
Hop, a Language for Programming the Web 2.0

Manuel Serrano
Inria Sophia Antipolis

INRIA Sophia Antipolis2004 route des
Lucioles - BP 93F-06902 Sophia

Antipolis, Cedex, France
http://www-sop.inria.fr/-
members/Manuel.Serrano

Erick Gallesio
Université de Nice

Inria Sophia Antipolis
930 route des Colles, BP 145, F-06903

Sophia Antipolis, Cedex, France
http://www.essi.fr/~eg

Florian Loitsch
Inria Sophia Antipolis

INRIA Sophia Antipolis2004 route des
Lucioles - BP 93F-06902 Sophia

Antipolis, Cedex, France
http://www.inria.fr/mimosa/-

Florian.Loitsch

Abstract
Hop is a new higher-order language designed for programming
interactive web applications such as web agendas, web galleries,
music players, etc. It exposes a programming model based on two
computation levels. The first one is in charge of executing the logic
of an application while the second one is in charge of executing the
graphical user interface. Hop separates the logic and the graphical
user interface but it packages them together and it supports strong
collaboration between the two engines. The two execution flows
communicate through function calls and event loops. Both ends can
initiate communications.

The paper presents the main constructions of Hop. It sketches
its implementation and it presents an example of a simple web
application written in Hop.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages,, Concurrent, distributed, and parallel languages, Design
languages

General Terms Design, Languages

Keywords Web programming, Functional programming

Download
Hop is available at: http://hop.inria.fr.

The web site contains the distribution of the source code, the
online documentation, and various demonstrations.

1. Introduction
The recent evolution of the web makes it suitable for replacing
traditional graphical user interfaces (henceforth GUIs). The com-
bination of fast HTML rendering of modern web browsers (such
as Gecko 20051111, shipped with Firefox 1.5), generalized sup-
port of CSS2 [15], yet expected to be rapidly supplanted by CSS3,
and the recent adoption of asynchronous transactions (aka Ajax,
the acronym of Asynchronous JavaScript and XML), makes web
applications nearly as fancy and reactive as traditional GUIs. Some
famous applications such as Google/mail, Google/map, or Zimbra’s

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

mailer demonstrate that web applications have bridged the gap with
traditional GUIs.

In addition to allowing reactive and graphically pleasing in-
terfaces, web applications are de facto distributed. Implementing
an application with a web interface makes it instantly open to the
world and accessible from much more than one computer. The web
also partially solves the problem of platform compatibility because
it physically separates the rendering engine from the computation
engine. Therefore, the client does not have to make assumption on
the server hardware configuration, and vice versa. Lastly, HTML is
highly durable. While traditional graphical toolkits evolve contin-
uously, obsoleting existing interfaces and breaking backward com-
patibility, modern web browsers that render on the edge web pages
are still able to correctly display the web pages of the early 1990’s.

For these reasons, the web is arguably ready to escape the beaten
track of n-tiers applications, CGI scripting and interaction based on
HTML forms. However, we think that it still lacks programming
abstractions that minimize the overwhelming amount of technolo-
gies that need to be mastered when web programming is involved.
As a step in this direction, we propose Hop, a higher order lan-
guage aimed at programming interactive web applications. It is
built on top of HTML, CSS, and JavaScript that are considered,
in this work, as assembly languages.

1.1 The HOP programming language
Hop is mainly designed for programming small- to medium- sized
interactive applications across the web. It is designed as a general-
purpose web programming language which targets applications
such as electronic agendas, photographs browsers, music players,
mailer clients, operating system administration tools, and so on. In
addition to enabling programming distributed applications over the
web, Hop is also convenient for implementing applications that run
on a single computer, on behalf of a single user. In that particular
case, Hop is considered as a replacement for traditional graphical
toolkits.

In contrast with most web-oriented languages and frameworks
such as PHP and Ruby On Rails, the design of Hop is not database-
centric. That is, while its standard library provides APIs for man-
aging databases, Hop is not specially tuned for programming ap-
plications that access databases via the web. Hop is designed for
programming various kinds of applications that need graphical user
interfaces amongst which some might access databases.

Hop follows the path opened by Tcl/Tk, Java/Swing, or C/GTK+
but it differs from its ancestors by enforcing a strict separation be-
tween the programming of the interface from the programming of
the logic of the applications. For that, it exposes a dual core exe-
cution model where one core executes the computations needed by
the logic of the program while the second core executes the com-

putations needed by the graphical interface. We have deliberately
provided Hop with a stratified language approach in order to em-
phasize the duality of these programs. However Hop tightly links
the code of the interface and the code of the logic:

• it packages a whole application in a single location (e.g. a file).
• it supports function calls that traverse the strata.
• it supports data exchange between the strata.

Hop helps programming web applications because:

• it eases the deployment of applications by hiding URLs and by
packaging the components of an application in a single place.

• it simplifies the control flow of the web application by allowing
symmetric communications that can be initiated by both ends.

• it supports efficient event loops that avoid busy waiting.
• it eases the communication between servers and clients by sup-

porting transparent function calls and partially shared name
spaces.

• it provides a library of pre-defined widgets.
• it allows users to implement their own set of widgets that can be

combined with the standard library for implementing complex
GUIs.

1.2 Overview of the paper
The paper is organized as follows. Section 2 informally presents
the stratified language design. Section 3 presents its syntax. The
following Section 4 presents its semantics. It zooms in the function
calls, and it presents the Hop’s event loop. Section 5 presents
an example of Hop programming. It shows a simplistic IMAP
web client. Section 6 sketches the current implementation of Hop.
Section 7 presents related work and envisions future work.

2. Overall language design
In this section, we present the rationale of Hop. We informally
present its execution model and its syntax. This section only gives
the intuition of what programming with Hop means. The technical
presentations are left for Sections 3 and 4.

2.1 Rationale
Hop fosters a model where the main computation of an application
is executed on a server and the graphical user interface is executed
on remote clients. From the user point of view, a Hop program is ex-
ecuted within a web browser and it is associated with a well known
URL. Once the program starts, the server and the clients contin-
uously communicate. The exchanges are implemented by remote
function calls and event loops. Hop is well suited for implementing
applications that need frequent communications between the server
and the client. For instance, we have implemented a music player
with Hop that continuously displays, on the client, the elapsed time
of the songs played on the server. On that particular application, as
with many others we have implemented with Hop, the server and
the client are frequently hosted by the same physical computer.

2.2 A dual core execution
A Hop program is executed simultaneously on several engines. The
main engine is dedicated to executing the logic of the program. It
executes CPU demanding computations and operations that require
system privileges for accessing files or other resources. The other
engines, henceforth called GUI engines, are dedicated to executing
actions related to the programming of the graphical user interfaces.
Engines are mapped to actual physical computers. More than one
engine can be mapped to a single computer.

When a Hop program starts, it first executes on the main engine.
This elaborates the description of a graphical user interface that is
sent to a GUI engine. From that moment, the execution flows from
the GUI engine to the main engine and vice versa. The GUI engines
may invoke services from the main engine by the means of function
calls. The main engine may signal events to the GUI engines.
Each event carries an identity and a value. Events are handled
asynchronously. They are used by the main engine to notify GUI
engines when a new information is available. They are a means for
implementing pushing on the web.

2.3 A dual language
Hop is a stratified language. The first stratum is dedicated to pro-
gramming the main engines, or the servers. The second stratum is
dedicated to programming graphical user interfaces, or the clients.

Both strata provide different facilities. On the one hand, the
main stratum provides an API for accessing the file system and the
other resources of the computer that hosts it, but it does not support
any facility for handling graphical user interfaces. On the other
hand, the GUI strata is provided with a full set of functionalities for
dealing with graphical interactions but it has drastically restricted
accesses to the resources of the computer it executes on. Because
they are using different APIs, in general, an expression of the main
stratum cannot be executed on the client and vice versa.

2.4 Objectives
As presented in Section 3, Hop uses a compact syntax that is
close to the syntax used in traditional XML authoring. However,
it is a complete programming language that subsumes many web
technologies. As such, it allows the implementation of libraries that
can be combined for implementing complex applications.

For the sake of the example and to give an intuition of what Hop
programming looks like, here is a complete Hop program:

(let ((def (<DIV> ""))
(svc (service (w)

(<P> (sql-select
"FROM dict WHERE (def=~a)" w)))))

(<HTML>
(<BODY>

(<TABLE>
(<TR>

(<TD> "search")
(<TD> (<INPUT>

:type "text"
:onkeyup

~(with-hop ($svc this.value)

(lambda (h)
(set! $def.innerHTML h))))))

(<TR>
(<TD> :colspan 2 def))))))

This program acts similarly to Google/suggest. The client dis-
plays an input box. It interactively reacts to key press events. Each
time a new character is entered, the client invokes a service on
the server which searches in a database the definition of the word
sent by the client. On success, the definition is displayed back in
the client display. The most important part of this example is the
with-hop construction that invokes, from the client, a function lo-
cated on the server. It is detailed in Section 4.3

3. The HOP syntax
This section presents the syntax of Hop. It first presents the syntax
of the main stratum. Then, it presents the escape syntactic construc-
tion that switches to the GUI stratum. The formal definition of the
syntax is given in the Appendix.

3.1 The syntax of the main stratum
At first glance, the syntax of the main stratum of Hop is a mere vari-
ation around HTML involving superficial modifications. It merely
introduces an extra open parenthesis before any markup and re-
places the closing markup with the single closing parenthesis. It
also encloses string literals within " characters. Therefore, the
HTML expression:

<HTML>
<BODY>

A plain text
</BODY>

</HTML>

is written in Hop, as:

(<HTML>
(<BODY>

("A plain text")))

In Hop, attributes are introduced by an identifier starting with a
colon character (:) and their value is separated from the name by
white spaces. Hence the corresponding Hop program of the HTML
document of Figure 1 is written as in Figure 2.

<HTML>
<BODY>

<TABLE width="100%">
<TR> <TD>0</TD></TR>
<TR> <TD>1</TD></TR>
<TR> <TD>2</TD></TR>
<TR> <TD>3</TD></TR>

</TABLE>
</BODY>

</HTML>

Figure 1. A simple HTML file.

In spite of the strong resemblance, there is a very important
difference between the semantics of the two sources. While the
HTML source can be interpreted as the external representation of
a tree, the Hop source is actually a computer program that can
be evaluated in order to produce a document. This is detailed in
Section 4.

(<HTML>
(<BODY>

(<TABLE> :width "100%"
(<TR> (<TD> 0))
(<TR> (<TD> 1))
(<TR> (<TD> 2))
(<TR> (<TD> 3)))))

Figure 2. A simple HOP program.

3.2 The syntax of the GUI stratum
The GUI stratum is composed of GUI expressions. They are nested
inside main expressions. The “~” character escapes from main ex-
pressions to GUI expressions. The GUI expressions are usually
used as values of attributes, as can be seen in the following ex-
ample:

(<HTML>
(<BODY>
(<BUTTON>

:onclick ~(alert (* (Math.atan 1) 4))
"Click me to see an approximation of PI")))

The character “$” escapes from the GUI stratum back to the
main stratum. That is, it introduces an expression of the main

stratum inside an expression of the GUI stratum. There is no limit to
the nesting level so these main stratum expressions may, in turn, use
the “~” character to escape back to the GUI stratum. For the sake
of the example, let us consider a re-writing of the previous example
where the approximation of π is moved to the main stratum:

(<HTML>
(<BODY>
(<BUTTON>

:onclick ~(alert $(* 4 (atan 1)))
"Click me to see an approximation of PI")))

Note that these two programs are likely to show different ap-
proximations since no provision is taken to guarantee that the pre-
cision of the arithmetic of the main stratum and the precision of the
GUI stratum are the same.

4. The HOP dual evaluation
Hop brings abstraction to HTML. While HTML is a mere syntax
that carries no semantics, Hop is a programming language. While
a HTML expression denotes a tree, a Hop expression is evaluated
in order to produce a value. While HTML markups are syntactic
elements, in Hop, they are functions. More precisely, the meaning
of the Hop expression:

(fun a0 a1...)

is the application of the function fun to the arguments a0, a1. Pro-
vided with this semantics, we can reconsider the previous Hop ex-
pression: ("A plain text")

This expression is actually the call of the function with the
literal string "A plain text" as argument. It should be noted that
Hop identifiers may use more characters than most programming
languages. In particular, the characters < and > are legal identi-
fiers characters, as letters, digits, , ?, !, and many others (see the
Appendix).

Hop is unsurprisingly based on the Scheme algorithmic pro-
gramming language [9] for which familiarity is assumed in the
rest of this paper. Hop extends Scheme in many directions. It
supports object-oriented programming, exceptions, modules, and
multi-threading. It comes with various tools and libraries such as
tools for constructing parsers and libraries for programming net-
works, multimedia applications, and so on. In addition to these fea-
tures traditionally offered by programming languages, Hop sup-
ports original constructions specially designed for programming
web applications. Since this paper focuses on web programming,
it is intentionally shallow on the constructions that are not strictly
related to this topic.

In the rest of this section, we present the Hop evaluation model.
First, in Section 4.1 we present how a program is spawned. Then,
in Section 4.2, we present how GUI expressions are built. Then, the
Section 4.3 constitutes the heart of this paper. It presents how the
two strata collaborate.

4.1 Dual Execution
The execution of a Hop program differs from the execution of tradi-
tional computer programs. In order to be executed, a Hop program
has to be first loaded on a HOP server. This server conforms to the
HTTP protocol [4]. It binds the program to an URL provided by the
administrator of the server. This URL is used by clients (i.e. web
browsers) to start the program.

A Hop program constructs a response to an HTTP request. In
general, this response is a XML document but in some situations
it can be any other data structures. For the sake of simplicity, in
this paper, we focus on HTML responses only but all the presented
techniques also directly apply to XML.

The execution of a Hop program is distributed. One part is
executed on the server which evaluates the expressions of the main

stratum. The second part is executed on the client which evaluates
the expressions of the GUI stratum. In general the execution flow
switches from a server to a client and vice versa but Hop also
allows two (or more) execution flows to run in parallel. The client
communicates with the server via remote function calls. The server
communicates with the client via signals. Both communication
means allow compound values to be carried.

4.2 The Elaboration time
The purpose of most Hop programs is to build HTML pages that
are visualized by web browsers. The phase of the execution on the
server where the HTML pages are constructed is called elabora-
tion. It takes place before any execution can start on the client.

Hop implements HTML pages as trees. The Hop libraries of
the two strata provide functions for constructing and manipulating
them. In both strata, the trees are first class values. Hence, they can
be passed as argument to functions, returned as results, and stored
into data structures and variables. For the sake of the example,
Figure 3 is a re-writing of the Hop program presented Figure 2
where the four rows of the table are bound to local variables.

(let ((r0 (<TR> (<TD> 0)))
(r1 (<TR> (<TD> 1)))
(r2 (<TR> (<TD> 2)))
(r3 (<TR> (<TD> 3))))

(<HTML>
(let ((table (<TABLE> r0 r1 r2 r3)))

(<BODY> table))))

Figure 3. Using variables in HOP programs.

The interest of such an approach is better understood when
some abstraction is used. In the example of Figure 4 a function
is defined for automating the construction of the rows of the table.

(define (<ROW> v)
(<TR> (<TD> v)))

(<HTML>
(let ((table (<TABLE>

(<ROW> 0) (<ROW> 1)
(<ROW> 2) (<ROW> 3))))

(<BODY> table)))

Figure 4. Using HOP naming conventions.

Note that the Hop convention is to surround the name of the
functions that build HTML trees by the < and > characters and
to use upper case letters. This example implicitly unveils that Hop
standard HTML markups are implemented as regular functions. It
also shows that defining a new markup in a user program is no more
complex than defining a function.

As presented in Section 3.2, any expression of the main stratum
can be nested in an expression of the GUI stratum after an escaping
$ character. At elaboration time, the escaping main stratum expres-
sions are evaluated and the resulting values are injected in the re-
sponse. In consequence, when the response is shipped to the client
it is totally stripped of main stratum expressions. Let’s consider the
Hop source of Figure 5 before elaboration.

Reflecting the two different execution times, the two strata use
separate name spaces. A variable from the main stratum and a
variable from the GUI stratum can hence hold the same name
without conflicting. In other words, the variables defined line 1 and
line 6 of Figure 5 are different. The elaboration phase replaces the
occurrences of the variable x that belongs to the main stratum line
10 with the value "out" but it leaves the variable x that belongs to
the GUI stratum line 9 as shown in Figure 6.

1: (define x "out")
2: (define y (vector 1 2 3))
3:
4: (<HTML>
5: (<BODY>
6: (<SCRIPT> ~(define x 0))
7: (<P> :onmouseover ~(begin

8: (set! x (+ 1 x))
9: (alert "over=" x))
10: :onmouseout (alert $x)
11: :onclick (alert $y)
12: "foo")))

Figure 5. A program before elaboration.

4: (<HTML>
5: (<BODY>
6: (<SCRIPT> ~(define x 0))
7: (<P> :onmouseover ~(begin

8: (set! x (+ 1 x))
9: (alert "over=" x))
10: :onmouseout ~(alert "out")
11: :onclick ~(alert ’#(1 2 3))
12: "foo")))

Figure 6. The program after elaboration.

As it can be seen here, the variable y which is bound to a Hop
vector in Figure 5, line 2 is replaced with a constant vector in Figure
6, line 11. This shows that the elaboration can inject complex data
structures in the response. In particular it can inject tree branches
that are under construction. This is illustrated by the next example
that shows that an HTML tree can be used when constructing
a document in the main Hop program (line 4 of Figure 7) and
can also be injected in the GUI stratum (line 7). The following
example constructs an HTML page that swaps the two items of
the unordered list each time the button is clicked.

1: (let ((el (("foo") ("bar"))))
2: (<HTML>
3: (<BODY>
4: el
5: (<BUTTON>
6: :onclick
7: ~(let* ((nodes (dom-child-nodes $el))
8: (a (array-ref nodes 0))
9: (b (array-ref nodes 1)))
10: (dom-append-child!
11: $el (dom-replace-child! a b)))
12: "swap me"))))

Figure 7. Injecting a tree branch.

4.3 HOP services
This section presents one of the main technical novelty brought by
Hop, namely the Hop remote services.

4.3.1 HOP service definition
HTML’s URLs play a role similar to functions in programming lan-
guages. Let us consider the following HTML page (for simplicity,
expressed in the Hop syntax):

(<HTML>
;; a link to google portal
(<A> :href "http://www.google.com" "Google portal")
;; a google request
(<FORM>

:action "http://www.google.com/search"
(<INPUT> :type "text" :name "q" :value "")
(<INPUT> :type "submit" :value "search")))

In a plain HTML document, the URL http://www.google.-
com could be considered as a function named www.google.com
whose signature is:

unit −→ HTMLtree

It is called when a user clicks on the hyper link implemented by the
<A> markup. Similarly, the URL http://www.google.com/-
search denotes another function. It is called when the user clicks
the submit button. This one accepts a parameter named q and its
signature is hence:

string −→ HTMLtree

Hop transparently binds URLs to special functions called ser-
vices. These reside on the server and they are called from the
clients. They are defined by the form define-service whose syn-
tax is:

(define-service (<ident> <ident>0 ...)
<expression>)

<Ident> is the name of the service and <ident>0 , ... are its
parameters. The form define-service is similar to the Scheme
function definition form define but in addition to binding a func-
tion to an identifier in the server, it also binds it to an URL that
can be used to run a Hop program. Let us consider the following
example which is a complete Hop program:

1: (define-service (portal)
2: ;; a web page with a big lambda character
3: (<HTML>
4: (<BODY>
5: (<CENTER>
6: ((<BIG> (<BIG> "λ")))))))
7:
8: (define-service (rev q)
9: ;; a web page with the argument reversed
10: (<HTML>
11: (<BODY>
12: (<CENTER>
13: (
14: (list->string
15: (reverse (string->list q))))))))
16:
17: (<HTML>
18: ;; a link to our Hop portal
19: (<A> :href portal "portal")
20: ;; a HOP request
21: (<FORM>
22: :action rev
23: (<INPUT> :type "text" :name "q" :value "")
24: (<INPUT> :type "submit" :value "reverse")))

Figure 8. A complete HOP program defining two services.

When this program is executed, it first binds two services:
portal line 1 and rev line 8. Then, line 17, it elaborates an answer
which is an HTML tree containing, line 19, a call to the first service
and, line 22, a call to the second service.

Similarly to anonymous functions, Hop supports anonymous
services which are not bound to any public URL. They are intro-
duced by the form service:

(service (<ident>0 ...)
<expression>)

Anonymous services are illustrated on the example presented
in Figure 9. This Hop program manages a dynamic list of items.
The form started at line 5 adds new entries. Clicking the submit
button of line 8, calls the anonymous service defined in line 6. On
the server, this service recursively calls the function loop, defined
in line 1, with the value of the input entry of line 9 added to the list.

1: (let loop ((items (list "foo" "bar" "gee")))
2: (<HTML>
3: (<BODY>
4: (<H3> "To do list")
5: (<FORM>
6: :action (service (new)
7: (loop (cons new items)))
8: (<INPUT> :type "submit" :value "add")
9: (<INPUT> :name "new" :type "text"))
10: ((map items)))))

Figure 9. An example of anonymous services.

4.3.2 HOP service calls
The service calls presented in Section 4.3.1 suffer a strong restric-
tion: they can only produce complete web pages. By the definition
of HTTP and HTML they can hardly be used to compute partial
results. In order to work around this limitation, web browsers have
introduced a new communication means which enables clients to
call services from servers and which enables clients to handle, as
they wish, the results of the calls. The term Ajax has been coined
for denoting programs using this capacity. This section, presents its
support in Hop.

In addition to the <A> and <FORM> function invocations,
any Hop service can be called, from the GUI stratum, with the
following form:

(with-hop (service arg 0 ...)
[(lambda (h) ...success expression...)
[(lambda (h) ...failure expression...)]])

The with-hop form calls the service service with the arguments,
arg 0 , When the call completes, on success, the optional GUI
call-back procedure success is called. On failure, the optional
call-back failure is called. Both call-back procedures accept one
argument which is the result of the evaluation of the service on
the main stratum. The example of Figure 10 shows an example of
service call. In the GUI stratum, it invokes a service that returns the
local date of the server which is displayed in a dialog box (line 7).

1: (define-service (server-date)
2: (current-date))
3:
4: (<HTML>
5: (<BUTTON>
6: :onclick ~(with-hop ($server-date)
7: (lambda (h) (alert h)))
8: "Server time"))

Figure 10. An example of function call.

Compound data structure can transit from servers to clients and
vice versa. The following example sends a list from the client to the
server which, in turn, builds an HTML page containing a table and
sends it back to the client. This new table replaces the initial empty
element.

Because compound values can be exchanged, we could decide
to modify the previous program in order to ship a list, from the
server to the client, and construct the new HTML table in the client.
This modification is presented Figure 12.

1: (define-service (add10 lst)
2: (<TABLE>
3: (<TR>
4: (map (lambda (e) (<TD> (+ 10 e))) lst))))
5:
6: (<HTML>
7: (<HEAD> (<HOP-HEAD>))
8: (let ((el (<DIV> "")))
9: (<BUTTON>
10: :onclick ~(with-hop ($add10 (list 1 2 3))

11: (lambda (h)
12: (set! $el.innerHTML h)))
13: el)))

Figure 11. Arguments of function calls.

1: (define-service (add10 lst)
2: (map (lambda (e) (+ 10 e)) lst))
3:
4: (<HTML>
5: (<HEAD> (<HOP-HEAD>))
6: (let ((el (<DIV> "")))
7: (<BUTTON>
8: :onclick
9: ~(with-hop ($add10 (list 1 2 3))

10: (lambda (h)
11: (dom-remove-child!
12: $el (array-ref (dom-child-nodes $el) 0))
13: (dom-append-child!
14: $el (<TABLE> (<TR> (map <TD> h))))))
15: el)))

Figure 12. Sending complex data structures.

In addition to enable communications from clients to servers
the form with-hop can also be used to establish a communication
between two servers. In that case, an extra parameter denoting the
distant server is added. For instance, the following code can be used
to fetch the date from a remote server:

(with-hop :host "http://remote.host:8080" ($server-date)
(lambda (h) ...))

This example supposes that there is a Hop server listening to
the socket port 8080 of the computer named remote.host. It also
supposes that this server implements the service server-date.
When one has to fetch information from a non Hop server, the form
with-url can be used. It acts as with-hop except that it does not
invoke a service on a distant server, it directly fetches the content
of a document. Example:
(with-url "http://www.inria.fr/"

(lambda (h) (xml-parse h ...)))

4.4 HOP Event loops
Hop provides two different kinds of event loops. The first ones are
used to initiate, in the GUI stratum, computations at regular time
intervals. Since, they are roughly equivalent to the JavaScript timer
facilities, we only present them with the example shown Figure
13. This program polls every five seconds the server time which is
updated on the client display.

Hop also provides an event mechanism which prevents client
to busy wait. These events are first declared on the server, that
is in the main stratum of a Hop program. In the GUI stratum,
clients register to these events by the means of the dedicated
markup <HOP-EVENT>. When a server emits an event, registered
clients are notified. The implementation of <HOP-EVENT> liber-

1: (<HTML>
2: (<BODY>
3: (let ((clock (<DIV> "")))
4: (<TIMEOUT-EVENT>
5: :timeout 5000
6: :handler
7: ~(with-hop ($(service () (current-date)))

8: (lambda (h)
9: (set! $clock.innerHTML h)))
10: clock))))

Figure 13. HOP timer loops.

ates clients from checking periodically event notifications. This is,
to our knowledge, another technical innovation brought by Hop.

Events are instances of the hop-event class. The function of
the main stratum that signals an event has the following prototype:

signal-hop-event!: event × <value> −→ unit

The markup <HOP-EVENT> has the following shape:

(<HOP-EVENT>
:event a-hop-event
:handler a-client-code)

For the sake of the example, let us study a variation over the
example of Figure 13. In this second version, the server initiates the
communication with the client. That is, the client does not explicitly
poll the server. It displays the server time when the server signals
the event.

1: (define evt
2: (instantiate::hop-event
3: (name "server time event")))
4:
5: (thread-start!
6: (make-thread
7: (lambda ()
8: (let loop ()
9: (sleep! 5000)
10: (signal-hop-event! evt (current-time))
11: (loop)))))
12:
13: (<HTML>
14: (<HEAD> (<HOP-HEAD>))
15: (<BODY>
16: (let ((clock (<DIV> "")))
17: (<HOP-EVENT>
18: :event evt
19: :handler ~(set! $clock.innerHTML event)
20: clock))))

Figure 14. HOP timer loops without client busy wait.

At Line 5 a thread is spawned on the server. This thread
pauses during 5 seconds and then signals the event evt defined
in line 1. The form instantiate creates an instance of the class
hop-event. The event is intercepted on the GUI stratum in line
19. In the :handler block, following the JavaScript tradition of
event handling, the variable event is automatically bound to the
event that has been intercepted. The content of the clock <DIV>
is replaced with the value carried by the event.

One may object that we have not eliminated the busy wait but
moved it to the server. While, undubitably true, this is not a weak-
ness of Hop. The point of this example is to show that clients
may avoid busy waiting server events using the <HOP-EVENT>
markups. It is up to the server to implement the appropriate sig-
naling mechanism. The point of this section is only to show that
the Hop notification implements a server push method.

5. Example
In this section, we show a small Hop application. We present an
overly simplified IMAP client that uses a web interface. As shown
in the screenshot of Figure 15, it presents a table with two columns.
The left column displays the list of folders found on the IMAP
servers. The upper right column shows the list of messages of
the selected folder. The lower right column shows the body of
the selected message. The application is interactive. Folders and
messages are accessed on-demand using mouse clicks.

Hop provides a library for accessing IMAP servers. All the
function that belong to this API are prefixed with imap-. This API
being self explanatory, it is not discussed here. In order to make
the application as compact as possible, we don’t provide the IMAP
client with a GUI for connecting to the IMAP server. Instead, the
connection to the IMAP server is held in a global variable:

(define connection
(imap-login

(make-client-socket "imap.laposte.net" 993)
"foo" "XXX"))

Then comes the heart of the application. It uses two Hop wid-
gets, <TREE> and <PANED> which are popular widgets in tradi-
tional GUI programming and which are supported by Hop. This is
presented in Figure 16.

The two <DIV>s, folder and message respectively contain
the list of folders and the body of the selected message. The left
column of the application is a tree whose label is the name of the
IMAP server and whose leaves are labeled with the names of the
folders.

(define (<IMAP-TREE> connection)
(<TREE>
(<TRHEAD>

(socket-hostname connection))
(<TRBODY>

(map (lambda (f)
(<TRLEAF>
(<TT> :class "summary"

:onclick

~(with-hop ($folder-summary $f)
(lambda (h) (set! $folder.innerHTML h)))

f)))
(imap-folders connection)))))

When a leaf of this tree is clicked-in, the service of the main
stratum folder-summary is invoked with the name of the folder.
The result of this function call fills the folder <DIV>. This is
presented in Figure 17.

The service folder-summary builds a table with three columns
containing respectively the subject, the author, and the emission
date of the message. When such a message is clicked, the service
message-show is called with two parameters, the folder name and
the message identifier. The result is used to fill the message box.

3: (define message-show
4: (service (folder msg)
5: (imap-folder-select connection folder)
6: (<PRE> (imap-message-body connection msg))))

6. Implementation
This section sketches the implementation of services and events.
Readers not interested in such technical details may freely skip this
section.

6.1 Implementation of Services
Hop is currently implemented as a web server. It accepts HTTP
requests and it selects, according to the URL, the appropriate treat-
ment to execute. Services are implemented as couples containing
one function and one URL. That is, each time a service (anonymous
or not) is created, a new unique URL is generated, a new function
is created and the couple {URL, function} is stored inside a table
on the server. When a request is intercepted, this table is scanned
for selecting the appropriate service to execute. When a service is
used in the GUI stratum, a reference to it is compiled to JavaScript.
At last, expressions of the GUI stratum are compiled on the fly to
JavaScript by a Hop-to-JavaScript compiler whose description is
out of scope of this present paper. Let us assume the following Hop
expression:

(<BUTTON>
:onclick ~(with-hop ($(service (x y) (+ x y)) 1 2)

...)
"Click this link")

The elaboration yields the following HTML document:

<BUTTON onclick=’with hop(
function() {

return hop service url("/hop/???/4-57604278",
["x", "y"],
arguments)

}(1, 2), ...)’>
"Click this link"

</BUTTON>

The dynamically created URL /hop/???/4-57604278 is the
unique identifier associated with the service. The current imple-
mentation of Hop is not able to reclaim these URLs. That is, it
keeps alive for ever all the services and their URLs. It never col-
lects URLs because we don’t think that it exists a universal crite-
rion allowing URL reclaim. Obviously, we could adopt a solution
based on time stamping. For instance, we could arbitrarily decide
to collect URL after two or three hours. We are reluctant to adopt
such a solution but we are aware that this weakness has to be over-
come in the future versions of Hop. We are investigating a solution
where the server functions representing the services are encoded
in the URL. More precisely according to this solution it would be
no longer necessary to store the whole function on the server. In-
stead, only the closure environment would be encoded and sent to
the client (i.e. the lexical environment active when the service was
created). If this approach succeeds, it will remove the need for the
table which binds URLs to functions.

The JavaScript functions with hop and hop service url are
defined in the standard Hop GUI stratum library. They are shipped
with every generated page. As presented in Section 4.3.2 the form
with-hop calls asynchronously a service. It can be defined as:

function with hop(service, success, failure) {
function callback(h) {
if(h.status == 200)

if(h.getAllResponseHeaders().indexOf("hop-json")>=0)
return success(eval(h.responseText));

else
return success(h.responseText);

else
return success(h);

};

return hop(service, callback, failure);
}

Figure 15. Webmail, a screenshot of the simple HOP webmail in Firefox.

(let ((folder (<DIV>))
(message (<DIV>)))

(define message-show ...)
(define folder-summary ...)
(define (<IMAP-TREE> connection) ...)
(<HTML>

(<HEAD>
:css "hop-paned.css" :css "hop-tree.css" :css "hop-mail.css"
:jscript "hop-paned.js" :jscript "hop-tree.js")

(<BODY>
(<PANED> :fraction 30

(<PAN>
(<IMAP-TREE> connection))

(<PAN>
(<TABLE> :width "100%" :border "2px"

(<TR> (<TD> :class "folder" :valign ’top folder))
(<TR> (<TD> :class "message" :valign ’top message))))))))

Figure 16. Webmail, main program.

(define folder-summary
(service (folder)

(imap-folder-select connection folder)
(<TABLE> :class "summary"

(map (lambda (mh)
(<TR> :onclick ~(with-hop ($message-show $folder $(car mh))

(lambda (h) (set! $message.innerHTML h)))
(<TD> (imap-header-get mh ’subject))
(<TD> (imap-header-get mh ’from))
(<TD> (imap-header-get mh ’date))))

(imap-folder-headers connection)))))

Figure 17. Webmail, showing the messages of a folder.

The function hop service url maps a service to a URL. It
could be implemented as:

function hop service url(service, formals, args) {
var len = formals.length;
var i;
var url = service;

if (len == 0) return service;
for (i=0; i<len; i++)

url+="&"+formals[i]+"="+hop serialize(args[i]);
return url;

}

The function hop serialize marshals JavaScript values in a
format compatible with the main stratum of Hop. When the server
sends a value to the client which is not an HTML tree, it adds a
hop-json header in the message and it uses the JSON external
format that the client simply decodes with the JavaScript eval
function call. The library function hop, whose code is not presented
here, actually performs the JavaScript asynchronous call. It uses ad-
hoc technics which are dependent of the clients web browsers.

6.2 Implementation of Events
The current implementation of the <HOP-EVENT> markup relies
on services invocation. Waiting for an event is implemented as
invoking an asynchronous service that returns only when the event
is emitted from the client. More precisely, when an event e1 is
created, the server automatically generates a service svce1. The
markup <HOP-EVENT> is compiled, during the elaboration stage,
as an invocation of svce1 (see Section 4.3.2). This call completes
when the server emits the signal e1. At that time, the client receives
the value associated with the event. It re-invokes the service svce1
for waiting for other values and, in parallel, it handles the received
value. Assuming the library function hop event whose definition
looks like:

function hop event(event, event handler) {
var http = new XMLHttpRequest();
var url = "hop event wait?event=" + event;

http.open("GET", url, true);
http.onreadystatechange = function() {

if(http.readyState == 4 && http.status == 200) {
// invokes the user handler
event handler(http);
// recursively call the function in
// order to wait new results
hop event(event, event handler);

}
}
http.send(null);

}

The actual implementation takes care of portability issues. The
expression (<HOP-EVENT> evt handler) is then compiled to:

hop event(evt, handler);

This implementation prevents the client from busy waiting events
for the server because invoking a service using an XMLHttpRequest
is an asynchronous operation that does not involve polling. Surpris-
ingly, this simple technique appears to be robust and it allows to
implement passive wait on the client quite easily. It has been sug-
gested by Marc Feeley who deserves most of its credit.

7. Discussion and Related work
In this section we discuss the design orientation of Hop and we
present some related and future work.

7.1 Related work
Hop embraces in one unique language all the facets of web pro-
gramming. It emphasizes compactness of programs and interactiv-
ity of applications. It proposes a lightweight approach based on
functional programming. By contrast to previous studies, it does
not enforce an interaction model based on forms submissions [6,7].
It follows an opposite direction to previous studies that aimed at
easing CGI programming in traditional programming languages.
The Meijer’s CGI library [11] is a functional representative of
this kind. Hop also distinguishes from early works such as the
<bigwig> project [13,1] that are aimed for larger web applica-
tions where sessions, database integration, security, static checking

of dynamic web pages, and concurrency are important issues. Hop
proposes a solution for authoring web pages, programming the in-
teractions between the servers and the clients, and programming the
reactions of the user interfaces. In that sense, it is unrelated to lan-
guages such as Mozilla’s XUL or Microsoft XAML that focus on
the programming of the clients. XUL is the programming language
of Mozilla which is, in addition to being a web browser, a whole
execution environment. Hop is independent of any browser. It is
used for implementing applications that need server- and client-
programming. It can also be used for implementing applications
that execute totally on a server. For instance, it can be used for im-
plementing servers delivering music or for implementing tunneling
via HTTP. This kind of applications is out of scope of languages
such as XUL.

One of the closest works to Hop is due to Philip Wadler and his
colleagues. The Links1 programming language shares the goal of
Hop. Like Hop, Links is a functional language that manages trans-
parent function calls across the web. Like Hop, a Links program
is made of a single source file and the client codes are compiled
to JavaScript and server codes and client codes can be interleaved.
Contrary to Hop, Links uses only one name space and functions are
annotated with client or server marks depending on where they
execute. This solution is elegant because it allows the use of only
one single syntactic construction for calling either client functions
and server functions. The Hop expression:

(with-hop ($lookup n) (lambda (lst) ...))

in Links is nicely written:

lst <- (lookup n); ...

However, we think that this approach has several weaknesses.
First, we think that it is important to reflect, in the syntax, that call-
ing a server function is a different operation from calling a client
function. The two kinds of calls have totally different implemen-
tation and execution costs. Another weakness is that the Links ap-
proach gives the illusion that programming the client and program-
ming the server is the same. However, the two execution engines
cannot support the same set of operations. Some operations are
meaningless on the server and vice versa (for instance, getting the
dimension of the graphical user interface window is meaningless
on the server). Next, we think that the elaboration stage of Hop
that allows to inject server values in the client code is a strength.
We hope that the various examples of the paper are demonstrative
enough.

The last difference between Links and Hop is the event loops
(see Section 4.4) that have no direct equivalent construction in
Links. However, Links offers client processes that allow to es-
tablish asynchronous communications between the clients and the
servers. Hence, it might probably be possible to implement Hop
event loops on the top of Links processes.

7.1.1 Database orientation
Until recently, most of the web applications have adopted the same
architecture. On the one hand, a server hosts a database and scripts
that access it. On the other hand, a client, i.e. a browser, imple-
ments the user interface to this server. This architecture is so widely
spread than many solutions have been conceived for easing the de-
velopment and maintenance of such applications. In the first place,
libraries have been developed. Windows ASP and Java JSP are two
representatives of such libraries. Because a language tuned for a
particular kind of applications might ease the development, lan-

1 http://homepages.inf.ed.ac.uk/wadler/links.

guages such as PHP have appeared. A PHP program is composed of
static HTML parts and PHP expressions that dynamically generate,
on the server, new HTML nodes. Databases are tightly integrated
in the language and in consequence, one might very concisely pro-
duce HTML documents from database queries.

Since the rise of Ajax applications, new solutions try to com-
bine the compactness of PHP for programming databases accesses
and the programming of reactive graphical interfaces. The largely
advertised Ruby On Rails is one of these solutions: it defines itself
as “a full-stack framework for developing database-backed web ap-
plications according to the Model-View-Control pattern”. In a Rails
application, the user interacts with an Ajax view of the database.
Requests to this database are handled by a controller which is built
on a model which dynamically maps the tables of the database to
Ruby classes. This framework favors convention over configuration
and by this way tries to eliminate as much as possible the need for
hand-written code. Most of the code of a Rail application is au-
tomatically generated from templates and database introspection.
Ruby on Rails goes beyond the objectives of a programming lan-
guage and is particulary efficient for the kind of applications it is
envisioned for.

Hop and Rails automatically generate URLs for server services.
In Hop they are mapped to services (see Section 4.3). In Rails they
are mapped to Ruby methods. Contrarily to Hop, Rails does not
support direct parameters passing. Hop mainly eases the develop-
ment of the communication components of reactive web applica-
tions. This facet is not addressed by the previously mentioned sys-
tem.

7.1.2 Functional programming
Like Hop, WASH/CGI is a linguistic approach to programming the
web. It concentrates on CGI programming so it addresses problems
specific to this model such as persistency. Namely, WASH/CGI
manages sessions. This problem is eliminated by the design of
Hop which assumes an evaluator that is hosted by a full-fledged
web server. Contrarily to CGI, the execution of a Hop application
is not split into several execution chunks. WASH/CGI focuses
on interactions based on HTML forms. In particular, inspired by
Hanus’ Curry [8], it automatically handles the action attributes of
this HTML markup. That is, WASH/CGI replaces the URL of the
HTML forms with an Haskell function. WASH/CGI transparently
associates a private URL and it automatically feeds the function
with the actual values found in the form. Hop’s services can be
viewed as a generalization of this approach because they can be
used in forms but also everywhere where a reference to a server is
used, in any JavaScript code, and in any event loop. Contrarily to
Hop, WASH/CGI does not support remote service call nor does it
support event loops and passive event waiting.

7.1.3 Sessions and Continuations
We have learned in the late 1990’s from C. Queinnec, that most web
applications have to deal with continuations. In his early publica-
tion [12] he has shown that a browser is a device that can call con-
tinuations multiply and simultaneously. Hence, he has concluded
that an operator for capturing and restoring continuations is a nat-
ural tool of choice for implementing web pages. This point has
been deeply developed and thoroughly studied by the PLT Scheme
team in various publications [6]. Scheme is one of the seldom lan-
guages to support continuations. The call/cc (whose actual name
is call-with-current-continuation) facility reifies a continuation into
a function that can be called as any other function. Being a superset
of Scheme [9] Hop supports call/cc so it naturally supports the
programming model advocated by C. Queinnec. However, direct
support for continuations as offered by call/cc is arguably too
low level. Explicit manipulation of continuations can make pro-

grams very hard to understand, even for experts. So, we think that
more restricted constructions that better fit the needs of the web
programming should be studied in the spirit of the send/suspend
and send/finish functions of the CONTINUE server [10].

The Smalltalk based Seaside framework2 will be another source
of inspiration for modeling and capturing the flow of control. This
system decomposes web applications into stateful components.
This successfully eliminates, from the source code, the burden of
explicit continuations management.

Code mobility is a field that we are investigating. We are envi-
sioning mobile code from server to client and vice versa. We are
also considering mobility intra servers. In this approach, we could
imagine spawning roaming agents processing remote data and car-
rying minimal sets of information. We could also imagine imple-
menting load balancing of servers with mobility. Precisely, we are
planning to adapt the technics developed by S. Epardaud [3] and
Germain et al. [5] to Hop. In this context, the ideas of Obliq [2]
or the technical solutions delivered by the ACUTE experiment [14]
are likely to be useful.

8. Conclusion
Hop is a new computer language designed for programming web
applications. It relies on two strata. The first one is used for pro-
gramming the server side and for constructing graphical user inter-
faces. The second one is used for programming the animations of
these interfaces and the interactions with users. The paper presents
several examples of Hop programs. In particular, it shows the pro-
gramming of a simplified IMAP client. This fifty lines long pro-
gram displays interactively the messages stored on an IMAP server.

Hop abstracts many operations required by the web. So, for
users not reluctant to functional programming, it makes the pro-
gramming of these applications easier than most of the other lan-
guages we are aware of. Its main strengths are its ability to package
a whole web application in a single bundle (e.g. a single file), its
support for functions whose calls traverse the web, and its event no-
tification mechanism. To our knowledge, Hop is one of the very first
languages to propose a global solution to the web programming.
Hop is one of the first language to support server and client pro-
gramming, to manage communications initiated from both sides,
and to support HTML authoring.

9. References
[1] Braband, C. and Møller, S. A. and Schwartzbach M.I., – A runtime

system for interactive Web services – Journal of Computer
Networks, 1999.

[2] Cardelli, L. – Obliq A Language with Distributed Scope – 122,
Digital Equipment Corporation, Systems Research, Palo Alto, CA,
1994.

[3] Epardaud, S. – Mobile Reactive Programming in ULM – Utah,
USA, Sep, 2004.

[4] Fielding, R. e. a. – Hypertext Transfer Protocol – RFC 2616, The
Internet Society, , 1999.

[5] Germain, G. and Monnier, S. and Feeley, M. – Termite: a Lisp for
Distributed Computing – 2nd European LISP and Scheme
Workshop, Glasgow, UK, , 2005.

[6] Graunke, P. et al. – Modeling Web Interactions – European
Symposium on Programming, Poland, 2003.

[7] Graunke, P. et al. – Automatically restructuring programs for the
Web – Automated Software Engineering, 2004.

[8] Hanus, M. – High-level server side Web scripting in Curry –
Practical Aspects of Declarative Languages, Las Vegas, NV, USA,
2001.

[9] Kelsey, R. and Clinger, W. and Rees, J. – The Revised(5) Report on
the Algorithmic Language Scheme – Higher-Order and Symbolic
Computation, 11(1), Sep, 1998.

2 http://www.seaside.st.

[10] Krishnamurthi, S. – The CONTINUE Server (or, How I
Administrated PADL 2002 and 2003). – Practical Aspects of
Declarative Languages, New Orleans, LA, USA, Jan, 2003, pp. 2–16.

[11] Meijer, E. – Server-Side web scripting in Haskell – Journal of
Functional Programming, 10(1), 2000.

[12] Queinnec, C. – The influence of browsers on evaluators – Int’l
Conf. on Functional Programming, Montréal, Canada, Sep, 2000, pp.
23–33.

[13] Sandholm, A. and Schwartzbach, M. – A type system for dynamic
Web documents – Symposium on Principles of Programming
Languages, Boston, MA, USA, Jan, 2000, pp. 290–301.

[14] Sewell, P. e. a. – Acute: High-level programming language design
for distributed computation – Int’l Conf. on Functional
Programming, Tallinn, Estonia, Sep, 2005.

[15] World Wide Web Consortium, – Cascading Style Sheets, level 2
CSS2 Specification – REC-CSS2-19980512, W3C
Recommendation, May, 1998.

Appendix
This appendix presents the syntax of Hop in EBNF form:
<comment> −→ ; <all subsequent characters up to a line break>

<expression> −→ <main-expression>

<main-expression> −→ <simple-expression>
| ~ <gui-expression>

<gui-expression> −→ <simple-expression>
| $ <main-expression>

<simple-expression> −→ <literal>
| <identifier>
| <attribute>
| (<expression> <expression>*)

<identifier> −→ <initial> { <letter> | <digit> | <special> }
<initial> −→ <letter> | <special>
<letter> −→ a | b | ... | z | A | B | ... | Z
<digit> −→ 0 | 1 | ... | 9
<special> −→ | + | - | / | * | ? | > | < | = | ! | %

| ~ | @ | ^ | & | \

<attribute> −→ : <identifier>

<literal> −→ <number>
| <character>
| <string>
| <boolean>

<number> −→ <digit>+

| <digit>+ . <digit>*

| . <digit>+

<character> −→ #\ <any character>

<string> −→ " <string-element>* "
<string-element> −→ <any character other than " or \>

| \" | \\
<boolean> −→ #t | #f

