
HSS: a Compiler for Cascading Style Sheets

Manuel Serrano
Sophia Méditerranée

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex – France

Manuel.Serrano@inria.fr

Abstract
This article presents HSS1, a compiler for CSS. It is first argued
that generating CSS improves portability and maintainability of

CSS files. This claim is supported by realistic examples. Then, the
HSS compilation algorithm is presented. It is simple enough to be

easily adapted to most web development kits.
HSS can be used as a stand-alone HSS-to-CSS compiler in the

goal of enriching CSS with user defined variables, functions, and
element types. It can also be used with the Hop web development

kit in which case, working hand in hand with the Hop
programming language, it can be used to implement skinning or

theming of web applications.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Design languages

General Terms Design, Languages

Keywords Web programming, Functional languages, Scheme,
CSS

1. Introduction
Cascading Style Sheets (henceforth CSS) is used to express for-
matting in HTML and XHTML. It is a declarative language that
cannot express computation. The correctness of CSS files can
be checked statically by CSS parsers (named validators in the
web jargon). The W3C for example, provides one on-line (see
http://jigsaw.w3.org/css-validator/).

CSS is essential for developing Web user interface (henceforth
UI). It is used for fine graphical tunings as well as for managing
UIs global layouts. As promoted by standard engineering method-
ologies, CSS enforces a strong separation between the implemen-
tation of the application and its UI.

CSS is defined by a W3C specification [4]. A revised version
is in preparation (CSS level 3) that supports additional graphi-
cal tunings such as opacity, shaded boxes, or round borders. Few
browsers already support CSS level 3 but most browsers sup-
port various extensions of CSS level 2 for providing similar fancy

1 This work is supported in part by the French ANR agency, grant ANR-09-
-EMER-009-01.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’10, July 26–28, 2010, Hagenberg, Austria.
Copyright c 2010 ACM 978-1-4503-0132-9/10/07. . . $10.00

graphical features (for instance, Mozilla extensions are described
at https://developer.mozilla.org).

Two restrictions of CSS have motivated the present work.

� The diversity of extensions web browsers support makes it diffi-
cult to write portable CSS files. Extensions are so common that
they are even anticipated and acknowledged by the W3C’s spec-
ification (see Section Vendor-specific extensions of CSS2.1).
Extensions are tautologically not standardized and thus yield to
portability issues. Frequently, browsers support similar graph-
ical tunings but expressed by different syntaxes. For instance,
both Firefox and Safari support round borders but the top left ra-
dius is called -moz-border-radius-topLeft by Firefox and
-webkit-border-top-left-radius by Safari! These dis-
crepancies have two negative effects. First, they clutter portable
CSS files with redundant but vendor-specific declarations. Sec-
ond, they impose to the programmers the burden of being aware
and familiar with all browsers specificities.

� Users cannot declare new elements. Although consistent with
static validation, this is inadequate with current web devel-
opment trends where many JavaScript libraries abstract upon
HTML to provide new sets of widgets and graphical facilities
but that are forced to unveil private implementation details be-
cause CSS cannot be extended. For instance, the JQuery’s doc-
umentation (see http://docs.jquery.com) teaches us that
the datepicker widget of the version 1.3.2 is implemented with
a HTML DIV of the class ui-datepicker.

Our contribution, HSS, a compiler for CSS, improves over these
two aspects. It brings computing facilities to CSS and it allows
users to extend CSS. A HSS file is composed of a list of decla-
rations and rules. Declarations define new HTML elements, new
property attributes, new property functions, or variables. Rules are
CSS rules where property values can be dynamically computed.
The HSS compiler can be used off-line to statically translate HSS
source files into CSS files that can be used by any HTML docu-
ments, independently of any particular web programming environ-
ment. HSS files can also be used on-line by Hop, a development kit
for the diffuse Web, that embeds HSS in its runtime system [1, 9].
HSS actually stands for Hop-CSS.

Section 2 presents the minimum CSS background needed to un-
derstand the paper. Section 3 presents the HSS language. It shows
examples that illustrate the HSS extensions. Section 4 presents the
compilation process that translates a HSS source file into a CSS
file. Section 5 presents future work. Section 6 compares HSS with
other systems that generate CSS files.

2. Background
In the mid 90s the web first started with plain HTML documents
that were used to express both structure and visual aspects. In order

to simplify authoring and site maintenance, the structuring and the
presentation of the documents have then been separated: nowadays
HTML is used for structuring and CSS (Cascading Style Sheets) is
used to attach visual styles. In this section we present a brief CSS
tutorial. Readers familiar with CSS may skip this section.

A web page is described by a HTML tree whose nodes have
children and attributes such identifiers, classes, or actions to be
executed when the mouse flies over them. CSS is a declarative
language that let programmers specify the graphical rendering of
HTML nodes. For instance, a CSS declaration may specify that a
node is red, that it uses a large bold font, and that it is decorated
with a dotted blue border.

A CSS file is composed of CSS declarations which have two
parts:

1. a pattern, also known as a selector, that distinguishes the nodes
on which the declaration applies.

2. a list of properties that express the graphical configurations.

The syntax of CSS declarations mimics those of C structures. In
the following declaration:

div.example {
color: blue;

}

“div.example” is the selector and “color” is the specified prop-
erty. This declaration reads as follows: all the HTML div elements
(a div is a plain box) that belong to the example class are painted
in blue. The following HTML snippet shows how such an element
can be declared:
<DIV class="example" id="ex1">
This is an example
</DIV>

Using the Hop programming language, one would write:

(<DIV> :class "example" :id "ex1"
"This is an example")

Various selectors allow CSS declarations to select nodes. In
addition to the class selector presented above, three other selectors
are frequently used all along this paper:

� #: the identifier selector that filters elements according to their
identifier. For instance, the selector

div#ex1 { ... }

matches exactly the unique element whose identifier is “ex1”
(HTML demands uniqueness of identifiers).

� [attr=val]: the attribute selector that filters elements accord-
ing to their attribute values. For instance, the selector

div[hssclass=myhssclass] { ... }

matches all the elements whose attribute hssclass is the string
of characters “myhssclass”. Such an element can be created
with:

(:hssclass "myhssclass")

� :hover: a virtual selector that matches only when the mouse
flies over the elements matching the rest of the selector. For
instance the declaration:

div.example:hover {
color: red;

}

can be used to turn to red div.example elements when the
mouse flies over them. Using the two declarations produces a
graphical animation. The div elements of the class “example”
are all blue but the one under the mouse which is red.

The selectors, may range from simple element such as above
to rich contextual patterns. If all conditions in the pattern are true
for a certain element, the selector matches the element. Contextual
patterns express properties of part of documents. For instance, the
selector of the following declaration:

div.example span.important { ... }

matches span elements of the class important whose ancestor
(direct or not in the HTML tree) is a div of the class example. In
the following example:

(<DIV> :class "tutorial"
(<DIV> :class "example"

(:class "important" :id "span1"
(:class "important" :id "span2")))

(:class "important" :id "span3"))

only the elements span1 and span2 are selected by the pattern.
The element span3 does not match because its only ancestor is a
div of the class “tutorial”, as opposed to “example”.

An element may match several selectors. For instance, if we add
the following declaration to our previous example:

span.important {
color: green;

}

all the span elements of the class “important” that are children of
div of the class “example” matches the two selectors. To resolve
this ambiguity, which means here choosing between green and blue
for painting the span, CSS resorts on a normalized algorithm that
selects amongst all the matching rules the most specific one.

Readers keen to understand the full technical details and sub-
tleties of CSS may refer to the W3C specifications [4].

3. The HSS language
HSS is both a declarative language built on top of CSS and a
compiler that translates the HSS language into CSS. Any correct
CSS file is a correct HSS source file. Additionally, HSS supports
four syntactic extensions:

� define-hss-property, which defines new CSS properties;
� define-hss-function, which defines new CSS functions;
� define-hss-type, which defines new CSS elements;
� $-form, which allows arbitrary dynamic computations.

The formal syntax of HSS is described by the H syntax pre-
sented in Figures 1, 2, 3, 4, 5 and 6.

The definitions of Hprop Hfun, and Htype will be presented in
the rest of this section along with examples.

The actual concrete syntax of child of operator is only the empty
string. For the sake of readability of the paper, we have added here
the terminal <.

In this section we present successively the HSS extensions, each
accompanied with a realistic motivating example.

H ::= X HSS definition
j $expr Hop expression
j S1, : : : ,Sn {D1; : : : Dm; } rule set

X ::= Hprop property definition
j Hfun function definition
j Htype type definition

Figure 1. Grammar for HSS.

S ::= S'1 op : : : op S'k compound selector
S' ::= IDENT element type

j S' . STRING class
j S' : STRING pseudo-element

op ::= ’ ’ j < child of
j > descendant of
j + sibling
j [IDENT opa STRING] attribute

opa ::= = match exact
j ~= match member
j |= match start

Figure 2. Grammar for HSS selectors.

D ::= IDENT : E declaration
E ::= $expr Hop expression

j IDENT(E1, : : : ,Ep) function call
j STRING literal

Figure 3. Grammar for HSS declarations.

3.1 HSS user-defined properties
A regular CSS declaration assigns a value to a property. Its

syntax consists of a property name followed by colon followed by
a value. Examples:
border: 1px solid red;
font-size: 120%;
background: rgb(100,50,200);

The set of property names that can be used in an assignment is
closed, i.e., users cannot define their own properties.

3.1.1 HSS properties
HSS extends CSS by allowing developers to declare their own new
CSS properties. HSS programmers declare property compilers that
rewrite a declaration into a list of new HSS declarations. These new
declarations are themselves compiled. This process iterates until
the declarations produced by compilation only concern primitive
CSS-2 properties.

HSS views a property as consisting of a list of strings (the
parameters) plus a distinguished string (the priority); the user may
define a function, a property compiler, that takes these and returns
a string that replaces the property call. In the example:

border: 1px solid red ! important;

The property compiler is the user-defined function associated with
border, the value parameter is bound to the list "1px" "solid"
"red" and the priority is the string "important". The result of a
property compiler is a string that is inserted in the generated file, in
replacement of the property call.

Hprop ::= (define-hss-property (IDENT IDENT IDENT) expr)

Figure 4. Grammar for HSS property compilers.

Property compilers are defined by the define-hss-property
form whose syntax is given Figure 4. Their signature is as follows:

property compiler: string list � string ! string

The body of the property compiler is given by the expression
expr that belongs to the programming language used with HSS.
The current actual HSS implementation uses Hop so the rest of the
paper.

The following example defines a new black-and-white prop-
erty that controls the background and foreground colors of HTML
elements. It accepts two possible values regular and invert. It
might be defined as:

(define-hss-property (black-and-white val prio)
(if (string=? (car val) "regular")

"color: black; background: white;"
"color: white; background: black;"))

and might be used in rules such as:

div.box {
black-and-white: invert;

}

Note: it might be noted that a property compiler returns a new
HSS fragment that is inserted in the style sheet. Because it is
deemed simpler to generate actual HSS external syntax than any
internal format, it has been decided that property compilers return
strings instead of abstract syntax trees. As presented in Section
4 these strings are parsed back by the HSS compiler in order to
complete the compilation process.

3.1.2 Motivating example: browser compatibility
The actual CSS properties set is specific to each browser. All main-
stream browsers support a superset of CSS-2.1 properties. Vendor-
specific properties have name prefixed with a distinguishing mark,
e.g., -moz-, -webkit-, or -o-. Implementing CSS files compat-
ible with all the major browsers is then tedious because cluttered
with many vendor-specific redundant declarations. For instance,
specifying round borders for boxes could yield to:

pre.example {
-moz-border-radius: 1em 2em 1em 2em;
-webkit-border-top-left-radius: 1em;
-webkit-border-top-right-radius: 2em;
-webkit-border-bottom-right-radius: 1em;
-webkit-border-bottom-left-radius: 2em;
border-top-left-radius: 1em;
border-top-right-radius: 2em;
border-bottom-right-radius: 1em;
border-bottom-left-radius: 2em;

}

HSS properties can be used to ensure browser compatibility
automatically. For instance, the compatibility rule for round borders
could be defined as:

(define-hss-property (border-radius v p)
(match-case v
((?tl ?tr ?br ?bl)
(format "-moz-border-radius: ~a ~a ~a ~a;

-webkit-border-top-left-radius: ~a;
-webkit-border-top-right-radius: ~a;
-webkit-border-bottom-right-radius: ~a;
-webkit-border-bottom-left-radius: ~a;
border-top-left-radius: ~a;
border-top-right-radius: ~a;
border-bottom-right-radius: ~a;
border-bottom-left-radius: ~a;"
tl tr br bl tl tr br bl tl tr br bl))

((?r)
(format "-moz-border-radius: ~a;

-webkit-border-radius: ~a;
border-radius: ~a;"
r r r))

(else
(error 'border-radius "wrong number of args" v))))

The HSS property border-radius can be given either four
values (one for each of the four corners) or only one value (that
is used for all the four corners). Provided with this definition,
the previous pre.example example can be re-written using the
following compact declaration:

pre.example {
border-radius: 1em 2em 1em 2em;

}

This example illustrates two advantages of HSS over CSS dec-
larations:

1. HSS source files are more compact than their corresponding
CSS files;

2. HSS files are easier to maintain because if a new browser shows
up with its own syntax for supporting a popular extension, only
the HSS rule declaring that extension has to be modified, not the
user HSS sources. HSS helps applications developers to write
portable CSS files.

3.2 HSS user-defined functions
A CSS value may be a literal (a string, a number, a color, etc.),

a URI, or a function call. Examples:
color: red;
background: rgb(20%,40%,15%);
content: attr(bg);

As properties, functions cannot be defined by users and main-
stream browsers extend the set defined by CSS-2. As properties,
these extensions raise portability issues.

3.2.1 HSS functions
HSS supports user-defined functions. They are introduced by the
define-hss-function form whose syntax is given Figure 5.

Hfun ::= (define-hss-function (IDENT IDENT ...) expr)

Figure 5. Function definition.

The signature of a HSS function is:

value function: string � ... ! string

The formal parameters of HSS functions are bound to strings
representing the actual values specified at the call sites. For in-
stance, in the property assignment:

background: rgb(20%,40%,15%);

The three formal parameters of the rgb function are bound to
“20%”, “40%”, and “15%”.

3.2.2 Motivating example: specification compatibility
CSS-3 extends CSS-2 in many directions. In particular, the color
module has been significantly augmented. CSS-3 colors may be
specified using RGB components as well as HSL or HSLA compo-
nents. For instance

div.highlight {
background: rgb(255,0,0);
opacity: 0.9;

}

may also be written using CSS-3 specification as:

div.highlight {
background: hsla(0,100%,50%,90%);

}

The CSS-3 hsla function can be defined as a HSS value func-
tion and calls to hsla converted into CSS-2 attribute values during
the HSS compilation. With HSS, hsla can be defined as:

(define-hss-function (hsla h s l a)
(multiple-value-bind (r g b)

(hsl->rgb (string->number h)
(string->number s)
(string->number l))

(format "rgb(~a,~a,~a); opacity:~a;"
r g b
(percentage->real a))))

This definition uses the Hop library function hsl->rgb that
returns the RGB components of a HSL color specification. This
function returns three values that are bound to local variables (r,
g, and b) by the multiple-value-bind form. The a component
is compiled into an CSS2 opacity attribute. Provided with this
definition of hsla, the example above using the HSLA components
will be compiled into an equivalent CSS-2 compatible RGB form.

This example shows that HSS can be used to ensure backward
compatibility of CSS files. Using HSS functions, a CSS-3 source
file can be compiled into an equivalent CSS-2 file. This compilation
can be automatically triggered by clients-side programs for which
an auto-configuration test shows a lack of CSS-3 support.

3.3 HSS user-defined types
HTML types (e.g., DIV, TABLE, ...) are central to the pattern

matching rules that determine which style rules apply to each
element of a document tree. HTML is not extensible, i.e., users
cannot define new types, as is CSS. HSS allows programmers to
define new types that are used in the selector rules as any primitive
type. This is one of the main HSS contributions.
3.3.1 HSS types
Types are defined by the define-hss-type form whose syntax is:

Htype ::= (define-hss-type IDENT S [:body S] Hprop
*)

Figure 6. HSS types.

The rest of this section illustrates type definitions with various
examples. The first one shows that define-hss-type can be used
to assign names to selectors. For instance, provided with the fol-
lowing declaration,

(define-hss-type warning "span.warning")

the new type warning can be used as a substitute of span.warning.
Hence, one may write:

/* global warning's borders */
warning {
border: 4px dotted red;

}
/* "important" warning's color */
div.important warning {
color: red;

}
/* buttons embedded inside warnings */
div.important warning button {
background: yellow;

}

The first rule (global warning) specifies the general graphical as-
pect of a warning span (a span with a wide red dotted border). The
second rule (import warning) overrides warning spans by specify-
ing that important warning spans, e.g., amongst the warning spans
those that are included inside important divs, in addition to be red-
bordered, are written in red. The third rule specifies that buttons
that might be embedded inside import warning spans enjoy a yel-
low background.

HSS types may be accompanied with type-specific properties.
For instance it can be found convenient to associate a level to
the warning elements defined above. The higher the level, the
more visible the graphical rendering. The level property of warning
elements can be implemented as:

(define-hss-type warning "span.warning"
(define-hss-property (level l)

(cond
((string=? l "benign")
"border: 2px solid red;")
((string=? l "important")
"border: 4px dotted red;")
((string=? l "critical")
"border: 4px dotted red;
color: red;")

(else
"border: 4px dotted red;
color: red;
background: yellow"))))

rovided with these declarations, warning can be used in expres-
sions such as:

warning#disk-failure {
level: critical;

}

As seen in Section 2 the # pattern operator matches elements
according to their identifier (here disk-failure). Then, the se-
lector warning#disk-failure matches any element that belongs
to the warning class and whose identifier is disk-failure. Such
an element can be build with a Hop expression such as:

(:class "warning" :id "disk-failure"
"Unable to read disk /dev/sda1")

3.3.2 Motivating example: abstraction
Many modern web frameworks abstract over HTML by propos-
ing additional sets of widgets. JQuery or the Dojo toolkit are two
popular representatives of this kind. These frameworks consist of
JavaScript APIs that amongst other things implement widget con-
structors.

The Hop [9] development kit provides similar facilities with an
important difference :

� Hop is a multi-tier language so its new widgets are supported
on the client-side as well as on the server-side;

� pre-defined HTML markups and user-defined markups use the
same syntax.

For instance, in Hop, one might create labelled frames with two
following declarations:

(define-markup <LFRAME> (body)
(<DIV> :hssclass "hop-lframe"

(<DIV> :hssclass "hop-lfborder"
(<DIV> :hssclass "hop-lfbody" body))))

(define-markup <LFLABEL> (body)
(<DIV> :hssclass "hop-lflabel"

(body)))

These two user-defined markups can be used as any HTML
elements such as:

(<LFRAME> :class "lframe-left"
(<LFLABEL> "A Label")
(<DIV> :id "a-lfbody" "The lframe body."))

Hop compiles this expression into:

<DIV> class="lframe-left" hssclass="hop-lframe">
<DIV hssclass="hop-lfborder">
<DIV hssclass="hop-lfbody">
<DIV hssclass="hop-lflabel">
A Label

</DIV>
<DIV id='a-lfbody'>The lframe body.</DIV>
</DIV>
</DIV>
</DIV>

Being able to define new widgets is essential to web develop-
ment kits. It allows developers to create abstractions on top of
HTML in order to help creating rich user interfaces on the web.
Web developers then no longer directly use HTML DIV, SPAN, or
TABLE but NOTEPAD, TREE, or DATEPICKER instead.

Unfortunately, CSS does not support type abstraction. Thus,
graphical tunings can only be applied to primitive HTML ele-
ments even when they are only used to implement high-level ab-
stractions. For instance, the JQuery’s API documentation acknowl-
edges that a DATEPICKER is implemented as a HTML DIV of the
class ui-datepicker. Unveiling these implementation details is
opposed to elaborating safe and sound abstractions on top of a min-
imal core kernel.

HSS user-defined types can prevent CSS configurations to break
abstractions of high-level APIs. This is illustrated with the HSS
specification of LFRAME presented Figure 7. It shows the definition
of the type element and its specific properties.

HSS type-specific properties are nested inside a HSS type dec-
laration. They are similar to global properties as presented Section
3 with two differences:

� they are only bound for the defined type element;
� instead of returning plain strings, the associated property com-

pilers may return list of strings.

The signature of a type-specific property compiler is:

type property compiler:

string list � string ! string + string list

(define-hss-type lframe "div[hssclass=hop-lframe]"
:body "div[hssclass=hop-lfbody]"
(define-hss-property (-hop-label-margin v)

(format "padding: ~l;" v))
(define-hss-property (-hop-label-border v)

(format "div[hssclass=hop-lfborder] {
border: ~l; }" v))

(define-hss-property (padding v)
(format "div[hssclass=hop-lfbody] {

padding: ~l; }" v))
(define-hss-property (-hop-label-border-radius v)

(format "div[hssclass=hop-lfborder] {
border-radius: ~l; }" v))

(define-hss-property (-hop-label-align v)
(format "div[hssclass=hop-lflabel] {

text-align: ~l; }" v))
(define-hss-property (-hop-label-offset v)

(format "div[hssclass=hop-lflabel] {
top: -~l; }" v))

(define-hss-property (background v)
(list (format "background: ~a;" (car v))

(format "div[hssclass=hop-lflabel] > span {
background: ~a;

}"
(car v)))))

(define-hss-type lflabel
"div[hssclass=hop-lframe]

div[hssclass=hop-lflabel]
span")

Figure 7. Definition of the new lframe type element

When the returned value is a list, any of the contained strings
can either be a HSS property assignment or a plain HSS rule. The
first case is used to configure the HTML element associated with
the defined HTML element. The second case is used to config-
ure HTML elements embedded inside the HTML element. In the
example of Figure 7, -hop-label-margin is applied to HTML
DIV whose hssclass is hop-lframe. The -hop-label-border
is applied to HTML DIV whose hssclass is hop-lfborder and
that are children of LFRAME elements. Section 4 shows how these
properties are compiled into CSS.

The :body argument is bound to a selector string. It is used to
change the HSS compiler aliasing resolution. The :body argument
is added to a selector rule when the type element is not used in the
right-most position or when it is used with a pseudo-selector such
as :first-child.

The default configuration of LFRAME that is given by:

lframe {
background: #edeceb;
border: 1px solid black;
padding: 2px;
box-shadow: 5px 5px 5px #888;
-hop-label-margin: 10px;
-hop-label-border: 2px groove #ddd;
-hop-label-border-radius: 4px;
-hop-label-align: left;
-hop-label-offset: 12px;

}
lflabel {
font-style: roman;

}

It produces the following rendering:

Changing the graphical aspects of a LFRAME no longer requires to
be aware of its implementation. For instance

lframe.lframe-right {
-hop-label-align: right;
-hop-label-border-radius: 0;
-hop-label-border: 2px ridge green;

}
lframe.lframe-right lflabel {
font-variant: small-caps;

}

changes the default rendering. It flushes right the frame label writ-
ten using a small caps font and used a green ridge border. It is
rendered as:

3.4 Computed values
CSS is a purely declarative language. It cannot be used to

express computations. CSS values are thus literals. The fourth
extension supported by HSS allows computed values to be injected
inside generated CSS files.
3.4.1 The $-form
HSS extends CSS statements and values with one additional syntax
that inject compile-time values in the generated CSS file. The
$-form permits HSS source files to declare local variables or
import variables or to bind values to properties. The following
example

$(module hss-example)

$(define bg "#999")
$(define (light-color v) ...not given here...)

button {
background: $bg;

}
button:hover {
background: $(light-color bg);

}

defines a Hop module hss-example that declares one global vari-
able bg and one function light-color. The global variable is used
twice in the example to specify the background color of buttons.

3.4.2 Motivating example: skins
Injecting dynamic values roots HSS inside the development kit that
embeds it. As demonstrated by the examples, it allows the variables
and the values of the programming language to be used inside
HSS files. This may be used to customize HSS files. For instance,
assuming a Hop data structure that implements skins:

(module skinning
(export (class skin

button-border
button-background
button-font
toolbar-icon-size
toolbar-style
...)

(get-current-skin::skin)))

Then, HSS files may use these skins in source files such as:

$(module hss-example
(import skinning))

$(define skin (get-current-skin))

button {
border: $(skin-border skin);
background: $(skin-button-bg skin);
font: $(skin-font skin);

}
button:hover {
background: $(light-color (skin-button-bg skin));

}
...

This technique for implementing skins allows applications con-
ceived and implemented independently to share graphical configu-
rations. Globally coherent visual aspect can thus be enforced at the
environment level.

4. The HSS compiler
This section presents the whole HSS compiler. The compilations
algorithms are given Figures 10 through 15. They use the syntactic
notations presented Figure 9. Readers only interested by the HSS
design and not concerned by the technical aspects of its implemen-
tation can safely skip this section.

The first step of the compilation normalizes HSS programs. It
produces rules that contain only one selector and it evaluates global
Hop expressions. After that stage programs are described by the
grammar H0 given in Figure 8.

H0 ::= S {D1; : : : Dm; } rule

Figure 8. Grammar for normalized HSS.

H , the complete syntax for HSS and H0 are related by:

H0
� H

In addition, C , the actual CSS syntax is related to H by:

C � H

C, the compilation function that transforms a HSS program into a
CSS program, has the following prototype:

C : H0
� � � � � � ! C

H0 is the program to be compiled, � is the element type environ-
ment that is extended by define-hss-type, � is the property envi-
ronment that is extended by define-hss-property, and � is the
function environment that is extended by define-hss-function.

The compilation algorithm handles each rule separately. It re-
solves type element aliasing and it invokes property and value com-
pilers.

In this presentation, the compilation of the rule

S1 op1 : : : opn-1 Sn {D1; : : : Dm;}

in the type environment � , the property environment �, and the
function environment � is written:

C[[S1 op1 : : : opn-1 Sn {D1; : : : Dm;}]]���

S#type the type of a selector S . e.g., div#foo#type = div

S#� the property set of the type of the sector S . S#� �
� (S#type).

� (IDENT)#selector the selector of user-defined types e.g.,
� (lframe)#selector = “div[hssclass=hop-lframe]”

� (IDENT)#body the optional body of user-defined types e.g.,
� (lframe)#body = “div[hssclass=hop-lfbody]”

�(IDENT)#selector the selector of a type property.
�(IDENT)#compiler the compiler of user-defined property.
T#1 and T#2 the first and second projection. e.g., <a � b>#2

= b
x the concatenation of lists.

Figure 9. Notations. This figure presents the notations used by the
compilation algorithms.

Sn drives the compilation of rules such as:
C[[S1 op1 : : : opn-1 Sn {D1; : : : Dm;}]]

� If Sn is a regular element then the compilation consists in re-
solving selector aliasing and expanding global HSS properties.
This is implemented by the Csimple function.

� If Sn is a user-defined element then more important modifica-
tions are involved. In particular one HSS rule of this type may
be compiled into several CSS rules. The function Cuser is used
to compile such rules. Figure 10 presents the part of the algo-
rithm that dispatches according to rules kind.

C[[S1 op1 : : : opn-1 Sn {D1; : : : Dm;}]]��� =

if Sn#type =2 � or pseudo(Sn)

then Csimple[[S1 op1 : : : opn-1 Sn {D1; : : : Dm;}]]���
then Cuser[[S1 op1 : : : opn-1 Sn {D1; : : : Dm;}]]���

Figure 10. Dispatching rules

4.1 Compiling Simple Rules
The function Csimple compiles simple rules by resolving type

aliasing and expanding attributes name and value. Section 3.2.2
offers a first example for Csimple that is detailed below. In the rule:
div.important warning button {
background: yellow;

}

warning is a user defined type but not used in the right-most posi-
tion of the selector. So it does not drive the rule properties expan-
sion. That rule actually configures buttons, not warnings. Hence, its
compilation merely consists in resolving selector aliasing. It then
produces:

div.important span.warning button {
background: yellow;

}

This example illustrates type aliasing, the Section 3.1.1 provides
an example of attribute aliasing and value expansion. In that Sec-
tion a black-and-white property has been defined. It can be used
in rules such as:
div.box {
black-and-white: invert;

}

Expanding the attribute black-and-white produces:

div.box {
color: white;
background: black;

}

The function Csimple, in charge of this transformation, is pre-
sented in Figure 11.

Csimple[[S1 op1 : : : opn-1 Sn {D1; : : : Dm;}]]��� =

Calias[[S1]]� op1 : : : opn-1 Calias[[Sn]]� {
Cdecl[[D1]]���#2; : : : Cdecl[[Dm]]���#2;

}

Figure 11. Compiling simple rule

4.1.1 Compiling Selectors
The compilation of simple selectors is given by the function Calias
given in Figure 12. As shown in the warning example, it replaces
user-defined types, i.e., types bound in the � environment, with the
selector expression given at the type declaration.

Calias[[IDENT]]� =
if IDENT 2 �

then Calias[[�(IDENT)#selector]]�
else IDENT

Calias[[IDENT.STRING]]� =
if IDENT 2 �

then Calias[[�(IDENT)#selector.STRING]]�
else IDENT.STRING

Calias[[IDENT:STRING]]� =
if IDENT 2 �

then let i = �(IDENT) in
if i#body

then Calias[[i#selector < i#body:STRING]]�
else Calias[[i#selector:STRING]]�

else IDENT:STRING

Figure 12. Compilation of selectors

One subtlety is introduced by pseudo-elements that actually
change the alias resolution. This is illustrated by the following
example that uses the lframe element presented in Figure 7:

lframe:first-child {
border: 1px solid red;

}

The intention of this rule is to set a border to the first user child
of lframe elements by opposition to the child of the element that
implements the outer box of the lframe. This intention is specified
in HSS by adding a :body argument to the type declaration. The
:body argument is bound to a selector string which is used to
change the HSS compiler aliasing resolution. The :body argument
is added to a selector rule when the type element is not used in the
right-most position or when it is used with a pseudo-selector such
as :first-child.

In this example, since the declaration of lframe specifies a
:body argument, then :first-child must be resolved against
that element, not against the element implementing the outer
lframe box. Hence, remembering that lframe’s :body attribute is
div[hssclass=hop-lfbody], Calias compiles the previous dec-
laration into:

div[hssclass=hop-lframe]
div[hssclass=hop-lfbody]:first-child {
border: 1px solid red;

}

Without the :body optional argument it would have been com-
piled into:

div[hssclass=hop-lframe]:first-child {
border: 1px solid red;

}

4.1.2 Compiling Declarations
Declarations are compiled by the function Cdecl (see Figure 13).
The environment � binds property identifiers. For each identifier it
associates a selector and a compiler.

Cdecl[[IDENT : E]]��� =

if IDENT 2 �
then let s = �(IDENT)#selector

c = �(IDENT)#compiler in

<s � c(E)>
else <false � IDENT : Cexpr[[E]]�>

Figure 13. Compiling declarations

The second function needed to compile HSS declarations is
Cexpr (see Figure 14). It takes in charge the compilation of expres-
sions. It resolves $-forms and user-defined functions bound in the
environment �.

Cexpr[[STRING]]� = STRING

Cexpr[[$expr]]� = HOP(expr)

Cexpr[[IDENT(expr)]]� =

let e = Cexpr[[expr]]� in

if IDENT 2 �
then let f = �(IDENT) in f(e)
else IDENT(e)

Figure 14. Compiling property values

4.2 Compiling User Rules
The right most element type of a selector specifies the elements

the rule applied to. The left elements limit the set of elements
the rule applies to so they do not impact the compilation of rule
attributes. In the rest of this section, rules where the right most
element is a user declared type are referred to as user rules. This
section presents the HSS compilation function Cuser that handles
them.

As shown in Section 3.2.2 and in particular in the lframe ex-
ample presented in Figure 7, properties of user defined types may
be associated with selectors. For instance, the padding property
of the user defined lframe type is associated with the selector
div[hssclass=hop-lfbody]. HSS has to generate new selectors
that accommodates the selector used in the user type declaration
and the selector used in the property declaration. This is illustrated
with two examples. The first one illustrates the compilation frame-
work when the property does not come with its selector. The second
illustrates the compilation when a selector is associated to a prop-
erty.
� The -hop-label-margin defines a property of the main

HTML element that implements the lframe, i.e., a div element
whose hssclass is hop-lframe. Hence, when the property
-hop-label-margin is used in a declaration, it is compiled
into a declaration applied to a div[hssclass=hop-lframe]
element. So the declaration:

lframe.foo {
-hop-label-margin: 10px;

}

is compiled into:

div[hssclass=hop-lframe].foo {
padding: 10px;

}

� The -hop-label-border property is associated with the se-
lector div[hssclass=hop-lfborder]. So, when used in a
rule, the selector on which this configuration applies is not the
lframe element itself but the div[hssclass=hop-lfborder]
that is nested in the lframe. Then, the declaration:

lframe.foo {
-hop-label-border: 2px groove #ddd;

}

is compiled into:

div[hssclass=hop-lframe].foo
div[hssclass=hop-lfborder] {
border: 2px groove #ddd;

}

To accomplish this transformation, the function Cuser first splits
the initial rule into m rules where m is the number of properties
held by the rule. Second, it computes the selector of these new
rules according to property declarations. The whole definition of
C is given in Figure 15 where, for simplifying the presentation, it
is assumed that type property compilers only return single strings.

Cuser[[S1 op1 : : : opn-1 Sn {D1; : : : Dm;}]]��� =

let �' = Sn#� x � in
d1 = Cdecl[[D1]] in

if d1#1
then C[[S1 op1 : : : opn-1 Sn < d1#1 {d1#2;}]]���
else Calias[[S1]]� op1 : : : opn-1 Calias[[Sn]]� {d1#2;}

: : :
let dm = Cdecl[[Dm]] in

: : :

Figure 15. User rules compilation

5. Limits and Future work
HSS supports a higher level of abstraction than CSS because it
can be used to hide widgets implementation details. However, not
all HTML style specifications are given in CSS files. Some are
specified statically via the HTML :style attribute and others are
even computed dynamically on the client-side code. In all these
cases, HSS is hopeless.

It could be appealing to resort on the Hop dual compiler that
allows a same source code to be compiled for the server (via native
code compilation) as well as compiled for the client (via JavaScript
code compilation [5]) to run the HSS compiler on the server-side
and on the client-side of web applications. However, we think that
this would be unrealistic because the HSS implementation is too
big. It is undecidable if HSS is needed or not on the client side,
then HSS would have to be included in the regular client-side
runtime system, that is shipped with all the web pages delivered
to clients. This would dramatically enlarge the load time of all Hop
applications as it would clutter the memory of the web browsers
than execute them.

User-defined HTML elements can be assigned names using the
define-hss-type form. Developers refer to these names for spec-
ifying graphical tunings, independently of the implementation de-
tails. Unfortunately this name binding fails at totally hiding im-
plementation details because it does not prevent the referenced
HTML sequence to be impacted by general CSS rules. For in-
stance, a lframe as defined in Figure 7 is actually an alias for
div[hssclass=hop-lframe]. Then, lframe is impacted by any
general rule mentioning DIV element such as:

div {
background-color: red;

}

Although users may refer to lframe by a dedicated type name,
a lframe is still a HTML DIV that can be configured directly by a
CSS file! This let users infer that a lframe is actually implemented
with a DIV. We see no solution to this problem.

The current version of HSS does not support user-defined
pseudo-elements. However, this could help improving the back-
ward compatibility between CSS-2 and CSS-3. CSS-3 defines ad-
ditional pseudo-elements such as :last-child or :nth. Some of
these are essential and cannot be simulated. Some could. This will
be subject of a future HSS extensions.

6. Related work
HSS has first been mentioned but not detailed in an early publica-
tion [8]. We have not been able to observe other evidence of aca-
demic studies concerning CSS in the mainstream conferences and
journals dedicated to the web. For instance, we have found no men-
tion of CSS studies in any of the 10 last ACM WWW conferences.
However, we think that CSS playing an important role in the pro-
duction of web applications, it deserves our attention.

No article has been written by the academies or by research
institutes but some tools have been produced by private companies
or by the free software actors. In this section they are compared to
HSS.

� Sass, [3] or Syntactically Awesome StyleSheets, is “a meta-
language on top of CSS that’s used to describe the style of a
document cleanly and structurally, with more power than flat
CSS allows”. Sass can be used as a command-line tool or as
a plugin for Ruby on Rails or Merb. Sass uses its own syn-
tax based on tabulations and newlines. It supports variables,
functions, blocks, and some fancy features such as property
name-spaces. As several other tools, Sass supports block nest-
ing which allows specifications of children to be declared inside
their parent. This feature could be easily added to HSS but it
does not seem essential since its only purpose is to abbreviate
selectors.

� H(aXe)SS: [2] is a stand-alone pre-processor for CSS. It sup-
ports variables definitions and nested blocks.

� Less [7] is an extension of CSS that supports nested blocks,
arithmetic operations on numbers and colors, lexical scoped
variables but it supports no scripting nor functions.

� CleverCSS [6] is a CSS generator that relies on a Python based
syntax. It supports embedded Python expressions, variables,
and nested blocks.

All these systems, including HSS, share many features that help
writing more compact and portable CSS files. Figure 6 summarizes
their main characteristics. As HSS some of these other systems
raise the abstraction level used in CSS files by supporting functions
and variables. However, we think that HSS goes one step further
by presenting a coherent extension framework that let developers

Name Syntax Host UType UProp Nesting Var. Fun. Block Expr. Misc

Sass [3] private Ruby on Rail
Merb no no yes yes ruby yes SassScript Property name-spaces

H(aXe)SS [2] CSS stand alone no no yes yes no yes no

Less [7] CSS command line
Ruby no no yes yes no yes ad hoc Property name-spaces

CleverCSS [6] python python no no yes yes ruby - python

HSS [8] CSS stand-alone
hop yes yes no yes hop yes hop skinning

Figure 16. This table summarizes the main characteristics of CSS compilers. Syntax denotes the input syntax of the compilers. The ”Host”
column gives indication on how the tool can be used. The column ”Utype” shows which system allows users to define HTML elements.
The column ”Uprop” shows which system implements user properties. ”Nesting” denotes the support of nested selectors declaration. ”Var.”
denotes the possibility to declare variables inside style files. ”Fun.” denotes the possibility to develop private functions and, for those systems
that support this feature, the programming language used for defining functions. ”Block” denotes the possibility for a variable to contain a
CSS value or a complete CSS block. ”Expr.” denotes the possibility to embedded expressions in property declarations and the language used
for these expressions.

declare functions, and variables as well as new element properties
and new element types.

7. Conclusion
This paper has presented HSS that extends CSS with user defined
variables, functions, and element types. The paper has shown that
generating CSS files improves portability and maintainability and
raises the abstraction level of CSS.

The paper has presented the HSS compilation algorithm which
is simple enough to be re-implemented with any web-dedicated
programming language.

The current HSS source code is shipped with Hop whose devel-
opment kit is available at http://hop.inria.fr.

8. Acknowledgments
Thanks for the anonymous PPDP’10 referees whose help greatly
improved this paper.

References
[1] G. Boudol, Z. Luo, T. Rezk, and M. Serrano. Towards Reasoning for

Web Applications: an Operational Semantics for Hop. In Proceedings
of the first Workshop on Analysis and Programming Languages for Web
Applications and Cloud Applications, Toronto, Canada, June 2010.

[2] N. Cannasse. Haxe hss, Oct. 2008. URL http://ncannasse.fr-
/projects/hss.

[3] H. Catlin and N. Weizenbaum. Sass – syntactically awesome
stylesheets, 2006. URL http://sass-lang.com/.

[4] W. W. W. Consortium. Cascading Style Sheets level 2 revision 1
CSS2.1 Specification. Technical Report CR-CSS2-20090423, W3C
Recommendation, Apr. 2009.

[5] F. Loitsch and M. Serrano. Trends in Functional Programming, vol-
ume 8, chapter Hop Client-Side Compilation, pages 141–158. Seton
Hall University, Intellect Bristol, ed. Morazán, M. T., UK/Chicago,
USA, 2008. ISBN 978-1-84150-196-3.

[6] A. Ronacher. Clevercss, 2007. URL http://sandbox.pocoo.org-
/clevercss/.

[7] A. Selleir and D. Fadeyev. Less, 2009. URL http://lesscss.org-
/index.html.

[8] M. Serrano. The HOP Development Kit. In Invited paper of the Seventh
ACM SIGPLAN Workshop on Scheme and Functional Programming,
Portland, Oregon, USA, Sept. 2006.

[9] M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for program-
ming the Web 2.0. In Proceedings of the First Dynamic Languages
Symposium, Portland, Oregon, USA, Oct. 2006.

