
70

Of JavaScript AOT Compilation Performance

MANUEL SERRANO, Inria/Université Côte d’Azur, France

The fastest JavaScript production implementations use just-in-time (JIT) compilation and the vast majority of

academic publications about implementations of dynamic languages published during the last two decades

focus on JIT compilation. This does not imply that static compilers (AoT) cannot be competitive; as compara-

tively little effort has been spent creating fast AoT JavaScript compilers, a scientific comparison is lacking.

This paper presents the design and implementation of an AoT JavaScript compiler, focusing on a performance

analysis. The paper reports on two experiments, one based on standard JavaScript benchmark suites and one

based on 18 new benchmarks chosen for their diversity of styles, authors, sizes, provenance, and coverage of

the language. The first experiment shows an advantage to JIT compilers, which is expected after the decades

of effort that these compilers have paid to these very tests. The second shows more balanced results, as the

AoT compiler generates programs that reach competitive speeds and that consume significantly less memory.

The paper presents and evaluates techniques that we have either invented or adapted from other systems, to

improve AoT JavaScript compilation.

CCS Concepts: • Software and its engineering → Just-in-time compilers; Source code generation;
Object oriented languages; Functional languages.

Additional Key Words and Phrases: JavaScript, Scheme, AOT, JIT, Compiler, Dynamic Languages

ACM Reference Format:
Manuel Serrano. 2021. Of JavaScript AOT Compilation Performance. Proc. ACM Program. Lang. 5, ICFP,
Article 70 (August 2021), 30 pages. https://doi.org/10.1145/3473575

1 INTRODUCTION
JavaScript is particularly difficult to implement efficiently because most of its expressions have all

sorts of different meanings that involve all sorts of different executions that are not distinguished by

any syntactic or type annotation. For instance, “obj.prop” might i) fetch property prop from obj, ii)
scan the linked list of obj’s prototype chain and fetch prop from another object, iii) call a user defined
function if prop is an accessor, iv) allocate a fresh object if obj is a primitive value, or v) evaluate yet
another user function if obj is a proxy object. Checking all the possible interpretations and executing

the appropriate one literally, that is treating the language specification as an algorithm, delivers

unacceptably slow performance. All fast implementations use alternative strategies. Amongst all

the possible interpretations, they favor the one that corresponds to the most frequent situation,

for which they elaborate a faster execution plan, and, as importantly, for which they elaborate a

fast guard that ensures the preservation of the language semantics. Typically, that is what inline
caches and hidden classes achieve [Artoul 2015; Chambers and Ungar 1989; Chambers et al. 1989].

Using a single test, the comparison of the object’s hidden class with the inline cache, we know if

the property is to be read directly from the object and, if so, at which offset. The common intuition

is that only dynamic compilers, a.k.a., JIT compilers, can handle dynamic languages efficiently

Author’s address: Manuel Serrano, Inria/Université Côte d’Azur, Inria Sophia Méditerranée, 2004 route des Lucioles, Sophia

Antipolis, F-06902, France, Manuel.Serrano@inria.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/8-ART70

https://doi.org/10.1145/3473575

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

https://doi.org/10.1145/3473575
https://doi.org/10.1145/3473575

70:2 Manuel Serrano

because this heuristic-based strategy requires having the program and the data on hand in order to

generate efficient code [Dot et al. 2017]. We view this position as too extreme, as it is oblivious to

other AoT compiler characteristics that might make them competitive.

• AoT compilers can allocate conceptually infinite resources for analyzing and optimizing the

program because they run before execution. This opens opportunities to conceive and deploy

new optimizations that are out of reach of JIT compilers for which compilation time and

compilation resource consumption matter.

• AoT compilers are efficient even for brief executions while JIT compilers need the execution

to last sufficiently long to benefit from gathered profiled data. This should give AoT com-

pilers an advantage for executing programs such as shell commands or cloud computing

microservices [Wimmer et al. 2019].

• New techniques [Serrano 2018] have been proposed to adapt JIT-style heuristics-based ap-

proach to AoT compilation. These studies have shown that if indeed a JavaScript expression

involves many different interpretations, typically only one is used over and over execu-

tion [Würthinger et al. 2017] and guessing it before the execution is not too difficult.

As few are committed to developping optimizing AoT JavaScript compilers, we rely too heavily

on our intuition to answer the question whether AoT compilers can deliver performance comparable

to JIT compilers. To provide the elements of a proper scientific comparison, we built Hopc, an AoT

compiler for JavaScript. In this paper, we compare its performance with those of production JIT

compilers and we show that on many new
1
tests, its performance is close to those of JIT compilers.

We read this as a strong indication that an AoT compiler that optimizes the whole core language

and the whole set of libraries could compete with the fastest JIT compilers. The paper presents

this experiment, the overall architecture of the compiler, and some new optimizations and new

implementations techniques.

TheHopc compiler supports all of JavaScript 6 and many of recent JavaScript

additions (proxies, async/await, generators, weak tables, modules, ...) with three

restrictions: its regular expressions are not fully compliant with the ECMAScript

specification, direct eval has no access to its lexical environment, and modules

enforce a strict isolation of builtin global variables. Hopc passes all tests of
the 262 test suite apart from those that rely on these very features.

Beside performance concerns there are other incentives for studying the AoT compilation of

dynamic languages.

• JIT compilers require the target platform to support allocation of executable memory and they

require the platform to offer enough memory for them to run side by side with the application,

which practically rules out micro-controllers and significantly complicates supporting W^X

platforms [Wikipedia 2021]. These limitations do not affect AoT compilers.

• New execution platforms may require AoT compilation. More precisely, if wasm [Haas et al.

2017] succeeds at becoming the universal execution machine, AoT compilation will likely

impose itself because wasm currently lacks support for efficient dynamic code modification.

• From a different perspective, one might also wonder if consuming significant energy to

compile the same code over and over again, as JIT compilers do, is a very sensible option, as

energy consumption is the primary expense today. For instance, is it sensible that TypeScript

1
See Section 3.1 for a rationale why new benchmarks make sense.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:3

programmers who use the command line keep recompiling the same 100,000 JavaScript lines

in the TypeScript compiler each time they modify their own application code?

The rest of the paper is organized as follows. Section 2 presents the related work. In Section 3,

we present the experimental methodology we use for measuring and presenting the performance

of the systems we compare. In Sections 4 and 5, we present the Hopc compiler architecture, its

optimizations, some of its important data structures, and its back end. In Section 6, we present the

performance evaluation report. We conclude in Section 7.

2 RELATEDWORK
"The dynamic typing feature of [JavaScript, Python, ...] require that their applications are Just-in-Time
(JIT) compiled" [Dot et al. 2017]. This sort of claim is so deeply rooted in the compilation and

programming language communities that very little effort is invested in studying static compilation

of these languages; JIT studies, however, are countless [Bauman et al. 2015; Brown et al. 2020;

Chevalier-Boisvert and Feeley 2015, 2016; Choi et al. 2019; Gal et al. 2009a,b; Prokopec et al. 2019;

Ren and Foster 2016; Saint-Amour and Guo 2015; Würthinger et al. 2017].

There are a few exceptions. Samsung’s SJS [Chandra et al. 2016] was among the first attempts

to build an AoT compiler for JavaScript. Its performance is very competitive but it restricts the

language so drastically (the polymorphism was limited, the prototype chain was not fully supported,

introspection and dynamic field lookup were lacking) that it is difficult to compare it with full

JavaScript implementations. Static TypeScript [Ball et al. 2019], STS, pursues similar goals. It is a

static compiler for a restricted TypeScript subset (no prototype support, no arguments, no apply,

and builtin objects cannot be extended) designed to target 32bit micro-controllers. As with SJS,

it shows very good performances but it also lacks too many dynamic features to be compared to

hopc. Google V8 supports JIT-less compilation [Google 2019] but the lack of technical description

makes it difficult to compare.

The literature about static analysis of JavaScript and Python is particularly abundant [Anderson

et al. 2005; Arceri et al. 2020; Choi et al. 2015; Hackett and Guo 2012; Jensen et al. 2009a,b,c; Kashyap

et al. 2014; Ko et al. 2015; Lerner et al. 2013; Logozzo and Venter 2010; Monat et al. 2020; Nielsen

and Møller 2020; Park and Ryu 2015] but most of these studies are intended to build tools for static

verification and they all assume analysis of global programs. They are not directly applicable to

modular static compilers.

Profile-guided optimizations (PGO) are at the heart of JIT compilers. A. Wade et al. [Wade et al.

2017] measures the impact of PGO on JIT and AoT compilation of Java. This work is not directly

applicable to JavaScript because the dynamicity of Java is nothing compared to JavaScript and also

because the AoT compiler they test does not use optimistic compilation. The study [Choi et al. 2019]

shows a PGO that improves the creation of hidden classes in JavaScript production executions,

mostly for improving startup times. This could apply to AoT compilation as well. PGO has also

been studied in the context of dedicated hardware support [Dot et al. 2017]. The application to our

work is not straightforward.

Fortunately, other analyses and runtime techniques designed for JIT compilation apply equally

well to AoT compilers. For instance, the study [Ahn et al. 2014] reports on the information that

should be or should not be included in hidden classes. The dynamic allocation-size-based opti-

mization [Clifford et al. 2015] applies equivalently well to AoT and it is used in hopc. The study
[Qunaibit et al. 2018] presents MegaGuards, a system that automatically offloads part of Python

programs into specialized hardware such as GPU. The stability analysis developed to satisfy the

constraints imposed by these accelerators could potentially be applied to AoT compilation.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:4 Manuel Serrano

3 EVALUATION METHODOLOGY
In this study we are interested in comparing the performance of JIT and AoT compilers at a

coarse grain level, in contrast with many studies that focus on specific optimizations, seeking

specific acceleration. Accordingly, we propose a new benchmarking methodology and a new visual

representation of the results. Instead of running a benchmark 𝑛 times and presenting the arithmetic

mean of the collected execution durations (as we do when only peak performance is important,

see for instance Figure 5), we run the benchmark inside a loop and collect the execution times of

successive runs as the number of iterations increases. See Figure 9 for an example. For the first run

the almabench.js test has been executed once, twice for the second, etc.

This representation has advantages compared to a representation based on a single execution

time per benchmark
2
. The curves of the plots provide a visual representation of the performance

differences between systems, as barchart graphs would do. In addition, if a system suffers from a

memory leak, its corresponding curve will be quadratic, something invisible if only one point of the

curve is reported. If a system suffers a long warm up period, this will be reflected by a discontinuity

in its curve. If a JIT optimizes and de-optimizes, this will be visible too. This representation will

also show at which point JIT and AoT curves cross, if they do and when they do. Finally, this

representation makes it easier to detect environment and configuration hazards [Mytkowicz et al.

2009], as that will generate visible discontinuity points.

3.1 JavaScript Benchmarking
The high-level abstraction of JavaScript makes the performance difference of efficiently optimized

patterns and literally interpreted ones tremendous. Missing optimization opportunities can have

dramatic consequences. We have observed situations where missing optimization opportunities

incurred 10× or even 100× slowdowns. This makes benchmarking JavaScript compilers critical

but also very difficult because it makes benchmarks prescriptive. They evaluate the performance

but they also implicitly define or characterize the set of patterns compilers should favor. This

duality creates a sort of conflict of interest: benchmarks simultaneously create the demand and its

evaluation.

It is now well known and well documented that high scores have been obtained for all widely
used JavaScript benchmark suites (JetStream, Sunspider, Kraken, Octane, ...) by observing and

taking benefit of programs peculiarities that enabled compilers to deploy particularly efficient but

also highly specific optimizations that seldom apply to general contexts or that can even hurt global

performance [Meurer 2016; V8 Team 2017]. JavaScript benchmarks create a paradox. They are

needed to improve performance, and history shows that they have accomplished this mission very

successfully, but they also expose compilers to the risk of overfitting.

The JavaScript versatility is the second problem that makes it difficult to evaluate. How to find

a set of representative JavaScript programs? Can such a thing even exist? Load time is a critical

criterion for web client-side but unimportant for the server-side. On the other hand servers probably

need fast long-running programs, something that will almost never be used on clients. JavaScript

IoT device programming will also probably come with other requirements such as lean memory

consumption and small code sizes. Some criteria are even be opposed to each other. For instance, it

is probably impossible to simultaneously maximize cpu speed and minimize memory footprint.

The two problems posed by JavaScript benchmarks have been clearly identified by the commu-

nity [Meurer 2016; V8 Team 2017] and the response has been to retire benchmark suites after a

while and to propose new tests reflecting the evolution of the languages and its use. The two most

recent suites are Speedometer and Webtooling. They address the overfitting problem by the mere

2
Unconvinced readers will find a more traditional numerical presentation of the benchmarks results in the Appendix.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:5

fact of being new and by increasing the language coverage. They address the second problem by

segregating between web-client code and server code. None of these suites are well adapted to

our experiment. Speedometer evaluates typical web-browser work load and Webtooling packages

all the tests in a single very large file that does not fit with a modular compilation model. This

is why we have assembled our own test suite for conducting our in-depth experiment. However,

Octane, Sunspider, and JetStream are so extensively for evaluating JavaScript implementations,

that although they come with the aforementioned biases, we also present the hopc score on these

tests to give context and establish continuity with previous work.

3.2 Benchmark Suite
We have selected 18 different tests, written by different authors, using different programming styles.

They cover a large part of the language’s constructs and libraries but they are insufficient to show

that one system is globally faster than another. As we only aim at showing that a static compiler can
deliver comparable performance on a significant portion of the language, they fit our needs. For each

program, we give its size, its allocation rate, the dominant allocation source, and a brief functional

description.

(1) almabench.js [410loc, 500MB/s (float 96%)]: this is the translation of a C++ benchmark that

calculates the daily ephemeris for the 21th century. It is a floating point intensive program.

(2) bague.js [163loc, 1MB/s]: this is the translation of a Scheme benchmark that solves the

Baguenaudier game
3
. It uses simple recursive function calls, fixed integers, and array accesses.

(3) basic.js [353loc, 280MB/s (string 80%, array 20%)]: this is a tiny Basic interpreter whose original
implementation [Eder 2020] has been adapted to match JavaScript strict-mode requirements

and to replace the eval function originally used to evaluate Basic literals and variables.

(4) boyer-scm.js [557loc, 210MB/s (object 97%)]: Boyer.js and Earley.js are two tests that belong

to the Octane test suite. They have been generated by the Hop Scheme->JavaScript com-

piler [Loitsch 2005; Loitsch and Serrano 2008]. To mitigate the overfitting bias described

in [V8 Team 2017] we manually translated the original Scheme program into JavaScript by

using the most neutral possible translation. Scheme functions are translated into JavaScri-

pt functions. Scheme pairs are encoded as instances of a JavaScript class with two fields.

Arithmetic operators are mapped into JavaScript operators, etc.

(5) earley-scm.js [1132loc, 160MB/s]: this is the manually translated version of the earley.scm
that Google used to produce Octane earley.js.

(6) jpeg.js [2034loc, 600MB/s (array 100%)]: this is a jpeg encoder/decoder [Incorporated 2020]

used to encode and decode a 16×16 image. It uses bitwise operations and array read/write

extensively.

(7) js-of-ocaml.js [1652loc, 351MB/s (array 100%)]: this is an OCaml game of life test compiled

down to JavaScript by the js_of_caml compiler [Vouillon et al. 2020] and interpreted by the

OCaml byte code interpreter compiled in JavaScript.

(8) leval.js [450loc, 580MB/s (object 99%)]: Leval.js is a Scheme interpreter. It first compiles

expression into JavaScript closures and it then evaluates them by invoking the top-most

closure. Activation frames are heap allocated using chained lists.

(9) marked.js [2838loc, 160MS/s (strings 92%)]: This is a Markdown parser [Jeffrey et al. 2020]. It

reads its input from a string and generates a string containing the HTML translation.

(10) maze.js [640loc, 236MB/s (object 47%, fun 33%)]: This test implements a jigsaw game originally

implemented in Scheme by O. Shivers. It is one of the few tests to use ES6 generators (for

implementing a random generator).

3
https://en.wikipedia.org/wiki/Baguenaudier

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

https://en.wikipedia.org/wiki/Baguenaudier

70:6 Manuel Serrano

(11) minimatch.js [1091loc, 300MB/s (string 53%, array 24%)]: Minimatch.js is a popular npm
package for file globing [Isaacs 2016] (22 million weekly downloads according to www.npmjs.

com). It exercises string and array handling. This test is also one of the few tests that raises

and catches exceptions.

(12) minimist.js [1232loc, 238MB/s (array 58%, object 25%)]: Minimist.js is the most popular npm

package for command line parsing (37 million weekly downloads) [Halliday 2020]. The

execution time is dominated by array constructions obtained by splitting strings.

(13) moment.js [9321loc, 161MB/s (38% string, 30% array)]: Moment.js is a time manipulation

library [Moment.com 2020]. It is among the 10 most popular npm packages. This test is made

from the core library and the first thousand tests.

Moment.js uses many different JavaScript features seldom used. For instance, it uses the in

operator that checks the existence of a property in an object and the delete operator that

removes a property. It uses expressions such as var x = config._locale ||..., a frequent

pattern in real programs but surprisingly rare in standard benchmarks. Moment.js also uses

library functions such as hasOwnProperty that also exercises hidden classes and inline caches

in unusual ways.

(14) qrcode.js [2295loc, 334MB/s (string 60%, real 27%)]: This program [Kazuhiko 2009] builds

QRcode. It first creates abstract representations of three different urls and then compiles

them into svg, html, and ascii. This test allocates expensively short-living reals and strings

and is a pattern that favors generational copying collectors.

(15) richards+.js [532loc, 3MB/s]: This is a modified version of Octane Richards.js where objects

are wrapped with JavaScript proxies and all accesses go through proxy handlers. This is the

only bechmark that tests proxy objects, introduced in JavaScript 6.

(16) rho.js [3112loc, 391MB/s (array 31%, fun 31%)]: This is a implementation of the Racket contract

system [Strickland et al. 2012] in JavaScript. This implementation relies on the highly popular

underscore.js library of high-level operations, which makes this test highly relevant.

(17) uuid.js [1330loc, 300MB/s (string 40%, array 27%)]: Uuid.js is another very popular npm

package (35 million weekly downloads) [UUID 2020]. It computes universal unique identifiers.

The original implementation uses Nodejs native support for md5 and sha1 which we have

replaced with pure JavaScript implementations.

(18) z80.js [976loc, 141MB/s (array 50%, fun 30%)]: This is a Z80 emulator. It intensively tests

integer operations.

We have developed another test suite made of synthetic micro benchmarks that we use internally

to identify potential Hopc weaknesses and as an explanatory tool when studying benchmarks

performance (see Section 6). All these micro-tests run a single loop that repeats the same basic

operations (property accesses, function calls, Boolean tests, etc.). For the sake of space, this article

only presents a subset of the whole set. We introduce them one by one when needed. To distinguish

between the general performance tests and the micro-tests we denote the latter with a
★
mark.

All measures have been collected on Linux 5.3 x86_64, powered by Intel a Xeon E5-1650 processor.

The tested production systems are : V8 (6.8.275.32), Jsc (4.0), and Js68 (C68).

4 THE HOPC COMPILER
JavaScript has grown into a big language. The 2018 edition of the specification [ECMA International

2018] counts 805 pages. The language supports a lot of core features: closures, prototype-based

object orientation, class-based orientation, asynchronous programming, promises, generators,

proxy objects, destructuring assignments, variable arity functions, etc. It also includes extensive

libraries for arrays, numbers, regular expressions, strings, etc. To cope with this overwhelming

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

www.npmjs.com
www.npmjs.com

Of JavaScript AOT Compilation Performance 70:7

avalanche, the Hopc development strategy is two-fold. First, it does not directly generate assembly

code but it generates Scheme code and it relies on Scheme optimizations for compiling efficiently

the functional part of core JavaScript. This trades the complexity and the size of Hopc for less
flexibility and less specialized data structures. We discuss the consequences of this strategy in

the following sections. Second, Hopc supports all of JavaScript but it gives up optimizing some

features and libraries. For instance, regular expressions use the pcre library whose performance is

not always competitive [Herczeg 2015]. Fortunately, this will be easy to fix by replacing pcre with

a more efficient implementation because this is an isolated component that has few connections

with the rest of the system. More importantly, Hopc does not optimize floating point numbers,

it boxes them and integer arithmetic operation overflows produce boxed floating point numbers.

Contrary to regular expressions, optimizing floating point numbers is not an isolated optimization

and we do not know if the techniques used by other systems (for instance, unboxed floating points

stored in objects and arrays as V8 uses) would be easily doable and we do not know if they would

impact the rest of the system. Our intuition is that we will be able to add floating point optimization

without degrading the performance of integer operations but we have no evidence to back this up

and this aspect is not evaluated in this paper. Finally, Hopc focuses on JavaScript strict mode, that
is, it makes no attempt to optimize the deprecated with operator.

4.1 From JavaScript to Scheme, From Scheme to C
According to B. Eich, Scheme [Kelsey et al. 1998] is the source of inspiration for creating Java-

Script [Flanagan 2002]. He conceived the language as a simplified version of Scheme, augmented

with the Self prototype-based programming [Chambers and Ungar 1989], and using C syntax.

The reminiscence of this early design is still observable: JavaScript is a true functional language

with higher order functions and lexical scoping (although blurred by peculiar hoisting rules); it is

dynamically typed; functions support variable number of arguments; variables and data structures

are mutable. Many other features differ but the core JavaScript language [Guha et al. 2010] can be

mapped naturally onto Scheme.

Hopc leverages decades of research on Scheme compilation to implement core JavaScript effi-

ciently. Hopc compiles JavaScript modules (either ECMAScript 6 modules [ECMA International

2015] or Nodejs modules) into Scheme modules. These modules are compiled into C and then

compiled into object files. The object files can be linked together to assemble a binary executable

program or a shared library that can be loaded within an interactive read-eval-print loop.

Many compilers of high level languages target C instead of assembly code for portability and

to take advantage of the continuous improvement to C optimizations. The full benefit of these

optimizations is easier to obtain if the generated C code looks familiar to the C compiler (the C stack

is used to implement function calls and the variables are mapped into C variables) but this forces

the garbage collector to treat pointers conservatively. In the context of JavaScript compilation, it

also prevents using techniques that modify the executable code dynamically, for instance, needed

for possibly faster inline caches implementations [Chambers et al. 1989].

4.2 Targeting Scheme Code
Hopc is in charge of all the JavaScript specific optimizations and just that. It handles the creation of

hidden classes and inline caches that enable fast object access. It implements a range analysis whose

result is used to map arithmetic operations into Scheme fixnums or Scheme flonums operations.

It deploys heuristics to duplicate and specialize code fragments for optimistic compilation. It

implements several type analyses that help refine code specialization. Other optimizations are

delegated to the Scheme compiler and to the Scheme runtime system. Hopc uses the Bigloo Scheme

compiler [Serrano 1992] for its backend.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:8 Manuel Serrano

Targeting Scheme has greatly simplified the implementation. The functional core language, the

automatic memory management, and the runtime support for polymorphic functions and values

were all there since the first day. That said, Scheme comes with drawbacks.

• Scheme abstracts away many implementation details, which gives less freedom and less

flexibility to Hopc for selecting optimal compilation schemas and data representations.

• Some Scheme idiosyncrasies demand strategies that are pointless for JavaScript. For instance,

Scheme optimizes pairs but pairs are rarely used in JavaScript. In contrast, JavaScript objects

are extensible (new properties can be added after an object has been created) and do not map

naturally to any Scheme data structure.

• JavaScript functions are regular objects while Scheme functions are immutable values. In

consequence, a JavaScript function is implemented by two distinct objects. This penalizes

the memory management and general function invocations.

• Scheme and JavaScript variable arity functions differ radically. In Scheme they are statically

declared and they receive optional arguments in lists. In JavaScript all functions can be

invoked with any number of arguments and the arguments are packed into an array-like

structure called arguments.

To mitigate these problems we have added new optimizations and functionality to the Scheme

underlying implementation. These additions are presented in Section 5.

This approach comes with an important limitation. The JavaScript-to-Scheme compilation

typically expands the source file by between 5× and 10× and the Scheme-to-C compilation expands

the intermediate Scheme file by about 10×, which means the whole JavaScript-to-C produces huge

C files. Fortunately, the expansion mostly comes from the introduction of many temporaries that

are eventually removed by the C register allocation. Hence the generated binary files remain small

(see Section 6.4, Figure 10) but in practice, this limits the size of the files Hopc can compile because

above a certain threshold, compilation times become excessively long. For instance, compiling

minimit.js takes about 10 seconds on our experiment platform, but compilingmoment.js lasts about
5 minutes! In practice, 10,000 to 15,000 lines of code is the maximum file size one can reasonably

compile with Hopc. Note however, that this is not the maximal number of the lines of code of a

whole application as Hopc supports modules and separate compilation.

4.3 JavaScript Front-End Compiler
Hopc compiles a JavaScript module into a Scheme module. This involves more than 50 different

passes. Excluding the mandatory source code parsing, the symbols resolution, some mandatory

JavaScript syntactic analyses (for instance strict mode detection) and the Scheme code generation,

there remain about 45 passes of analyses and optimizations. As this paper focuses on the Hopc
runtime system more than on the compiler internals, the compilation passes are described here only

very succinctly. Readers interested in those details may refer to previous publications. [Serrano

2018; Serrano and Feeley 2019; Serrano and Findler 2020].

The first group (11 passes) contains the optimizations that are used to map the JavaScript

statement-based syntax into the expression-based Scheme syntax and to efficiently handle Java-

Script lexical scope. Although these optimizations do not involve innovative research results, they

are crucial for generating quality code. In particular, naive handling of JavaScript lexical scope

has a dramatic impact on the generated code. It is of the highest importance that the compiler

can avoid the double initialization (a lifted undefined initialization followed by an assignment) of

var declarations and the dead-zone dynamic check of let and const declarations, as these ruin the

compiler type analyses and clutter the generated code with many, mostly useless tests.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:9

The second group (10 passes) is about type analyses. The dynamicity of the language makes

a single view of a variable’s types and values insufficient. Generally the compiler is only able to

establish that a variable is likely to be of a certain type or that it is of a particular type only for some

statements and expressions. Using different ad hoc heuristics, the compiler can then decide to either

duplicate program fragments for generating fast paths and slow paths or it can force the generated

code to produce values of a certain type. The latter case mostly applies to numerical expressions. The

JavaScript specification includes only floating point numbers but all fast implementations map these

numbers to small fixnum integers as much as possible. The main challenge is then to mix efficiently

optimized fixnum representations and full-fledged double representations in presence of possible

arithmetic overflows. For instance, consider the arithmetic expression “(e1-1)+Math.cos(e2)”. Even

if the compiler can prove that e1 is an integer, the numerical constant 1 and the expression “e1-1”

are better handled as floating point numbers in order to prepare the floating point addition with

Math.cos(). These types are assigned using a bottom-up type propagation of numerical values.

When one branch of a binary operation is a floating point, this type is propagated to the other

branch and this process repeats until the fixed point is reached. This group contains several such

optimizations. Taken separately, they do not radically change the performance of the compiler but

combined all together they are absolutely central to deciding which fragments of the program to

specialize and to optimize aggressively.

The third group (23 passes) contains the other optimizations such as inlining, dead-code removal,

escape analysis, pre-allocation of inline caches, life-time analysis for optimizing the arguments

pseudo-variable, loop analysis for faster array accesses, constructor size estimation, common sub-

expression elimination that requires fine knowledge of JavaScript effects, constant lifting that

enables sharing read-only objects, etc.

4.4 Object Representation
JavaScript uses two orthogonal type hierarchies: the primitive types such as Object, String,

Function, Array, etc., and the classes that the program defines using class constructors or prototype

chains. A JavaScript object can change its JavaScript class but it cannot change its primitive type.

That is, a function cannot become an array, a string cannot become a regular expression, etc. A

value can, however change its prototype chain and an object can be extended with new properties

or shrunk by removing proprties. As these operations have no direct Scheme counterpart we detail

here how objects are represented and manipulated.

JsObject

__proto__:

cmap:

elements:

BglVector

length:

JsHiddenClass

prev:

next:

properties:

cdr:

car:

cdr:

car:
2

0:

1:

"x" "y"

5.66

BglReal

val :

-4.1

BglReal

val :

BglPair BglPair

Fig. 1. The Hopc memory representation of the JavaScript Object
“{x:5.66, y:-4.1}”.

The Bigloo compiler extends Scheme

with single inheritance classes that

are used to implement JavaScript

primitive types. The JsObject class

is the root of the JavaScript class hi-

erarchy. Figure 1 presents the mem-

ory layout of the JavaScript object

“{x:5.66, y:-4.1}”. The __proto__

field implements the JavaScript proto-

type chain. The cmap field is used for

implementing the hidden classes and

inline caches [Chambers and Ungar

1989]. It points to a map that asso-

ciates property names with offsets. In the figure 1 we see that the property x is associated with

offset 0, as it is the first element of the list, and property y is at offset 1, because it is the second

element. The elements field points to a Scheme vector that stores the values of the object attributes.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:10 Manuel Serrano

Floating point values are boxed allocated numbers. Vectors are represented as a contiguous memory

chunk following a memory word for the vector length. The encoding of the type tag of these values

is architecture dependent. Considering 64-bit platforms, pointer alignment gives the opportunity

to use the 3 least significant bits of a memory word. Bigloo uses that opportunity to encode the

type of pairs, reals, and vectors directly in the pointers, avoiding an extra header word. Objects

(class instances) always contain a header field. It encodes a reference to their class (a 12-bit wide

integer indexing entries of the global class tables) and leaves 16 bits available for user needs. These

bits are used in Hopc to encode object JavaScript properties such as frozen objects, sealed objects

and to implement some optimizations. For instance, one bit tells if an object owns a getter property

or if all its properties are plain values. This enables faster property assignments.

A static analysis pre-computes the vector length of each constructor so when objects are allocated,

the elements vector is large enough to hold all the properties that are added in the constructor

body. If the object is later extended, the constructor vector length is updated [Clifford et al. 2015]

so that the next allocated objects are large enough to avoid the dynamic extension. Hopc extends
this technique to literal objects that do not have true dedicated constructors.

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

ptr

o
f
f
s
e
t

Fig. 2. Inlined object representation. Inline object
properties are fetched with a single memory read
from the object base pointer with an expression such
as *(ptr+offset), which improves over non-inlined
objects that require two memory reads such as in
ptr->elements[x].

As shown in Figure 1, JavaScript objects are

fat and accessing properties is slow. In com-

parison to Scheme objects, they need 2 ex-

tra header words and one indirection through

the elements to access properties. To avoid the

property indirection, Hopc uses a customized

native allocation procedure to create inlined
objects. Most fast JavaScript implementations

use similar techniques. Instead of allocating

separately the Bigloo JsObject and the Bigloo

vector BglVector, a single chunk of memory is

allocated and the elements attributes point to

the object itself, as shown in Figure 2. Prop-

erties of inlined objects are accessed directly

from the object pointers without reading the

elements pointers. When an inlined object is

extended, a new vector is allocated and the elements pointers updated. Inlined objects and plain

objects are associated with different hidden classes so the inline cache test can check with a simple

comparison of the type of an object and its inlinedness.

Figure 3 shows the effectiveness of this technique. The inl. access row reports the number of

accesses that hit inlined properties. The reg. access row shows the percentage of regular non-inlined

property accesses. The cache miss row shows the overall number of cache misses. The realloc row
shows the percentage of objects that need to be extended after having been created. The inl. access
and reg. access only consider property accesses that hit an inline cache and that access properties

directly located in the object itself. They do not account for properties fetched from the prototype

chain nor, of course, the properties not found at all. This is why summing inlined and non-inlined

accesses is generally less than 100%.

This experiment shows that tests do not need reallocation and that they seldom use non-inlined

property accesses and that the encoding proposed in Figure 2 accelerates the vast majority of

executions.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:11

alm
abench

bague

basic

boyer-scm

earley-scm

jpeg

js-of-ocam
l

leval

m
arked

m
aze

m
inim

atch

m
inim

ist

m
om

ent

qrcode

rho

richards+

uuid

z80

inl. access 0% 0% 0% 100% 100% 61% 1% 100% 66% 98% 63% 26% 33% 0% 13% 50% 31% 39%
reg. access 0% 0% 0% 0% 0% 0% 0% 0% 8% 1% 3% 0% 7% 0% 1% 0% 6% 0%
cache miss 34% 88% 52% 0% 0% 0% 0% 0% 11% 0% 0% 24% 8% 2% 22% 4% 12% 42%

extension 3% 3% 3% 0% 0% 2% 1% 0% 3% 0% 1% 0% 2% 3% 3% 2% 2% 0%

Fig. 3. Statistics about object property accesses and object re-allocations.

4.5 Property Accesses
Accessing object properties in prototype based languages is a difficult but crucial part of an imple-

mentation. Hopc techniques extend previous work on inline caches and hidden classes [Chambers

and Ungar 1989; Hölzle et al. 1991]. They have already been presented in previous publications [Ser-

rano and Feeley 2019; Serrano and Findler 2020] and are not repeated here. Here, we simply note

that for JavaScript, it is also important that these techniques apply well both to direct property

accesses and to the operators and library functions that manipulate properties (the in operator,

hasOwnProperty that checks if an object owns a property, etc.). The following fourmicro-benchmarks

evaluate these features separately. They show that Hopc is competitive for these operations.

 0

 2

 4

 6

 8

 10

 12

1

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

indyn.js

hopc
v8

js68
jsc

 0

 2

 4

 6

 8

 10

 12

 14

1

3
0

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

getownprop.js

hopc
v8

js68
jsc

 0

 2

 4

 6

 8

 10

 12

 14

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

getownpropdyn.js

hopc
v8

js68
jsc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

hasownprop.js

hopc
v8

js68
jsc

Another important aspect to handle efficiently is access failures that happen when accessing

missing properties. It involves caching failures and is subtle because the extension of a seeminly

unrelated object might change many prototype chains and might then invalidate such negative

caching. For that reason, caching any property that is not directly in an object, either because

the property is absent from the object or because it is owned by an object of the prototype chain,

requires some form of invalidation. For instance, consider the following fragment:

function check(v, p) { return p in v }

let p = {}, o = { __proto__: p, a: 1 };

check(o, "b"); // returns false;
p.b = 3;

check(o, "b"); // returns true, although `o` has not changed.

the assignment p.b = 3 must invalidate the cache used for the in operator of the check function.

For this invalidation,Hopc uses a simple but effective technique that, to the best of our knowledge,

is not described elsewhere. When the hidden class of any object belonging to a prototype chain is

changed, all the caches that do not refer to properties directly owned by objects are invalidated.

This might seem to be a drastic solution but it is efficient because prototype objects are generally

only modified during the program initialization and remain constant for the rest of the execution.

The question of detecting that an object belongs to a prototype chain remains, however. This is done

at no cost by merely marking objects that are traversed once in the routines implementing cache

misses. Hopc uses a conservative approach: as soon as an object is marked, it is assumed to belong

to a prototype chain forever and any further extension or deletion of that object will invalidate

the inline caches that denote not-directly-owned properties. This technique makes it useless to

store prototype objects inside hidden classes that would increase the level of polymorphism of the

programs, and that would then yield to additional cache failures [Ahn et al. 2014].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:12 Manuel Serrano

4.6 Functions and Function Calls
A JavaScript function is compiled into two objects: a JavaScript object and a Scheme procedure.

Figure 4 shows the representation of CTOR closures created by the function F:

function F() {

let cnt=0; let base=-4.1;

return function CTOR(v) {this.val=v+base; this.cnt=cnt++}

}

JsFunction

__proto__:

cmap:

elements: BglProcedure

entry:

1

va_entry:

attr:

constrsize:

alloc:

constrmap:

info:

prototype:

procedure:

arity:

arity:

env0:

-4.1

BglReal

val :

1

2

JsHiddenClass

prev:

next:

properties:

cdr:

car:

cdr:

car:"val" "cnt"

BglPair BglPair

JsObject

__proto__:

cmap:

elements:

JsHiddenClass

prev:

next:

properties:

env1:

18

BglBox

val :

Fig. 4. JavaScript function encoding

In addition to the regular attributes shared by all JavaScript objects, the function object stores

the JavaScript function arity that is used to adjust the formal parameters and the actual values,

when values are missing or unexpected. The info attribute is a static structure that contains the

function name and the text of its source code. The alloc attribute is a Scheme function that creates

fresh objects when this function is used as a constructor. This is needed to distinguish between the

constructors that create different builtin objects. For instance, the RegExp constructor allocates a

JsRegExp object instead of a plain JsObject, the Array constructor function allocates JsArray objects,

the Function allocates a JsFunction object, etc. The constrmap field points to the initial hidden class

of the freshly created object (that is different from the function hidden class itself). The constrsize

field holds the size of the object to be allocated on a new call (see Section 4.4). Finally, the prototype

field is the JavaScript function prototype.

A Bigloo procedure has two entry points, which are C pointers to functions. In the case of

JavaScript only the first one, entry, is used, and the second entry point is wasted. The attr field is

used to distinguish the various type of functions Scheme supports. This is also unused by JavaScript.

The procedure contains its own arity field, which differs from the JavaScript arity. The Scheme

arity tells how many values must be passed in contrast with the JavaScript arity that tells how

to pass values, and how to complement or how to remove extra parameters. Finally, the envXXX

attributes store the closed free variables. Mutated closed variables are boxed (cnt in the example).

Encoding functions with one JavaScript object and one Scheme procedure is not memory efficient.

To mitigate that problem, Hopc deploys various analyses to optimize function representations.

Functions that are never used as values (never passed around to other functions nor stored in

variables and data structures) are not allocated at all. Two strategies are used for those used as

values. First, closures use stack allocation, as described in Section 5.5 and second, Hopc applies a

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:13

0cfa analysis [Shivers 1988] to the whole module. When a function does not escape, i.e., when it

is never stored into an object nor passed to an external function, and when all the functions that

show up at use sites where this function is called satisfy the same properties, then the compiler

generates only a Scheme closure, avoiding the entire JavaScript object. When the analysis shows

that a function can never be used as a constructor, only a lightweight function is created (the italic

attributes in Figure 4 are not allocated). These sorts of optimizations are relatively standard in

compilers for functional languages but as they involve global fix-points over the whole compilation

unit, they are difficult to use in JIT compilers, simply becuase a JIT compiler must limit compilation

time and memory use. We show in Section 6 that these techniques let Hopc optimize closures

effectively.

5 THE SCHEME BACKEND COMPILER
The Bigloo Scheme compiler maps Scheme functions to C functions and Scheme variables to C

variables. It uses the Boehm-Weiser collector [Boehm and Weiser 1988] hence it can exchange

Scheme data and C data without restriction and without any conversion. It supports optional type

annotations that can denote Scheme values as well as C values. Finally, it supports low-level pragma

expressions that enable expert programmers to tweak the generated C code. Hopc uses all these
features to fine-tune the code it generates but this has shown to be insufficient to get competitive

performances. We have had to add new optimizations, new runtime support, and a new allocation

mechanism. They are presented in this section.

5.1 Numbers
Numbers are among the main pitfalls a JavaScript implementation must avoid. The ECMAScript

specification defines numbers as “double precision floating point numbers”, i.e., 64-bit format

IEEE-754 numbers. In other words, JavaScript has no fix precision integers (henceforth fixnums)!

However, integers play central role in most programs because they are used to index arrays and

because they are used in bit-wise operations. All fast implementations distinguish floating point

numbers and integers but they rely on different strategies.

NaN Tagging. All values, including objects, are represented as floating point numbers. The

most significant bits are used to distinguish value types. Two ingredients are needed for this

encoding: the encoding of Not-a-Number values (NaN) and limited address space. The IEEE-754

specification accepts 2
52 − 1 different NaN values but actually the hardware and the software

only use two: signaling and quiet NaN. The other values can be freely used by the application, in

particular to represent allocated values because on current common 64 bit platforms the address

space is restricted to the range [0..248]. This leaves 4 bits of the NaN values to encode value types.

SpiderMonkey [MDN 2019; Mozilla 2020] and JavaScriptCore [Apple 2018] use this encoding.

Box/Smi. Floating point numbers are allocated (boxed) values and SMall Integers in the range

[−232..232−1] are presented as exact 32-bit values encoded in 64-bit wide word. The least significant
bits of pointers are used to distinguish value types. The actual integer values can be stored in the

lower or upper bits. The representation combines fast integer operations and fast integer overflow

detection that is implemented by the hardware, especially if the integer value is stored in the upper

32 bits. This schema enables fast array indexes but it is potentially not suitable for string indexes

that span over the range [0..253]. This number representation is used by Google’s V8 [Google 2018].

Box/Int53. Floating point numbers are allocated (boxed) values and integers in the range [−253..253]
are stored as exact 64 bit values. The least significant bits of words are used to distinguish value

types. Integer overflow detection is as fast as Box/Smi. Bit shift operations need masking but

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:14 Manuel Serrano

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

al
m

ab
en

ch

ba
gu

e
ba

sic

bo
ye

r-s
cm

ea
rle

y-
sc

m
jp

eg

js-
of

-o
ca

m
l

le
va

l

m
ar

ke
d

m
az

e

m
in

im
at

ch

m
in

im
ist

m
om

en
t

pu
zz

le

qr
co

de rh
o

ric
ha

rd
s+ uu

id
z8

0

Comparison of three number representations

hop.int53 hop.smi hop.nan

Fig. 5. Impact of the numbers implementation. This experiment compares the performance of Hopc where
only integer and real representations differ. The vertical axis is the clock wall execution time relative to int53,
using a linear scale. The measures have been collected on Linux 5.3 x86_64, powered by an Intel Xeon E5-1650.

the impact on overall performances is unnoticeable. On the other hand this schema enables fast

indexing of arrays and strings and a peculiar property of IEEE-754 enables the compiler to avoid

polymorphic detection when incrementing and decrementing indexes. Above 2
53
only even integers

can be represented. Hence, according to the IEEE-754 arithmetic 2
53 +1 = 2

53
! A similar observation

applies to negative values. In consequence, when the compiler generates a loop with an index

ranging from 0 and incremented by 1, no matter the upper limit of the loop, the index will stick

to the range [0..253] and thus can always be represented as a 64 bit integer. This does not remove

the need for the overflow check but this enables the compiler to use unboxed representation for

indexes, which speeds up array access. To the best of our knowledge, Hopc is the only compiler to

take advantage of this observation.

Bigloo supported only tagged int64 integers and boxed floating point numbers. We have extended

it to support also NaN Tagging, Box/Smi, and Box/Int53 and we have compared the performance of

these three representations using our benchmarks suite (Section 3.2). The results are presented

Figure 5.

NaN Tagging delivers best performance for floating point intensive applications (almabench.js)
but it is consistently slower for the other tests. This is because the tags encoding value types are

stored in the most significant bits of values and manipulating these most significant bits of 64-bit

words is slower than manipulating the least significant bits because integer literals exceeding 2
32

cannot be embedded inside assembly instructions. As we deemed that floating point intensive

application are less common in JavaScript, we have decided not to use NaN tagging for Hopc. In
addition, we also observe that V8 do not use NaN but still seems capable of good performance on

floating point applications (see Figure 9). So probably Hopc could enjoy much better performances

too for these programs without changing its number encoding. Box/Smi and Box/Int53 deliver

comparable performances on many tests but on some benchmarks that use many loops traversing

arrays and that benefit from the non-overflowing IEEE-754 integer increment (bague.js, puzzle.js,
and sieve.js), Box/Int53 shows performances significantly better. In addition, Box/Int53 collaborates

more fruitfully with theHopc range analysis. For instance, when the compiler proves that an integer

in this the range [−1..232 − 2], as it happens when a loop walks an array with decreasing indexes,

the Box/Int32 representation is not large enough to ensure that there cannot be any arithmetic

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:15

overflow while Box/Int53 is. This gives Box/In53 a significant advantage and this is why we have

opted for that encoding.

5.2 Tweaking the Generated C Code
Inline caches and hidden classes are central elements for good JavaScript performance. They are

implemented as a set of Scheme macros. Assuming for simplicity that it can prove that o is an

object, Hopc compiles a property access “o.x” into:

(js-jsobject-get-name/cache o (& "x") %this (js-pcache-ref %pcache 8))

The macro js-jsobject-get-name/cache expands into a hidden class comparison, a fast property

access on success, and a call to the cache miss routine on failure. The operator “&” is a Scheme macro

that transforms its argument (here the string “x”) into a unique property name. The argument

%this designates the JavaScript global object. The expression (js-pcache-ref %pcache 8) is another

macro call that expands into a reference to an inline cache (here the 8
𝑡ℎ

inline cache of the module).

Assuming that Bigloo compiles an access to a Scheme object property as a C structure access, the

crucial part of “o.x” is the comparison of o’s cmap (see Section 4.4) and the cache entry. If %pcache

was a regular Scheme variable, the comparison would be compiled into:

obj_t pcache; ... o->cmap === pcache[8]->cmap ...

as pcache would be a pointer to an allocated memory, pcache[8]->cmap would involve two memory

accesses. To save one, %pcache is rather compiled as a C statically allocated array:

struct { void *cmap, ... } pcache[234]; ... o->cmap === &(pcache[8])->cmap ...

The C compiler compiles pcache[8] with a single memory access because it knows at compile time

(or at link time) the static address of pcache.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

swap.js

hopc
v8

js68
jsc

The Bigloo compiler cannot do this transformation automatically

but by the means of its pragma form, Hopc implements it. Here is the

implementation of the js-pcache-ref macro:

(define-macro (js-pcache-ref pcache idx)

`(pragma "&(pcache[$1])" ,idx))

Using this macro, the implementation of property accesses is as fast as C can be but it is slower

than the assembly in-instruction address modification JIT compilers apply [Chambers et al. 1989].

Instead of storing and loading the property index inside the cache, they inline it as a shift operand of
the load assembly instruction. The penalty of not using full inline caches is visible on the swap.js★

benchmark that repeatedly reads and writes properties from two objects. As reading and assigning

properties is a central operation, this penalty obviously degrades the overall Hopc performance.

However, one should note that this is not a consequence of the AoT compilation principle but rather

a consequence of targeting C instead of an assembly language. If Hopc was generating assembly

code it could benefit from the inline cache technique too.

5.3 Local Exits
JavaScript is statement-based while Scheme is expression-based. JavaScript then supports the

return, break, and continue keywords that have no direct counterparts in Scheme. Obviously they

could be implemented using Scheme’s call/cc but call/cc is difficult to implement efficiently,

specially when compiling to C.

Bigloo provides an alternative to call/cc by the means of bind-exit that creates restricted

continuations that can be used only in their dynamic extents. Initially bind-exit was compiled

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:16 Manuel Serrano

using C setjmp/longjmp but this is not fast enough to fit Hopc needs that generates bind-exit for
all functions that use a non-terminal return and for all loops that either use break or continue.

Contrasting with call/cc which is a regular function, bind-exit is a special form. This lets

the compiler track when and how it is used and this makes it possible to optimize it. We have

used this possibility to add a new optimization that works in two steps. First it selects all the

continuations that are never used as first class values. Second, once the closure analysis has split

and lifted functions, it replaces with direct goto the continuations that are syntactically located in

the function that creates them. Example:

1 (define (F x)

2 (bind-exit (return)

3 (define (g y)

4 (return (+ x y)))

5 (g x)))

6 (define (H x)

7 (bind-exit (return)

8 (define (g y)

9 (return (+ x y)))

10 x)

11 (I g))

Inside F the return continuation is compiled as simple C goto (or return) because g is inlined and

is not compiled as a separated C function. In H, return cannot be optimized because as g escapes, it

is compiled as a separated C function and then the call to return line 9, once compiled, is executed

outside the function H that created the continuation line 7. Fortunately, in the code Hopc generates,
return always designated the closest function and break, and continue the closed loops so they

never escape and they are always optimized.

5.4 Heap Allocation
Bigloo uses the Boehm &Weiser’s collector [Boehm andWeiser 1988]. It is a mark & sweep collector

using ambiguous roots. These characteristics prevent it from moving objects. Collection time is

then proportional to allocated objects and not live objects contrary to moving collectors. This

impacts negatively the performance of all tests that allocate many short living objects. It also

impacts negatively allocation speed as it prevents bump allocation because collected dead objects

are stored in free lists. This is particularly critical for Hopc that allocates two Scheme objects per

JavaScript object.

As presented in Section 4.4 (Figures 1 and 2) JavaScript objects have a complex structure. All

objects, even those without properties, have at least 4 memory words to initialize: __proto__ for

the prototype chain, cmap of the object hidden class, elements that points to the possibly empty

properties array, and length, the property array size. This initialization that takes place at each

object creation requires a significant execution time.

To mitigate the slowness of object allocation and to speed up object initialization, Hopc imple-

ments a parallel allocator backed by the standard unmodified Boehm & Weiser allocation. The

acceleration comes from the parallelization of the object pre-allocation and object initialization.

This allocation schema only improves performance on multi-core architecture. It works as follows.

• A set of worker threads, running in parallel with the JavaScript thread (JavaScript is mono-

threaded), are in charge of filling buffers of pre-allocated and pre-initialized objects.

• The allocation routine allocates from these buffers.

• Two buffers are used per allocation type so that when one buffer is being filled by an allocation

worker the other one is used by the allocator to return fresh objects.

An AllocPool holds the ready objects, i.e., allocated and pre-initialized objects, that are returned

by the allocator. It contains an index idx pointing to the next available initialized object, the buffer

size, a pointer fill to the function to be used for allocating and initializing fresh objects, and the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:17

buffer of pre-initialized objects. When empty, AllocPools are pushed in the PoolQueue from which

they are picked in first-in-first-out order by the allocation workers.

AllocPool

idx:

size:

fill:

buffer:

PLSZ

PLSZ

void fill_buffer(AllocPool *p) { ... }

PoolQueue

...

AllocPool

idx:

size:

fill:

buffer:

PLSZ

PLSZ

void fill_buffer(AllocPool *p) { ... }

pool0

pool1

(a) Initial worker allocation state.
AllocPool

idx:

size:

fill:

buffer:

PLSZ

PLSZ

void fill_buffer(AllocPool *p) { ... }

PoolQueue

...

AllocPool

idx:

size:

fill:

buffer:

PLSZ

PLSZ

void fill_buffer(AllocPool *p) { ... }

pool0

pool1

pool1

PLSZ

...

PLSZ

0 0 0 0 0 0 0 0 0

...0 0 0 0 0 0 0 0 0

(b) Intermediate state, the two pools are ready to be filled by the allocation
worker.

AllocPool

idx:

size:

fill:

buffer:

PLSZ

PLSZ

void fill_buffer(AllocPool *p) { ... }

PoolQueue

...

AllocPool

idx:

size:

fill:

buffer:

PLSZ

0

void fill_buffer(AllocPool *p) { ... }

pool0

pool1

pool5

...

PLSZ

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

JsObject

__proto__:

cmap:

elements:

BglVector

length: 2

0:

1:

pool8

pool14

pool0

...0 0 0 0 0 0 0 0 0

(c) Ready state, one allocation pool is fully initialized. It can now be used
to allocate objects while the other pool is populated by a parallel allocation
worker thread.

Fig. 6. Allocation Workers

Figure 6a shows the allocator initial state: the PoolQueue is empty and no buffer pool has been

allocated yet. For the sake of simplicity we only represent allocation of objects of size 2, i.e., objects
owning two properties, but the allocator supports heterogeneous objects. Each object kind and

each object size must have its own dedicated pair of allocation pools. The first time the allocator

is invoked by the client program, the buffers of pool0 and pool1 are allocated and filled with

null pointers and pool1 is pushed into the PoolQueue. This is depicted by Figure 6b. For this first

allocation, after the two pools have been initialized, the allocator invokes the regular sequential

allocator to return a fresh object to the main program, as the two AllocPool are still empty.

The pool1 allocation pool will be eventually picked by one allocation worker that will fill its

buffer with properly allocated and initialized objects, as shown in Figure 6c. When the buffer is

ready, its index idx is set to 0, which marks that it can be used by forthcoming allocations. When

this allocation happens, the allocator returns the first fresh object of pool1 buffer and pushes pool0

onto the PoolQueue. At the time pool1 buffer is exhausted the allocation buffer of pool0 is likely to

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:18 Manuel Serrano

have been filled already. In that case the two pools are simply swapped. Otherwise, the allocator

merely creates objects using regular sequential allocator until pool0 is ready.

This implementation technique enables to run in parallel object allocations and a significant

portion of their initialization. Here is the regular routine in charge of allocating functions:

1 obj_t bgl_make_function(obj_t proc, long arity, long ctorsize, obj_t __proto__, obj_t info) {

2 jsprocedure_t o = GC_MALLOC(sizeof(struct jsprocedure));

3

4 o->alloc = jsfunction_alloc; // common initialization
5 o->constrmap = jsfunction_constrmap;

6 o->elements = jsfunction_elements;

7 o->cmap = jsfunction_cmap;

8 o->prototype = _;

9

10 o->__proto__ = __proto__; // instance specific initialization
11 o->procedure = proc;

12 o->arity = arity;

13 o->info = info;

14 o->constrsize = ctorsize;

15 return BGLPROCEDURE(o);

16 }

About half the initialization, from line 4 to 8, is common to all created instances. It can then be

executed by the parallel worker thread when it allocates the function and stores it in the allocation

pool. This enables a faster implementation of bgl_make_function.

1 obj_t bgl_make_function(obj_t proc, long arity, long ctorsize, obj_t __proto__, obj_t info) {

2 if(poolfunction.idx < JSFUNCTION_POOLSZ) {

3 jsprocedure_t o = poolfunction.buffer[poolfunction.idx]; // fast allocation
4 poolfunction.buffer[poolfunction.idx++] = 0; // cleanup the buffer to avoid memory leak
5

6 o->__proto__ = __proto__; // instance specific initialization
7 o->procedure = proc;

8 o->arity = arity;

9 o->info = info;

10 o->constrsize = ctorsize;

11 return BGLPROCEDURE(o);

12 } else {

13 // slow path
14 }

15 }

The allocation line 3 is faster than the original GC allocation (GC_MALLOC) that retrieves fresh

pointers from free lists and is close to the performance of a bump allocation.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

ctorsmall.js

hopc
v8

js68
jsc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

ctor2.js

hopc
v8

js68
jsc

 0

 0.5

 1

 1.5

 2

 2.5

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

ctorclo.js

hopc
v8

js68
jsc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

ctor.js

hopc
v8

js68
jsc

Three micro-benchmarks (ctorsmall.js★, ctor2.js★, and ctorclo.js★) evaluate the performance of

the Hopc parallel allocator. These tests allocate an object in a loop (respectively, a large object, a

small object, and a closure) and to prevent the collector to reclaim it instantaneously they store it

in a buffer of 10000 elements. Using the parallel allocator, Hopc allocates at a similar pace than the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:19

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

al
m

ab
en

ch

ba
gu

e
ba

sic

bo
ye

r-s
cm

ea
rle

y-
sc

m
jp

eg

js-
of

-o
ca

m
l

le
va

l

m
ar

ke
d

m
az

e

m
in

im
at

ch

m
in

im
ist

m
om

en
t

pu
zz

le

qr
co

de rh
o

ric
ha

rd
s+ uu

id
z8

0

Single threaded allocation vs worker allocation

hop.classic hop.worker

Fig. 7. This experiment compares the performance of Hopc in two configurations. In “classic”, objects are
allocated using the regular GC allocation function. In “worker”, objects are allocated via a dedicated worker
thread that runs in parallel with the main JavaScript thread. The vertical axis is the clock wall execution time
in seconds relative to single threaded execution, using a linear scale. The measures have been collected on
Linux 5.3 x86_64, powered by an Intel Xeon E5-1650. Each test and configuration has been executed 30 times.

other systems. Even when the store buffer is reduced to 10 elements, as in ctor.js★, Hopc speed
remains comparable to those of the other systems.

We have measured the impact of the parallel allocator on the whole benchmark suite (Figure 7).

The benefit varies from one test to the other. Because it involves multi-threading and thread

synchronization it might yield to a small performance slowdown on pathological cases. However,

globally, the benefits are more important than the losses.

5.5 Stack Allocation
We have implemented a new Bigloo analysis that aims at replacing heap allocations with stack

allocations. This optimization mostly focuses on closures passed to array iterators (forEach, map,

etc.) and on JavaScript arguments objects.

The new Bigloo analysis finds heap allocated objects that never escape the lexical block that

creates them. These objects are stack allocated. The analysis also keeps track of non-escaping

objects stored inside other non-escaping objects so that in addition to flat objects such as cons it
can also stack allocate compound objects such as Scheme list.
The compiler analysis alone is insufficient to optimize objects passed to unknown functions,

that is functions that the compiler cannot analyze. Hence, it cannot handle JavaScript frequent

patterns such as “f.apply(mythis, arguments)”, where arguments is passed to the unknown f.apply

method or “a.forEach(clo)” where the closure clo is passed to the a.forEach method. To solve

that problem, Hopc uses an optimistic heuristic. It optimistically allocates the object on the stack

and it inserts a guard that triggers its reallocation on the heap if the assumption is wrong. Let us

illustrate this principle with the implementation of the expression “a.forEach(x => ...)” that is

compiled into a call to the Scheme function js-array-maybe-foreach-procedure:

1 (define-inline (js-array-maybe-foreach-procedure this stkproc::procedure thisarg %this cache)

2 (if (js-plain-array? this) ;; is this the builtin forEach JavaScript function that does not capture its argument?
3 (js-array-foreach-procedure this stkproc thisarg %this cache)

4 (let ((heapfun (scheme-stack-procedure->js-function stkproc)))

5 (js-call2 %this (js-get-name/cache this (& "forEach") %this cache)

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:20 Manuel Serrano

 0.1

 1

 10

 100

ba
se

64

bo
ye

r

cr
yp

to

cr
yp

to
-a

es

cr
yp

to
-m

d5

cr
yp

to
-s
ha

1

da
te

-x
pa

rb

de
lta

bl
ue

ea
rle

y

ha
sh

-m
ap

n-
bo

dy

ra
yt

ra
ce

re
ge

xp

ric
ha

rd
s

sp
la
y

ta
gc

lo
ud

un
ip

ok
er

JetStream benchmark suite

nodejs js68 jsc hop

Fig. 8. JetStream performances relative to V8. Lower is better. Logarithmic scale used. Measures collected on
Linux 5.3 x86_64, powered by an Intel Xeon E5-1650. Each test and configuration has been executed 30 times.

6 this heapfun thisarg))))

7

8 (define (scheme-stack-procedure->js-function::JsFunction stkproc::procedure)

9 (let ((heapproc ($stack-procedure->heap-procedure stkproc)))

10 (js-make-function %this

11 (lambda (self x y z) (heapproc self x y z %this))

12 (js-function-arity 3 0)

13 (js-function-info :name "forEachProc" :len 3)

14 :constrsize 0 :alloc js-object-alloc)))

The guard at line 2 succeeds if and only if this is an array and its prototype is Array and it does

not override the forEachmethod. This only involves checking a bit configuration of the this header

(see Section 4.4). On success the fast path is executed (line 3). Otherwise, the lightweight Scheme

stack-allocated closure is copied into the heap (line 9) and a full JavaScript function is allocated

(line 10) and the slow path is executed (line 5).

 0

 5

 10

 15

 20

 25

 30

 35

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

arguments.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

foreacharr.js

hopc
v8

js68
jsc

Two micro-benchmarks evaluate the peak

performances of arguments and forEach. As

shown by this experiment,Hopc forEach per-
formance is on par with those of fast JIT but

the stack allocation of arguments compen-

sates only partially the discrepancy between Scheme and JavaScript variable arity functions and

Hopc is about 2× slower than V8 and 1.35× than Jsc and Js68.

6 PERFORMANCE EVALUATION
This section contains the Hopc performance evaluation. First, in Sections 6.1 and 6.2 we compare

its performance with that of JIT compilers. Then, in Sections 6.3 and 6.4 we present an in-depth

performance analysis, focusing on Hopc itself.

6.1 Traditional JavaScript Benchmarks
Octane and SunSpider are part of the JetStream2 catalog that contains 64 different tests. It has been

extensively used to measure JavaScript implementations performance. All major implementations

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:21

have used these tests so intensively, exploiting any peculiarities or even any errors, that they have

lost of their value [Meurer 2016; V8 Team 2017]. However, as they constitute a sort of performance

milestone, we briefly present how Hopc behaves on these tests but we reserve our in-depth analysis

for the new test suite that we present in Section 6.2.

From the JetStream2 set we have excluded tests that are incompatible with Hopc, either because
they are implemented as too large files (e.g., Octane typescript and gbemu), because they rely

on unsupported features (e.g., JetStream date-format-tofte that uses eval to access the lexical

environment or the WSL suite that tests wasm implementations). Figure 8 shows the performance

relative to V8.
For many tests, Hopc performance is in the range 1×..2× when compared to V8. We read as a

good result considering the energy spent by all JIT compilers to optimize these very tests. However,

a minority of tests reveal performance issues.

Unsurprisingly Hopc is inefficient on floating-point number tests (crypto, n-body, and raytrace)
where most of the execution is spent allocating boxed numbers, reclaiming boxed numbers, and

checking the types of generic arithmetic operators that never fail. Hopc is also inefficient on

regexp because of its lack of regular expressions optimizations and slow backend. Hopc encodes
non-ascii strings into UTF-8 format, which penalizes the performance of crypto-aes since it uses
non-ascii strings extensively, demanding 16-bit encoding for performance. The test date-xparb
heavily relies on JavaScript eval. Hopc barely supports it by dynamically compiling JavaScript into

Scheme and then executing the obtained Scheme expression using an unmodified Bigloo interpreter.

This is obviously one of the main limitations of the full AoT approach, as it cannot deliver good

performance for programs relying on eval. Efficency on such tests requires either a JIT compilers

or a hybrid AoT and JIT approach.

The deltablue test shows weak Hopc performance. It is the transcription of a Smalltalk test

that mimics Smalltalk-style object-oriented programming. As such, it uses method invocation

extensively. Most of these invoked methods are small and some are even empty. JIT compilers

are able to inline or remove entirely these calls. Hopc does not, as this is difficult to achieve in an

AoT setting. As of today, this is probably the second most important limit of the AoT approach.

Profile-guided optimizations could help mitigating this problem and it is a direction for future

work.

6.2 New Test Suite
Figure 9 presents the performance comparison of JIT compilers andHopc on the test suite presented

in Section 3. Before we analyze each test individually we make four global observations.

Observation 1: The performance diversity is important, even among JIT compilers. For instance,

for the jpeg.js test, the slowest JIT compiler is 9× slower than the fastest. We observe a 2× or more

ratio between the fastest and slowest JIT compilers for about half of the tests.

Observation 2: Which compiler performs best or worst varies from one benchmark to the other.

For instance Js68 is the slowest JIT for earley-scm.js, maze.js, and z80.js but it is the fastest for
basic.js and qrcode.js. Jsc is the slowest JIT for bague.js but it is the fastest for boyer-scm.js,
earley-scm.js, leval.js, rho.js, uuid.js, and z80.js.

Observation 3: If JIT compilers suffer from a slow start with a ramp up period, it is unnoticeable

when the executions last half a second or more. These JIT compilers are so efficient that all the

curves of their execution times appear to be continuous functions.

Observation 4: Apart from almabench.js and moment.js, Hopc delivers performance comparable

to that of JIT compilers, among the fastest on some tests, among the slowest on others.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:22 Manuel Serrano

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 2 3 4 5 6 7 8 9

1
0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

almabench.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

1 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

bague.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

 7

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

basic.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

boyer-scm.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

 7

1

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

earley-scm.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

jpeg.js

hopc
v8

js68
jsc

 0

 2

 4

 6

 8

 10

 12

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

js-of-ocaml.js

hopc
v8

js68
jsc

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

1 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

leval.js

hopc
v8

js68
jsc

 0

 2

 4

 6

 8

 10

 12

 14

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

marked.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

 7

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

maze.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

 7

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

minimatch.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9
1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

minimist.js

hopc
v8

js68
jsc

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

1

1
5

3
0

4
5

6
0

7
5

9
0

1
0

5

1
2

0

1
3

5

1
5

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

moment.js

hopc
v8

js68
jsc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

qrcode.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

1

1
5

0
0

3
0

0
0

4
5

0
0

6
0

0
0

7
5

0
0

9
0

0
0

1
0

5
0

0

1
2

0
0

0

1
3

5
0

0

1
5

0
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

rho.js

hopc
v8

js68
jsc

 0

 10

 20

 30

 40

 50

 60

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

richards-proxy.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

 7

 8

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

uuid.js

hopc
v8

js68
jsc

 0

 2

 4

 6

 8

 10

 12

 14

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

z80.js

hopc
v8

js68
jsc

Fig. 9. JIT performances (V8 (6.8.275.32), Jsc (4.0), and Js68 (C68)) vs aot performances (hop). The vertical axis
are the clock wall execution times. Smaller is then better. The horizontal axis are the numbers of iterations of
the benchmark. Measures collected on Linux 5.3 x86_64, powered by an Intel Xeon E5-1650.

6.3 Performance Analysis
In this section we conduct a per-test analysis using some of our micro-benchmarks.

almabench.js is a floating point intensive program. Hopc is so penalized (about 3× slower than

V8) by its lack of floating point optimization that it is not competitive. The allocation problem is

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:23

so obvious that we did not analyze any further this weak result. Hopc is not ready for floating

programs yet!

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

fib42.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

 7

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

switch.js

hopc
v8

js68
jsc

bague.js performance is dominated by

fixed integer arithmetic, array accesses, and

simple recursive functions. The Hopc type
and range analyses are powerful enough to

infer small integer types.Hopc also fully ben-
efits from its efficient direct recursive calls, and from its efficient integer dispatch that are visible

on the fib42.js★ and switch.js★ micro-benchmarks.

 0

 1

 2

 3

 4

 5

 6

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

string.js

hopc
v8

js68
jsc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

charat.js

hopc
v8

js68
jsc

basic.js spendsmore than 25% of theHopc
execution time in a function that parses to-

kens. This function splits source lines and

compares token characters one by one. The

allocation of short lived tokens penalizesHopc
(see Section 5.4) but it catches up on the other parts of the program because its optimistic com-

pilation succeeds in correctly guessing function types, which enables the generated code to use

efficient string manipulation functions whose good performance is visible in the string.js★, which
concatenates strings and searches for a pattern with indexOf, and charat.js★, which accesses string

characters.

 0

 1

 2

 3

 4

 5

 6

 7

1

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

callclo.js

hopc
v8

js68
jsc

 0

 1

 2

 3

 4

 5

 6

 7

1

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

callclo2.js

hopc
v8

js68
jsc

boyer-scm.js exercises intensively direct

property access. This test shows that in spite

of the extra memory read of property ac-

cesses (Section 5.2), Hopc is competitive for

accessing and setting object properties. In

this test, 100% of object properties are inlined (see Section 4.4, Figure 3), which contributes to the

good overall performances.

This benchmark uses closure invocation as they are intensively used in the Scheme high level

operators map and for-each. The tests callclo.js★ and callclo2.js★ show that Hopc can generate effi-

cient code and efficient closures when its analysis lets it eliminate JavaScript function constructions

(see Section 4.6). This benefits this benchmark.

This test also uses methods invocation extensively. Four micro-benchmarks evaluate the speed

of method invocation in four contexts: i) the method is located inside the object and hits the inline

cache, ii) the method is in the object but reassigned so that each call misses the cache, iii) the method

is in the object but the objects are polymorphic, and iv) the method is found in the prototype chain.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

callobjhit.js

hopc
v8

js68
jsc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

callobjmiss.js

hopc
v8

js68
jsc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

callobjpoly.js

hopc
v8

js68
jsc

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

callprotohit.js

hopc
v8

js68
jsc

Hopc does not match JIT performance on callobjhit.js★ and callprotohit.js★ because it does

not inline the small method used in these tests. Closures inlining is difficult for AoT compilers

and probably is one significant advantage of JIT compilers. The good performance obtained on

callobjmiss.js★ and callobjpoly.js★ indicates that Hopc supports polymorphism as efficiently as a

JIT.

earley-scm.js tests intensively recursive functions used for traversing lists. The termination

test is generally implemented as below:

function pairp(o) { return o instanceof pair; }

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:24 Manuel Serrano

const loop1 = function loop1(l1, l2) { if(pairp(l1)) { ... } else { ... } }

 0

 20

 40

 60

 80

 100

 120

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

instanceof.js

hopc
v8

js68
jsc

 0

 10

 20

 30

 40

 50

 60

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

totest2.js

hopc
v8

js68
jsc

The condiontal expression pairp(l1)would

be a mundane expression in any other lan-

guage, but turns out to be complex to im-

plement efficiently for JavaScript. Besides in-

lining the pairp call, something all systems

probably do, the compiler faces the problem of efficiently compiling the Boolean test as many

JavaScript values cause if to take the else branch (the empty string, the number 0, the undefined

value, etc.). When the Hopc type analyses prove that a test expression evaluates to a Boolean value,

the test is compiled as a mere comparison. totest2.js★ shows that Hopc does this as efficiently as

the JIT compilers. The class predicate instanceof also has to be implemented efficiently but the

prototype-based nature of JavaScript makes this difficult. The test instanceof.js★ evaluates this

aspect. Apart from Jsc, which is lightning fast, Hopc performs as well as the other JIT compilers.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

bitwise.js

hopc
v8

js68
jsc

jpeg.js uses bitwise operations (bitwise.js★) and array read/write

extensively. The Hopc type and array range analyses are sufficiently

powerful to let the compiler produce efficient code that uses fixnum

arithmetic.

leval.js exercises closure invocations (see callclo.js★ and callclo2.js★)
and object allocations (see Section 5.4). It allocates many short-lived objects which penalizes Hopc,
as it uses a mark&sweep garbage collector. More than half of the Hopc execution time is spent in

the garbage collector.

js-of-ocaml.js is an allocation intensive program. It keeps allocating arrays of three elements

for implementing OCaml activation frames. More than 50% of the overall hop execution is spent in

the garbage collector.

marked.jsmostly regular expressions for search and replace patterns. TheHopc implementation

of some of these functions has not been polished enough yet to let it compete with the fastest JIT

compilers.

 0

 0.5

 1

 1.5

 2

 2.5

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

genwhile.js

hopc
v8

js68
jsc

maze.js is among the very few test to use ES6 generators (for

implementing a random generator). Hopc compiles them using a

partial CPS transform. The benchmark genwhile.js★ tests this feature

and shows that here again, Hopc is penalized by its non-compacting

collector (V8, Jsc, and Js68 use compacting collectors). Generators

allocate continuations that generally have extremely brief lifetimes. Hopc allocates them in the

heap where they stay, awaiting the next sweep phase. Still, a good performance is still obtained for

maze.js because the Hopc closure optimizations are as efficient as those used by the JIT compilers

(see Section 4.6 and see ctorclo.js★).
minimatch.js suffers from the slow implementation of hop exceptions. A JavaScript try state-

ment has to be compiled into a setjmp because the JavaScript function calls use the C stack. As

setjmp only restores the values of the current function arguments and not the values of tempo-

rary variables, compiling try requires Hopc to cut functions into pieces, which slows down the

control flow and forces some JavaScript variables to be accessed via heap cells. The optimization

described in Section 5.3 that removes setjmp/longjmp for return, break, and continue does not apply

to try/catch.

minimist.js execution is dominated by array constructions obtained by splitting strings. Most

of these arrays have a very brief lifetime. This is why Hopc does not perform so well on this test.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

Of JavaScript AOT Compilation Performance 70:25

About 25% of the Hopc execution time is spent collecting dead objects. This prevents Hopc to
compete with systems equipped with faster garbage collectors.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

regex.js

hopc
v8

js68
jsc

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

rxrplacfun.js

hopc
v8

js68
jsc

moment.js uses regular expressions for
parsing dates. Hopc does not handle them
very efficiently (in particular see rxrplacfun.js★).
In addition, the test uses dates extensively.

They have poor performance because Hopc
uses Posix dates and localtime, which rely on tzset, which itself manipulates the user’s environ-

ment variables and acquires a global lock to preventing concurrent access.

qrcode.js is the only test of our suite that uses objects as dictionaries. These objects are not

implemented efficiently with hidden classes because keys indexing properties are dynamic. They

are better handled with hash tables that most systems, including Hopc, implement. This test shows

that Hopc can switch from one object representation to another as efficiently as JIT compilers.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1

1
5

0
0

3
0

0
0

4
5

0
0

6
0

0
0

7
5

0
0

9
0

0
0

1
0

5
0

0

1
2

0
0

0

1
3

5
0

0

1
5

0
0

0

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
c)

proxy.js

hopc
v8

js68
jsc

richards+.js allocates and uses proxy objects extensively. This test
shows that Hopc can efficiently cope with the new ES6 features and

that it can deploy efficient strategies for supplanting simple inline

caches when accessing properties whose names are not known stat-

ically. The technique used by Hopc has been described in a previous

publication [Serrano and Findler 2020].

rho.js uses arrays extensively. More precisely, it frequently pushes new values into existing

arrays. This operation requires techniques to efficiently resize existing arrays. The test shows that

Hopc handles these dynamic arrays reasonably efficiently.

As presented in Section 5.5, the Hopc arguments implementation is not competitive with JIT

compilers that support it natively. In this benchmark the situation is even worse because the Hopc
static analysis is not powerful enough to allocate arguments on the heap.

uuid.js extensively tests 32bit operators, string manipulations, array constructions, and excep-

tions (used to detect tests that must fail). Uuid.js suffers like minimatch.js because of the slow
implementation of try/catch but it catches up with its type inference and optimistic compilation.

Uuid.js performance depends on functions such as this one:

function str2binl(str) {

var bin = Array(); var m = (1 << chrsz) - 1;

for(var i = 0; i < str.length * chrsz; i += chrsz)

bin[i>>5] |= (str.charCodeAt(i / chrsz) & m) << (i%32);

return bin;

}

Taking advantage of the 32-bit integer specification of JavaScript bit-wise operators, local rea-

soning is enough to generate efficient code for bit shifts and logical operations, and Hopc handles
them more efficiently than all other systems (see bitwise.js★). Constant propagation enables Hopc
to compile i/chrsz into a mere right bit shift as the variable chrsz happens to be the constant 8.

The problem of compiling str accesses efficiently remains, however. If the compiler is not able

to prove that str is a string, the expression str.length is not known to be an integer and thus

charCodeAt is not known to return an integer. Consequently, the for loop will be cluttered with

tests and generic arithmetic operators.

In the test, str2binl is used in such a way that Hopc cannot prove that str is always a string,
but applying syntactic rules [Serrano 2018] to the function definition it establishes that it could

generate a much better code if str was a string. Accordingly, Hopc generates two versions of the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

70:26 Manuel Serrano

102

103

104

105

al
m

ab
en

ch

ba
gu

e
ba

sic

bo
ye

r-s
cm

ea
rle

y-
sc

m
jp

eg

js-
of

-o
ca

m
l

le
va

l

m
ar

ke
d

m
az

e

m
in

im
at

ch

m
in

im
ist

m
om

en
t

qr
co

de rh
o

ric
ha

rd
s+ uu

id
z8

0

M
e
m

o
ry

 s
iz

e
 i
n
 M

B

Resident Set Size (RSS)

hopc v8 js68 jsc

101

102

103

104

105

al
m

ab
en

ch

ba
gu

e
ba

sic

bo
ye

r-s
cm

ea
rle

y-
sc

m
jp

eg

js-
of

-o
ca

m
l

le
va

l

m
ar

ke
d

m
az

e

m
in

im
at

ch

m
in

im
ist

m
om

en
t

qr
co

de rh
o

ric
ha

rd
s+ uu

id
z8

0

M
e
m

o
ry

 s
iz

e
 i
n
 M

B

Virtual Memory Size (VSZ)

hopc v8 js68 jsc

Fig. 10. Memory footprints measured by the Unix ps tool. A logarithmic scale is used. Lower is better.

str2binl and, at call sites for which str type is unknown it uses a dynamic check and dispatches.

For uuid.js, it always selects the efficient version.

z80.js is handled efficiently by Hopc whose good performance comes from its type analyses and

optimistic compilation that generate fast code for z80 instruction decoding and evaluation. Hopc
also benefits from its good support for integer operations.

6.4 Memory
We have compared the memory usage of the JIT compilers and Hopc. Figure 10 shows the memory

usage reported by the Unix “ps” tool. It shows how much RAM memory is allocated per program

(RSS) and the virtual memory size (VSZ), i.e., the overall memory use including swap and program

use. This experiment shows that AoT can fulfill the promise of using less memory. Program sizes

and the dynamic memory are drastically reduced; Hopc uses at least 3× less memory than V8, the
most memory-efficient JIT.

7 CONCLUSION
Fundamentally, it is difficult to conclude anything more than AoT compilers for JavaScript are

viable based on the evidence presented in this work. Could they compete or not in term of pure

speed is still unanswered. The truth hinges on two questions. Is it the several decades of tuning to

the benchmarks that gives JIT compilers the edge over Hopc on JetStream or is it their inherent JIT

nature? Is it possible to build an AoT compiler that optimizes the entire JavaScript language and

that delivers performance globally comparable to those of fast JIT compilers? Our own experience

with compilers suggests is that it is inevitable that the performance of the compiler grows more

and more tuned to standard benchmarks; accordingly we put more weight on the new benchmarks

that were developed for this paper as revealing the truth. The second question, remains open. See

this paper, then, as a call to arms: let us bring an answer to that question!

Hopc is publicly available and its architecture makes it easy to extend. New passes, implemented

in Scheme or JavaScript, can be easily added because the compiler can export its abstract syntax

after any compilation stage and resume the compilation after the invocation of the external pass. It

can be used as a testbed for experimenting with new analyses and new optimizations for dynamic

languages in general, and for JavaScript in particular.

☞ url: http://hop.inria.fr

ACKNOWLEDGMENTS
Toute ma gratitude et mes remerciements à Robby Findler pour son aide et ses conseils précieux.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

http://hop.inria.fr

Of JavaScript AOT Compilation Performance 70:27

A PEAK PERFORMANCE
We have gathered execution times of JetStream and the new benchmark suite 3 with many JavaScript imple-

mentations. They are presented in Figures 11 and 12. All measures presented have been collected on Linux 5.3

x86_64, powered by Intel a Xeon E5-1650 processor. The tested systems are : V8 (6.8.275.32), Jsc (4.0), Js68
(C68), Graal (19.1.1), QuickJS𝜀 (2020-11-08), JerryScript𝜀 (2.4.0), Rhino (1.7.7.2). Interpreters are distinguished

with the
𝜀
mark.

benchmark hop v8 js68 jsc qjs V8jitless graal jerry rhino

base64 14.28 0.7% 9.38 0.8% 10.18 1.2% 10.36 0.5% 210.25 0.1% 104.36 0.4% 36.80 0.1% 447.04 0.0% 218.93 0.5%

boyer 15.66 0.6% 6.59 1.0% 8.71 0.5% 5.27 1.5% 162.27 1.0% 62.12 0.3% 19.58 0.5% _ 88.06 3.0%

crypto 57.65 0.2% 7.33 0.3% 9.19 0.7% 6.46 0.8% 247.69 0.2% 261.15 0.2% 17.44 1.6% 906.44 0.0% 251.16 8.8%

crypto-aes 14.54 0.5% 5.40 0.5% 8.56 0.4% 6.15 0.6% 144.11 0.1% 122.98 0.3% 36.80 0.7% 290.16 0.0% 76.76 1.6%

crypto-md5 3.75 1.0% 3.38 0.4% 3.56 0.3% 3.61 0.6% 86.50 0.0% 100.47 0.1% 23.91 2.3% 398.82 0.0% 90.80 1.6%

crypto-sha1 8.81 0.5% 10.60 0.4% 9.93 0.2% 7.50 1.1% 257.42 0.1% 353.26 0.1% 49.36 0.8% 1228.55 0.0% 184.56 1.1%

date-xparb 10.80 1.3% 1.74 1.2% 3.22 1.5% 0.98 1.5% 9.28 0.1% 3.91 0.9% 3.19 1.5% 14.41 0.0% _

deltablue 33.56 0.3% 4.18 0.8% 5.41 0.2% 6.00 1.8% 364.95 0.2% 219.78 0.4% 18.95 0.6% 1068.12 0.0% 295.75 2.7%

earley 13.33 4.2% 6.60 0.9% 9.76 0.7% 5.06 1.7% _ 50.31 0.2% 43.95 1.3% _ _

hash-map 20.88 2.0% 11.72 0.8% 5.70 1.1% 5.15 0.9% 135.03 0.1% 84.03 0.3% 5.36 0.6% _ 128.27 1.1%

n-body 5.31 0.8% 0.23 3.7% 0.26 3.3% 0.31 2.3% 5.73 0.2% 7.35 0.5% 1.99 3.7% 24.78 0.0% 7.28 1.3%

raytrace 29.77 0.8% 1.27 1.6% 1.17 0.9% 1.42 1.7% 84.57 0.3% 28.14 0.4% 5.23 3.0% 198.43 0.0% 64.08 3.3%

regexp 22.56 0.4% 6.69 1.3% 6.98 0.3% 8.69 1.2% 183.79 0.7% 22.84 1.1% 85.85 0.7% _ 118.09 5.6%

richards 24.69 0.2% 7.74 0.2% 9.42 0.4% 6.90 2.5% 293.62 0.1% 205.53 0.3% 16.26 1.4% 1018.72 0.0% 198.24 1.1%

splay 10.16 1.4% 5.75 3.3% 7.66 1.2% 2.96 1.6% 78.29 0.8% 22.50 0.4% 27.34 3.1% _ 16.89 1.0%

tagcloud 19.59 1.1% 8.31 5.8% 6.45 2.2% 7.88 1.0% 149.26 0.2% 13.04 0.6% 22.58 0.1% _ 56.13 3.3%

unipoker 11.40 0.5% 7.07 0.6% 6.33 0.6% 6.69 0.6% 62.65 0.3% 37.86 0.4% 19.46 3.2% 143.78 0.0% _

Fig. 11. Peak performance JetStream JavaScript programs. The table reports the mean of 30 execution times
(clock wall time) and in a smaller font, the deviation of each test.

benchmark hop v8 js68 jsc qjs V8jitless graal jerry rhino

almabench 19.42 0.5% 5.44 0.3% 6.09 0.3% 5.42 0.1% 71.39 0.1% 59.72 0.4% 9.53 0.4% 159.09 0.0% 47.37 4.0%

bague 4.63 0.2% 8.78 2.8% 7.13 0.3% 12.16 1.8% 313.54 0.1% 258.39 0.3% 37.13 0.3% 931.19 0.0% 126.04 1.3%

basic 6.52 1.0% 5.04 1.6% 5.10 1.9% 7.63 1.0% 116.91 0.0% 60.52 0.3% 14.92 5.5% _ _

boyer-scm 2.00 2.1% 2.41 0.9% 2.03 0.6% 1.06 1.3% 38.11 1.7% 21.00 0.4% 7.61 0.9% _ _

earley-scm 4.01 6.8% 3.74 1.2% 6.76 0.5% 3.45 1.5% _ 26.21 1.7% _ _ _

jpeg 2.84 1.5% 4.50 1.0% 8.22 1.0% 0.66 3.1% 13.92 0.1% 7.38 0.6% 27.33 0.6% _ _

js-of-ocaml 10.29 1.0% 5.46 0.6% 8.91 0.3% 4.91 3.9% 54.26 0.1% 40.01 0.5% 17.00 1.8% 175.52 0.0% 59.88 9.0%

leval 12.90 0.7% 10.21 0.4% 12.35 0.2% 6.65 4.2% 202.16 0.4% 104.18 0.2% 19.08 1.1% 542.86 0.0% _

marked 7.19 1.3% 2.92 1.9% 3.07 1.7% 14.42 0.3% 86.61 0.1% 11.23 0.4% 18.87 4.3% _ _

maze 7.86 2.1% 7.46 0.7% 12.34 0.9% 5.87 0.6% _ 28.63 0.3% 15.17 0.7% _ _

minimatch 7.51 1.2% 3.26 2.1% 6.48 1.5% 5.04 1.1% 51.84 0.5% 21.48 0.9% 11.73 1.8% 109.69 0.0% _

minimist 9.86 1.2% 5.16 1.7% 7.48 4.3% 7.58 0.9% 40.89 0.2% 15.63 0.7% 23.33 1.4% 53.49 0.0% _

moment 6.90 0.7% 3.04 2.6% 4.42 1.3% 4.11 1.5% 15.45 0.2% 7.54 0.4% 30.66 1.0% _ 19.66 2.6%

puzzle 11.44 0.1% 9.46 0.2% 9.18 0.4% 8.17 0.4% 224.29 0.1% 175.51 0.2% 53.18 1.6% 489.69 0.0% 86.48 1.1%

qrcode 3.35 3.9% 3.18 0.7% 2.34 1.2% 2.29 2.7% 16.52 0.2% 8.98 0.3% 9.82 1.8% _ 17.53 3.3%

rho 7.11 1.4% 4.34 2.2% 4.89 1.9% 3.96 1.7% 22.25 0.4% 12.33 0.5% 33.35 0.9% 54.97 0.0% 30.02 2.1%

richards+ 5.18 1.0% 10.61 1.0% 52.57 0.6% 53.56 1.7% 25.29 0.5% 18.41 0.3% 15.57 3.8% 51.88 0.0% _

uuid 7.93 1.9% 4.86 1.4% 6.21 1.4% 4.41 1.3% 40.55 0.1% 34.68 0.2% 53.32 0.4% 122.22 0.0% _

z80 8.01 1.2% 6.84 0.3% 13.68 0.3% 6.83 1.2% 82.21 0.1% 12.31 0.5% 30.41 3.4% _ _

Fig. 12. Peak performance of the 18 JavaScript programs. The table reports the mean of 30 execution times
(clock wall time) and in a smaller font, the deviation of each test.

REFERENCES
W. Ahn et al. 2014. Improving javascript performance by deconstructing the type system. In PLDI 2014 - Proceedings

of the 2014 ACM SIGPLAN Conference on Programming Language Design and Implementation (Proceedings of the ACM
SIGPLANConference on Programming Language Design and Implementation (PLDI)). Association for ComputingMachinery,

Edinburgh, UK, 496–507. https://doi.org/10.1145/2594291.2594332 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2014 ; Conference date: 09-06-2014 Through 11-06-2014.

C. Anderson, P. Giannini, and S. Drossopoulou. 2005. Towards Type Inference for Javascript. In Proceedings of the 19th
European Conference on Object-Oriented Programming (Glasgow, UK) (ECOOP’05). Springer-Verlag, Heidelberg. https:

//doi.org/10.1007/11531142_19

Apple. 2018. WebKit. https://webkit.org/.

Vincenzo Arceri, Isabella Mastroeni, and Sunyi Xu. 2020. Static Analysis for ECMAScript String Manipulation Programs.

Applied Sciences 10, 10 (May 2020), 3525. https://doi.org/10.3390/app10103525

R. Artoul. 2015. Javascript Hidden Classes and Inline Caching in V8. http://richardartoul.github.io/jekyll/update/2015/04/

26/hidden-classes.html.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

https://doi.org/10.1145/2594291.2594332
https://doi.org/10.1007/11531142_19
https://doi.org/10.1007/11531142_19
https://doi.org/10.3390/app10103525
http://richardartoul.github.io/jekyll/update/2015/04/26/hidden-classes.html
http://richardartoul.github.io/jekyll/update/2015/04/26/hidden-classes.html

70:28 Manuel Serrano

Thomas Ball, Peli de Halleux, and Michał Moskal. 2019. Static TypeScript: An Implementation of a Static Compiler for

the TypeScript Language. In Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes (Athens, Greece) (MPLR 2019). Association for Computing Machinery, New York, NY, USA,

105–116. https://doi.org/10.1145/3357390.3361032

Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-

Hochstadt. 2015. Pycket: A Tracing JIT for a Functional Language. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015). Association for Computing Machinery,

New York, NY, USA, 22–34. https://doi.org/10.1145/2784731.2784740

H.J. Boehm and M. Weiser. 1988. Garbage Collection in an Uncooperative Environment. Software — Practice and Experience
18, 9 (Sept. 1988), 807–820. https://doi.org/10.1002/spe.4380180902

Fraser Brown, John Renner, Andres Nötzli, Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Towards a Verified

Range Analysis for JavaScript JITs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 135–150.

https://doi.org/10.1145/3385412.3385968

C. Chambers and D. Ungar. 1989. Customization: Optimizing Compiler Technology for SELF, A Dynamically-Typed Object-

Oriented Programming Language. In Conference Proceedings on Programming Language Design and Implementation (PLDI
’89). ACM, New York, NY, USA. https://doi.org/10.1145/73141.74831

C. Chambers, D. Ungar, and E. Lee. 1989. An Efficient Implementation of SELF a Dynamically-typed Object-oriented

Language Based on Prototypes. In Conference Proceedings on Object-oriented Programming Systems, Languages and
Applications (New Orleans, Louisiana, USA) (OOPSLA ’89). ACM, USA, 49–70. https://doi.org/10.1145/74878.74884

S. Chandra et al. 2016. Type Inference for Static Compilation of JavaScript. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Applications (Amsterdam, Netherlands)

(OOPSLA 2016). ACM, New York, NY, USA. https://doi.org/10.1145/3022671.2984017

M. Chevalier-Boisvert and M. Feeley. 2015. Simple and Effective Type Check Removal through Lazy Basic Block Versioning.

In 29th European Conference on Object-Oriented Programming, ECOOP 2015 (Prague, Czech Republic). https://doi.org/10.

4230/LIPIcs.ECOOP.2015.101

M. Chevalier-Boisvert and M. Feeley. 2016. Interprocedural Type Specialization of JavaScript Programs Without Type

Analysis. In 30th European Conference on Object-Oriented Programming (Rome, Italy). https://doi.org/10.4230/LIPIcs.

ECOOP.2016.7

Jiho Choi, Thomas Shull, and Josep Torrellas. 2019. Reusable Inline Caching for JavaScript Performance. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI
2019). Association for Computing Machinery, New York, NY, USA, 889–901. https://doi.org/10.1145/3314221.3314587

W. Choi, S. Chandra, G. Necula, and L. Sen. 2015. SJS: A Type System for JavaScript with Fixed Object Layout. In Static Analysis
- 22nd International Symposium, SAS’15. Saint-Malo, France, 181–198. https://doi.org/10.1007/978-3-662-48288-9_11

D. Clifford, H. Payer, M. Stanton, and B. Titzer. 2015. Memento Mori: Dynamic Allocation-site-based Optimizations.

In Proceedings of the 2015 ACM SIGPLAN International Symposium on Memory Management. New York, NY, USA.

https://doi.org/10.1145/2887746.2754181

G. Dot et al. 2017. Removing Checks in Dynamically Typed Languages through Efficient Profiling. In Proceedings of
the 2017 International Symposium on Code Generation and Optimization (Austin, USA) (CGO ’17). IEEE Press, 257–268.

https://doi.org/10.5555/3049832.3049860

ECMA International. 2015. Standard ECMA-262 - ECMAScript Language Specification (6.0 ed.).

ECMA International. 2018. ECMAScript 2018 Language Specification (9.0 ed.). https://www.ecma-international.org/

publications/files/ECMA-ST/Ecma-262.pdf

David Eder. 2020. a simple BASIC interpreter. http://eder.us/projects/jbasic/

D. Flanagan. 2002. JavaScript – The definitive guide (fourth edition). O’Reilly & Associates, USA.

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman,

E. Smith, R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. 2009a. Trace-based just-in-time type specialization

for dynamic languages. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. https://doi.org/10.1145/1542476.1542528

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake Kaplan,

Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,

Mason Chang, and Michael Franz. 2009b. Trace-Based Just-in-Time Type Specialization for Dynamic Languages. In

Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (Dublin, Ireland)

(PLDI ’09). Association for Computing Machinery, New York, NY, USA, 465–478. https://doi.org/10.1145/1542476.1542528

Google. 2018. V8 JavaScript Engine. http://developers.google.com/v8

Google. 2019. JIT-less V8. https://v8.dev/blog/jitless.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

https://doi.org/10.1145/3357390.3361032
https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1002/spe.4380180902
https://doi.org/10.1145/3385412.3385968
https://doi.org/10.1145/73141.74831
https://doi.org/10.1145/74878.74884
https://doi.org/10.1145/3022671.2984017
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://doi.org/10.4230/LIPIcs.ECOOP.2016.7
https://doi.org/10.4230/LIPIcs.ECOOP.2016.7
https://doi.org/10.1145/3314221.3314587
https://doi.org/10.1007/978-3-662-48288-9_11
https://doi.org/10.1145/2887746.2754181
https://doi.org/10.5555/3049832.3049860
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://eder.us/projects/jbasic/
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1542476.1542528
http://developers.google.com/v8
https://v8.dev/blog/jitless

Of JavaScript AOT Compilation Performance 70:29

A. Guha, C. Saftoiu, and S. Krishnamurthi. 2010. The essence of JavaScript. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’10). https://doi.org/10.5555/1883978.1883988

Andreas Haas et al. 2017. Bringing the Web up to Speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association for Computing

Machinery, New York, NY, USA, 185–200. https://doi.org/10.1145/3062341.3062363

B. Hackett and S-Y. Guo. 2012. Fast and Precise Hybrid Type Inference for JavaScript. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation (Beijing, China). New York, NY, USA.

https://doi.org/10.1145/2345156.2254094

James Halliday. 2020. Minimist: parse argument options. https://github.com/substack/minimist

Zoltan Herczeg. 2015. Performance comparison of regular expression engines. https://zherczeg.github.io/sljit/regex_perf.

html

U. Hölzle, C. Chambers, and D. Ungar. 1991. Optimizing Dynamically-Typed Object-Oriented Languages With Polymorphic

Inline Caches. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP ’91). UK, 21–38.
https://doi.org/10.1.1.126.7745

Adobe Systems Incorporated. 2020. jpeg.js, A pure javascript JPEG encoder and decoder for node.js. https://github.com/

eugeneware/jpeg-js

Isaacs. 2016. https://github.com/isaacs/minimatch

Christopher Jeffrey et al. 2020. Marked. https://github.com/markedjs/marked

S. Jensen, A. Møller, and P. Thiemann. 2009a. Type Analysis for JavaScript. In Proceedings of the 16th International Symposium
on Static Analysis (SAS) (Los Angeles, CA). Springer-Verlag, Berlin, Heidelberg, 238–255. https://doi.org/10.1007/978-3-

642-03237-0_17

Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009b. Type Analysis for JavaScript. In Proc. 16th International
Static Analysis Symposium (SAS) (LNCS, Vol. 5673). Springer-Verlag. https://doi.org/10.1007/978-3-642-03237-0_17

S H. Jensen, A. Møller, and P. Thiemann. 2009c. Type Analysis for JavaScript. In Proceedings of the 16th International
Symposium on Static Analysis (Los Angeles, CA) (SAS ’09). Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-
3-642-03237-0_17

Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sarracino, Ben Wiedermann, and Ben

Hardekopf. 2014. JSAI: A Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association for Computing Machinery,

New York, NY, USA, 121–132. https://doi.org/10.1145/2635868.2635904

Arase Kazuhiko. 2009. QRcode.js. http://www.d-project.com/

R. Kelsey, W. Clinger, and J. Rees. 1998. The Revised(5) Report on the Algorithmic Language Scheme. Higher-Order and
Symbolic Computation 11, 1 (Sept. 1998).

Y. Ko, H. Lee, J. Dolby, and S. Ryu. 2015. Practically Tunable Static Analysis Framework for Large-Scale JavaScript

Applications. In 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE). 541–551. https:

//doi.org/10.1109/ASE.2015.28

B. S. Lerner, J. Politz, J.G., A. Guha, and S. Krishnamurthi. 2013. TeJaS: Retrofitting Type Systems for JavaScript. In

Proceedings of the 9th Symposium on Dynamic Languages (Indianapolis, Indiana, USA) (DLS ’13). ACM, NY, USA. https:

//doi.org/10.1145/2578856.2508170

F. Logozzo and H. Venter. 2010. RATA: Rapid Atomic Type Analysis by Abstract Interpretation - Application to JavaScript

Optimization. In Compiler Construction, 19th International Conference, CC 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings. https:

//doi.org/10.1007/978-3-642-11970-5_5

Florian Loitsch. 2005. Javascript to Scheme Compilation. In Proceedings of the Sixth Workshop on Scheme and Functional
Programming. 101–116.

F. Loitsch andM. Serrano. 2008. Trends in Functional Programming. Vol. 8. Seton Hall University, Intellect Bristol, UK/Chicago,
USA, Chapter Hop Client-Side Compilation, 141–158.

MDN. 2019. SpiderMonkey Internals. https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals

B. Meurer. 2016. The truth about traditional JavaScript benchmarks. https://benediktmeurer.de/2016/12/16/the-truth-about-

traditional-javascript-benchmarks.

Moment.com. 2020. Moment.js. https://momentjs.com/

Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2020. Value and Allocation Sensitivity in Static Python Analyses.

In Proceedings of the 9th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis (London, UK)
(SOAP 2020). Association for Computing Machinery, New York, NY, USA, 8–13. https://doi.org/10.1145/3394451.3397205

Mozilla. 2020. SpiderMonkey: The Mozilla JavaScript runtime. https://developer.mozilla.org/en-US/docs/Mozilla/Projects/

SpiderMonkey

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

https://doi.org/10.5555/1883978.1883988
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/2345156.2254094
https://github.com/substack/minimist
https://zherczeg.github.io/sljit/regex_perf.html
https://zherczeg.github.io/sljit/regex_perf.html
https://doi.org/10.1.1.126.7745
https://github.com/eugeneware/jpeg-js
https://github.com/eugeneware/jpeg-js
https://github.com/isaacs/minimatch
https://github.com/markedjs/marked
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1145/2635868.2635904
http://www.d-project.com/
https://doi.org/10.1109/ASE.2015.28
https://doi.org/10.1109/ASE.2015.28
https://doi.org/10.1145/2578856.2508170
https://doi.org/10.1145/2578856.2508170
https://doi.org/10.1007/978-3-642-11970-5_5
https://doi.org/10.1007/978-3-642-11970-5_5
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals
https://benediktmeurer.de/2016/12/16/the-truth-about-traditional-javascript-benchmarks
https://benediktmeurer.de/2016/12/16/the-truth-about-traditional-javascript-benchmarks
https://momentjs.com/
https://doi.org/10.1145/3394451.3397205
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

70:30 Manuel Serrano

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009. Producing wrong data without doing

anything obviously wrong!. In Proceeding of the 14th international conference on Architectural support for programming
languages and operating systems (Washington, DC, USA) (ASPLOS ’09). ACM, New York, NY, USA, 265–276. https:

//doi.org/10.1145/1508244.1508275

Benjamin Barslev Nielsen and Anders Møller. 2020. Value Partitioning: A Lightweight Approach to Relational Static Analysis

for JavaScript. In Proc. 34th European Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.4230/

LIPIcs.ECOOP.2020.16

C. Park and S. Ryu. 2015. Scalable and Precise Static Analysis of JavaScript Applications via Loop-Sensitivity. In 29th European
Conference on Object-Oriented Programming, ECOOP 2015, Prague, Czech Republic. https://doi.org/10.1145/3093334.2989228

Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas Würthinger. 2019. An Optimization-Driven

Incremental Inline Substitution Algorithm for Just-in-Time Compilers. In Proceedings of the 2019 International Symposium
on Code Generation and Optimization (Washington, DC, USA) (CGO 2019). IEEE Press, 164–179. https://doi.org/10.5555/

3314872.3314893

M. Qunaibit et al. 2018. Accelerating Dynamically-Typed Languages on Heterogeneous Platforms Using Guards Optimization.

In Proceedings of 32th the European Conference on Object-Oriented Programming (ECOOP’18) (Amsterdam, NL). https:

//doi.org/10.4230/LIPIcs.ECOOP.2018.16

Brianna M. Ren and Jeffrey S. Foster. 2016. Just-in-Time Static Type Checking for Dynamic Languages. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI
’16). Association for Computing Machinery, New York, NY, USA, 462–476. https://doi.org/10.1145/2908080.2908127

V. Saint-Amour and S-Y Guo. 2015. Optimization Coaching for JavaScript. In 29th European Conference on Object-Oriented
Programming, ECOOP 2015 (Prague, Czech Republic). https://doi.org/10.4230/LIPIcs.ECOOP.2015.271

Manuel Serrano. 1992. Bigloo, a Practical Scheme Compiler. http://www-sop.inria.fr/indes/fp/Bigloo/

M. Serrano. 2018. JavaScript AOT Compilation. In 14th Dynamic Language Symposium (DLS). Boston, USA. https:

//doi.org/10.1145/3276945.3276950

M. Serrano and M. Feeley. 2019. Property Caches Revisited. In Proceedings of the 28th Compiler Construction Conference
(CC’19). Washington, USA. https://doi.org/10.1145/3302516.3307344

M. Serrano and R. Findler. 2020. Dynamic Property Caches, a Step towards Faster JavaScripts Proxy Objects. In Proceedings
of the 29th Compiler Construction Conference (CC’20). San Dieo, USA. https://doi.org/10.1145/3377555.3377888

O. Shivers. 1988. Control Flow Analysis in Scheme. In Proceedings of the SIGPLAN ’88 ACM Sigplan Int’l Conference on
Programming Language Design and Implementation (PLDI). Atlanta, Georgia. https://doi.org/10.1145/960116.54007

S. Strickland et al. 2012. Chaperones and Impersonators: Run-time Support for Reasonable Interposition. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’12). Arizona, USA, 943–962. https://doi.org/10.1145/

2384616.2384685

UUID 2020. uuid.js, For the creation of RFC4122 UUIDs. https://www.npmjs.com/package/uuid

V8 Team. 2017. Retiring Octane. https://v8.dev/blog/retiring-octane.

Jérôme Vouillon et al. 2020. Js_of_ocaml. https://ocsigen.org/js_of_ocaml

April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. 2017. AOT vs. JIT: Impact of Profile Data on Code Quality. In

Proceedings of the 18th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems
(Barcelona, Spain) (LCTES 2017). Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.

1145/3078633.3081037

Wikipedia. 2021. W∧X. https://en.wikipedia.org/wiki/W%5EX.

Christian Wimmer et al. 2019. Initialize Once, Start Fast: Application Initialization at Build Time. Proc. ACM Program. Lang.
3, OOPSLA, Article 184 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360610

T. Würthinger et al. 2017. Practical Partial Evaluation for High-Performance Dynamic Language Runtimes. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
Association for Computing Machinery, New York, NY, USA, 662–676. https://doi.org/10.1145/3062341.3062381

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 70. Publication date: August 2021.

https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.4230/LIPIcs.ECOOP.2020.16
https://doi.org/10.4230/LIPIcs.ECOOP.2020.16
https://doi.org/10.1145/3093334.2989228
https://doi.org/10.5555/3314872.3314893
https://doi.org/10.5555/3314872.3314893
https://doi.org/10.4230/LIPIcs.ECOOP.2018.16
https://doi.org/10.4230/LIPIcs.ECOOP.2018.16
https://doi.org/10.1145/2908080.2908127
https://doi.org/10.4230/LIPIcs.ECOOP.2015.271
http://www-sop.inria.fr/indes/fp/Bigloo/
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3302516.3307344
https://doi.org/10.1145/3377555.3377888
https://doi.org/10.1145/960116.54007
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/2384616.2384685
https://www.npmjs.com/package/uuid
https://v8.dev/blog/retiring-octane
https://ocsigen.org/js_of_ocaml
https://doi.org/10.1145/3078633.3081037
https://doi.org/10.1145/3078633.3081037
https://en.wikipedia.org/wiki/W%5EX
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3062341.3062381

	Abstract
	1 Introduction
	2 Related Work
	3 Evaluation Methodology
	3.1 JavaScript Benchmarking
	3.2 Benchmark Suite

	4 The hopc Compiler
	4.1 From JavaScript to Scheme, From Scheme to C
	4.2 Targeting Scheme Code
	4.3 JavaScript Front-End Compiler
	4.4 Object Representation
	4.5 Property Accesses
	4.6 Functions and Function Calls

	5 The Scheme backend compiler
	5.1 Numbers
	5.2 Tweaking the Generated C Code
	5.3 Local Exits
	5.4 Heap Allocation
	5.5 Stack Allocation

	6 Performance Evaluation
	6.1 Traditional JavaScript Benchmarks
	6.2 New Test Suite
	6.3 Performance Analysis
	6.4 Memory

	7 Conclusion
	Acknowledgments
	A Peak Performance
	References

