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Abstract
HOP is a Scheme-based multi-tier programming language for the
Web. The client-side of a program is compiled to JavaScript, while
the server-side is executed by a mix of natively compiled code
and interpreted code. At the time where HOP programs were ba-
sic scripts, the performance of the server-side interpreter was not
a concern; an inefficient interpreter was acceptable. As HOP ex-
panded, HOP programs got larger and more complex. A more ef-
ficient interpreter was necessary. This new interpreter is described
in this paper. It is compact, its whole implementation counting no
more than 2.5 KLOC. It is more than twice faster than the old in-
terpreter and consumes less than a third of its memory. Although
it cannot compete with static or JIT native compilers, our exper-
imental results show that it is amongst the fastest interpreters for
dynamic languages.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Language Classifications—applicative (functional) lan-
guages; D.3.4 [Programming Languages]: Processors—inter-
preters; I.1.3 [Symbolic and Algebraic Manipulation]: Languages
and Systems—evaluation strategies

General Terms Languages, Experimentation, Measurement, Per-
formance

Keywords Functional languages, Scheme, Implementation, Inter-
preter

1. Introduction
HOP is a Scheme based multi-tier programming language for the
Web. We have implemented a new interpreter (HOPE1) for execut-
ing server-side parts of HOP programs1. By adapting techniques
developed in other compiling contexts , we have accelerated the
former HOPE0 interpreter by a factor of more than two, making
HOPE1 one of the fastest interpreters we have measured.

1 Work partially supported by the French ANR agency, grant ANR-09-
-EMER-009-01.
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HOPE0 accepted as input a tree structure close to the input
source, which was obtained by parsing the source code, macro-
expanding it, and resolving local variable references. These were
interpreted as indexes into a heap-allocated lexical environment. In
HOPE1, we significantly improve the interpreter efficiency by allo-
cating local variables in a stack, as done in traditional compilation
technique.

The HOPE1 interpreter is written in HOP and it is compiled to
native code via C code generation. C is not properly tail recursive,
i.e., calling a C function in a tail position allocates a stack frame.
Hence, lacking special treatment, HOPE1 is not tail-recursive ei-
ther. This is a critical problem because loops are traditionally im-
plemented in HOP as tail recursive functions. In order to fix that
problem, HOPE1 relies on a trampoline machinery2. A contribution
of this paper is to show that a trampoline solves the tail recursion
problem for interpreters such as HOPE1 without degrading perfor-
mance.

There are various sorts of interpreters. Some evaluate the source
code directly. Others construct a memory representation of the pro-
grams and apply simple transformations; HOPE0 falls into this cat-
egory. Some interpreters pre-compile the program into an abstract
structure that is interpreted by a dedicated virtual machine. HOPE1
leans toward a pre-compilation schema by deploying simple opti-
mizations not implemented in HOPE0. A last contribution of this
paper is to precisely evaluate the impacts of classical compile-time
optimizations when applied to an interpreter.

The paper is organized as follows. Section 2 briefly introduces
HOP and the context in which its interpreter is used. Section 3
presents the HOPE1 implementation techniques. Section 4 high-
lights some specific issues that impact the performance. Section
5 presents experimental performance results, comparing the new
HOPE1 interpreter to interpreters for Scheme and other dynamic
languages.

2. Background
Unlike traditional solutions for developing web applications, HOP
[19] is a multi-tier programming language that makes it possible to
write entire applications using a single formalism. With HOP, a web
application is no longer a set of more or less loosely related compo-
nents, such as PHP scripts on the server side and HTML+JavaScript
on the client side. It is a single program written in a single pro-
gramming language. HOP is largely inspired by the Scheme R5RS
programming language [12], which it extends in several directions.
It supports many modern features such as modules, objects, excep-
tions, and threads, coupled with a vast set of libraries. It also sup-
ports web-dedicated features: HTML elements are first class values;

2 See http://en.wikipedia.org/wiki/Trampoline (computing)
for a definition of the term trampoline and how it has been used in Lisp-like
languages.



client-side programs are first class values of the server-side pro-
grams [3, 20]; and bidirectional communication between servers
and clients is supported.

A HOP program is organized in modules which describe the
server and client computations. The runtime environment of a HOP
application is thus twofold. The program is first installed on the
server. Then, the clients, i.e., the web browsers, receive their parts
of the application and communicate with their server. Figure 1
illustrates this multi-tier architecture.
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Figure 1. The Hop Architecture

The HOP web server is bootstrapped. It is itself written in
HOP [17] and compiled by HOPC, a native compiler built on top
the BIGLOO optimizing SCHEME-to-C compiler [18]. The server
embeds the HOP-to-JAVASCRIPT compiler [14] which compiles
the client-side on-the-fly, and an interpreter which handles non-
natively compiled code on the server. The server-side parts of an
application are thus composed of a blend of natively compiled code
and interpreted code.

Resorting on interpreted code is optional as server-side parts
can be statically compiled if needed. For CPU-demanding applica-
tions, this approach is recommended. However, it comes with an
extra complexity because it requires the programmers to generate
dynamic libraries for each HOP-supported architecture. For desk-
tops that are equipped with full-fledged development kits, this is
probably not too heavy a burden. On constrained platforms such
as SmartPhones and single board computers that generally lack a
on-device C toolchain, heavyweight cross-compilation techniques
must be used.

At first, HOP applications were not CPU nor memory demand-
ing. The interpreter was mostly used for expansing macros con-
tained in the program source code and for running some hundred-
lines long scripts on the server side. The HOPE0 server-side in-
terpretation was accomplished by an hybrid engine that used tree
structures and a mix of native stack and separate heap-allocated lex-
ical environment. This interpreter offered acceptable CPU perfor-
mance, but, when HOP applications became larger and more com-
plex, its performance became unacceptable for three reasons:

• the heap allocation of the lexical environment stressed the
garbage collector too much;
• closures captured their whole lexical environment, making the

memory footprint unnecessarily large;
• loops where implemented using an ad hoc tail-recursive inter-

pretation technique that significantly enlarged the size of each
native stack frame for non tail-recursive calls. This problem was

exacerbated by the HOP implementation of concurrency, which
relies on the Posix Threads where each thread stack is small
since pre-allocated at creation time.

The design and implementation of HOPE1 has been motivated
by the elimination of these HOPE0 drawbacks.

3. Interpreter Architecture
The implementation of HOPE1 has been guided by five main con-
straints:

1. HOP is composed of a full-fledged web server, an optimizing
native compiler, an optimizing JavaScript client-code compiler,
a server-side interpreter, and a vast set of libraries. All this con-
stitutes a large and complex system, whose size is close to 500
HOP KLOC. Because of limited manpower, we could not afford
creating a new complex module for the server-side interpreta-
tion. We had to keep HOPE1 as simple as HOPE0. To satisfy this
constraint, HOPE1 is meta-circular, i.e., entirely implemented
in HOP, and it does not resort on any JIT compilation technique
nor specific virtual machine.

2. The HOP server-side environment is multi-threaded [17]. The
server handles each request in a dedicated Posix thread. Since
Posix threads pre-allocate fixed-size stacks, the interpreter
should not not consume large stack frames for its own exe-
cution.

3. The HOP server is executed on all sorts of platforms, ranging
from standard desktop computers to single board computers or
embedded devices, which are generally not equipped with a
lot of memory. Avoiding unnecessary memory allocation and
memory retention is particularly important on such platforms.

4. Loops in HOP are expanded into tail-recursive calls. If not
implemented in this way, they these will raise stack overflows.

5. The HOPC compiler is used to build the server-side runtime
environment that contains the server-side HOP libraries. Library
functions are extensively used by interpreted code. For our
benchmark suite, more than 75% of the dynamic function calls
executed by the interpreter concern compiled native functions3.
A fast connection between interpreted code and compiled code
is of premium importance for the overall performance.

The HOPE0 interpreter was satisfying the last two requirements.
The HOPE1 satisfies them all. In the rest of this section we present
its general architecture.

3.1 An Academic Interpreter
Which implementation language should be used for the interpreter?
Low-level languages such as assembly or C look most suitable
because they offer fine-grain control over low-level operations on
registers, stack, signals, etc. However, since the interpreted code
interacts with compiled code, it might be sensible to implement
the interpreter in the language compiled by the native compiler
and to compile it. This is the option we have chosen for HOP. It
is validated by the overall performance reported in Section 5.

We gradually present the interpreter architecture, starting with
the simple λ-calculus interpreter presented in Figure 2.

In such a denotational semantics based academic interpreter, the
lexical environment ε could be simply represented by a function
mapping variables to values. However we use a standard associa-
tion list to show explicitly that each abstraction invocation allocates
two memory cells (line 9).

3 This accounts for functions like map or read, but also operators like + or
car.



1: (define (eval exp ε)
2: (match-case exp
3: ((atom ?x)
4: (let ( (slot (assq x ε)))
5: (if slot
6: (cdr slot)
7: ⊥ )))
8: ((λ (?var) ?body)
9: (λ (x) (eval body (cons (cons var x) ε))))
10: ((?f ?a)
11: ((eval f ε) (eval a ε)))
12: (else ⊥)))

Figure 2. An academic interpreter.

The evaluation of an abstraction (line 8) returns an abstraction
of the meta-language (line 9), making it possible for the meta-
language to directly invoke evaluated functions. Using a different
data-type would slow down the calls to interpreted functions exe-
cuted by compiled code. Such calls typically occur when the inter-
preter calls the map library function.

3.2 A More Realistic Interpreter
Our first interpreter does not use any pre-compilation stage to save
execution time. In the spirit of partial evaluation techniques, some
computations may obviously be executed once and for all before
the actual evaluation stage. For instance, the pattern matching that
discriminates expressions can be statically performed once and for
all before their evaluation takes place. This requires splitting the
interpreter in two phases. First, a pre-compilation phase through the
source code extracts simple static information. Then, a run phase
computes the actual values.

The first phase, named Π and pictured in Figure 3, receives the
same arguments as the previous eval function. It returns values of
type compiledExpr, whose constructor is named Λ. Henceforth, we
will note (Λ (...v...) expr) a compiledExpr, where each v is
a variable to be be bound at run time and expr is the run time code
to be executed. The second phase, named Ω, takes as first argument
a compiledExpr.

1: (define (Π exp εΠ)
2: (match-case exp
3: ((atom ?x)
4: (let ((slot (assq x εΠ)))
5: (if slot
6: (Λ (εΩ) (cdr (assq x εΩ)))
7: ⊥)))
8: ((λ (?v) ?body)
9: (let ((body (Π body (cons (cons v #f) εΠ))))
10: (Λ (εΩ)
11: (λ (x)
12: (Ω body (cons (cons v x) εΩ))))))
13: ((?f ?a)
14: (let ((f (Π f εΠ)) (a (Π a εΠ)))
15: (Λ (εΩ)
16: ((Ω f εΩ) (Ω a εΩ)))))
17: (else ⊥)))

Figure 3. Pre-compilation phase.

Π only manipulates the symbolic part of the environment. The
compile-time and run-time lexical environments have the same
shape. Therefore, Π can pre-compute indexes to be used by itself
and Ω. These indexes correspond to De Bruijn indexes [7]. Thus,
we can change the implementation of environments to a more com-
pact and efficient representation: the compile-time environment be-
comes a list of symbols and the run-time environment becomes a

list of values. The benefits are twofold. First, the new environment
representations save memory space. Second, at run time, lookups
over variable names are replaced with indexed accesses to lists.
This second version of Π is shown in Figure 4. It has been first
proposed by Feeley and Lapalme [9].

1: (define (Π exp εΠ)
2: (match-case exp
3: ((atom ?x)
4: (let ((i (index x εΠ)) )
5: (if i
6: (Λ (εΩ) (list-ref εΩ i))
7: ⊥ )))
8: ((λ (?var) ?body)
9: (let ((body (Π body (cons var εΠ))))
10: (Λ (εΩ)
11: (λ (x)
12: (Ω body (cons x εΩ))))))
. . .

Figure 4. Splitting compile-time and run-time environments.

3.3 Tree Interpretation
The representation of compiledExpr deeply impacts the implemen-
tation of Λ. We have tried two options: a tree structure; and a func-
tional structure. The former, used by HOPE0, is described in this
section.

A value, (Λ (...v...) expr), is represented by an index
and a heap-allocated data structure containing the values of the free
variables occurring in expr and pointers to its sub-expressions. The
whole Ω function is built by merging all the Λ expressions into
an indexed switch as for a byte-code interpreter. An excerpt of the
implementation of Π can be found in Figure 5. An excerpt of the
runtime evaluator Ω is given in Figure 6. In both cases, the integer
9 is the index of the function application.

1: (define (Π exp εΠ)
2: (match-case exp
. . .
11: ((?f ?a)
12: (let ((f (Π f εΠ)) (a (Π a εΠ)))
13: (vector 9 f a)))
. . .

Figure 5. Tree structure for function applications.

1: (define (Ω bc εΩ)
2: (case (vector-ref bc 0)
. . .
11: ((9)
12: (let ((f (vector-ref bc 1))
13: (a (vector-ref bc 2)))
14: ((Ω f εΩ) (Ω a εΩ))
15: . . .

Figure 6. Tree execution for function applications.

The meta-language of the interpreter, i.e., HOP itself, is simply
tail recursive. That is, only syntactic self tail recursive calls are im-
plemented without stack allocation. All other calls allocate stack
frames whatever their context is. Thus, the recursive call for evalu-
ating the body of a function allocates a stack frame, although it is in
tail position. To get rid of this allocation, it is enough for the inter-
preter to recognize that the invoked function is interpreted, and thus
to inline the call. The result of this transformation is given in Figure



7. It merely puts the recursive call to Ω in a simple tail position that
is immediately compiled by HOPC as a simple goto.

1: (define (Ω bc εΩ)
2: (case (vector-ref bc 0)
. . .
11: ((9)
12: (let ((f (Ω (vector-ref bc 1) εΩ))
13: (a (Ω (vector-ref bc 2) εΩ)))
14: (if (not (eval-procedure? f))
15: (f a)
16: (let ((body (eval-procedure-body f))
17: (env (eval-procedure-env f)))
18: (Ω body (cons a env))))))
. . .

Figure 7. Properly tail-recursive interpreter.

The library predicate eval-procedure? returns true if and
only if its argument is a procedure created by the interpreter. This
predicate relies on a special HOPC feature that allows attributes to
be associated with closures.

This version of the interpreter corresponds to HOPE0, except for
some optimizations that are not shown here. It satisfies the criteria
1, 4, and 5 of the introduction of Section 3, but it fails criteria 2
and 3. First, some programs have an unnecessarily large memory
footprint because closures capture the whole lexical environment
instead of a subset containing only their free variables. Second, the
interpreter is properly tail-recursive, but each regular function call
allocates a very large stack frame. This is due to an artifact of the
HOPC native compiler that we explain now.

The function Ω is mainly composed of a large switch, of which
each branch corresponds to the execution of one type of expression.
Some branches contain simple expressions such as literals or vari-
able references. Other branches require complex computations. For
example, for the sake of performance, the let forms are not macro-
expanded in the branch that handles them, but are represented by
and ad-hoc expression. Such a branch requires the introduction a lot
of temporary variables. These variables will end up being allocated
in the stack frame for Ω whatever branch is selected at runtime. Ob-
viously, this wastes a lot of stack space. Unfortunately, there is no
easy way out. First, because our tail recursion technique requires
that all recursive calls to Ω are self recursive. Second, because
HOPC actually compiles to C and relies on regular C compilers for
producing binary code. Actual stack frame allocation depends on C
compilers we do not control4. We have explored a different strategy
that uses an additional stack. It will be presented in Section 3.5.

3.4 Functional Interpretation
The tree structure presented in the previous section can be con-
sidered as an ad hoc representation for closures. Each expression
contains a code pointer denoted by an index and some closed val-
ues. The Λ constructor acts as an abstraction and can be replaced
by a true closure. This transformation is shown in Figure 8.

With this representation, the runtime interpreter is a mere func-
tion application, as shown in Figure 9.

The new interpreter solves the large stack frames problem that
plagues the tree interpreter, but it does not support proper tail-
recursive calls. To avoid allocating stack frames, we will modify
Ω to use a trampoline [21]. This transformation will be presented
in Section 4.2.

4 This phenomenon has also been observed by the author of the Lu-
aJIT compiler in a note available at http://article.gmane.org/-
gmane.comp.lang.lua.general/75426.

1: (define (Π exp εΠ)
2: (match-case exp
. . .
11: ((?f ?a)
12: (let ((f (Π f εΠ)) (a (Π a εΠ)))
13: (λ (εΩ)
14: ((Ω f εΩ) (Ω a εΩ)))))
. . .

Figure 8. Functional representation for application.

1: (define (Ω cexp εΩ)
2: (cexp εΩ))

Figure 9. Functional execution for application.

3.5 A Second Stack
In all the interpreters presented so far, closures capture the entire
lexical environment represented by a list (see Figure 4, line 12).
The next step consists in replacing the heap allocation of the lexical
environment with a stack allocation. After this modification, the
interpreter will use two stacks: the implicit native stack used each
time Ω is called and a new explicit interpreter stack used to allocate
frames of interpreted functions.

The new version of the interpreter uses a global stack accessible
by two library functions: stack-ref and stack-push!. The ref-
erence to a variable is thus an indexed read from the stack as shown
in Figure 10.

1: (define (Π exp εΠ)
2: (match-case exp
3: ((atom ?x)
4: (let ((i (index x εΠ)))
5: (if i
6: (Λ () (stack-ref i))
7: ⊥)))
. . .

Figure 10. Using an interpreter stack.

Closures now need an additional heap-allocated structure to
store their free variables. This is shown in line 13 in Figure 11.
When the function is invoked, before its body is evaluated, an
interpreted stack frame is allocated (see line 15 and line 16 in
Figure 11).

. . .
8: ((λ (?var) ?body)
9: (let* ((vars (free-vars body εΠ))
10: (is (map (λ (x) (index x εΠ)) vars))
11: (body (Π body (cons var vars))))
12: (Λ ()
13: (let ((env (map (λ (i) (stack-ref i)) is)))
14: (λ (x)
15: (for-each stack-push! env)
16: (stack-push! x)
17: ...evaluate body and restore stack...)))))
. . .

Figure 11. Closure environments with stacks.

In the previous version of Π (Figure 8), the function calls were
fast but closures did capture their entire lexical stack, which made
accessing a variable was linear in its nesting level. With the new



version (Figure 11), only the free variables are stored in the heap-
allocated structure that is pushed on the stack each time the function
is invoked. Accessing a variable becomes a constant-time opera-
tion. Whether one version of the interpreter is faster than the other
depends on the nature of the source language to be interpreted. For
a pure λ-calculus where each term has many free variables, the
first strategy will probably be more efficient. The latter strategy is
significantly more efficient for languages such as Scheme that pro-
pose a “let” form based on stack frames instead of heap-allocated
environments. This is demonstrated by the experimental report pre-
sented in Section 5.

Several optimizations presented in Section 4 need a fine-grain
control over the function call protocol. We decompose each eval-
uated function into two sub-functions: external and runner. The
former is used by the compiler to invoke interpreted functions. The
latter is used by the interpreter itself. The protocol to call external
belongs to the compiler. The protocol to call runner uses the in-
terpreter stack. Figure 12 shows the new version of the interpreter
with these two functions.

1: . . .
8: ((λ (?var) ?body)
9: (let* ((vars (free-vars body εΠ))
10: (is (map (λ (x) (index x εΠ)) vars))
11: (body (Π body (cons var vars))))
12: (Λ ()
13: (let* ((env (map (λ (i) (stack-ref i)) is))
14: (runner (λ ()
15: ...extra bookkeeping...
16: (for-each stack-push! env)
17: ...evaluate body and restore stack...))
18: (external (λ (x)
19: (stack-push! x)
20: (runner))))
21: external)))
22: . . .

Figure 12. Re-arranging the closure environments with stacks to prepare
future optimizations.

4. Optimizations
In this section, we present the various details of the implementation
of HOPE1 and the main optimizations we have deployed.

4.1 Stack pointer vs Frame pointer
Stacks are generally accessed via a stack pointer, which is an
index in a vector of values that points to the top of the stack. The
distance between the stack pointer and a variable in the stack is
precisely the value of the variable’s De Bruijn index. For example,
in the expression (λ (x) ...(let ((y ...)) ... x)) the De
Brujin index of x is 1 inside the let, which means that its value is
stored one memory cell above the stack pointer.

Alternatively, a frame pointer can be preferred to a stack pointer.
The frame pointer is constant during a function invocation, pointing
to the first value pushed on the stack by the function call. Using a
frame pointer is more efficient than using a stack pointer because it
eliminates the need for incrementing and restoring the pointer each
time a let form is evaluated (see in Figure 13).

With a frame pointer, the distance between that pointer and
the cell reserved for a variable value is known at compile-time.
However it must be transmitted to the runtime interpreter.

4.2 Trampoline
The version of the interpreter presented in Figure 12 does not
support proper tail recursion because the evaluation of the body of a

1: (define (Π exp εΠ)
2: (match-case exp
3: ((let ((?var ?val)) ?body)
4: (let ((val (Π val εΠ))
5: (body (Π body (cons var εΠ))))
6: (Λ ()
7: (let ((val (Ω val)) (oldsp sp))
8: (set! sp (+ sp 1))
9: (stack-set! sp val)
10: (prog1
11: (Ω body)
12: (set! sp oldsp))))))
13: . . .

Figure 13. let evaluation with a stack pointer

1: (define (Π exp εΠ)
2: (match-case exp
3: ((let ((?var ?val)) ?body)
4: (let ((val (Π val εΠ))
5: (body (Π body (cons var εΠ))))
6: (let ((i (length εΠ)))
7: (Λ ()
8: (let ((val (Ω val)))
9: (stack-set! (+ fp i) val)
10: (Ω body))))))
11: . . .

Figure 14. let evaluation with a frame pointer

function is embedded inside a λ-abstraction. To solve this problem,
we have setup a trampoline [21] in HOPE1. When the interpreter
calls another interpreted function in a tail position it returns it to
the current trampoline instead of calling the runner. A trampoline
is installed when the interpreter calls another interpreted function in
a non-tail position and when a compiled code calls an interpreted
function. A trampoline invokes the function value it intercepts if
and only if it corresponds to a runner. Otherwise, it returns it by to
its caller. Trampolines recognize runners by checking a dedicated
closure attribute, a HOPC-supported feature we briefly presented in
Section 3.3. The code snippet in Figure 15 shows the trampolined
version of the function call.

1: (define (Π exp εΠ tail?)
2: (match-case exp
3: ((?f ?a)
4: (let ((f (Π f εΠ #f)) (a (Π a εΠ #f)))
5: (Λ ()
6: (let ((f (Ω f)) (a (Ω a)))
7: (if (not (eval-procedure? f))
8: (f a)
9: (let ((runner (eval-procedure-run f)))
10: (stack-push! a)
11: (if tail?
12: runner
13: (let loop ((tmp (runner)))
14: (if (runner? tmp)
15: (loop (tmp))
16: tmp)))))))))
17: . . .

Figure 15. Properly tail-recursive interpreter with explicit trampolining.

Since the value of the argument tail? is known at compile
time, the test used to either return a continuation value or install a
new trampoline can be lifted out of the Λ form, which leads to two



specialized versions of runtime function calls: one for tail recursive
calls and one for the other calls.

0.85 0.9 0.95 1

sieve fft mbrot

faster

Figure 16. Impact of the trampoline on the Bglstone suite. Each dot
represents the ratio of execution time with trampoline and execution time
without trampoline, for one particular tested benchmark. For instance, the
sieve benchmark runs 5% faster with trampoline than without, while the
mbrot test runs about 3% slower with a trampoline.

Figure 16 shows the impact of trampolines on CPU perfor-
mance. Each black dot represents one test of the Bglstone bench-
mark suite that contains 19 tests exercizing different features of the
HOP5. The dots are positioned on a single axis that represents the
time ratio of the trampolined vs. non-trampolined versions. For in-
stance, a dot located at position 0.90 means that for the associated
test the execution with trampoline is faster and takes 90% of the
time of the non-trampolined version. Surprisingly, there is a small
speedup for most tests when trampolining is used. We suspect that
this is due to a better cache locality of stack. One should note ratios
less than 95% are insignificant because they are out of the range of
uncertainty caused by memory cache and branch prediction effects.

4.3 Loops
In HOP, loops are implemented by local recursive functions, gen-
erally introduced by the general “letrec” special form, as in Figure
17. In this section, we show that although the trampoline presented
in Section 4.2 avoids allocating stack for loops a special treatment
of loops generally speeds up the execution.

1: (define (is-even? n)
2: (letrec ((even? (λ (x)
3: (if (= x 0) #t (odd? (- x 1)))))
4: (odd? (λ (y)
5: (if (= y 0) #f (even? (- y 1))))))
6: (let ((tmp n))
7: (even? tmp))))

Figure 17. Co-tail recursive functions forming a loop.

When all the variables defined in a “letrec” are bound to func-
tions and when they are exclusively used in tail-recursive calls and
not closed under a lambda, the “letrec” is treated as a loop by the
interpreter. Π is modified to detect such loops and to use an ad
hoc interpretation schema. Π saves the symbolic environment at
the entry point of the loop. This environment is a compile-time
data structure that contains the names of the bound variables for
each program point. In our example, when the loop is entered, the
symbolic stack contains the identifier n. In the function odd?, it
contains n and y. For each bound variable, the interpreter creates
a function similar to the runner function presented in Section 4.2.
This is a special case of a more general optimization found in sev-
eral optimizing compilers, which consists in treating specially the
variables bound to functions in a letrec. A complete study of this
popular transformation can be found in [22].

When a tail call to a loop is encountered, the interpreter stati-
cally knows how many values must be dropped from the stack to

5 ftp://ftp-sop.inria.fr/indes/fp/Bigloo/apps/bgl-
stone.tar.gz

adjust the stack at loop entry. For example, for the (even? tmp)
call, the symbolic stack is (n tmp) and one value must be dropped.
Arguments of the call are evaluted and saved in the stack. Finally,
the runner associated with the local function is returned, the body
of the “letrec” being evaluated as a trampoline.

Of the 391 “letrec” used in all the Bglstone suite, 144 are used
to implement loops. The Figure 18 shows the impact of the loop
detection on execution times. The optimization reduces execution
times because it avoids allocating closures and references for cap-
tured variables.
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Figure 18. Impact of the loop optimization on the Bglstone suite.

4.4 Inlining
Inlining is a well known technique that replaces a function call with
a specialized version of the function body. Inlining is particularly
important for functional languages that extensively use small func-
tions. Hence, we have added inlining to HOPE1, keeping it simple
enough to avoid significantly increasing the compilation time. We
merely inline the body of a pre-defined set of frequent functions
such as the fixnum arithmetic operators or the usual list accessors.
Implementing this optimization consists in extending the Π func-
tion with some extra cases as shown in Figure 19.

1: (define (Π exp εΠ)
2: (match-case exp
3: ((+ ?x ?y)
4: (let ((x (Π x εΠ)) (y (Π y εΠ)))
5: (Λ ()
6: (+ (Ω x) (Ω y)))))
7: . . .

Figure 19. Evaluation for some predefined functions.

Figure 20 presents the impact of the inlining optimization on the
Bglstone benchmarks suite. It has a dramatic impact. For instance,
it almost divides by 2 the execution time of tests such as fib.
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Figure 20. Impact of the inlining optimization on the Bglstone suite.

4.5 N-ary functions
For the sake of simplicity, the interpreters presented in Section
3 assumed functions with exactly one argument. Extension to n-
argument calls is straightforward. While the protocol used by the
interpreter to call an interpreted function is independent of the
number of actual values (see the runner function presented in
Section 4.2), the protocol used for invoking a compiled function
from the interpreter depends on the number of arguments. This
protocol consists in apply-ing compiled functions to a list of packed
arguments, allocating lists from which the compiled code extracts
the actual values. This method is presented in Figure 21.

To avoid packing the arguments in lists, the interpreter treats
specially function calls with 0 up to N arguments. What should be
the value ofN for improving the performance? We have conducted
another experiment reported in Figure 22. We have measured the
execution times of each benchmark for N in the range [1...6],



1: (define (Π exp εΠ)
2: (match-case exp
3: ((?f . ?args)
4: (let ((f (Π f εΠ))
5: (args (map (λ (a) (Π a εΠ)) args)))
6: (Λ ()
7: (let ((f (Ω f)))
8: (if (not (eval-procedure? f))
9: (apply f (map Ω args))
10: (begin
11: (eval-and-push args)
12: (call-interpreterd-function f)))))))
13: . . .

Figure 21. Call with undefined number of arguments.

comparing it to the execution time of the same benchmark with
N = 4. This experiment shows that a special handling of 1 to 4
arguments is beneficial. We excluded functions with 0 argument
because these functions are always compiled specially.
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Figure 22. Impact of the specialized function call protocol. The vertical
axis is the threshold from which the generic protocol is used. The horizontal
axis is the ratios of the optimized execution times divided by the generic
executions times.

As shown in Figure 10, when the interpreter pre-compiles a user
function, it generates two functions: the runner and external. The
latter is used when the compiled code calls back the interpreter, for
instance, when a compiled library function such as map calls its first
argument. We have measured the impact of compiling the external
function. It is reported in Figure 23, which shows that the protocol
used to invoke an interpreted function from compiled code does
not impact the overall performance. So, the interpreter always uses
a single external function for all cases.

4.6 Debugging
For the sake of debugging, the interpreter computes a symbolic
stack of called functions at any program point. Figure 25 shows the
overhead imposed by computing that information on the bench-
mark tests. The maximal overhead is about 40% with a mean
smaller than 15%. We have considered this overhead as afford-
able. Thus we keep debugging enabled. For a similar reason, the
interpreted code always checks the dynamic type of values before
accessing any data structure.

4.7 Extensible Stacks
The interpreter stack is allocated in the heap and represented as a
list of HOP vectors. When an interpreted function is called, the free
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Figure 23. Impact of the compilation scheme used for the external func-
tion used the compiler calls back an interpreted function. The vertical axis
represents the number of arguments. The horizontal axis represents the ex-
ecution time ratios between special and generic compilation.

1: (match-case exp
2: ((λ (?var . ?rest) ?body)
3: (let (...)
4: (Λ ()
5: (let* ((env (map (λ (i) (stack-ref i)) is))
6: (runner (λ ()
7: ...extra bookkeeping...
8: (for-each stack-push! env)
9: ...evaluate body and restore stack...)))
10: (let ((external (λ (x . l)
11: (stack-push! x)
12: (bind-frame rest l)
13: (runner))))
14: external)))
15: . . .

Figure 24. Abstraction with undefined number of arguments.

1 1.1 1.2 1.3

Figure 25. Impact of debugging information on the execution times for
the Bglstone benchmark suite.

space remaining on the stack is checked. When it is too small, a new
vector is allocated and added to the list. The stack is then accessed
using unsafe library functions that do not check the vectors bounds.
Figure 26 presents the overhead imposed by checking the stack size
when functions are entered.

0.9 1 1.1

Figure 26. Impact of the stack bound checking on the performance.

We have measured the impact of the vector sizes on the perfor-
mance of the interpreter. This is presented in Figure 27. It shows
that the maximal performance is reached from 8KB vectors, which
is large enough to run all the benchmarks without extending the
stack.
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Figure 27. Impact of the stack chunks size on the overall performance.
The vertical axis is stack of the chunks expressed in 2x bytes. The horizontal
axis is the ratio of the execution times divided by the execution time of the
actual interpreter.

4.8 Arithmetic expressions
HOP uses 64 bit allocated floating point numbers. Therefore, float-
ing point operators have to unbox, compute, and box. Boxing and
unboxing dramatically slows down execution. So, we have added a
simple optimization that consists in using a dedicated interpreter for
floating point expressions. When the standard Π interpreter parses
a floating point operator, it generates a specific function that in-
vokes the dedicated interpreter. This interpreter benefits from the
HOPC optimization that unboxes floating point numbers. Such a
floating point optimization avoids allocating numbers for tempo-
rary results, but it still requires to allocate one fresh number per
arithmetic expression for the result. Figure 28 shows the impact of
this optimization on the Bglstone tests. The highest speedup is ob-
served for the nucleic test, whose execution is about 30% faster
when the optimization is enabled.
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Figure 28. Impact of the arithmetic optimization.

5. Evaluation
In this section, we compare the performance of HOPE1 with other
implementations of dynamic languages. First, we compare it to
various implementations of Scheme, the language on top of which
HOP is built. Then, we compare it with a broader spectrum of
languages.

The experimental values are collected on two platforms: an Intel
x86/32 Xeon W3570 3.2Ghz running Linux-2.6.39 and a Samsung
S3C2440 ARM9 400Mhz running Linux-2.6.32. To measure the
execution times, each program is executed three times and the min-
imal system+user sum is collected. When possible, benchmarks
have been configured for the execution times of the new interpreter
to be approximatively 10 seconds on the x86 platform. Using a long
enough execution minimizes the impact of the boot-time of each
system. This corresponds to the way HOPE1 is used in HOP be-
cause there is no real boot-time where the server is already fully ini-
tialized and the program loaded and compiled. But systems which
optimize start times versus run times may be penalized in this mea-
surement.

5.1 Hop vs Scheme Implementations
To estimate the efficiency of the new HOP interpreter, we have first
compared it to other implementations of Scheme. The implementa-
tions we have used are the following.

• Bigloo 3.6b and Racket 5.1.1: Bigloo is the native of HOP via
C. Racket is a JIT compiler for Scheme. This comparison shows
that interpreters cannot compete with true compilers and that
native compilation is unavoidable when performance is really
needed.
• HOPE0 and HOPE1 are the two HOP interpreters. Although

an important speedup is unsurprising because HOPE0 was not
optimized for speed, this comparison is important because it let
us measure to which extend our primary goal has been reached.
• Gambit-C 4.6.1. Gambit is a Scheme implementation that con-

tains a C code compiler and a meta-circular interpreter which
uses explicit closures as for HOPE1. However, in Gambit-C,
closures are encoded with Scheme vectors instead of Scheme
procedures. Gambit-C is configured with --enable-single-
host to improve its performance. We only measure the execu-
tion times of the Gambit-C interpreter that is started with a 4MB
heap.
• Guile 2.0.2 is the GNU extension language. It is a popular

Scheme implementation with a byte-code interpreter written in
C.
• STklos 1.01+ is a byte code interpreter implemented in C.

Comparing various implementations is complex because it is
difficult to configure and use them similarly enough. Some systems
can only partially disable the debugging support, some support spe-
cialized arithmetic while others don’t, etc. Therefore, the feature
difference between two systems may impact their overall perfor-
mance more than the quality of their implementation. For instance,
HOP does not support Scheme’s call/cc. Lacking this feature en-
ables optimizations that are forbidden for pure Scheme implemen-
tations. So, only the comparison of the execution times of HOPE0
and HOPE1 is totally meaningful: their execution times are mea-
sured on two systems differing only by the interpreters. As far as
the comparison with other systems is concerned, we think that only
big enough ratios (greater than 50%) are meaningful.

The Scheme benchmarks use specific arithmetic operators when
available (for instance, HOP uses +fx, Gambit ##fixnum.+, and
STKlos and Racket fx+). All the Scheme implementations benefit
from this specialization except Guile, which only supports generic
operators. Operators are inlined by systems that support modules,
e.g., Bigloo and Racket, because they use module boundaries to
detect that the operators are constant functions. Execution is safe
since the types are checked at runtime. All systems but Bigloo,
Guile, and probably Racket offer some debugging facilities (see
Section 4.6).

The benchmarks timings of the Bglstone suite are reported
in Figures 29 and 30. The first observation is that no interpreter
can compete with compiled code. Bigloo is the faster compiler
tested here. It is one or two orders of magnitude faster than Guile
and HOPE1, the faster interpreters. Guile is slightly faster that
HOPE1 but their execution environments are not totally equivalent.
In particular, Guile does not support specific arithmetic operations;
adding such functions could significantly increase its performance.
Another observation is that HOPE1 is more than twice faster than
HOPE0. HOPE1 satisfies its general goal to eliminate the drawbacks
of HOPE0 without jeopardizing the overall performance. The last
observation is that Guile and HOPE1 are roughly two or three times
faster than Gambit and STklos. This indicates that the implementa-



Interpreters Compilers
Bench HopE1 HopE0 Gambit Guile Stklos Bigloo Racket

almabench 10.42 (1.0 δ) 28.96 (2.78 δ) 32.07 (3.08 δ) 14.84 (1.42 δ) 17.36 (1.67 δ) 0.77 (0.07 δ) 2.79 (0.27 δ)
bague 12.43 (1.0 δ) 27.16 (2.19 δ) 43.24 (3.48 δ) 9.76 (0.79 δ) 13.93 (1.12 δ) 0.09 (0.01 δ) 0.82 (0.07 δ)
beval 10.22 (1.0 δ) 20.39 (2.0 δ) 15.6 (1.53 δ) 5.74 (0.56 δ) 8.13 (0.8 δ) 0.14 (0.01 δ) 0.77 (0.08 δ)
boyer 9.95 (1.0 δ) 35.07 (3.52 δ) 70.63 (7.1 δ) 8.11 (0.82 δ) 19.88 (2.0 δ) 0.41 (0.04 δ) 1.04 (0.1 δ)
conform 10.21 (1.0 δ) 18.95 (1.86 δ) 23.28 (2.28 δ) 7.84 (0.77 δ) 11.5 (1.13 δ) 0.25 (0.02 δ) 1.28 (0.13 δ)
earley 10.21 (1.0 δ) 44.74 (4.38 δ) 46.97 (4.6 δ) 8.07 (0.79 δ) 21.53 (2.11 δ) 1.22 (0.12 δ) 1.35 (0.13 δ)
fft 10.42 (1.0 δ) 19.41 (1.86 δ) 27.1 (2.6 δ) 7.46 (0.72 δ) 10.79 (1.04 δ) 0.21 (0.02 δ) 1.01 (0.1 δ)
fib 11.09 (1.0 δ) 18.0 (1.62 δ) 32.95 (2.97 δ) 7.0 (0.63 δ) 8.02 (0.72 δ) 0 (0.0 δ) 0.82 (0.07 δ)
leval 9.44 (1.0 δ) 24.89 (2.64 δ) 35.4 (3.75 δ) 8.34 (0.88 δ) 20.12 (2.13 δ) 0.77 (0.08 δ) 2.36 (0.25 δ)
maze 11.01 (1.0 δ) 31.96 (2.9 δ) 56.32 (5.12 δ) 11.25 (1.02 δ) 126.2 (11.46 δ) 0.51 (0.05 δ) 1.81 (0.16 δ)
mbrot 9.96 (1.0 δ) 20.37 (2.05 δ) 23.58 (2.37 δ) 10.65 (1.07 δ) 15.25 (1.53 δ) 0.09 (0.01 δ) 0.41 (0.04 δ)
nucleic 10.01 (1.0 δ) 28.87 (2.88 δ) 36.26 (3.62 δ) 12.81 (1.28 δ) 17.46 (1.74 δ) 0.58 (0.06 δ) 1.17 (0.12 δ)
peval 9.78 (1.0 δ) 15.18 (1.55 δ) 23.63 (2.42 δ) 7.5 (0.77 δ) 10.47 (1.07 δ) 0.33 (0.03 δ) 1.1 (0.11 δ)
puzzle 9.73 (1.0 δ) 34.79 (3.58 δ) 63.85 (6.56 δ) 8.63 (0.89 δ) 23.31 (2.4 δ) 0.21 (0.02 δ) 1.46 (0.15 δ)
qsort 10.38 (1.0 δ) 31.76 (3.06 δ) 65.51 (6.31 δ) 9.33 (0.9 δ) 26.75 (2.58 δ) 0.2 (0.02 δ) 1.09 (0.11 δ)
queens 10.28 (1.0 δ) 22.32 (2.17 δ) 42.6 (4.14 δ) - 12.9 (1.25 δ) 0.42 (0.04 δ) 0.81 (0.08 δ)
sieve 10.14 (1.0 δ) 28.18 (2.78 δ) 42.11 (4.15 δ) 7.56 (0.75 δ) 12.28 (1.21 δ) 1.09 (0.11 δ) 1.48 (0.15 δ)
traverse 10.31 (1.0 δ) 34.45 (3.34 δ) 51.96 (5.04 δ) 7.29 (0.71 δ) 16.06 (1.56 δ) 0.74 (0.07 δ) 1.05 (0.1 δ)

Figure 29. Benchmarks timing of various Scheme implementations on Intel x86. Times (user + system) are expressed in seconds.

Interpreters Compilers
Bench HopE1 HopE0 Gambit Guile Stklos Bigloo

almabench 856.96 (1.0 δ) 1416.19 (1.65 δ) 1477.31 (1.72 δ) 991.47 (1.16 δ) 1212.87 (1.42 δ) 418.36 (0.49 δ)
bague 194.85 (1.0 δ) 644.95 (3.31 δ) 6850.4 (35.16 δ) 180.56 (0.93 δ) 232.94 (1.2 δ) 3.95 (0.02 δ)
beval 227.33 (1.0 δ) 538.15 (2.37 δ) 359.17 (1.58 δ) 128.39 (0.56 δ) 131.36 (0.58 δ) 2.92 (0.01 δ)
boyer 216.07 (1.0 δ) 811.51 (3.76 δ) 1425.14 (6.6 δ) 179.95 (0.83 δ) 331.45 (1.53 δ) 9.95 (0.05 δ)
conform 310.59 (1.0 δ) 568.61 (1.83 δ) 587.37 (1.89 δ) 161.14 (0.52 δ) 243.58 (0.78 δ) 6.67 (0.02 δ)
earley 264.07 (1.0 δ) 1108.18 (4.2 δ) 1075.99 (4.07 δ) 164.92 (0.62 δ) 504.38 (1.91 δ) 19.17 (0.07 δ)
fft 295.25 (1.0 δ) 515.72 (1.75 δ) 485.53 (1.64 δ) 196.06 (0.66 δ) 338.33 (1.15 δ) 15.82 (0.05 δ)
fib 215.59 (1.0 δ) 450.61 (2.09 δ) 631.94 (2.93 δ) 153.38 (0.71 δ) 189.22 (0.88 δ) 10.05 (0.05 δ)
leval 177.86 (1.0 δ) 575.73 (3.24 δ) 616.69 (3.47 δ) 167.96 (0.94 δ) 367.09 (2.06 δ) 17.9 (0.1 δ)
maze 275.97 (1.0 δ) 827.46 (3.0 δ) 1220.07 (4.42 δ) 289.0 (1.05 δ) 2580.67 (9.35 δ) 30.65 (0.11 δ)
mbrot 293.51 (1.0 δ) 563.83 (1.92 δ) 440.74 (1.5 δ) 286.17 (0.97 δ) 437.59 (1.49 δ) 35.43 (0.12 δ)
nucleic 539.75 (1.0 δ) 1030.2 (1.91 δ) 1180.33 (2.19 δ) 536.86 (0.99 δ) 692.84 (1.28 δ) 118.45 (0.22 δ)
peval 309.69 (1.0 δ) 389.27 (1.26 δ) 481.86 (1.56 δ) 163.95 (0.53 δ) 196.98 (0.64 δ) 10.7 (0.03 δ)
puzzle 230.99 (1.0 δ) 823.45 (3.56 δ) 1089.81 (4.72 δ) 203.03 (0.88 δ) 395.71 (1.71 δ) 4.78 (0.02 δ)
qsort 235.21 (1.0 δ) 771.1 (3.28 δ) 1199.74 (5.1 δ) 218.98 (0.93 δ) 601.8 (2.56 δ) 3.98 (0.02 δ)
queens 203.65 (1.0 δ) 518.23 (2.54 δ) - - 232.02 (1.14 δ) 10.95 (0.05 δ)
sieve 328.73 (1.0 δ) 746.74 (2.27 δ) 908.24 (2.76 δ) 232.44 (0.71 δ) 341.05 (1.04 δ) 39.64 (0.12 δ)
traverse 250.07 (1.0 δ) 938.21 (3.75 δ) 1245.06 (4.98 δ) 190.03 (0.76 δ) 320.55 (1.28 δ) 23.24 (0.09 δ)

Figure 30. Benchmarks timing of various Scheme implementations on Arm. Times (user + system) are expressed in seconds.

tion language of the interpreter might not be crucial for the perfor-
mance, since Guile is implemented in C and HOPE1 in HOP.

We have compared the memory allocations of HOPE1 and
HOPE0. The result is presented Figure 31. Note that for this ex-
periment we have executed the tests with smaller input values for
the tests. HOPE1 reduces significantly the allocated memory, ben-
efiting from its stack structure (see Section 3.5). Greater amounts
of allocated memory for HOPE0 do not necessarily imply that it
has a larger memory footprint, because most of the allocated stack
frames have a very short life time and are reclaimed at each col-
lection. This is why the ratios between the memory allocated and
number of executed collections differ. Surprisingly, for some tests,
the CPU time ratio and the allocated memory ratio seem unrelated.
For instance HOPE0 allocates 350 times more memory than HOPE1
for fib and runs 478 times more collections, while its execution is
only 1.6 times slower. We have no explanation to propose to that
surprising result. On the other hand, both interpreters consumes
the same amount of memory for fft but HOPE1 executes it twice
faster. Other tests such as puzzle or leval are more conform
to the intuition that the execution time is strongly related to the
amount of allocated memory.

5.2 Hop vs Dynamic Languages
In this section, we compare the performances of the two HOP
interpreters to the performances of other dynamic languages. The
methodology differs from the previous section. Each system comes
with its own implementation of each benchmark, reflecting the
idiosyncrasies of both the language and the evaluation engine. This
section is not a fine grain comparison. It merely gives a general idea
of the maximal performance each system may deliver. A difference
of 20% or 30% is not significant here, only the orders of magnitude
mattering. If one system is 10 times slower than the others for
all the benchmarks, it tells us something about the complexity
limitation of the problems that its language can address. Jumping
to conclusions when the difference are smaller would probably be
misleading.

For that experiment, we consider seven programming lan-
guages: JavaScript v8 3.2.10, Lua 5.1.4, Perl 5.12.3, PHP 5.3.6,
Python 3.2, Ruby 1.9.2, and HOP. We have used 5 test programs.
First, fib because it is simple enough to be implemented as is in
all languages and because it is a good test for measuring the raw
performance of function invocation and the exact arithmetic. Then,
we have used four tests adapted from the Computer Language
Benchmarks Game, aka Shoothout.

The Computer Language Benchmarks Game aims at comparing
the best possible performance delivered by of all sort of implemen-



Allocated memory
Bench HopE1 HopE0
almabench 13MB - 7 28MB - 28
bague 3MB - 1 71MB - 3
beval 7MB - 3 144MB - 69
boyer 5MB - 2 57MB - 30
conform 12MB - 9 46MB - 22
earley 14MB - 7 135MB - 87
fft 62MB - 76 84MB - 80
fib 3MB - 1 1050MB - 478
leval 68MB - 34 756MB - 347
maze 10MB - 3 92MB - 19
mbrot 51MB - 59 116MB - 90
nucleic 46MB - 23 130MB - 70
peval 32MB - 27 48MB - 23
puzzle 3MB - 1 263MB - 124
qsort 5MB - 2 128MB - 77
queens 114MB - 55 352MB - 97
seive 7MB - 3 27MB - 13
traverse 8MB - 4 316MB - 131

Figure 31. Compared memory allocations for Bglstone. For each bench-
mark, the amount of allocated memory is reported in megabytes and fol-
lowed by the number of collections.

tations of all sort of programming languages. All implementations
are free to use any technique or trick as long as they implement the
same algorithm. A permissive understanding of this sentence gives
a lot of freedom to the implementors. For instance, the PHP im-
plementation of the spectral-norm uses two threads while all the
other languages only use one. The idea of the Shootout game is to
answer the following question: for each considered problem, what
is the fastest implementation possible for each tested system? The
Figure 32 presents the results on x86. Figure 33 presents them on
Arm.

As a confirmation of the Bglstone experiment, interpreted code
cannot compete with compiled code. Bigloo and JavaScript V8 are
one or two orders of magnitude faster than interpreters. Within in-
terpreters, HOPE1 delivers good performances for fib, btrees,
and snorm, but poor performances for fasta and mbrot. These
two tests are floating-point intensive. For instance, the whole ex-
ecution time of mbrot is spent executing the following sequence
that is constantly repeated:

(let loop ((i 0))
(set! Zi (+fl (*fl 2.0 (*fl Zr Zi)) Ci))
(set! Zr (+fl (-fl Tr Ti) Cr))
(set! Tr (*fl Zr Zr))
(set! Ti (*fl Zi Zi))
(set! k (+fx k 5))
(when (<=fl (+fl Tr Ti) 4.0) (loop (+fx i 1))))

Although the floating optimization presented Section 4.8 un-
boxes numbers for subexpressions, the execution time of this test is
still largely dominated by the time required to allocate and collect
the numbers stored in the Zi, Zr, Tr, and Ti variables. The whole
execution allocates about 600MB of floating numbers and runs 76
collections to reclaim them. Improving the performance of HOPE1
for this kind of test will require a new optimization for numbers.
The compiled code does not suffer the same problem because its
static analysis eliminates all boxing operations at compile time.

6. Related Work
Implementing efficient interpreters seems to be almost as old as
computer science. For instance a paper by Klint from 1981 [13]
contains a comparison of compilation and interpretation. A long
debate opposes byte-code switch to threaded code [1, 5, 8, 15].
The function operators of HOPE1 might be considered as a variant
of threaded code. Our experiment is yet another example where

threaded code delivers faster code then byte-code switches. An-
other paper by Brunthaler [4] studies the impact of low level code
representation and presents some general optimization such as
caching interpreted local variables that could be used in HOPE1.

As for Javascript, the Lua programming language is designed
for simplicity. It only supports floating-point numbers. It emulates
arrays with association tables and supports only few constructs with
a limited syntax. Its implementation is based on a remarkably ef-
ficient and compact byte-code interpreter. The whole implementa-
tion fits in less than 17 KLOC of C code. Instead of using a stack
as for the seminal Pascal’s P-machine [16], it uses a register-based
architecture [11]. This architecture avoids many pop and push in-
structions that stack-based code needs to move values around the
stack. Since it avoids boxing temporary results, it is particularly ef-
ficient for dealing with floating point numbers. This is reflected by
the good performance of the Lua interpreter on the all floating point
intensive Shootout tests fasta, mbrot, and snorm.

Python is a byte-code interpreter implemented in C. It uses
threaded code instead of a byte-code switches; accordingly to a
comment located inside the source code, this improves the perfor-
mance by 15-20% [6]. Alternative systems for executing Python
are under investigations. In particular, the PyPy experiment consists
in implementing a meta-circular Python JIT. This work concludes
that high-level languages are suitable for implementing dynamic
languages [2]. We have reached the same conclusion.

Mainstream JavaScript implementations such as Firefox Trace-
Monkey [10] or Google Chrome V8 use JIT compilers to improve
performance. As shown in this section, this technique significantly
outperforms interpreters at the price of a higher complexity, but de-
veloping such compilers is much more complex than developing
interpreters. Unsurprisingly, they are also less portable. This prob-
ably explains why some of them are only available on x86 archi-
tectures.

PHP has a threaded code interpreter for a dynamic typed vir-
tual machine called Zend. The interpreter is written in C. PHP re-
lies on reference-count garbage collection. Allocating the results of
arithmetic operations is carefully avoided. For example, the virtual
machine proposes 16 different operators for implementing multi-
plications.

7. Conclusion
We have presented HOPE1 the new HOP interpreter that works
hand-in-hand with native compiled code to execute the server-side
parts of HOP programs. This new interpreter is meta-circular and
implemented in HOP. Its source code is no more than 2.5 KLOC.
This compactness made it simple to develop and now makes it easy
to maintain.

HOPE1 has fulfilled its primary goal, which was to eliminate
the major weaknesses of the former HOPE0 interpreter. As demon-
strated in Section 5, HOPE1 has significantly exceeded that goal.
It is one of the fastest Scheme interpreters we have tested. HOPE1
is between two and three times faster than HOPE0. Although per-
formance still lags far behind compiled code, such a speedup is
important for HOP. A two-fold speedup greatly reduces electric-
ity consumption and heat emission, which is critical for portable
devices or for future fan-less computers. This is an important prop-
erty for application domains such as multimedia, which are primary
targets for HOP.
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Interpreters Compilers
Bench HopE1 HopE0 Lua Python Ruby Php Perl Bigloo JS V8

fib 7.38 (1.0 δ) 12.6 (1.71 δ) 8.85 (1.2 δ) 33.43 (4.53 δ) 9.6 (1.3 δ) 24.47 (3.32 δ) 56.75 (7.69 δ) 0.0 (0.0 δ) 1.02 (0.14 δ)
btrees 10.81 (1.0 δ) 22.85 (2.11 δ) 16.64 (1.54 δ) 19.34 (1.79 δ) 9.92 (0.92 δ) 34.45 (3.19 δ) 31.73 (2.94 δ) 1.39 (0.13 δ) 0.68 (0.06 δ)
fasta 10.08 (1.0 δ) 32.88 (3.26 δ) 1.98 (0.2 δ) 0.6 (0.06 δ) 5.56 (0.55 δ) 5.73 (0.57 δ) 14.25 (1.41 δ) 0.07 (0.01 δ) 1.83 (0.18 δ)
mbrot 10.88 (1.0 δ) 31.44 (2.89 δ) 2.47 (0.23 δ) 8.12 (0.75 δ) 14.79 (1.36 δ) 4.72 (0.43 δ) 17.99 (1.65 δ) 0.12 (0.01 δ) 1.91 (0.18 δ)
snorm 6.1 (1.0 δ) 25.31 (4.15 δ) 5.49 (0.9 δ) 25.24 (4.14 δ) 11.71 (1.92 δ) 11.11 (1.82 δ) 25.39 (4.16 δ) 0.2 (0.03 δ) 0.35 (0.06 δ)

Figure 32. Benchmarks timing of various languages on Intel x86. Times (user + system) are expressed in seconds.

Interpreters Compilers
Bench HopE1 HopE0 Lua Python Ruby Php Perl Bigloo

fib 134.2 (1.0 δ) 346.54 (2.58 δ) 232.45 (1.73 δ) - 215.73 (1.61 δ) 748.68 (5.58 δ) 1114.83 (8.31 δ) 7.58 (0.06 δ)
btrees 226.17 (1.0 δ) 524.3 (2.32 δ) - - 231.92 (1.03 δ) - 721.41 (3.19 δ) 44.46 (0.2 δ)
fasta 413.18 (1.0 δ) 946.75 (2.29 δ) 95.8 (0.23 δ) - 253.09 (0.61 δ) 244.09 (0.59 δ) 358.7 (0.87 δ) 21.93 (0.05 δ)
mbrot 310.17 (1.0 δ) 855.52 (2.76 δ) 94.28 (0.3 δ) - 549.04 (1.77 δ) 184.43 (0.59 δ) 510.2 (1.64 δ) 46.4 (0.15 δ)
snorm 198.62 (1.0 δ) 596.01 (3.0 δ) 198.69 (1.0 δ) 444.52 (2.24 δ) 488.88 (2.46 δ) - 596.98 (3.01 δ) 52.44 (0.26 δ)

Figure 33. Benchmarks timing of various languages on Arm. Times (user + system) are expressed in seconds.

References
[1] J. Bell. Threaded code. Communications of the ACM, 16(6):370–372,

1973.

[2] C.-F. Bolz and A. Rigo. How to not write Virtual Machines for
Dynamic Languages. July 2007.

[3] G. Boudol, Z. Luo, T. Rezk, and M. Serrano. Towards Reasoning for
Web Applications: an Operational Semantics for Hop. In Proceedings
of the first Workshop on Analysis and Programming Languages for
Web Applications and Cloud Applications (APLWACA’10), Toronto,
Canada, June 2010.

[4] S. Brunthaler. Efficient Interpretation using Quickening. In Proceed-
ings of the Second Dynamic Languages Symposium, pages 1–14, 2010.

[5] S. Brunthaler. Interpreter instruction scheduling. In Proceedings of the
14th International Conference on Compiler Construction (CC), pages
164–178, Mar. 2011.

[6] CPython development team. Python/ceval.c, Feb. 2011.

[7] N. De Bruijn. Lambda Calculus Notation with Nameless Dummies:
A Tool for Automatic Formula Manipulation, with Application to
the Church-Rosser Theorem. Indagationes Mathematicae, 34(5):381–
392, 1972.

[8] A. Ertl and D. Gregg. The structure and performance of efficient
interpreters. Journal of Instruction-Level Parallelism, 5:1–25, 2003.

[9] M. Feeley and G. Lapalme. Using closures for code generation.
Computer Languages, 12:47–66, 1987.

[10] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M.-R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based just-in-time type specialization for dynamic
languages. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’09, pages
465–478, New York, NY, USA, 2009. ACM.

[11] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. The implementa-
tion of Lua 5.0. Journal of Universal Computer Science, 7(11):1159–
1176, 2005.

[12] R. Kelsey, W. Clinger, and J. Rees. The Revised(5) Report on the
Algorithmic Language Scheme. Higher-Order and Symbolic Compu-
tation, 11(1), Sept. 1998.

[13] P. Klint. Interpretation techniques. Software — Practice & Experience,
11(9):963–973, September 1981.

[14] F. Loitsch and M. Serrano. Trends in Functional Programming, vol-
ume 8, chapter Hop Client-Side Compilation, pages 141–158. Seton
Hall University, Intellect Bristol (ed. Morazán, M. T.), UK/Chicago,
USA, 2008.

[15] M. Mihocka. No execute! – The Common CPU Interpreter Loop
Revisited, Sept. 2008.

[16] S. Pemberton and M. Daniels. Pascal Implementation: the P4 Com-
piler and Interpreter. Ellis Horwood, 1983.

[17] M. Serrano. HOP, a Fast Server for the Diffuse Web. In Invited
paper of the 11th international conference on Coordination Models
and Languages (COORDINATION’09), Lisbon, Portugal, June 2009.

[18] M. Serrano and M. Feeley. Storage Use Analysis and its applications.
In 1fst ACM SIGPLAN Int’l Conference on Functional Programming
(ICFP), pages 50–61, Philadelphia, Penn, USA, May 1996.

[19] M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for program-
ming the Web 2.0. In Proceedings of the First Dynamic Languages
Symposium, Portland, Oregon, USA, Oct. 2006.

[20] M. Serrano and C. Queinnec. A multi-tier semantics for Hop. Higher
Order and Symbolic Computation (HOSC), 2010.

[21] D. Tarditi, A. Acharya, and P. Lee. No assembly required: Compiling
Standard ML to C. ACM Letters on Programming Languages and
Systems, 2(1):161–177, 1992.

[22] O. Waddell, D. Sarkar, and K. Dybvig. Fixing letrec: A faithful
yet efficient implementation of scheme’s recursive binding construct.
Higher-Order and Symbolic Computation, 18(3-4):299–326, 2005.


