxJS [6]5, slide-flow-control6, step7. These libraries implement asynchronous streams and some sort
of futures [4]. They support higher-order stream operators such as map, filter, and reduce. More
elaborated systems such as Flapjax [7] and Elm [3] make the functional reactive programming (FRP)
paradigm available within JavaScript. They promote asynchronous streams to first-class values of the
language, i.e., streams can be stored into regular data structures, passed as arguments to functions,
returned as results, and even be composed into stream of streams. Flapjax and Elm define them-
selves as extensions of JavaScript, but, since they change the meaning of the control flow operators, a
compilation-to-JavaScript phase takes place before execution.

Each of the aforementioned system or language addresses a specific aspect of Web asynchronous
programming, but none aims at offering a universal solution to the global management and synchro-
nization of asynchronous events and tasks. For instance, neither the asynchronous JavaScript libraries
nor the FRP JavaScript extensions support preemption, which limits them to crude ad-hoc solutions
for dealing with cancellations and errors. FRP design choices have another not necessarily desirable
consequence: promoting asynchronous streams as first-class values demolishes the fences that sepa-
rate the classical algorithmic core language from its asynchronous extensions. The genuine semantics
of the core language is then altered. Flapjax and Elm are based on JavaScript versions that obey their
own semantics rules and that differ from the official ECMAScript 5 language rules.

The synchronous programming model of languages like Esterel or Reactive-C rely on a differ-
ent form of concurrency based on the perfect synchrony hypothesis: a synchronous reactive program
repeatedly reacts in conceptual zero-delay to input events by generating output events or calling com-
putation actions; synchronization and communication between synchronous parallel statements is also
performed in conceptual zero-delay. Perfect synchrony makes concurrent programs deterministic and
deadlock-free, the only non-determinism left being that of the application environment. These lan-
guages are nowadays used to build complex and critical systems such as airplane control or cockpit
systems.

In the synchronous reactive programming model, two languages levels coexist: the core algorith-
mic language and the orchestration language. How these languages are exposed to the programmer
varies from one particular synchronous language to another, but all share a strong design axiom: the
core algorithmic language and the orchestration language are separated by an hermetic membrane
that can only be traversed by well-identified operators that have clearly (i.e., formally) established
semantics. The synchronous model is very appealing for programming the asynchronous patterns of
Web applications, because it makes synchronization trivially explicit and deterministic, which simpli-
fies decision taking. Synchronous languages are much more expressive than asynchronous languages,
since they support rich concurrency and event-handling operators: parallelism, synchronization, pre-
emption, and exception and error handling. The synchronous model has been extensively studied, is
mathematically well-founded, and has become an industrial standard for embedded systems. It does

2https://github.com/caolan/async
3https://github.com/fjakobs/async.js
4http://baconjs.github.io
5https://github.com/Reactive-Extensions/RxJS
6https://github.com/isaacs/slide-flow-control
7https://github.com/creationix/step

2



not impose to create a brand new programming language since it can be implemented as a DSL hosted
by an existing algorithmic language as already done for C [2] and OCaml [5].

The objective of this PhD thesis is to construct a JavaScript synchronous DSL for orchestrating
Web applications. Will the language be presented with its own syntax requiring a front-end compila-
tion or will it be exposed as a pure JavaScript API remains an open choice. The former offers more
flexibility in the design of the language and probably and ease of programming. The latter is much in
line with modern practice of releasing JavaScript libraries such as Node.js, Bower, or Grunt packages.
That would make it be much easier to deploy and more likely to attract a much larger audience, with a
potentially important impact outside the academic sphere. The previous HipHop experiment that we
have conducted for Hop environment will be of course an important source of inspiration [1].

References
[1] G. Berry and M. Serrano. Hop and Hiphop : Multitier Web Orchestration. In Proceedings of the ICDCIT

2014 conference, pages 1–13, Feb. 2014.

[2] F. Boussinot. Reactive C: An extension of C to program reactive systems. Software: Practice and Experi-
ence, 21(4):401–428, 1991.

[3] E. Czaplicki and S. Chong. Asynchronous functional reactive programming for GUIs. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 411–422,
New York, NY, USA, June 2013. ACM Press.

[4] D. Friedman and D. Wise. The Impact of Applicative Programming on Multiprocessing. In International
Conference on Parallel Processing, pages 263–272, 1976.

[5] L. Mandel and M. Pouzet. ReactiveML, a reactive extension to ML. In Proceedings of 7th ACM SIGPLAN
International Symposium on Principles and Practice of Declarative Programming (PPDP’05), Lisbon,
Portugal, July 2005.

[6] E. Meijer. Your Mouse is a Database. ACM Queue, 10(3), Mar. 2012.

[7] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Bromfield, and S. Krishnamurthi.
Flapjax: A programming language for ajax applications. SIGPLAN Not., 44(10):1–20, Oct. 2009.

3


