
A Snapshot of the Performance of
Wasm Backends for Managed Languages

Manuel Serrano
Inria/Université Côte d’Azur
Sophia Antipolis, France
Manuel.Serrano@inria.fr

Robert Bruce Findler
Northwestern University

Evanston, IL, USA
robby@northwestern.edu

Abstract
WebAssembly (Wasm) has been extended to support features
such as garbage collection, references, exceptions, and tail
calls that facilitate compilation of managed languages. In
this paper, we capture a snapshot of the performance of lan-
guages that use these new capabilities from two perspectives.
First, we present a language-by-language performance com-
parison of six managed language implementations on Wasm
to the performance to their native implementations. Sec-
ond, we focus on the implementation of the Bigloo Scheme
compiler and explore the impact of different choices for com-
piling specific aspects of the language. Our findings suggest
that Wasm has become a promising compilation target for
most managed languages, but that its performance still falls
short of that achieved by native code. Our results also show
that the quality of the Wasm implementations vary, with the
best ones being, on average, about 1.4× slower than the na-
tive backend and the worst ones seeing average slowdowns
of more than 8× with some tests even failing to execute
correctly.

CCS Concepts: • Software and its engineering → Just-
in-time compilers; Source code generation; Object ori-
ented languages; Functional languages.

Keywords: WebAssembly, managed language, Dart, Haskell,
OCaml, Ruby, Scheme

ACM Reference Format:
Manuel Serrano and Robert Bruce Findler. 2025. A Snapshot of
the Performance of Wasm Backends for Managed Languages. In
Proceedings of the 22nd ACM SIGPLAN International Conference
on Managed Programming Languages and Runtimes (MPLR ’25),
October 12–18, 2025, Singapore, Singapore. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3759426.3760983

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
MPLR ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2149-6/25/10
https://doi.org/10.1145/3759426.3760983

Disclaimer
☞ This study contains no novelty regarding compilation
or, more generally, implementation techniques. Its pur-
pose is to provide information to language communities
about the state of existing Wasm backends. Specifically,
it offers information that sets some basic performance
expectations and it offers some experiencewith the perfor-
mance of several specific compilation technique choices
in the context of the Bigloo Scheme compiler.

1 Introduction
WebAssembly [17, 47] (henceforthWasm) is one of the newest
virtual machines, aiming at providing a universal execution
platform. Despite its name suggesting a design tuned for the
web, it is a general-purpose assembly language, as found in
other virtual machines such as the JVM [20]. It is strongly
typed, memory safe, sandboxed, and does not support non-
structured control flow operators (only loops and functions).
It distinguishes itself from other virtual machines by being
language-agnostic, closer to the hardware platform, and sup-
porting only a minimal built-in runtime system.

The initial Wasm specification [28] provides a minimal set
of features required for imperative languages with manual
memory management, like C and Rust. As planned, after its
initial release, Wasm has been extended with support for
automatic memory management, polymorphism, function
references, and exceptions [1]. These extensions make it
suitable for managed programming languages. In this paper,
we capture a snapshot of the performance of Wasm-based
managed language implementations, focusing on:

• Language coverage: Is Wasm rich enough to be a possi-
ble target for many managed languages?

• Execution speed: How do current Wasm-based lan-
guage implementations perform when compared to
other execution platforms?

Overall, our findings are positive. Wasm is a robust plat-
form and it is now a suitable time for language communities
to engage in building implementations on top of it. That said,
there is more work to be done as, generally speaking, the
Wasm-based implementations lag behind the native imple-
mentations in both performance and functionality. Indeed,
putting effort into a language implementation on Wasm now
is likely to be impactful for the future directions of Wasm.

https://orcid.org/0000-0002-5240-1610
https://orcid.org/0000-0002-4245-2000
https://doi.org/10.1145/3759426.3760983
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759426.3760983

MPLR ’25, October 12–18, 2025, Singapore, Singapore Manuel Serrano and Robert Bruce Findler

The rest of the paper is organized as follows. In Section 2
we introduce the Wasm platform. This section is intended
for readers with little knowledge of Wasm. In Section 3 we
evaluate the performance of various managed languages
in comparison with native compilers for these languages.
In Section 4 we present the new backend we have added
to the Scheme Bigloo compiler [30]. We use that backend
to evaluate various specific choices for generating Wasm
code. We also present the limitations and difficulties we have
faced when implementing that new backend. In Section 5 we
discuss some constraints imposed by Wasm and their impact
on the performance. In Section 6 we briefly discuss related
work and in Section 7 we conclude.

2 WebAssembly 101
Wasm is a virtual machine and an intermediate language.
This section offers a brief overview of the Wasm language.
This section contains no novelty nor contribution of ours,
but is included for the paper to be self-contained and to help
readers who are unfamiliar with Wasm to understand the
evaluation sections that follow.

2.1 Core Language
Wasm shares features of both high-level and assembly lan-
guages. Like assembly languages, Wasm has low-level arith-
metic and a stack-based architecture. Like high-level lan-
guages, Wasm has global variables, local variables, functions
and function calls, and nested expressions.Wasm does not ex-
pose registers as normally found in assembly languages and
the stack is not a first-class object that can be manipulated
explicitly by the program. Also, Wasm is type-safe.

Wasm has four primitive numeric types: 32-bit and 64-bit
integers and floats. Booleans are implemented as 32-bit inte-
gers, with zero representing the false value. Wasm function
parameters and results are typed.
Wasm supports several official syntaxes that are all com-

piled the same way. In this paper, we use exclusively the s-
expression syntax. For instance, using this syntax, the Wasm
definition of the classic fib recursive function is:
(func $fib (param $x i64) (result i64)

(if (i64.lt_s (local.get $x) (i64.const 2))

(then (return (i64.const 1)))

(else

(return

(i64.add

(call $fib

(i64.sub (local.get $x) (i64.const 1)))

(call $fib

(i64.sub (local.get $x) (i64.const 2))))))))

The overall structure of fib is self explanatory but there
are a few details worth pointing out. First, all arithmetic
operations are strongly typed and there is neither type pro-
motion nor any type casts. Second, expressions are nested
which, in most situations, avoids explicitly pushing to or

popping from the stack. Finally, the control flow operators
are unusual for an assembly language as Wasm does not
represent the program as a control flow graph made of basic
blocks. It supports only loop, if forms, and jump tables.

Here, as a second example, is a program that reverses the
elements of an array, demonstrating Wasm’s control flow.

(func reverse

(param $a (ref $i64arr)) (param $i i32) (param $j i32)

;; reverse the elements of the array $a from index $i to index $j
(local $tmp i64) ;; a temporary variable for array elements
(loop ;; an infinite loop
(if (i32.lt (local.get $i) (local.set $j))

(then ;; swap the two array elements
(local.set $tmp

(array.get $i64arr $a (local.get $i)))

(array.set $i64arr $a

(local.get $i)

(array.get $i64arr $a (local.get $j)))

(array.set $i64arr $a

(local.get $j) (local.get $tmp))

(local.set $i

(i32.add (local.get $i) (i32.const 1)))

(local.set $j

(i32.sub (local.get $j) (i32.const 1))))

(else ;; when the two indicies meet,
(br 1))))) ;; exit from the loop

In this example, the loop form introduces an infinite loop
that is eventually interrupted with (br 1) form, where the 1

means escaping the nearest enclosing loop, i.e. branching to
the control block that’s one layer outside the nearest enclos-
ing block. In contrast, a (br 0) would branch to the start of
the loop.

2.2 Wasm MVP
Wasm is built around the Minimum Viable Product principle.
The initial specification described a minimal language large
enough to compile C-like languages [28]. Over time, exten-
sions have been added that make it a suitable platform for
managed languages, the two most critical being the exten-
sions for automatic memory management and exceptions.
Wasm represents the memory as a set of linear chunks

of bytes that a program allocates à la C’s sbrk [34]. These
chunks are also used for communication with the outside
world as we’ll see in §2.3. The Wasm GC extension specifies
a distinct memory allocator. It exposes a high-level view
of memory allocation and memory references. The GC ex-
tension [3] enables programs to allocate and manipulate
objects via references. The actual object memory layout is
undisclosed, meaning that object access is fully controlled
by Wasm itself. The GC extension provides the following
initial type hierarchy:

A Snapshot of the Performance of Wasm Backends for Managed Languages MPLR ’25, October 12–18, 2025, Singapore, Singapore

any func extern

eq

struct arrayi31

The GC extension provides means for allocating structures
and arrays and for accessing them. Like the memory layout,
the actual implementation of these operations is opaque.
For the sake of an example, here are the definitions of

a Lisp-like “cons” and “length” functions that respectively
create a cons cell and compute the length of a list of cons
cells. These definitions support well-formed lists only, that
is, lists whose last element is the empty list, represented by
Wasm’s null value here.
(type $pair

(struct (field $car (mut eqref))

(field $cdr (mut (ref null $pair)))))

(func $cons

(param $car eqref) (param $cdr (ref null $pair))

(result (ref $pair))

(return (struct.new $pair

(local.get $car) (local.get $cdr))))

(func $length (param $l (ref null $pair)) (result i64)

(if (ref.is_null (local.get $l))

(then (return (i64.const 0)))

(else (return (i64.add (i64.const 1)

(call $length

(struct.get $pair $cdr

(local.get $l))))))))

The $pair type declaration (user-declared Wasm identi-
fiers are prefixed with ‘$’) creates a subtype of struct.

The GC extension supports null values. They are so ubiq-
uitous in Wasm, and the type eqref is an alias for “(ref null

eq)”, while the type “(ref eq)” denotes non-nullable values.
Accessing a nullable value implies a dynamic test.

The i31ref type represents tagged 31-bit integers. These
values can be converted to and from 32-bit or 64-bit integers.
They are used to implement tagged non-boxed polymorphic
integers, as in most implementations of managed languages.
In statically typed languages, they can also be used as small
scalar types, such as booleans or characters.
The funcref type enables pointers to functions. These

are not closures as Wasm does not support local function
definitions, but they are enough to let a compiler implement
full-fledged closures.
(type $procedure (struct (field $entry (ref func))

(field $env (ref null array))))

(type $func1 (func (param (ref $procedure)) (param eqref)

(result eqref)))

(func $map (param $proc (ref $procedure))

(param $l (ref null $pair))

(result (ref null $pair))

(if (ref.is_null (local.get $l))

(then (return (ref.null none)))

(else (return_call $cons ;; tail−call
(call_ref $func1

(local.get $proc)

(struct.get $pair $car (local.get $l))

(ref.cast (ref $func1)

(struct.get $procedure $entry

(local.get $proc))))

(call $map

(local.get $proc)

(struct.get $pair $cdr (local.get $l)))))))

Some languages require unrestricted proper tail calls. To
keep implementations from resorting to one of the numerous
(and complex) techniques that are used when the underlying
platform does not directly support tail calls, Wasm directly
supports tail calls. Syntactically, tail calls appear as a varia-
tion of the call instruction, which is intended to be used in
tail position with respect to the enclosing function.

2.3 The Outside World
Wasm is a small language which provides hardly any library
functions but it supports two forms of external communica-
tion: first, the wasi [11] extension provides some posix-like
functionality for server-side applications, and second, the Ja-
vaScript [13] foreign function interface, which is the natural
option for executing code from within web browsers.
One of the obvious uses of the JavaScript interface is for

taking advantage of natively supported features such as math
and string operations. For instance, Wasm supports 64-bit
floating point numbers but it provides only basic arithmetic.
Math functions such as cos and sin are not supported. For-
tunately using the JavaScript implementation from within
Wasm is straightforward, but it does involve crossing the
boundary between the two languages twice.
In some other situations the exchange involves not only

integers or floating-point numbers. For that, the GC exten-
sion provides the externref type. It enables opaque values to
transit in Wasm garbage collected code. It is generally used
to let aWasmGC-allocated object point to a JavaScript object.
A common example of using externref is for bignums.

3 Multilingual Experiment
The experiment presented in this section attempts to shed
light on how suitable and performant Wasm is for executing
a variety of managed languages.

Managed languages come in all sorts of flavors: side-effect-
ing vs pure, lazy vs eager, support for full continuations vs
only enough for effect handlers, a fully concurrent runtime
system vs an assumption of single-threading, etc. All of this
variety imposes different constraints on the execution plat-
form and raises difficult-to-answer questions about which
languages should be included in our experiments. In an effort

MPLR ’25, October 12–18, 2025, Singapore, Singapore Manuel Serrano and Robert Bruce Findler

typing evaluation concurrency
Dart static strict isolates
Haskell static lazy green threads
Bigloo static/dynamic strict pthreads
Hoot dynamic strict green threads
OCaml static strict domains
Ruby dynamic strict global lock

Figure 1. Language main features.

to make impartial decisions, we have limited our experiment
to the language implementations that satisfy the following
criteria:

1. Being a real language: This notion is obviously subjec-
tive so we took the simple definition that the language
must be listed in the 100 most popular programming
languages according to the Tiobe index [38].

2. Having a robust implementation: Concretely, we de-
fine this to mean that the Wasm compiler is based on
a widely used implementation for the language.

3. Having a mostly pain-free automatic installation pro-
cess: This criterion is also loose but we limit our exper-
iment to languages for which the effort to create instal-
lation scripts is reasonably simple and does not require
extensive script tweaking. For context, the scripts that
install the various languages are at most 20 commands.

We have found 6 implementations satisfying these crite-
ria: Dart [12], Haskell [32] (ghc [15]), OCaml [45] (wasm-
_of_ocaml [42]), Ruby [48], and Scheme [19] (guile [9] and
bigloo [30]); their characteristics are summarized in Figure 1.
For each of these languages, we compared the perfor-

mance of theWasm implementations with the corresponding
widely-used implementation. For all of these implementa-
tions, the new Wasm code generator is implemented as a
new backend added to an existing compiler and we take ad-
vantage of that to make the experiments more meaningful.
Because the compilers share the front end, the comparisons
are more generally informative aboutWasm, since the source
language and the middle end of the compiler is the same (al-
though not all features are always supported).
With the exception of OCaml, each of the Wasm imple-

mentations is based on the best-performing implementation
of the language. OCaml, however, is based on the OCaml
byte-code compiler, not the native compiler; section 3.5 ex-
plains the situation in more detail.

In addition to manyWasm-based languages, there are also
manyWasm engines available. They evolve quickly but, as of
the date of this report, only a few of them support the whole
set of features needed for the broad set of managed languages
we consider. Specifically, the “Garbage Collection” extension
(and the related “Reference Types” and “Typed Function Ref-
erences” extensions), the “Tail Call” extension, and the “Ex-
ception Handling with exnref” extensions are essential. This

limits the set of engines to Google’s V8 [16], Mozilla’s Spi-
derMonkey [24], and Apple’s JavaScriptCore [8]. Our experi-
ments reveal that V8 is the most robust and feature-complete,
so we use it for most of the experiments. SpiderMonkey is
also almost feature-complete but its host environment is
not as rich as Node.js’s. Consequently, much of the code
generated by the compilers is incompatible with it. Still, we
ran the Dart and Bigloo benchmarks with SpiderMonkey, as
shown in the respective sections. Unfortunately, even though
JavaScriptCore officially supports all of the extensions, the es-
sential GC extension required for this experiment is available
only in the Safari port and does not yet ship in WebKitGTK,
which we need for running the benchmarks on Linux.

In the following subsections, we give an overview of all
these language implementations and compare the perfor-
mance of their compilers on standard benchmark suites for
the languages.
The experiments presented in this paper have all been

conducted on Linux according to the same protocol:

• Benchmarks are executed 10 times and wall clock exe-
cution times are collected. Repetitions of each variant
and baseline are paired in order of execution to com-
pute relative execution time for each pair. The figures
report geometric means of these relative times, with
geometric standard deviations.

• A single platform was used: an AMD Ryzen Thread-
ripper PRO 7955WX 16-Cores running Debian Linux
6.12.33+deb13-amd64 x86_64 with 61 GB of memory.

• Wasm programs are executed within Node (v24.4.1,
powered by V8 v13.6.233.10-node.17) with a minimal
stack size of 8MB and, when compatibility permits,
they are also executed by SpiderMonkey C128.13.0
using the –wasm-compiler=optimizing option. Execu-
tions without any mention of the engine refer to V8.

3.1 Dart
Dart’s Wasm implementation ships with its standard distri-
bution, so it is easy to install, requiring no external tools. A
single compiler can generate native code, JavaScript code,
and Wasm code, making it an ideal candidate for comparing
the performance of the three execution platforms. The gen-
erated Wasm code requires the GC extension and it targets
the JavaScript environment.

To evaluate Dart’s performance, we selected benchmarks
from the shootout suite [10], which mostly consists of small
programs and microbenchmarks. The performance results
delivered by the three backends are presented in Figure 2.
The JavaScript backend fails on coro-prime-sieve.

The performance of the backends varies significantly. One
benchmark, fib executes almost 2x faster than the native
backend. The two benchmarks that use big integers edigits
and pdigits are significantly slower than the native backend.
As the JavaScript backend also executes slowly these two

A Snapshot of the Performance of Wasm Backends for Managed Languages MPLR ’25, October 12–18, 2025, Singapore, Singapore

 0.1

 1

 10

 100

binaryt
rees

co
ro-prim

e-si
ev

e

delta
blue

edigits

fannku
ch

-re
dux

fasta fib lru

merkl
etre

es
nbody

pidigits

sp
ectr

al-n
orm

JS Wasm/v8 Wasm/sm

1.
06

0.
74

33
.5

0

1.
03

0.
98

1.
43

0.
47

1.
05 1.

30

18
.5

1

2.
46

0.
92 0.
94

1.
52

4.
26

6.
78

1.
79

0.
55

0.
93

1.
75 1.
80

3.
77

5.
26

2.
17

3.
25

8.
01 8.
18

2.
00

0.
86

5.
13

3.
70

1.
21

5.
66

19
.1

8

re
la

tiv
e

tim
e

(lo
g)

native

Figure 2. Execution time comparison between Dart (v3.8.2)
native, Dart JavaScript, and Dart Wasm. Wasm programs are
executed by V8 and by SpiderMonkey. The dotted red line
indicates the performance of native code; lower means faster
execution than the native version. A value of 0 means the
test failed. Logarithmic scale used.

tests, this suggests that maybe the JavaScript and Wasm
backends do not use the native JavaScript bigint primitive
type. The Wasm backends are no more than 2× slower than
the native backend on the other benchmarks. Finally, we
observe that, with the exception of the binarytrees, lru, and
spectral-norm, SpiderMonkey is at worst around 2x slower
than V8 and on one test, nbody, SpiderMonkey is faster than
V8.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

binaryt
rees

co
ro-prim

e-si
ev

e

delta
blue

edigits

fannku
ch

-re
dux

fasta fib lru

merkl
etre

es
nbody

pidigits

sp
ectr

al-n
orm

liftoff turbofan

1.
00 1.

01

1.
00

1.
00 1.

01

1.
00 1.
00

1.
00

0.
99 0.

99

1.
00

0.
991.
01 1.

02

1.
00

1.
00

1.
04

1.
00

1.
00

1.
00 0.
99 0.

99

1.
00 1.
00

re
la

tiv
e

tim
e

(lo
g)

Wasm/v8

Figure 3. Execution time comparison of Node execution
pipelines when executing Dart (v3.8.2) Wasm benchmarks.
The dotted red line indicates the default pipeline. Logarith-
mic scale used.

Node supports several execution pipelines [2]. We com-
pare their performance in Figure 3. As we did not observe a
significant impact when using one pipeline or another, for
the rest of the experiments presented in this paper we use
the default execution pipeline.

 0.1

 1

 10

 100

bague
btre

es

ca
lendar

cla
usif

y

co
nstr

aints cse eliza ev
al

fannku
ch fib fis

h
ka

han

lambda life
mbrot

nbody

nqueens
power

puzzl
e

takfp

Wasm/v8

4.
52

9.
73

8.
56

8.
62

7.
11 8.

06

8.
05

6.
99 8.

96 11
.6

7

8.
71

7.
22

6.
76 8.

18 9.
42

7.
53

10
.0

7

7.
28 7.
76

11
.5

4

re
la

tiv
e

tim
e

(lo
g)

ghc

Figure 4. Execution time comparison between ghc (v9.6.6)
native and ghc Wasm. The dotted red line indicates the per-
formance of native code; lower means faster execution than
the native version.

3.2 Haskell, GHC
The GHC Wasm backend is still a tech preview and not in-
cluded in the official repository yet. As such, it currently
lacks an automatic installation procedure. The documenta-
tion about the GHC Wasm backend is scarce and most of
the available online documentation predates its integration
into the main GHC development tree [31]. The GHC Wasm
was developed before the integration of the GC and funcref

Wasm extensions. GHC’s Wasm implementation uses the
same garbage collector as the standard implementation. It is
implemented in C and compiled to Wasm.
Figure 4 compares the performance of the GHC Wasm

backend to that of the native backend. The performance
ranges from 4× up to a little more than 11× slower than
the native performance. The penalty for not using Wasm’s
newer features is significant but it should be noted that the
backend is robust, as all benchmarks execute without error.

3.3 Scheme, Bigloo
Bigloo1 is a variant of Scheme [19]. It lacks the full support of
tail recursion that Scheme requires, but extends Scheme with
object-oriented programming based on single inheritance
classes and generic functions, exceptions, multi-threading,
deep embedding of a host language, and optional type anno-
tations. Types can denote Scheme values, e.g., pair or vector,
as well as native values, which depend on the compiler back-
end. For instance, when a module is compiled to C, types
may denote C values such as “double” or “char *”. The com-
piler ensures type safety by inserting guards and conversions
in the generated code; the compiler also supports separate
compilation.

The latest unstable Bigloo version (5.0a) ships with three
backends: C, Jvm, andWasm. The latter is still under develop-
ment. It lacks features that require newer Wasm extensions,
1https://www-sop.inria.fr/indes/fp/Bigloo

https://www-sop.inria.fr/indes/fp/Bigloo

MPLR ’25, October 12–18, 2025, Singapore, Singapore Manuel Serrano and Robert Bruce Findler

 0.1

 1

 10

 100

alm
abench

bague
bev

al
boye

r

co
mpile

r

co
nform

earle
y fft fib lev

al
maze

mbrot

nucle
ic

pev
al

puzzl
e

qso
rt

queens

sch
eme

sie
ve

sla
tex

tra
ve

rse

JVM Wasm/v8 Wasm/sm

1.
10

2.
14

1.
39

1.
26

0.
97 1.

16

0.
66

1.
16

2.
00

1.
69

1.
10

1.
03

0.
82

0.
64

1.
16

1.
90

0.
67

1.
79

0.
83

1.
48

2.
11

1.
36

2.
58

1.
23

1.
22 1.
25 1.
33

1.
10

6.
31

2.
20

1.
17 1.

33

1.
01

0.
94

0.
90

1.
67

1.
42

0.
86

1.
31

0.
97

2.
21

1.
75

7.
29

3.
44

2.
35 2.
71

4.
33

2.
82

11
.4

6

5.
88

3.
64

1.
18

2.
02

8.
27

5.
20

2.
08

3.
51

2.
95

8.
81

6.
24

re
la

tiv
e

tim
e

(lo
g)

Bigloo

Figure 5. Execution time comparison between Bigloo (v5.0a)
native, Bigloo Jvm, and Bigloo Wasm. Wasm programs are
executed by V8 and by SpiderMonkey. The dotted red line
indicates the performance of native code; lower means faster
execution than the native version. Logarithmic scale used.

such as full call/cc support, multi-threading, and system
and network programming.

Bigloo compiles Scheme functions as Wasm functions and
function calls use the Wasm stack. It uses the GC, exceptions,
tail-call annotations [23], and the i31ref Wasm extensions.
The compiler generates either .wat files or .wasm binary files.

Figure 5 compares the performance of the three backends.
This experiment used the bglstone benchmark suite [22].
First, we observe that all the benchmarks execute with the
experimental backend, meaning that Wasm is rich enough
to implement all of the features of a Scheme-like language
except full-fledged call/cc (which none of the benchmarks
use). Second, we observe that the performance of the Wasm
backend under V8 is usually slower than the C backend but
is within 10% (sometimes faster and sometimes slower) on 6
tests. SpiderMonkey is consistently slower than V8 but by
less than 5x on all of the tests. We also observe that apart
from a few benchmarks the Wasm backend is also slower
than the JVM backend but with a smaller ratio.

3.4 Scheme, Hoot
Hoot [44] is a newWasm backend for Guile [9]. According to
its website,2 the version 0.6.0 that we use for this report sup-
ports most of the language without any particular restriction.
In particular continuations are not mentioned to suffer any
restriction. Hoot requires the Wasm GC and tail-call anno-
tations extensions. The compiler uses explicit continuation
passing style (CPS) conversion [7, 26] and stack allocates
return continuations. The Hoot compiler compiles the whole
program at once and produces a single Wasm binary file. We
use the same set of Scheme benchmarks as we did for Bigloo
(Section 3.3). The results are presented in Figure 6.

2https://www.spritely.institute/news/guile-hoot-0-6-0-released.html

 0.1

 1

 10

 100

alm
abench

bague
bev

al
boye

r

co
mpile

r

co
nform

earle
y fft fib lev

al
maze

mbrot

nucle
ic

pev
al

puzzl
e

qso
rt

queens

sch
eme

sie
ve

sla
tex

tra
ve

rse

Wasm

1.
24

1.
80

4.
61

3.
45 3.
78 3.
92

0.
90

7.
88

5.
18

0.
56

25
.5

8

0.
37 0.

47

1.
42

3.
62

5.
43

re
la

tiv
e

tim
e

(lo
g)

guile

Figure 6. Execution time comparison between Guile (v3.0.10)
native and Hoot (v0.6.0). The dotted red line indicates the
performance of native code; lower means faster execution
than the native version. A value of 0 indicates a test failure.
Logarithmic scale used.

The first observation is that 5 out of the 21 benchmarks
fail with various runtime errors. The three benchmarks that
are float intensive (almabench, fft, and mbrot) are fast with
Wasm. This suggests that the Wasm GC is a significant part
of the execution as floating-point numbers are generally
implemented using boxed numbers. Also, the puzzle and
qsort benchmarks are faster than the native backend. For the
other benchmarks, Wasm’s slowdown has a wide range, with
ratios ranging from about 1.2× to about 25×. The GuileWasm
backend imposes some of the biggest penalties among all the
implementations we tested. Lacking a technical description
of the compiler, we can only conjecture about the reasons for
such a gap. We suspect that the full support of continuations
(that Bigloo, the other Scheme-based implementation we
tested, does not support) uses some compilation techniques
and encodings that are difficult to implement efficiently in
Wasm. It may also be that most of the optimizations that
Hoot inherits from the Guile compiler are redundant with
those of the Wasm engine and as such have little to no effect.

3.5 OCaml, wasm_of_ocaml
The official OCaml distribution contains two compilers, an
optimizing native compiler, ocamlopt, and a byte-code com-
piler, ocamlc. The two have a high degree of compatibility
but use entirely different implementations; the native com-
piler produces significantly more efficient code at the cost
of a longer compilation time. The Wasm implementation of
OCaml, Wasm_of_ocaml, is a third-party compiler that is
based on the byte-code compiler. To keep the focus on the
performance of the Wasm backends, we treat the byte-code
compiler as the baseline, as it shares the most code with the
Wasm implementation. For context, however, we also report
the performance of the optimizing native compiler. Further
complicating matters, the Wasm_of_ocaml compiler comes

https://www.spritely.institute/news/guile-hoot-0-6-0-released.html

A Snapshot of the Performance of Wasm Backends for Managed Languages MPLR ’25, October 12–18, 2025, Singapore, Singapore

 0.01

 0.1

 1

 10

alm
abench bdd

hamming kb

se
quence so

li
zd

d

jsofocaml wasmofocaml ocaml

0.
18

0.
14

1.
44

5.
15

0.
73

0.
13

2.
06

0.
18

0.
10

2.
43

1.
36

0.
01

0.
08

2.
44

0.
15

0.
06

0.
31

0.
15

0.
13

0.
03

0.
37

re
la

tiv
e

tim
e

(lo
g)

ocamlc

Figure 7. Execution time comparison between OCaml
(v5.3.0) native, OCamlc (byte code interpreter), Js_of_ocaml
(v6.1.1) (byte code compiled to JavaScript), and
Wasm_of_ocaml (v6.1.1). The dotted red line indicates the
performance of OCaml code; lower means faster execution
than the native version.

with (and is based on) Js_of_ocaml, a compiler that generates
JavaScript code directly from the OCaml byte-code. Because
it seems interesting, we also report on the performance of
Js_of_ocaml. Figure 7 presents the relative performance of
all these compilers.

In terms of performance, wasm_of_ocaml seems to be an
interesting alternative to js_of_ocaml, as it performs at least
as well for all but one test (hamming) and on sequence it
even dramatically outperforms the optimizing native OCaml
compiler. It is also an interesting alternative to ocamlc, be-
ing as fast or faster on the majority of tests with the worst
overhead being less than 2.5×. The overhead with respect
to the native compiler is probably still too significant to be
acceptable, except for applications that derive significant
benefit from running in the browser.

3.6 Ruby
Ruby.wasm is a Wasm port of CRuby. For this experiment we
used version 3.3.8, the most up-to-date version at the time
of writing. Apart from the lack of thread and networking
support, no other limitations are reported.
Figure 8 shows the performance comparison between

CRuby and ruby.wasm. The port is not fully operational,
with one test crashing (mandelbrot) and two tests not run-
ning because of wasi incompatibilities (gzip and norspell).
The performance impact is significant, but since technical
details are not publicly available, we cannot provide an in-
formed explanation.

3.7 Conclusion
In this section we report measurements of the performance
of theWasm backend for 5 languages and 6 different systems.
Although there are programs where the Wasm performance

 0.1

 1

 10

 100

binaryt
rees

fannku
ch

fasta gzip

mandelbrot

nbody

norsp
ell

pidigits

sp
ectr

al-n
orm

su
doku

Wasm

2.
35

2.
22

17
.8

9

14
.4

9

3.
84

9.
37

8.
19

re
la

tiv
e

tim
e

(lo
g)

Ruby

Figure 8. Execution time comparison between Ruby (v3.3.8)
native and Ruby Wasm. The dotted red line indicates the
performance of native code; lower means faster execution
than the native version. A value of 0 indicates a test failure.
Logarithmic scale used.

exceeds the native performance, we observed that, generally
speaking, Wasm performance is not yet comparable to that
of native implementations. It is not uncommon to observe
a penalty ranging from 4× to 10× or even more. We also
observe that only half of the systemswe tested can execute all
the benchmarks successfully. Considering that V8, the Wasm
platform we used for the experiment, is the most advanced
one, this experiment suggests that Wasm platforms are not
yet offering a performant alternative to native execution.
Figure 9 offers a summary.

succ.-fail best worst geo. mean
Dart 12-0 0.55 6.79 1.90
Haskell 20-0 4.51 11.66 8.18
Bigloo 21-0 0.86 6.31 1.43
Hoot 16-5 0.37 25.57 2.42
OCamlc 7-0 0.01 2.44 0.27
OCamlopt 7-0 0.07 9.08 2.12
Ruby 7-3 2.22 17.89 6.31

Figure 9. Summary of Wasm ports. The succ.-fail column
reports the number of benchmarks that respectively succeed
or fail. The best and worst columns report the ratio of the
fastest and slowest Wasm execution. The geo. mean column
reports the geometric mean of theWasm and native compiler.

4 Wasm Compilation Strategies
In this section we take advantage of the flexibility of the
Bigloo compiler to explore different compilation paths and
options and we evaluate some features of theWasm platform.

MPLR ’25, October 12–18, 2025, Singapore, Singapore Manuel Serrano and Robert Bruce Findler

4.1 Control Flow
The lack of a goto instruction, which prevents the program
from being represented as a classical control flow graph
with basic blocks, is one particularity of Wasm. It requires
front-end compilers that use classical control flow graphs
formed by connected basic blocks to transform the programs
into nested loops and switches for Wasm. Any program can
be transformed using a generic schema which consists of
simulating gotos using a local variable and a switch [14]. In
Wasm, this produces functions like this one:

(func $F (param $x (ref eq)) (result (ref eq))

;; use a local variable to hold a "__PC"; start in basic block #0
(local.set $__PC (i32.const 0))

(loop $__dispatcher

(block $bb_2 ;; basic block #2
(block $bb_1 ;; basic block #1

(block $$bb_0 ;; basic block #0
(br_table $bb_0 $bb_1 $bb_2

(local.get $__PC))

...

;; go to basic block #1
(local.set $__PC (i32.const 1))

(br $__dispatcher))

...

;; go to basic block #0
(local.set $__PC (i32.const 0))

(br $__dispatcher))

...)))

Algorithms, generally referred to as reloopers, that avoid
using this dispatcher mechanism have been extensively stud-
ied [6, 25] but their implementation is complex and they
are not always practical because they can significantly in-
crease the size of the generated code. This raises the question
whether relooper algorithms should be used. Figure 10 com-
pares the performance of the dispatch-based compilation
scheme and the relooper algorithm. It clearly establishes
the huge benefit of relooper which should undoubtedly be
used except possibly for pathological programs that grow
excessively, as the relooper algorithms can be exponential
in the worst case.

4.2 Tail Calls
Tail-calls were added to Node.js in 2023, with Node ver-
sion 11.2 [23]. This improvement, although essential for
functional languages, might negatively affect the overall
performance because it requires complex stack frame ma-
nipulation. Figure 11 compares the performance of Wasm
when tail calls annotations are used or not used. As we can
see, the slowdown is marginal as all but one benchmark are
not impacted. This suggests that the tail-call annotation is
ready for a large adoption and that it should be used by all
systems.

 0

 0.5

 1

 1.5

 2

 2.5

alm
abench

bague
bev

al
boye

r

co
mpile

r

co
nform

earle
y fft fib lev

al
maze

mbrot

nucle
ic

pev
al

puzzl
e
qso

rt

queens

sch
eme

sie
ve

sla
tex

tra
ve

rse

Wasm no relooper

1.
05

2.
28

2.
22

1.
24

1.
57

1.
19

1.
58

1.
28

1.
98

1.
11

1.
03

1.
01

1.
13

1.
44

2.
11

1.
94

1.
21

1.
19

1.
16

1.
54

1.
43

Wasm/v8

Figure 10. Execution time comparison between relooper
control flow compilation and generic compilation. 1.0 indi-
cates the performance of relooper code; lower is faster. Linear
scale used.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

alm
abench

bague
bev

al
boye

r

co
mpile

r

co
nform

earle
y fft fib lev

al
maze

mbrot

nucle
ic

pev
al

puzzl
e
qso

rt

queens

sch
eme

sie
ve

sla
tex

tra
ve

rse

Wasm no tail calls

1.
00

0.
99 1.
00

1.
00 1.
01

1.
01 1.
01

1.
00

0.
98 1.

02

1.
00

1.
00

0.
98 1.

00

1.
00

1.
00 1.
02

1.
00 1.
01

1.
00

1.
00

Wasm/v8

Figure 11. Impact of tail-call annotation on execution speed.
1.0 indicates the performance of Wasm code with tail call;
lower means faster execution. Linear scale used.

4.3 Front-End Register Allocation
Wasm is a stack machine with temporary variables being
mapped to stack frame slots. A front-end compiler may de-
clare as many temporary variables as it needs for holding
local expressions or it may also implement an optimization
like register allocation to map these temporary variables to
a smaller subset of Wasm temporaries. The Bigloo compiler
can generate code both ways. It can run a register allocation
that minimizes the number of temporary variables by map-
ping several variables of the same type to a single, well-typed
temporary. We use this flexibility to check if minimizing the
number of temporaries is currently beneficial or if the of-
ficial Wasm tool chain manages to use physical registers
efficiently.
Figure 12 measures the impact of the front-end register

allocation. This experiment shows that there is a minor ben-
efit in mapping temporaries to a reduced set of variables as

A Snapshot of the Performance of Wasm Backends for Managed Languages MPLR ’25, October 12–18, 2025, Singapore, Singapore

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

alm
abench

bague
bev

al
boye

r

co
mpile

r

co
nform

earle
y fft fib lev

al
maze

mbrot

nucle
ic

pev
al

puzzl
e
qso

rt

queens

sch
eme

sie
ve

sla
tex

tra
ve

rse

Wasm font-end no register allocation

1.
01 1.

04 1.
05

1.
00 1.
01

1.
01

0.
98 1.

00

1.
00 1.
01

1.
00

1.
00

1.
00

1.
00

1.
66

1.
00

1.
00 1.
01

0.
99 1.
00

0.
99

Wasm/v8

Figure 12. Impact of front-end register allocation. 1.0 in-
dicates the performance of Wasm code; lower means faster
execution than the native version. Linear scale used.

two tests show minor improvements (bague and beval) and
one shows a significant improvement (puzzle).

4.4 Fixnum Arithmetic
A compiler targeting Wasm has two options to implement
small integers. It can either box them or use the i31ref type.
The former has the benefit of supporting full range 32-bit
or 64-bit integers but the drawback of requiring memory
allocation. The latter has the benefit of avoiding memory
allocation but it restricts the range of integers to [−231 ..231−
1]. The Bigloo Wasm backend can be configured either way.

 0

 0.5

 1

 1.5

 2

 2.5

alm
abench

bague
bev

al
boye

r

co
mpile

r

co
nform

earle
y fft fib lev

al
maze

mbrot

nucle
ic

pev
al

puzzl
e
qso

rt

queens

sch
eme

sie
ve

sla
tex

tra
ve

rse

Wasm fixnum 64-bit

1.
01

1.
19

1.
11

1.
00

1.
00

0.
96

1.
28

1.
04

2.
27

1.
08

1.
01

1.
00 1.
01

0.
99

1.
11

1.
74

1.
02

0.
99

1.
27

1.
17

1.
54

Wasm/v8

Figure 13. Impact of fixnum arithmetic. 1.0 indicates the
performance Wasm i31ref code. Lower is faster. Linear scale
used.

Figure 13 compares the performance of boxed integers.
The benefit of using i31ref is significant for a minority of
benchmarks and there are no significant penalties. This is
because for most tests, there are few distinct integers used
and these values are pre-allocated at initialization time. The
performance benefit of i31ref is not so important that it
eliminates the option of using boxed 64-bit integers. The op-
tion to choose probably depends on each system. For Bigloo,

the data suggested to use i31ref as default configuration
(but boxed integers can be selected at installation time).

5 Wasm Compilation Idiosyncrasies
The recent garbage collection and the exception mechanism
extensions make Wasm an interesting target for managed
languages. However, some bits are still missing for efficient
and complete support of all features that managed languages
use. In this section, we detail the main obstacles.

5.1 Safety

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

alm
abench

bague
bev

al
boye

r

co
mpile

r

co
nform

earle
y fft fib lev

al
maze

mbrot

nucle
ic

pev
al

puzzl
e
qso

rt

queens

sch
eme

sie
ve

sla
tex

tra
ve

rse

Wasm unsafe
0.

96

1.
02

0.
76

0.
84

0.
92

0.
89 0.
91

0.
67

1.
02

0.
63

0.
92

1.
00

0.
89

0.
87

0.
65

0.
96 0.
96

0.
83

0.
88 0.

92

0.
82

Wasm/v8

Figure 14. Impact of runtime guards on Node.js Wasm im-
plementation. 1.0 indicates the performance of safe guarded
code; lower means faster execution than the native version.
Linear scale used.

Wasm is a safe platform with strict type enforcement. At
compile time, the Wasm assembler checks the consistency
of variables types, type casts, and correct execution stack
balance. At run time, if a dynamic cast fails or if an index over-
flows an array bound, an exception is raised. These safety
guarantees are implemented via run time tests, which obvi-
ously reduce the execution speed. This reduction is evaluated
in this section.
Node.js supports unsafe executions where all dynamic

guards are disabled and all dynamic casts are assumed to
succeed. We used this feature to evaluate the cost of the
Wasm dynamic guards. Figure 14 compares the performance
of Bigloo executions when the Wasm dynamic safety tests
are enabled or disabled.
Overall, the impact of dynamic tests is generally signif-

icant and, for three benchmarks, disabling dynamic tests
even enables the Wasm backend to outperform the native
backend.

5.2 Runtime Types
The Wasm GC extension is built on top of a type hierarchy
(see §2.2) that supports subtyping and dynamic type check-
ing. This constitutes an appropriate and efficient mechanism
for verifying run-time types. As much as possible, this is

MPLR ’25, October 12–18, 2025, Singapore, Singapore Manuel Serrano and Robert Bruce Findler

what Bigloo uses for built-in types. For instance, Scheme
pairs are mapped to a Wasm struct with a car and cdr fields
and the predicate (pair? e) is implemented as (ref.test

(ref $pair) e). Unfortunately this efficient type encoding
is not always possible.

Wasm usesmutually iso-recursive types [27], meaning that
two types are considered equivalent if their positions in
equivalent blocks are the same. For instance, in

(rec

(type $ta (struct (field $a i32))))

(rec

(type $tb (struct (field $b i32))))

the types $ta and $tb are equivalent, but in

(rec

(type $dummya (struct))

(type $ta (struct (field $a i32))))

(rec

(type $dummyb (struct (field $__dummy i8)))

(type $tb (struct (field $b i32))))

they are different, because the types $dummya and $dummyb

make the two recursive blocks different. Using the native
type checks requires that the Scheme types are all mapped
to different iso-recursive Wasm types. While a careful imple-
mentation of the built-in types (pair, vector, string, fixnum,
flonum, etc.) can enforce the uniqueness of the blocks by
encapsulating them in different Wasm rec constructs and by
carefully using dummy unique types in each block, this is not
possible for compiler-generated types. This is particularly
critical when implementing a class-based object-oriented
language, as Bigloo is.

The compilation of a Bigloo class produces a host structure
with a private header plus fields corresponding to the class
properties. For instance, the following classes:

(module example

(export (class point x::double y::double)

(class point3d::point z::double)))

compile to:

(module $example

(rec

(type $point

(sub $object

(struct

(field $header (mut i64))

(field $x (mut f64))

(field $y (mut f64)))))

(type $point3d

(sub $point

(struct

(field $header (mut i64))

(field $x (mut f64))

(field $y (mut f64))

(field $z (mut f64)))))))

Unfortunately, unlike the built-in types, the class type
predicates cannot be mapped to simple Wasm type tests. In
addition to the point class above, let us imagine another
Bigloo class complex also declaring two floating point fields.
For point and complex to correspond to two different Wasm
types, they have to be declared in different rec contexts. In
other words, the Bigloo compiler has to forge two different
contexts for declaring point and complex but when these two
classes are declared in different modules compiled separately,
this is difficult. It requires a sophisticated link pass that,
currently, Bigloo does not implement. As a consequence,
testing that a value is an instance of a particular class requires
two checks. First, checking that it is an object using theWasm
built-in test and, second, that it is also an instance of the
desired class.

5.3 Variable Initialization and Nullable Values
Wasm type safety requires that all local variables are ei-
ther declared as nullable and checked at each use or pre-
initialized before being used. Using nullable types loses most
of the advantages of a strongly typed target language and pre-
initializing local variables is difficult to avoid because Wasm
does not consider that the first block dominates the rest in a
sequence of blocks. For instance, the following program is
rejected because, at the return statement, the variable $a is
considered to be uninitialized.

(func $main (export "__main")

(result i32)

(local $a (ref $ta))

(if (i32.const 1)

(then (local.set $a (struct.new $ta (i32.const 1))))

(else (local.set $a (struct.new $ta (i32.const 2)))))

(return (struct.get $ta $a (local.get $a))))

A simple solution for correcting this program is either to
duplicate and lift the return statement in the two branches
of the conditional or to pre-initialize the variable $a with
a default value of type $ta. This is a major concern for the
front-end compiler because, even if it can prove using simple
def-use analysis that all references to a local variable are safe,
it cannot always generate code that avoids the unnecessary
pre-initialization. This problem has been discussed at length
and is well known by the Wasm developer community [4, 5].
For Bigloo, we tried both options. Before generating the

final Wasm code, the compiler analyzes each function using
the Wasm dominator analysis and, if a variable is considered
to have possibly been used before initialization, it either
introduces a pre-initialization with a default value or uses a
nullable type.

We conducted an experiment to compare the performance
of the two options. Its result is presented in Figure 15. It
shows marginally better results when using default pre-
initialization to avoid nullable types.

A Snapshot of the Performance of Wasm Backends for Managed Languages MPLR ’25, October 12–18, 2025, Singapore, Singapore

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

alm
abench

bague
bev

al
boye

r

co
mpile

r

co
nform

earle
y fft fib lev

al
maze

mbrot

nucle
ic

pev
al

puzzl
e
qso

rt

queens

sch
eme

sie
ve

sla
tex

tra
ve

rse

Wasm nullable

1.
00 1.

04

1.
02

1.
00 1.

02

1.
00

0.
99

0.
99 1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00 1.
00 1.
02

1.
01

1.
01

1.
01

Wasm/v8

Figure 15. Impact of nullable types on execution speed. 1.0
indicates the performance of pre-initialization to avoid nul-
lable types. Lower means faster execution. Linear scale used.

5.4 Redundant Type Safety and Exceptions
Scheme is a safe language, as most managed languages are.
Bigloo uses a typed intermediate representation of the pro-
gram and as much as possible it emits typed functions and
typed variables. When it cannot prove that an access is type
safe, it generates guards. For instance, without any external
context, implementing a pair access (car v) would be com-
piled into (if (pair? v) (unsafe-car v) (error)) which,
in Wasm would be written:

(if (ref eq) (ref.test (ref $pair) (local.get $v))

(then (struct.get $pair car (local.get $v)))

(else (throw $fail)))

Unfortunately this code is rejected by Wasm because the
reference of the variable $v has to be explicitly cast to a pair
in the car access. To solve that problem, the compiler actually
generates the following code:

(if (ref eq) (ref.test (ref $pair) (local.get $v))

(then (struct.get $pair car

(ref.cast (ref $pair) (local.get $v))))

(else (throw $fail)))

This involves a double test of the variable. Of course, one
may use an unsafe execution flag of the Wasm VM when
supported (see §5.1), or one may hope that an optimizing
VM can eliminate the redundant test. This cost of these extra
tests is measured in Figure 16. It compares the performance
of Bigloo delegating all type tests to Wasm and the perfor-
mance of Bigloo inserting type tests in addition to Wasm
guards. This experiment shows that the current V8 Wasm
implementation does not eliminate the double type checking,
which has a significant impact on the performance.

Another approach would simply be to drop the surround-
ing conditional expression. As Wasm is safe, if the variable
$v is not a pair, it will trigger an internal error. This might
be an interesting option in the future but as of the beginning

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

alm
abench

bague
bev

al
boye

r

co
mpile

r

co
nform

earle
y fft fib lev

al
maze

mbrot

nucle
ic

pev
al

puzzl
e
qso

rt

queens

sch
eme

sie
ve

sla
tex

tra
ve

rse

Wasm Scheme Safe

1.
04

1.
29

1.
23

1.
05

1.
04

1.
03 1.

05

0.
92

1.
29 1.

32

1.
02

1.
01

1.
22

1.
07

1.
31

1.
11

1.
00

1.
15

1.
02

1.
08

1.
01

Wasm/v8

Figure 16. Impact of double type checks on execution speed.
1.0 indicates the performance of Wasm code without explicit
Scheme type checks. Lower means faster. Linear scale used.

of 2025, the internal exception mechanism makes this im-
practical. In case of a type error, the system triggers a trap
that goes to JavaScript instead of a catchable exception. As
such, it is impossible for a client program to intercept the
error and handle it inside the Wasm program.

The Wasm br_on_cast instruction can be used to remove
redundant checks but the occurrence typing technique [39]
(that compilers of managed languages frequently use) re-
quires that the type check itself be separate from the guarded
built-in operation, making the reconstruction of an expres-
sion using br_on_cast difficult. For that reason, as of the
writing of this paper, the Bigloo compiler cannot take ben-
efit of that Wasm instruction and requires the double type
checks mentioned above.

5.5 Missing Features
Other than performance issues, the Wasm specification still
lacks some features required to implement all features com-
monly found in managed languages. In particular, for the
Bigloo system it still missed four features:

1. call/cc: until the stack manipulation specification is
completed and fully implemented, full continuations
cannot be implemented efficiently without hurting the
performance of the rest of the language. Currently,
Bigloo supports continuations that are used only in
their dynamic extent to escape from a computation,
much like exceptions commonly found in other lan-
guages. In contrast, Hoot supports full continuations.
This difference might be the reason why Hoot imposes
a larger penalty over the native backend than Bigloo
does.

2. No modules linking. Wasm does not support native
module linking. It supports communication with an
external host, JavaScript in our case, but not a mech-
anism that would let two separately compiled Wasm

MPLR ’25, October 12–18, 2025, Singapore, Singapore Manuel Serrano and Robert Bruce Findler

modules communicate either via function calls or effi-
cient variable sharing. Currently this can be simulated
via external JavaScript function calls but this feature
is not part of the official Wasm standard yet.

3. In a similar vein, Wasm does not support shared li-
braries nor dynamic loading of object files. This also
implies long compilation times, as all object files have
to be linked together before execution. This limits the
performance of eval functions that cannot generate
and load efficient Wasm code.

4. Wasm is an isolated platform. It can communicate with
a JavaScript host or use posix-like extensions, but it
cannot be linked against an arbitrary native library.
For instance, it would be difficult for a Wasm compiled
application to use an existing SSL library or multi-
media libraries. This is a major burden for languages
that are shipped with an extensive set of libraries, as
Bigloo is. For Bigloo, this phenomenon accounts for the
most significant burden of the Wasm port. The whole
implementation of the new code generator is a mere
4,000 lines of Scheme code, but the still incomplete
implementation of libraries is alreadymore than 13,000
lines of hand-written Wasm code.

5. The JavaScript asynchronous nature makes it difficult
to implement synchronous runtime system. As long as
the Wasm JavaScript Promise Integration extension is
not available it is difficult to implement blocking I/O
operations.

6 Related Work
Zhang et al. [49]’s article Research onWebAssembly Runtimes:
A Survey gives an overview of the main Wasm implementa-
tions, how they are described in academic publications, and
what the main application domains for the language are. It
gives a broad overview of ongoing Wasm-related research.

Most performance studies of Wasm concentrate on either
a comparison with JavaScript performance [36, 40, 41, 46]
or with C-like languages [18]. Some focus on the perfor-
mance comparison inside browsers [35], while some focus
exclusively on the server-side [33]. Some are even more
specific in comparing the performance of JavaScript and
Wasm on particular application domains [29, 43]. In contrast,
this paper offers a broader view including 6 different man-
aged languages and is agnostic with respect to server-side or
client-side programming, although for the simplicity’s sake,
all experiments are conducted on the server side.

Szewczyk et al. [37] study the impact of the dynamic mem-
ory bound checksWasm executes. They show that, regardless
of the underlying hardware, the memory safety of Wasm
incurs slowdowns that can be reduced to about 20% for C
programs.
Mäkitalo et al. [21] propose a mechanism for adding dy-

namic loading to Wasm that slows down executions only

marginally, which is interesting in the context of web pages
and on-demand page load.

7 Conclusion
The latest evolution of Wasm makes it suitable for compil-
ing managed languages. The platform still misses explicit
stack manipulation, which makes support for continuations,
that some languages need, complex and slow. Its lack of an
efficient linking mechanism is also a current limitation of
the system as high-level languages generally provide a rich
runtime system with an extensive set of libraries that, in
the context of Wasm, have to be packed alongside client
programs. Multi-threading is also missing, which prevents
some applications from being ported to Wasm. And finally,
the expected “JavaScript promise integration” extension will
make it possible to implement blocking and synchronous
IO operations some systems demand. These are the main
ingredients that Wasm still lacks for being a fully general
platform. Future extensions, following Wasm’s incremental
approach to language extension may well fill these needs.
This experience report focuses on the performance of

actual implementations of managed languages that have
added or are adding a Wasm backend. It compares the speed
of Wasm to that of pre-existing backends.
First, we observed that none of the Wasm implementa-

tions we tried matches the performance of native code. In the
most favorable case, Wasm imposes a penalty in the range of
1.5× but it can go up to about one order of magnitude. We ex-
plored two languages that also support JavaScript backends,
Dart and OCaml. The benefit of using Wasm over JavaScri-
pt is only visible for the latter. The Bigloo language can be
compiled to native code, JVM bytecode, and Wasm code. The
comparison of the three code generators shows that, on av-
erage, the Wasm backend is significantly slower than the
native and Jvm backends. Although we cannot say for sure
that this is a shortcoming of Wasm, as opposed to the Bigloo
backend, Bigloo is a sophisticated and mature compiler, sug-
gesting that the largest opportunities for improvement are
inside Wasm itself.

Second, using the flexibility of the new Bigloo Wasm back-
end we explored possible variations of the code generator.
We observed that the most crucial transformation a compiler
must use is a relooper optimization that transforms a classi-
cal control flow graph into nested loops. The second most
important option is to avoid, as much as possible, nullable
types and instead pre-initialize variables with default values.
Finally, we also observed that using i31ref for languages that
can afford to limit the range of integer values improves the
performance of arithmetic operations without being a true
game changer. Statically typed languages that use i31ref for
small scalar types may find a bigger benefit.

A Snapshot of the Performance of Wasm Backends for Managed Languages MPLR ’25, October 12–18, 2025, Singapore, Singapore

Acknowledgements
We offer a special thanks to Andreas Rossberg for his com-
ments on a draft of this paper as well as his helpful insights
about Wasm. Thanks also to Zubin Duggal and the reviewers
for their comment on a draft of the paper.

References
[1] 2022. WebAssembly Core Specification. https://www.w3.org/TR/

wasm-core-2/
[2] 2025. WebAssembly compilation pipeline. Retrieved 2025-07-31 from

https://v8.dev/docs/wasm-compilation-pipeline
[3] Andreas Rossberg and the WebAssembly Community Group. 2023.

GC Proposal for WebAssembly. GitHub repository “WebAssem-
bly/gc”. Retrieved 2025-07-30 from https://github.com/WebAssembly/
gc Archived April 25, 2025; draft outlines struct and array heap=types.

[4] Anonymous. 2018. WebAssembly Troubles part 1:WebAssembly Is Not
a Stack Machine. http://troubles.md/wasm-is-not-a-stack-machine

[5] Anonymous. 2021. Elaboration of let alternative option (6): Null checks
on local.get. https://github.com/WebAssembly/gc/issues/187

[6] anonymous. 2021. WebAssembly Troubles part 2: Why Do We Need
the Relooper Algorithm, Again? http://troubles.md/why-do-we-need-
the-relooper-algorithm-again/

[7] AndrewW. Appel. 1992. The Essence of Compiling with Continuations.
In Proceedings of the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation (PLDI). ACM, San Francisco, CA,
USA, essence. doi:10.1145/143095.143140

[8] Apple Inc. 2002. JavaScriptCore. https://webkit.org/projects/
javascript/. Accessed: 2025-07-30.

[9] Aubrey Jaffer and Tom Lord and Miles Bader and the GNU Project.
2024. GNU Guile: Ubiquitous Intelligent Language for Extensions.
https://gnu.org/software/guile Version 3.0.10, released June 24, 2024;
accessed 2025-07-30.

[10] benchmarksgame team. 2025. The Computer Language 25.03 fBench-
marks Game. Retrieved 2025-07-30 from https://benchmarksgame-
team.pages.debian.net/benchmarksgame/index.html

[11] Bytecode Alliance. 2019. WebAssembly System Interface (WASI). https:
//wasi.dev. Accessed: 2025-07-30.

[12] Dart Team, Google. 2011. Dart Programming Language. https://dart.
dev. Accessed: 2025-07-30.

[13] ECMA International. 2018. ECMAScript 2025 Language Specification
(16.0 ed.). https://www.ecma-international.org/publications/files/
ECMA-ST/Ecma-262.pdf

[14] A.M. Erosa and L.J. Hendren. 1994. Taming control flow: a structured
approach to eliminating goto statements. In Proceedings of 1994 IEEE
International Conference on Computer Languages (ICCL’94). 229–240.
doi:10.1109/ICCL.1994.288377

[15] Ben Gamari, Andreas Klebinger, and Simon Peyton Jones. 1992. The
Glasgow Haskell Compiler. https://www.haskell.org/ghc. Accessed:
2025-07-30.

[16] Google. 2018. V8 JavaScript Engine. http://developers.google.com/v8.
[17] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,

Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
Association for Computing Machinery, New York, NY, USA, 185–200.
doi:10.1145/3062341.3062363

[18] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha.
2019. Not So Fast: Analyzing the Performance of WebAssembly vs.
Native Code. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 107–120. https://www.
usenix.org/conference/atc19/presentation/jangda

[19] R. Kelsey, W. Clinger, and J. Rees. 1998. The Revised(5) Report on the
Algorithmic Language Scheme. Higher-Order and Symbolic Computa-
tion 11, 1 (Sept. 1998). http://www-sop.inria.fr/indes/fp/Bigloo/doc/
r5rs.html

[20] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2021. The
Java Virtual Machine Specification, Java SE 17 Edition. Oracle America,
Inc. https://docs.oracle.com/javase/specs/jvms/se17/html/.

[21] Niko Mäkitalo, Victor Bankowski, Paulius Daubaris, Risto Mikkola,
Oleg Beletski, and Tommi Mikkonen. 2021. Bringing WebAssembly
up to speed with dynamic linking. In Proceedings of the 36th Annual
ACM Symposium on Applied Computing (Virtual Event, Republic of
Korea) (SAC ’21). Association for Computing Machinery, New York,
NY, USA, 1727–1735. doi:10.1145/3412841.3442045

[22] Olivier Melançon, Marc Feeley, and Manuel Serrano. 2024. Static Ba-
sic Block Versioning. In 38th European Conference on Object-Oriented
Programming (ECOOP) (Leibniz International Proceedings in Informat-
ics (LIPIcs)), Jonathan Aldrich and Guido Salvaneschi (Eds.). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1–27.
doi:10.4230/LIPIcs.ECOOP.2024.28

[23] Thibaud Michaud and Thomas Lively. 2023. WebAssembly tail calls.
https://v8.dev/blog/wasm-tail-call

[24] Mozilla. 2020. SpiderMonkey: The Mozilla JavaScript runtime. https:
//developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

[25] Norman Ramsey. 2022. Beyond Relooper: recursive translation of
unstructured control flow to structured control flow (functional pearl).
Proc. ACM Program. Lang. 6, ICFP, Article 90 (Aug. 2022), 22 pages.
doi:10.1145/3547621

[26] John C. Reynolds. 1993. The Discoveries of Continuations. LISP and
Symbolic Computation 6, 3-4 (1993), 233–247. doi:10.1007/BF01019459

[27] Andreas Rossberg. 2023. Mutually Iso-Recursive Subtyping. Proc.
ACM Program. Lang. 7, OOPSLA2, Article 234 (Oct. 2023), 27 pages.
doi:10.1145/3622809

[28] Andreas Rossberg, Deepti Gandluri, Luke Wagner, Alon Zakai, Dan
Gohman, and Ben Smith. 2019. WebAssembly Core Specification.
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/. W3C
Recommendation, December 5, 2019.

[29] Prabhjot Sandhu, David Herrera, and Laurie Hendren. 2018. Sparse
matrices on the web: Characterizing the performance and optimal
format selection of sparse matrix-vector multiplication in JavaScript
and WebAssembly. In Proceedings of the 15th International Conference
on Managed Languages & Runtimes (Linz, Austria) (ManLang ’18).
Association for Computing Machinery, New York, NY, USA, Article 6,
13 pages. doi:10.1145/3237009.3237020

[30] Manuel Serrano. 1994. Bigloo user’s manual. RT 0169. Inria-
Rocquencourt, France. http://www.inria.fr/mimosa/fp/Bigloo

[31] Cheng Shao. 2018. Fibonacci compiles end-to-end – Haskell to We-
bAssembly via GHC. https://www.tweag.io/blog/2018-05-29-hello-
asterius/

[32] Simon Peyton Jones and others. 1990. Haskell Language. https://www.
haskell.org. Accessed: 2025-07-30.

[33] Benedikt Spies and Markus Mock. 2021. An Evaluation of WebAssem-
bly in Non-Web Environments. In 2021 XLVII Latin American Comput-
ing Conference (CLEI). 1–10. doi:10.1109/CLEI53233.2021.9640153

[34] W. Richard Stevens. 1992. Advanced Programming in the UNIX Envi-
ronment. Addison-Wesley.

[35] Anastasios Stotoglou and Theodore H. Kaskalis. 2023. Comparative
Study of JavaScript and WebAssembly Derivatives in Browser Engines.
In 2023 Intelligent Methods, Systems, and Applications (IMSA). 476–483.
doi:10.1109/IMSA58542.2023.10217486

[36] Joshua Wenata Sunarto, Angelina Quincy, Fakhira Shafa Maheswari,
Quesynovich Denis Al Hafizh, Melanie Gabriela Tjandrasubrata,
and Mochammad Haldi Widianto. 2023. A Systematic Review of
WebAssembly VS Javascript Performance Comparison. In 2023 In-
ternational Conference on Information Management and Technology

https://www.w3.org/TR/wasm-core-2/
https://www.w3.org/TR/wasm-core-2/
https://v8.dev/docs/wasm-compilation-pipeline
https://github.com/WebAssembly/gc
https://github.com/WebAssembly/gc
http://troubles.md/wasm-is-not-a-stack-machine
https://github.com/WebAssembly/gc/issues/187
http://troubles.md/why-do-we-need-the-relooper-algorithm-again/
http://troubles.md/why-do-we-need-the-relooper-algorithm-again/
https://doi.org/10.1145/143095.143140
https://webkit.org/projects/javascript/
https://webkit.org/projects/javascript/
https://gnu.org/software/guile
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://wasi.dev
https://wasi.dev
https://dart.dev
https://dart.dev
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://doi.org/10.1109/ICCL.1994.288377
https://www.haskell.org/ghc
http://developers.google.com/v8
https://doi.org/10.1145/3062341.3062363
https://www.usenix.org/conference/atc19/presentation/jangda
https://www.usenix.org/conference/atc19/presentation/jangda
http://www-sop.inria.fr/indes/fp/Bigloo/doc/r5rs.html
http://www-sop.inria.fr/indes/fp/Bigloo/doc/r5rs.html
https://docs.oracle.com/javase/specs/jvms/se17/html/
https://doi.org/10.1145/3412841.3442045
https://doi.org/10.4230/LIPIcs.ECOOP.2024.28
https://v8.dev/blog/wasm-tail-call
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://doi.org/10.1145/3547621
https://doi.org/10.1007/BF01019459
https://doi.org/10.1145/3622809
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/
https://doi.org/10.1145/3237009.3237020
http://www.inria.fr/mimosa/fp/Bigloo
https://www.tweag.io/blog/2018-05-29-hello-asterius/
https://www.tweag.io/blog/2018-05-29-hello-asterius/
https://www.haskell.org
https://www.haskell.org
https://doi.org/10.1109/CLEI53233.2021.9640153
https://doi.org/10.1109/IMSA58542.2023.10217486

MPLR ’25, October 12–18, 2025, Singapore, Singapore Manuel Serrano and Robert Bruce Findler

(ICIMTech). 241–246. doi:10.1109/ICIMTech59029.2023.10277917
[37] Raven Szewczyk, Kimberley Stonehouse, Antonio Barbalace, and

Tom Spink. 2022. Leaps and bounds: Analyzing WebAssembly’s
performance with a focus on bounds checking. In 2022 IEEE Inter-
national Symposium on Workload Characterization (IISWC). 256–268.
doi:10.1109/IISWC55918.2022.00030

[38] TIOBE Software BV. 2025. TIOBE Index. https://www.tiobe.com/tiobe-
index/.

[39] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and im-
plementation of typed scheme. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Francisco, California, USA) (POPL ’08). Association for Computing
Machinery, New York, NY, USA, 395–406. doi:10.1145/1328438.1328486

[40] Linus Wagner, Maximilian Mayer, Andrea Marino, Alireza Sol-
dani Nezhad, Hugo Zwaan, and Ivano Malavolta. 2023. On the Energy
Consumption and Performance of WebAssembly Binaries across Pro-
gramming Languages and Runtimes in IoT. In Proceedings of the 27th
International Conference on Evaluation and Assessment in Software
Engineering (Oulu, Finland) (EASE ’23). Association for Computing
Machinery, New York, NY, USA, 72–82. doi:10.1145/3593434.3593454

[41] Weihang Wang. 2021. Empowering Web Applications with We-
bAssembly: Are We There Yet?. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 1301–1305.
doi:10.1109/ASE51524.2021.9678831

[42] Wasm_of_ocaml Team. [n. d.]. https://ocsigen.org/js_of_ocaml/latest/
manual/wasm_overview. Accessed: 2025-08-01.

[43] Elliott Wen and Gerald Weber. 2020. Wasmachine: Bring the Edge
up to Speed with A WebAssembly OS. In 2020 IEEE 13th Interna-
tional Conference on Cloud Computing (CLOUD). 353–360. doi:10.1109/
CLOUD49709.2020.00056

[44] Andy Wingo. 2024. Scheme on WebAssembly: It is happen-
ing! https://icfp24.sigplan.org/details/scheme-2024-papers/6/Scheme-
on-WebAssembly-It-is-happening-

[45] Xavier Leroy and contributors. 1996. The OCaml System. https:
//ocaml.org. Accessed: 2025-07-30.

[46] Yutian Yan, Tengfei Tu, Lijian Zhao, Yuchen Zhou, andWeihangWang.
2021. Understanding the performance of webassembly applications. In
Proceedings of the 21st ACM Internet Measurement Conference (Virtual
Event) (IMC ’21). Association for Computing Machinery, New York,
NY, USA, 533–549. doi:10.1145/3487552.3487827

[47] Dongjun Youn, Wonho Shin, Jaehyun Lee, Sukyoung Ryu, Joachim
Breitner, Philippa Gardner, Sam Lindley, Matija Pretnar, Xiaojia Rao,
Conrad Watt, and Andreas Rossberg. 2024. Bringing the WebAssembly
Standard up to Speed with SpecTec. Proc. ACM Program. Lang. 8, PLDI,
Article 210 (June 2024), 26 pages. doi:10.1145/3656440

[48] Yukihiro Matsumoto. 1995. Ruby Programming Language. https:
//www.ruby-lang.org. Accessed: 2025-07-30.

[49] Yixuan Zhang, Mugeng Liu, Haoyu Wang, Yun Ma, Gang Huang, and
Xuanzhe Liu. 2025. Research on WebAssembly Runtimes: A Survey.
ACM Trans. Softw. Eng. Methodol. (Jan. 2025). doi:10.1145/3714465 Just
Accepted.

Received 2025-06-05; accepted 2025-07-28

https://doi.org/10.1109/ICIMTech59029.2023.10277917
https://doi.org/10.1109/IISWC55918.2022.00030
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/3593434.3593454
https://doi.org/10.1109/ASE51524.2021.9678831
https://ocsigen.org/js_of_ocaml/latest/manual/wasm_overview
https://ocsigen.org/js_of_ocaml/latest/manual/wasm_overview
https://doi.org/10.1109/CLOUD49709.2020.00056
https://doi.org/10.1109/CLOUD49709.2020.00056
https://icfp24.sigplan.org/details/scheme-2024-papers/6/Scheme-on-WebAssembly-It-is-happening-
https://icfp24.sigplan.org/details/scheme-2024-papers/6/Scheme-on-WebAssembly-It-is-happening-
https://ocaml.org
https://ocaml.org
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3656440
https://www.ruby-lang.org
https://www.ruby-lang.org
https://doi.org/10.1145/3714465

	Abstract
	1 Introduction
	2 WebAssembly 101
	2.1 Core Language
	2.2 Wasm MVP
	2.3 The Outside World

	3 Multilingual Experiment
	3.1 Dart
	3.2 Haskell, GHC
	3.3 Scheme, Bigloo
	3.4 Scheme, Hoot
	3.5 OCaml, wasm_of_ocaml
	3.6 Ruby
	3.7 Conclusion

	4 Wasm Compilation Strategies
	4.1 Control Flow
	4.2 Tail Calls
	4.3 Front-End Register Allocation
	4.4 Fixnum Arithmetic

	5 Wasm Compilation Idiosyncrasies
	5.1 Safety
	5.2 Runtime Types
	5.3 Variable Initialization and Nullable Values
	5.4 Redundant Type Safety and Exceptions
	5.5 Missing Features

	6 Related Work
	7 Conclusion
	References

