Composing and Performing Interactive Music using the
HipHop.Js language

Bertrand Petit
Inria/Cirm
Sophia Antipolis, Nice, France
bertrand.petit@inria.fr

ABSTRACT

Skini is a platform for composing and producing live perfor-
mances with the audience participating using connected de-
vices (smartphones, tablets, PC, etc.). The music composer
creates beforehand musical elements such as melodic pat-
terns, sound patterns, instruments, group of instruments,
and a dynamic score that governs the way these basic el-
ements behave according to events produced by the audi-
ence. The platform allows to control the musical quality
of the work, even if during the concert or the performance,
the audience interacts with the system giving birth to an
original music creation.

Skini scores are expressed in terms of constraints on events
that control which musical elements are accessible to the au-
dience and when they are available. Constraints may be in-
stantaneous, for instance one constraint may disable violins
while trumpets are playing. They may also be temporal,
for instance, one constraint may prevent the piano to play
more than 30 consecutive seconds.

The Skini platform is implemented in Hop.js [10], for the
general infrastructure and most of the user interfaces, and
in HipHop.js [13], a reactive synchronous DSL, for imple-
menting the music scores. The HipHop.js constructs, which
consist of temporal operators such as parallel executions,
sequences, awaits, synchronization points, and preemption,
form the core implementation language for expressing Skini
musical constraints.

This paper presents the Skini platform and It reports
about live performances and an educational project. Some
musical pieces created with Skini can be found at:

https://soundcloud.com/user-651713160

Author Keywords

Interactive Music, Web programming, Reactive synchronous
programming

CCS Concepts

eHuman-centered computing — Interaction design
process and methods; Collaborative content creation;
eApplied computing — Sound and music computing;

1. INTRODUCTION

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
BY remains with the author(s).

NIME’19, June 3-6, 2019, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil.

Manuel Serrano
Inria
Sophia Antipolis, France
manuel.serrano@inria.fr

In the 60’s, the philosopher Umberto Eco, and musicians
such as K. Stockhausen, K. Penderecki, and L. Berio won-
dered about the relationships between composers, musi-
cians, and the audience [3]. In particular, Eco has shown
that following the evolution of physics from Copernicus to
Einstein, the perception of the world has evolved from be-
ing static to being more dynamic. This has impacted 20th
century art where some musicians have tried to express this
dynamics through works where the performer and the au-
dience had a concrete impact on the musical result. Eco
called these endeavors open work or moving work, in the
sense that the final musical result is not strictly known in
advance.

Recent technology improvements, mainly broad network
coverage and device availability, have opened up new oppor-
tunities for interactive music, which has become an active
field [1, 8, 14]. A tremendous effort has been devoted to im-
prove the technical aspects of systems allowing individual
interaction, see Swarmed [5] for instance. These technologi-
cal challenges have attracted most attention, so frameworks
dedicated to music composition of interactive performances
following the moving work, proposing a clear composition
scheme and the way to make it work, are rare. Skini is
such a framework. It is meant for composing and executing
interactive performances.

This paper present Skini with an organization that is as
follows. Section 2 presents the related work. Section 3
presents the Skini key principles and concepts for creating
and performing musical pieces. Section 4 focuses on mu-
sical interactive composition and orchestration. Section 5
presents the Skini software architecture and gives a taste of
HipHop.js score programming. Section 6 presents two ac-
tual musical projects already executed with Skini. Section 7
presents directions for future work.

2. RELATED WORK

Taylor et al. overview the domain of collaborative music
[12]. They present several developments aim to break the
unidirectional communication, well established in musical
performances, by involving the public in the process of mu-
sical creation. Three main directions emerge: social behav-
ior, technology, and impact of interaction. We think that
there is a fourth direction that is still not clearly addressed:
composition issues for interactive music. Here are some ex-
amples.

Social behavior: In [1] the authors studied Computer Me-
diated Musical Collaboration by exploring how to use smart-
phone mediation in musical contexts. They report on the
activities of the Smartphone ensemble at the University of
Caldas. This study focuses on the design of the graphical
interface and social behavior of an audience. In the same
vein, [9] focuses on the level of interaction necessary for good
public participation, based on the experiences of the Stan-

ford Mobile Orchestra. The results of these experiments are
valuable inputs for Skini.
Technology: In [8], the authors introduce a way to dis-
tribute mobile applications using mobile ad-hoc network.
This study mostly focuses on telecommunications technol-
ogy. Similarly, [6] proposes a method of communication
by using DTMF (Dual Tone Multiple Frequency) with high
frequency sound. Skini uses web technologies, hence it is
network support agnostic.
Impact of interaction: Opened band [11] proposes a sys-
tem based on multi-user chat where text entries are trans-
lated into sounds. Similarly, [4] presents two sound installa-
tions performed at the Peninsula Arts Contemporary Mu-
sic Festival 2016, at the University of Plymouth, focusing
on the experimentation of collaborative music using voting
system, movement tracking and indoor positioning. More
recently, the Cosima project at IRCAM [7] explores the re-
lationship between the body, media and space through new
interfaces and collaborative creation tools. Cosima is a good
example of using smartphones and Web technologies to con-
trol and to generate sound using smartphone speakers.
MassMobile [14] and Open Symphony [11] are architec-
tures close to Skini. They present mass audience participa-
tion tools based on client-server systems dedicated to the
production of live shows intended for a medium and large
audience. In Open Symphony, improvisations by performers
are controlled by audience members who specify collectively
playing modes by a voting system. MassMobile is connected
to Max/MSP and can be deployed in a variety of perfor-
mance contexts as far Max/MSP is used. This platform is
a complete interactive solution, and does not implement a
particular composition process as skini proposes.
Musical Composition issues: More in line with our mu-
sical composition issues, and especially regarding how to
achieve an engaging experience for the audience members,
Jieun Oh and Ge Wang in 2011 [9] described the challenges
a composer faces when the audience participates in a mu-
sic performance, such as controlling uncertainty factor, and
defining roles between the audience and the composer/per-
formers.

3. SKINI BASIC CONCEPTS

Skini organizes the music in short musical sequences called
patterns. Playing the music consists in selecting some of
these patterns. This is the role of the audience during the
show that must select patterns from a set of availabilities
that depend on previous audience selections and on the mu-
sical path described in the composer score. In order to help
the participants select patterns they like, they can first lis-
ten to them using their smartphones, and then activate the
ones they like. To ensure the musicality of the work, the
composer controls which patterns are proposed to the au-
dience by creating coherent groups. The art of managing
the availability of the groups of pattern is the orchestration,
in reference to the common use of this word in orchestral
music.

3.1 Patterns

A pattern can be any part of a score, a MIDI sequence, or
a pre-recorded sound. For the sake of interaction, patterns
are generally short (few seconds), as longer patterns would
monopolize the instruments, lengthen the waiting time of
sequences to be played by one instrument, and thus re-
duce the interaction with the audience. When activated,
a pattern can be played as is, or it can be changed in real
time depending on how the composer imagines the show’s
behavior. For instance, a MIDI sequence pattern can be
transposed to another tonality. Moreover, we are currently

using an interface where patterns can also be created by the
audience using a dedicated designer tool.

As patterns are activated by the audience, the composer
cannot controlled in advance the result of the interpretation
of his score. He must manage the uncertainty introduced
by the interaction by thinking about the work in terms of
group of pattern’s architecture, in the sense of managing
the available groups of patterns according to the aesthetic
project.

Using pattern activation to create original music is not
new. Twentieth century classical composers such as Stock-
hausen (Klavierstiick XI), Henri Pousseur (Scambi), and
Boulez (Troisiéme Sonate pour piano) have used similar
concepts. The originality of Skini is the delegation to the
audience for the activation. Since it is no longer the musi-
cians on stage that play the music, the composer is forced to
give up on the traditional way of creating music. The inter-
action with the audience must be inherent to the creativity
process. This gives a new dimension to U. Eco’s openness.

3.2 Orchestration

In the common musical language, orchestration is the tem-
poral description of the instruments actually played. The
instruments are arranged in groups: violins, violas, cellos,
double basses, horns, percussion, etc. The composer chooses
the groups for each specific part of his work. In Skini,
the orchestration consists in grouping patterns and defin-
ing constraints in between them. The orchestration governs
the interaction with the audience but the audience reacts
to what it is listening. This is an open work according to
U. Eco’s definition.

The composer defines the orchestration evolution accord-
ing to various constraints and parameters such as time, and
audience behavior. The audience behavior is defined by the
activated pattern combinations. At a given time, the or-
chestration establishes the status of the groups of pattern
(available or not available) for groups of people in the au-
dience. Such a system, reacting to events (activation and
time) to reach a defined state of the orchestration, is mod-
eled by automata. The HipHop.js language has been pre-
cisely created for automata programming. We will see how
it fits Skini architecture.

3.3 Interaction

Skini distinguishes three different roles people in the audi-
ence may play.

Sounds kinetic1 activated
percu? Os
percu3 0s
percu4 Os
percu5 0s

percu6 0s
percu? Os
percu9 0s
kinetic1 Os
kinetic2 0s
kinetic3 0s
rise1 0s
rise2 0s

Figure 1: From left to right, (i) the Actor interface,
(ii) the Skini sequencer.

1. Actors: they are those among the audience that ac-
tivate patterns, generally using the web browser of
their smartphone (Figure 1(i)). By selecting patterns,

actors generate events which are handled by the or-
chestration automaton.

2. Designers: they create patterns during the show us-
ing the Skini sequencer. It runs in a web browser
(Figure 1(ii)) and is also expected to be accessed via
smartphones or tablets. Its interface mimics those of
traditional MIDI launchpads. It allows designers to
create loops synchronized with all the other patterns.

3. Conductors: are those who give their opinion or pro-
pose a global evolution of the performance. Their web
interface is not shown here.

The software component that controls the orchestration
is the automaton. It executes the rules and satisfies the
constraints defined by the composer. In other words, the
automaton runs the score. The complexity of the score all
depends on the composer will. It can implement complex
automatic strategies based on the behavior of the audience
or it can be very lightweight and delegates most of the con-
trol to a controller that manually supervises the show.

4. COMPOSITION PROCESS

Whatever the kind of music to be created, the steps to be
followed by the composer are the same: 1) design all the
patterns, 2) create the initial orchestration, 3) simulate the
audience behavior, and 4) modify the orchestration and re-
peat step 3 until the result is nice enough.

4.1 Pattern Design

The only constraint Skini imposes on patterns is their du-
ration: all the patterns available simultaneously must have
the exact same duration. This guarantees the rhythmic co-
herence of the piece. On the other hand, the sound of a
pattern is totally free. For instance, a pattern can be a
fragment of a melodic sentence. It can use a basic rhythm,
and the composer can build the others on variations of this
rhythm. It can be part of a family of patterns created by
transposing an initial one. A pattern can also be a complex
synthesized sound, or a sound sample, etc. Figures 2, 3,
and 4 show three representions of the same simple pattern
which can be played in three different ways: Figure 2 by a
synthesizer, Figure 3 by a musician, Figure 4 by a sound
file player.

Figure 2: Example of a simple MIDI pattern

I
4 tee®

5 fe”

QQND

Figure 3: Example of a simple pattern score

The main difficulty for the composer is to imagine pat-
terns adapted to all, or most, of the orchestral scenarios
that will be created in the second step.

Figure 4: Example of a pattern sound

4.2 Orchestration Design

The composer designs the evolution of the orchestration
that must anticipate audience interactions. For that, the
orchestration must accommodate different paths through
the events generated by the acting audience. How to design
this orchestration and how to represent it are open ques-
tions. For the sake of the example, Figure 5 shows an early
representation on the paper we used for one of our first
piece. This representation is close to what is usually used
for traditional musical scores. On the left (Y axis) are the
groups of pattern. On the X axis is a timing view of the
orchestration. We use the following symbols to represent
the activation of groups of pattern:
V¥ denotes a forced group activation, without waiting for
an action by the audience;
is denotes a forced group deactivation;
e means that a group can be activated if one or several
previous events linked by arrows occur;
X means that a group can be deactivated if, one or sev-
eral previous events linked by arrows, occur.

novmGL |
froloflm , -

Tiolenpek *

(AT «
Q\v(\& v
W)k v
AW 1)
(418 L WESEAN VY
(N34
dhee_| |

(\u%f

bri} i
ek o . (
oo !
tovsF

N b feaaa
s \ R R

Tonb
_'mFF (/L' ~
feim

o N {
[AR EE (RO oG K bk b b b

Any LY)

ma
Plon & odtobidion de> (W‘\’\“a ol
o Luu&n..)s X | ik powible

Figure 5: An orchestration on paper

Additionally, arrows are labeled with numbers to count the
number of events and horizontal dash lines show the avail-
ability period for a group of pattern.

This representation is imprecise. It lacks many details
that only the actual HipHop.js program can express. How-
ever, in our experience, this sort of graphical representations
have proved themselves to be particularly useful.

4.3 Simulation

It is difficult to imagine how the implementation of the or-
chestration will actually work, but it is basically the art of
composing music to deal with this uncertainty and open-
ness. This is why patterns and orchestration need simu-
lation tools. We have created one for Skini. It behaves
like an audience that would select patterns randomly. The
simulator is controlled by three parameters: the minimum
response time of people in the audience, the maximum re-
sponse time, and the waiting time for a pattern to be played.
Although simple, these three parameters are sufficient to
simulate realistic rehearsals, at least, sufficient for the com-

poser to figure out the flavor and shape of the music he is
composing.

5. SKINI ARCHITECTURE

Skini relies on a web architecture (Figure 6) close to the one
used by the Open Symphony [11]. The core system is im-
plemented in Hop.js, a multi-tier JavaScript programming
language. The orchestration is implemented in HipHop.js
that implements the core synchronous reactive primitives
of Esterel [2]. In this section we present the main part of
the system architecture, and we introduce the orchestration
programming.

5.1 System

The individual Skini components are conceptually distributed
over several computers but of course, a single computer to
run them all if the complexity of the performance is not too
CPU demanding. The components are:

Synthetizers
(Musicians)
Daw, Ableton Live

widi |
cketl Distriblted

Sequencer
Java

Display System
Processing/
Hop

Audience
. Webs:
Designers
HTML5/JS
Actors
HTML5/JS

Conductors
HTML5/JS

Midi

Websocket/
OSC/Midi Broadcast

Gateway

Java
ﬁcsc
Pattern Player
FIFO management
Hop.js

Orchestration
Automaton
Hiphop.js

Web Server
Hopjs

HTTP

\
Controller
HTML5/JS

Simulator
Hop.js

Figure 6: Logical view of Skini.

Web Server: it is in charge of all the interactions with
the audience and it controls all the other components of the
platform. The orchestration automaton runs inside the web
server.

Actor and Controller: they are dynamic HTML5 clients
connected to the Hop server, communicating using HTTP
and websockets.

Simulator: this is a Hop.js client using the same proto-
cols as the actor. It behaves like an audience by generating
automatically pattern activation. Parameters allow to di-
mension the size of the simulated audience.

Pattern Player: the Pattern Player manages the requests
coming from the audience. It uses waiting queues that accu-
mulate the patterns that cannot be played instantaneously
when all the synthesizers or musicians are busy.
Orchestration Automaton: this is the software compo-
nent that runs the composer score. It reacts to audience
events and selects which patterns are available.
Synthesizers: this is the component in charge of playing
the actual music. It communicates with the other compo-
nents using Open Sound Control (OSC) commands. A Dig-
ital Audio Workstation (DAW) such as Reaper or Ableton
Live runs the synthesizers.

Designer Interface and Distributed Sequencer: The
Designer component is an HTML5 client, which communi-
cates with the Hop.js server and the Distributed Sequencer

using HTTP and websockets. The Distributed Sequencer
plays the sequences of the Designers and is synchronized
with the Pattern Player. The Designer client display is syn-
chronized with the Distributed Sequencer.

Display System: it displays various information to the
users, for instance, who is selecting what in the audience. It
communicates with the rest of the application using HTTP
protocols.

5.2 HipHop.js Flavor for Orchestration

We motivate the usage of the HipHop.js language for im-
plementing orchestrations with a simple example. We show
the implementation of an orchestration that initially pro-
poses to the audience cellos, and violins playing staccato
patterns. After five ticks (where ticks are defined by the
music tempo), percussion patterns are made available and
then, after the first percussion pattern has been played, the
cellos can play five patterns and stop. In parallel violins
should stop after 4 cello events or after 10 ticks. Figure 7
shows the time events of that orchestration.

A

Ay

A 5 x Cellos
n 4 x Cellos e
Q.
3 lin(true) iolil
e violin(trua Percu(true) violin(false)
(o))
Qo 5 x Ticks N x Percussions
= N Ll
_% M x Violins !
8 -
2 T ... 10 x Ticks

»

V¥ Allow a group of events delay

A\ Disable a group of events

Figure 7: Simple example.

This example is sufficiently complex to illustrate the main
benefit of HipHop.js. We left to the reader the exercise
to implement it using traditional sequential programming
languages.

A HipHop.js execution is split in a succession of reactions
that are triggered by external events associated with user
interactions. The purpose of a reaction is to select the next
expression Hop.js will execute. An HipHop.js program is
organized as a list of modules that are loaded into a reactive
machine. A module specifies the signals it can receive and
emit. The module implementing our example is as follows:

hiphop module orchestration(
in Tick, out Perc, in PercPlaying, out Cello,
in CelloPlaying, out ViolinStacatto) {
emit ViolinStacatto(true);
emit Cello(true);
await count(5, Tick.now);
emit Perc(true);
await (PercPlaying.now) ;
fork {
await count(5, CelloPlaying.now);
emit Cello(false);
} par {
await count(4, CelloPlaying.now)
|| count (10, Tick.now);
emit ViolinStacatto(false);

The module orchestration first emits two output signals
ViolinStacatto and Cello with a value true. Then, it waits
for five ticks before emitting the signal Perc with a value
true. These emissions will be received by the Hop.js web

server that will modify the status of the orchestration ac-
cordingly. The value true means that the patterns in a
group of pattern (here Cello, Perc and ViolinStacatto) can
be activated by the audience. These emissions will also up-
date the web interface of all connected participants in the
audience. A value false does the opposite. It deactivates
a group of pattern. Activating a pattern in the audience
generates a playing signals corresponding to the group the
pattern belongs to. For instance, we someone selects a per-
cussion, the signal PercPlaying is emitted. It enables the
HipHop.js to proceed by executing the fork/par constructs
that follows.

The fork/par control structure runs its branches in paral-
lel and waits for all of them to complete. The branches can
communicate and synchronize with each others by broad-
casting signals that are instantaneously delivered. During
a reaction, all branches of all parallel constructs receive the
exact same information. The HipHop.js execution is syn-
chronous and deterministic.

HipHop.js can block on complex predicates. For instance,
in the second branch of the fork/par construct, it waits
for the first condition of 4 CelloPlaying events or 10 Tick.
HipHop.js imposes no constraint on conditional expressions.
They can mix arbitrary temporal expressions and JavaScript
expressions.

This example, although simple, illustrates the benefit of
HipHop.js. The constraints of the musical orchestration are
mapped directly into constructs of the language without
extra bookkeeping or encoding techniques. This greatly al-
leviate the composer/programmer task as it dramatically
reduces the distance between the representation of his score
and its actual executable implementation.

6. MUSICAL PERFORMANCES

Skini has already been used in different contexts. We present
two experiences here. The first one is a show performed in
2017 during the MANCA festival of contemporary music in
Nice, France. The second one is the Fabrique a Musique, a
project funded by the SACEM (Music Composer Society).

6.1 Golem, MANCA 2017

The Golem show is based on the legend of Golem in Prague
who was created in the 16th century in order to protect the
Jewish community. On stage it involved a calligrapher and
an actress/singer. The calame (pencil) of the calligrapher
was used as a percussion producing sounds which were pro-
cessed in real-time. The show lasted 45 min, along with two
interactive scenes of about five minutes. There is a short
video of the show available at: https://www.youtube.com/
watch?v=MuZfpSgsIPo.

We ran the show twice, with two different categories of
spectators. On 8 December 2017, with two classes of young
pupils, and on 9 December 2017 with a more classical panel
of 150 spectators. Before the show, some instructions were
given in order to explain the audience how to access the
private WiFi network, how to get connected to the server,
and the main features of the interface. The role of the
audience in the story was explained and emphasized.

6.1.1 Golem: 8 December 2017

There were 42 pupils of 12 years old, highly motivated by
the idea of using a smartphone during a live show. Though
the smartphone is an important device for them, generally it
is forbidden in schools. The idea of using smartphones cer-
tainly contributed to their active participation both to the
show, and also to the “question and answer” session that
followed. According to the system logs, 42 users tried to

access the system, that is, all the pupils. This was not sur-
prising as the pupils were informed and prepared by their
teachers. During this show we had two sessions of interac-
tions of 4 and 5 minutes each. This generated 4890 events
(2400 in session 1; 2490 in session 2), 689 patterns were ac-
tivated by the pupils (228 in sessions 1; 461 in session 2)
which corresponds to 1.3 pattern activation per second.

6.1.2 Golem: 9 December 2017

There were 150 people, mostly the MANCA festival public
who were aged between 30 and 70 years, with the mean age
of around 40-50 years, and thus very different than the pre-
vious day. During both sessions, around 90 people accessed
the system. That is 40 % of the spectators did not interact,
or did not succeed in using the application for several rea-
sons, such as handset incompatibility or misunderstanding
of the process. During this show, we had two interactive ses-
sions of 3 and 6 minutes each. This generated 4099 events
(2171 in session 1; 1928 in session 2), 754 patterns were ac-
tivated by the public, which makes roughly a mean of 1.4
pattern activations per second.

6.2 Take Away from Golem Shows

The first observation is that the audience actively partic-
ipated in the show. This is demonstrated by the level of
activity during all the interactive sessions. This shows that
the concept of the interaction has been well received by
different public. Unsurprisingly we notice that the pupils
were in proportion much more connected than the standard
public with a much better rate of connection (100% against
60%). Surprisingly, we found that the distribution of activ-
ity among the public is very similar. This means that the
proportions of active, low active, or inactive people did not
depend on the type of audience. We expected a more stable
average activity per individual with the young population
than with the public. For both populations, the diversity
of behaviors we have observed led us to vary the type of
interface by developing the designer interface in particular.

6.3 La Fabrique a Musique 2018/2019

The Skini platform and a composer were selected by the
SACEM for the creation of a show by a class of 23 young
pupils (12 years old). The goal was to create a complete
musical work which was presented officially in a concert
hall of the Nice Conservatory of Music. (See in French at
https://wuw.youtube.com/watch?v=ZpOeUvIFqvk)

This project is much more than a performance. It is a com-
plete educational approach. The Skini platform is not only
used for playing music created by a single composer, but
also for creating collaborative music. This means that the
pupils have to first understand what is a pattern and an
orchestration. They had to learn how to manipulate the
designer interfaces of figure 1 using tablets. The creation
of the patterns was done in small groups of 6 pupils max-
imum, in five sessions. The orchestration was done by the
composer and validated by the class. The show took place
with the pupils activating the musical work in real time.

7. NEXT STEPS

The simulator used during the composition process can be
used as an automatic music generator by merely recording a
simulation session. The extracted score is complete and can
be played as is by musicians. However, the simulator is cur-
rently overly simple and the music it generates is just good
enough for testing but not as a final product. The evolution
of the simulator into a realistic generator is a research topic
in itself that we plan to explore.

We usually run our own dedicated WiFi network for the
performances, but we have also ran conclusive experiments
with plain internet connections. Skini requires a very lim-
ited bandwidth as the amount of data exchanged in the
communication is low. We plan to implement Skini on the
Cloud as this will allow performances to be run in public
contexts such as in the streets, public places, museums and
stations.

Currently, Skini synchronizes the patterns created by the
composer and those created by the designers, but patterns
created in real-time can only be played by the designers. We
would like to remove that constraint in order to let patterns
created by some members being integrated in real time into
the current musical piece and played by other participants.
This would make it possible to achieve performances where
the musical piece would be entirely created and manipulated
by the audience.

In our experiments the motivation for the audience to
participate in the music was high. In Golem, probably be-
cause the audience actions were part of the story telling and
because the audience knew that it had something to do dur-
ing certain periods of the show. For the other performances,
we suppose that the novelty of the system was enough to
attract attention. This interest might not last too long... In
the current implementation, the actor interface is very sim-
ple. This is a conscious design decision, but we believe that
this interface, being very simple, is not engaging enough
because it is too disconnected from the music being played.
Thus, the actors influence is not intuitive enough to feel
the real impact on the musical narration. We are investing
new ways to display the actions of each participants in or-
der to provide a graphical feedback that could complement
the impact on the music being played. This will certainly
be possible by finding different ways of staging the score,
by displaying its evolution in real time using graphical rep-
resentations on a large screen. Another possibility comes
with the pattern model which offers the opportunity to link
non musical information to the patterns. In the first ver-
sion of Skini, the simple actor received some code names for
the patterns, and used it to listen to the patterns and acti-
vate them. We imagine that we can bring new ideas at this
level. Instead of giving code names to the audience we can
give sentences, with real meaning, and use this sentences to
generate a text in real time.

8. CONCLUSION

Skini is a platform for interactive performance composi-
tions. It takes into account an uncommon dimension in
the composition process: the audience behavior. By con-
trast with classical music, where scores are used to define
the musical discourse according to time, and sometimes ac-
cording to the decision of the performers, in an interactive
score the composer has to think about the audience behav-
ior, the type of interactions he wants to occur according to
the aesthetic of the project.

Skini is the result of the search for a solution that com-
bines the constraints of interaction, and those of a musical
discourse using scores. Skini offers a solution that is based
on a few basic concepts, but whose musical implementation
has proven to be complex. Indeed, we have chosen to imple-
ment our performances based on groups of musical patterns
whose access is offered to the audience according to different
criteria essentially related to the behavior of this audience.

Following the composition and performances of various
musical pieces using Skini, we have demonstrated that our
basic concepts allow to produce music pieces where listen-
ers feel involved in the production of a coherent musical

structure.

In addition, the first attempts to use Skini in music educa-
tion are promising. Skini gives the opportunity to progress
step by step, in a group and in interaction with a composer
or teacher while following a simple methodology. This al-
lowed to discuss with schoolchildren various musical sub-
jects ranging from the design of simple musical phrases to
the design of a complete musical discourse, in order to pro-
duce a real musical performance.

9. REFERENCES

[1] J. J. Arango and D. M. M. Giraldo. The Smartphone
Ensemble. Exploring mobile computer mediation in
collaborative musical performance. Proceedings of the
International Conference on New Interfaces for
Musical Ezxpression, 16:61-64, 2016.

[2] G. Berry. The Esterel v5 Language Primer. 1997.

[3] U. Eco. The Open Work. 1989.

[4] M. Gimenes, P. Largeron, and E. Miranda. Frontiers:
Expanding Musical Imagination With Audience
Participation. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
volume 16, pages 350-354, 2016.

[5] A. Hindle. Swarmed: Captive portals, mobile devices,
and audience participation in multi-user music
performance. Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 174-179, 2013.

[6] M. Hirabayashi and K. Eshima. Sense of Space: The
Audience Participation Music Performance with
High-Frequency Sound ID. Proceedings of the
International Conference on New Interfaces for
Musical Ezxpression, pages 58-60, 2015.

[7] J.-P. Lambert, S. Robaszkiewicz, and N. Schnell.
Synchronisation for Distributed Audio Rendering over
Heterogeneous Devices, in HI'ML5. Proceedings of the
2nd Web Audio Conference (WAC-2016), pages 6-11,
2016.

[8] S. W. Lee, G. Essl, and Z. M. Mao. Distributing
Mobile Music Applications for Audience Participation
Using Mobile Ad-hoc Network (MANET). Proceedings
of the International Conference on New Interfaces for
Musical Expression, pages 533-536, 2014.

[9] J. Oh and G. Wang. Audience-participation
techniques based on social mobile computing.
Proceedings of the International Computer Music
Conference, 2(August):665-672, 2011.

[10] M. Serrano and V. Prunet. A glimpse of Hopjs.
Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming - ICFP 2016,
2016.

[11] A. Stolfi et al. Open band: Audience Creative
Participation Using Web Audio Synthesis. Proceedings
of Web Audio Conference, 2017.

[12] B. Taylor. A History of the Audience as a Speaker
Array. di(4):481-486, 2017.

[13] C. Vidal, G. Berry, and M. Serrano. Hiphop.js: a
language to orchestrate web applications. In
Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC 2018, Pau, France, April
09-13, 2018, pages 2193-2195, 2018.

[14] N. Weitzner et al. massMobile 4AS an Audience
Participation Framework. NIME 2012 Proceedings of
the International Conference on New Interfaces for
Musical Expression, pages 92-95, 2012.

