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Abstract
We design a mutex library for Hop – a dialect of Scheme which

supports preemptive multithreading and shared memory – that
mixes deadlock prevention and deadlock avoidance to provide an
easy to use, expressive, and safe locking function. This requires an
operation to acquire several mutexes simultaneously, for which we
provide a starvation-free algorithm. Choosing a formal definition
of starvation-freedom leads us to identify the concept of asymptotic
deadlock. Preliminary observations seem to show that our library
has negligible impact on the performance of real-life applications.
Our work could be applied to other languages such as Java.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; D.4.1 [Operating Systems]: Process Management—
Threads, Mutual exclusion, Deadlocks, Scheduling

Keywords shared memory concurrency, mutex, structured lock-
ing, nested lock, asymptotic deadlock, deadlock avoidance, starva-
tion, modularity, formal semantics, language design, Scheme

1. Introduction
Shared memory concurrency, aka multithreading, is a popular con-
current programming paradigm that allows one to take advantage
of multi-core architectures, now widely available in personal com-
puters. A well-known issue with this programming style is the co-
ordination of the threads which is required to avoid that concurrent
accesses to a same memory location yield unpredictable results.
Mutexes are commonly used to deal with this as a mutex allows
a thread to temporarily claim a given resource and make the other
threads that need to access it wait for their turn.

Using mutexes raises a serious problem, namely the possibility
of deadlocks, which have been qualified, together with starvation,
as “the plague of concurrency.” The notion of a deadlock is well
known: this is a situation where, during the execution of a concur-
rent program, two or more threads are waiting for each other to
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progress, while not being able to progress on their own, thus be-
ing indefinitely blocked. Deadlocks are difficult to debug because
they may go unnoticed for some time if only a few of many threads
of a program stop working. They are even more complex to debug
in the context of pthread or Java libraries as they ensue from the
non-deterministic scheduling of threads.

Three groups of methods to solve the problem of deadlocks have
been identified long ago [4]:

• deadlock prevention;
• deadlock avoidance;
• deadlock detection and recovery.

The last technique is similar to optimistic concurrency control in
database transactions implementation. The other two are closer to
the programming languages area. One could regard deadlock avoid-
ance as a dynamic form of deadlock prevention, where the run-time
decision to enter a critical section, by locking a mutex, is deferred,
based on the presumption that this could lead to a deadlock in the
future. Deadlock avoidance is the purpose of Dijkstra’s well-known
Banker’s algorithm [6], and this technique is the topic of some re-
cent works [9, 14], but deadlock detection and deadlock prevention
are far more popular approaches (see [3, 7, 10, 19] for the latter).

Deadlock prevention and avoidance techniques both reduce the
parallelism in the program, by disallowing some paths that could
otherwise be taken. Of course this reduction should be as minimal
as possible. For deadlock avoidance, the prediction that a locking
decision might lead to a deadlock should be as precise as possible
and computing it as fast as possible.

We have designed and implemented a full-fledged mutex library
that combines the approaches of deadlock prevention and deadlock
avoidance. Programs using this library never run into a deadlock.
Our library also offers condition variables, but with no such guar-
antee. The library can be used by static and dynamic languages as
it does not assume type informations but in this paper we present
its integration and implementation in the Hop language [15], a Lisp
dialect supporting multithreading and shared memory. We shall use
the syntax of this language throughout the paper.

The main idea is taken from the work [2] by one of the authors,
which we recall briefly. This work relies on a construct1

(synchronize m body)

for structured locking, by which a thread attempts to lock the mutex
m for the scope of a critical section body of code, and unlock it
afterwards. A static analysis based on a type and effect system
determines which mutexes are potentially locked while executing
the critical section body. This information is used to translate the

1 In the previously cited work, a different, ML-like syntax is used.



locking construct into an intermediary form where the list p of such
mutexes is recorded at the synchronization point synchronize m.
The mutex m is not locked unless all the mutexes in the list p are
simultaneously free.

Let us see an example which can be seen as a fragment of the
well-known “dining philosophers” setting:

;; thread t1 ;; thread t2
(synchronize m ; 1 || (synchronize n ; 2

... ...
(synchronize n ; 3 (synchronize m ; 4

... ...
)) ))

This is the typical example of a program whose execution can lead
to a deadlock: if the numbered points 1, 2, 3, 4 in this program are
executed in this order, then both t1 and t2 are blocked. Recording
at point 1 that the mutex n is potentially locked before m is released,
the prudent semantics of [2] requires both m and n to be free before
locking m at point 1 (respectively n and m for thread t2). Then if
t1 has just locked m, t2 has to wait for t1 exiting from its critical
section protected by m before locking n. Notice that following the
classical technique of deadlock prevention, which is to impose an
order in which mutexes can be locked, we could not even statically
accept such a nested locking scenario.

The static analysis used in [2] assumes static type information
that is not available for a dynamically typed language such as Hop,
and therefore we had to find an alternative way to implement the
prudent semantics for such a language. Our solution is to promote
the intermediate locking construct of [2] as a first class synchro-
nization construct, namely

(synchronize m [:prelock p] body)

where p is an (optional) list that contains the mutexes that the body
might lock. We call p an authorization list. Indeed, if the body of
the critical section attempts to lock a mutex that is not in this list,
our implementation raises an error – there are exceptions to this rule
that are described below. Then, as usual, we replace typing failures
of statically typed languages by run-time errors that can be caught
by some exception handler if needed. These errors are the symptom
of a potential deadlock.

The reduction of parallelism entailed by the prudent semantics
is sufficient to avoid deadlocks, but it might be unnecessary. For
instance, in the following program, if points 1, 2, 3 are executed in
this order, the prudent semantics does not allow t2 to pass point 2
before t1 exits its critical section, even though the program is
deadlock-free anyhow.

;; thread t1 ;; thread t2
(synchronize m ; 1 || (synchronize n :prelock m ; 2

... ...
; does not lock n (synchronize m ; 3
... ) ... ))

We know that this program is deadlock-free as it falls under the
standard argument of the deadlock prevention approach: if m can
only be locked after n and not the other way around, then there
cannot be a cycle causing a deadlock, and t2 could proceed without
waiting for t1 to complete its critical section.

This programming pattern is supported by our library by the
means of a dynamic form of deadlock prevention that complements
what we described to ensure deadlock avoidance: each mutex can
be created in a region:

(make-mutex [region])

where the optional argument region is just a name (which defaults
to a fresh name when omitted). Regions are ordered at run-time.

An exception is raised if an execution does not comply with this
dynamically established order. (This is the classical technique of
deadlock prevention, in a dynamic setting). In the previous exam-
ple, if in the context of these two threads the mutex m, belonging to
some regionRm, is never locked before n, one can safely gain some
parallelism in the execution by removing the prelock m part, as no
exception will be raised when locking m in thread t2, even though
m is not explicitly authorized when locking n.

Again a failure to comply with the ordering of regions appears
as an explicit run-time error, which is another symptom of a poten-
tial deadlock. In the event of such an error, for instance with nested
locking scenarios exemplified by the simple “dining philosophers”
above, the programmer has to resort to the prudent semantics, mod-
ifying the program by making the appropriate authorizations ex-
plicit in the code. (In this case the mutex to be locked and the au-
thorized ones belong to the same region.) We believe that rather
than letting the program silently run into a deadlock, it is much bet-
ter, for debugging and program development purposes, to let the
potential deadlocks appear as explicit run-time errors, thus provid-
ing information about how a deadlock could happen. In a sense,
although the purpose of the jthread library is to completely avoid
deadlocks, our approach also offers a form of (potential) deadlock
detection and a limited form of recovery, via error handling.

Deadlock avoidance using only prelocks is incompatible with
separate compilation as the program must mention, and then must
know, all the mutexes potentially locked on a synchronization
point. Region-based deadlock prevention removes this limitation.
Regions achieve modularity by assuming that the mutexes in a
module N are in regions that are smaller, in the region ordering,
than those of a module M depending on N.

The paper describes the Hop implementation of our library.
Our work could be implemented for another host language, pro-
vided that this language relies on structured programming (no
gotos), and only uses synchronize blocks instead of separate
lock/unlock functions. Java, for instance, complies with these
two requirements. In Hop we use the existing pthread (POSIX
threads) library to provide ourselves with an underlying mutual ex-
clusion mechanism in order to implement our library which we call
jthread. The basic idea to build the implementation of the prudent
semantics is very simple and natural: executing a (synchronize
m :prelock p ...) consists in

• acquiring the desired mutex m and the mutexes from the list p
in a row;

• unlocking the mutexes in p.

(we say that the mutexes in p are only “prelocked”, since they
are immediately released). However, such a naive implementation
does not guarantee the absence of starvation, and therefore we have
added a scheduling mechanism to achieve such a property, in addi-
tion to deadlock avoidance. We are inspired here by Lamport’s Bak-
ery algorithm [11] and its generalization to several resources [12].
However, unlike the Bakery algorithm, our solution does rely on an
underlying mutual exclusion mechanism, but it allows nested locks.

In order to define starvation-freedom in a context with non-
terminating programs and arbitrary numbers of threads and mu-
texes we introduce the concept of asymptotic deadlock. We use this
term to describe a situation in which, while there is no dependency
cycle between threads, a thread t depends on a number of threads
that tends toward +∞ and is thus indefinitely blocked. We could
not find any usage of this concept in previous works. We then prove
that programs using our library are starvation-free under the hy-
pothesis that no asymptotic deadlocks arise.

The reader can refer to the formal semantics given in Ap-
pendix A which summarizes the description of our library given
in this paper.



Regarding the performance of our implementation, we did not
hope to compete with pthread on which there is a huge world-
wide effort, and indeed the raw locking/unlocking performance
of jthread is much slower than that of pthread. However, this did
not lead to a significant difference in performance between using
pthread and jthread in the two realistic applications that we bench-
marked. Moreover, in some cases jthread allows to express an ef-
ficient algorithm that would be prone to deadlocks if pthread was
used; in such a case the program using jthread can be faster than
its closest deadlock-free equivalent (with less parallelism) using
pthread.

2. The deadlock-free mutex library
In this section we describe our jthread library offering mutexes
and deadlock-free structured locking. We recall that a mutex (a
shorthand for mutual exclusion object) is an object whose state can
be either locked by a unique thread (the owner of the mutex) or
unlocked (or free). A thread can become the owner of a mutex
by acquiring it, i.e., using a blocking operation that waits until
the mutex is free and returns after actually taking it. Mutexes can
be either first-class resources, or implicitly associated with other
objects, as in Java.

A thread waiting for one or more mutexes is blocked. A thread is
making progress if it is not blocked. We consider that a thread wait-
ing on anything other than our mutexes (e.g. I/O), or for instance
executing an endless empty loop, is making progress.

Languages featuring mutexes can offer independent functions to
lock and unlock mutexes (explicit locking), or a single construct
to lock a mutex for the scope of a critical section (or synchronized
block) of code and unlock it afterwards (structured locking). For
instance, the standard POSIX threads (pthread) library offers ex-
plicit locking, whereas Java relies on structured locking. When us-
ing explicit locking the programmer has to ensure that at runtime
each call to lock is balanced with a call to unlock, whereas in
structured locking this is enforced by the syntax. Structured lock-
ing versus explicit locking can be compared to structured program-
ming versus programming with gotos. On the one hand, explicit
locking lets programmers deploy very clever and tricky implemen-
tations. On the other hand, they are difficult to use correctly and to
maintain because locks and unlocks can be deeply intricated.

A recursive mutex m can be acquired by a thread that already
owns m. In various non-recursive mutex implementations, when-
ever a thread t attempts to acquire a mutex that t already owns,
either t is indefinitely blocked or an error is raised. We developed
recursive mutexes as in [2] but for the sake of simplicity we as-
sume non-recursive mutexes in this paper; a thread t attempting to
acquire a mutex that t already owns results in an error.

The jthread library supports structured locking and prudent
nested locking with the form:

(synchronize m [:prelock p] body)

where m is the mutex to lock, and the optional parameter p is the
list of mutexes to prelock (to be explained hereafter) which defaults
to an empty list. The body consists in one or more expressions. As
suggested in the introduction, the implementation of the structured
locking primitive relies on an explicit locking primitive that locks a
whole list of mutexes at once. More precisely, the synchronize
form implementation relies on a lock-n function that takes as
arguments a mutex and a list of mutexes (the m and p above); it
locks all these mutexes, and immediately unlocks the mutexes from
its second argument. The implementation of lock-n is the central
element of the implementation of the jthread library. It is described
in section 4 along with some optimizations. The lock-n operation
is implemented on top of the standard, simpler mutual exclusion
mechanism offered by the pthread library.

From now on, in case of ambiguity, identifiers pertaining to
the pthread and jthread libraries will be prefixed by respectively
p and j.

More precisely, our implementation creates one global pthread
mutex named big-lock, and all the algorithms described here-
after are executed while owning big-lock (except during waiting
phases). Here is a sketch of the implementation of the synchronize
form:
(define (synchronize m p thunk)

;; m is the mutex to lock
;; p is the list of mutexes to prelock
(p-synchronize big-lock

[enforce deadlock avoidance rules]
(lock-n m p)
(try-finally

(thunk)
(unlock m) )))

The basic principle used to prevent deadlocks is the following:
at a given point in the execution of a thread t, there may be some
mutexes that t is not authorized to lock. By “authorized to lock a
mutex” we mean: authorized to call the blocking function lock-n
with this mutex as a parameter. Attempting to lock unauthorized
mutexes with jthread’s high-level functions raises an error at run-
time. If authorizations are respected in a program, the execution
is deadlock-free, and free from such errors. The jthread functions
combine two complementary mechanisms for authorizations: an
implicit one – ordered regions – and an explicit one – prelocks –
that we now explain.

2.1 Regions
Jthread mutexes are grouped into regions, denoted R, which are
used to control the safe nesting of locking. (Another part of this
control is taken care of by the deadlock avoidance mechanism.)
Each mutex belongs to a region, the same one for its whole lifespan.
The programmer can create regions and may choose the region of
a mutex at the time of its creation, with the following functions:

(make-region)

(make-mutex [region])

We chose to make the default region for a new mutex m be a new
region which initially only contains m as it seems that this choice
corresponds to the programmer’s will in many cases.

Our implementation dynamically creates an ordering R ≥ R′

of regions, which is used to forbid any circularity in locking mu-
texes that belong to different regions. More precisely, our imple-
mentation enforces the following rule, as regards the authorization
to lock some mutex:

Rule 1: A thread may lock a mutex n in regionRn while owning
a mutex m in region Rm only if Rm ≥ Rn.
That is, executing the following code

(synchronize m
...
(synchronize n

... ))

raises an error if the region Rm is not greater than, or equal to Rn.
If Rm 6= Rn this corresponds to the standard way of preventing
deadlocks – acquiring nested locks in some fixed order –, although
this is usually guaranteed by means of a static analysis (see [3, 7,
10, 19] for instance). From the rule above we can conclude that
when a thread does not own any mutex, it is allowed to lock any
mutex. Only nested locking is subject to restrictions.

The partial order on regions is constructed from one synchronize
to the other as the minimal partial order that satisfies Rule 1. For
instance:



(define m (make-mutex)) ;; new region Rm
(define n (make-mutex)) ;; new region Rn
(synchronize m

(synchronize n ;; no relation yet between Rm and Rn
;; set Rm > Rn

... ))
(synchronize n

(synchronize m ;; relation exists: Rm > Rn
;; -> error
... ))

The algorithm for ordering regions is as follows: each thread has
a stack of regions. The topmost region is called the current region.
When the thread is started, its current region is initialized to Top, a
region greater than all other regions. Then, when a thread is about
to enter a critical section, executing

(synchronize m [:prelock p] body)

first checks whether m and the mutexes in the list p are in the same
region, raising an error if not (the reason for this will become clear
by the end of this section). If this test succeeds, and Rm is the
region of the mutex m, it is checked whether the current region R
associated with the thread is such that Rm > R. If Rm > R
an error is raised, because the thread might be attempting to lock
mutexes in a dangerous order. Otherwise, if Rm 6= R, Rm is
pushed onto the stack of regions associated with the thread. It then
becomes the current region of the thread and the global ordering
of regions is updated by adding the relation R > Rm (again, if
R 6= Rm). Otherwise (Rm = R), the stack of regions and region
ordering are not modified. The current region is popped off the
stack when the thread leaves the critical section.

Given this way of computing the region ordering, we can refor-
mulate our Rule 1 as follows:

Rule 1 bis: A thread in (current) region R may lock a mutex m
in region Rm only if R ≥ Rm.
We shall not have any further requirement in the case where R >
Rm. That is, the condition R > Rm is actually sufficient to con-
clude that the thread is authorized to lock m. If, instead, Rm = R,
any mutex from region Rm could be locked by the thread, accord-
ing to this rule. For instance, if the programmer assigns the same re-
gion to all the mutexes, then all these mutexes would be authorized
to be locked by any thread if we were to stop controlling the au-
thorizations at this point, which is unacceptable. Nevertheless, we
shall not definitively ban nested locking inside a given region since
we argued in favor of allowing the programmer to use nested lock-
ing schemes that do not comply with a fixed locking order. For that,
a second authorization mechanism called prelocking is needed.

2.2 Prelocks
When the program relies on nested locking in a way that would not
be permitted by the region ordering discipline only, the mutexes
must be grouped in a single same region, and the prudent semantics
must be used. For this, our implementation enforces the following
rule:

Rule 2: If mutexes m and n belong to the same region, then
a thread t may lock n while owning m only if, when locking m, t
prelocked n.
For instance:

(synchronize m :prelock n
;; mutexes m, n, and p belong to the same region
...
(synchronize n ;; authorized

... )
...
(synchronize p ;; unauthorized

... )
... )

When several synchronize forms are nested, the mutexes of the
inner critical sections must be prelocked in all the superior lev-
els [2]:

(synchronize m :prelock (list n p)
(synchronize n :prelock p

(synchronize p
... ))

In other words, mutexes that are not authorized to be locked are not
authorized to be prelocked either:

(synchronize m :prelock n
(synchronize n :prelock p ; error: p not authorized

... ))

To enforce proper nesting and prelocking each thread has a vari-
able set of explicitely authorized mutexes. This set is modified
and restored respectively at the beginning and at the end of each
synchronize block. Each time a thread enters a new region, the
set of authorized mutexes is updated to be the prelock set of the
current innermost synchronize block. Then we can reformulate
Rule 2 into:

Rule 2 bis: A thread tmay lock and prelock mutexes that belong
to its current region only if the mutexes are members of the prelock
set of the innermost synchronize block t is in.
In [2] it has been proved that this discipline, which is enforced in
the prudent semantics, guarantees the absence of deadlocks when
we consider mutexes that belong to the same region.

2.2.1 Newly created mutexes
If a thread creates a new mutex in the same region as its current
region, Rule 2 does not grant the thread the authorization to lock it,
whereas in [2] any newly created mutex is automatically authorized
inside its lexical scope in the thread that creates it, and this is
shown to be safe. Then we state a third rule, enforced by our
implementation, as an exception to Rule 2:

Rule 3: Every newly created mutex in region R is authorized in
all currently executing synchronize blocks in all threads that are
in the same region R.
For instance

(define R (make-region))
(define m (make-mutex R))
(define n (make-mutex R))
(define x #f)
(synchronize m :prelock n

(synchronize n
(set! x (make-mutex R))
;; x is authorized
... )

;; x is authorized
(synchronize n

;; x is not authorized
... )

;; x is authorized
... )

Authorizing newly created mutexes in this way does not yield
any deadlock. Indeed, with respect to authorizations, a newly cre-
ated mutex is equivalent to a mutex that would have been created at
the beginning of the current thread and correctly prelocked to the
current point, and never used in any other thread, which is a safe
situation.

Rule 3 is enforced by giving mutexes increasing numerical
identifiers and by making each thread entering a critical section
memorize the (global) last given identifier. The threads can then
determine whether a given mutex was created before or after this
point. For example, if last-id is the global variable holding the
last given mutex identifier:



; last-id = 0
(define R (make-region))
(define m (make-mutex R)) ; gets id = 1
; last-id = 1
(synchronize m ; memorizes last-id = 1

(let ((n (make-mutex R))) ; gets id = 2
(synchronize n

... )))

At the second synchronize, n is in the same region as m and
has not been explicitely authorized but n’s id is greater than the
last-id at the time of synchronize m, therefore n is authorized.

2.3 Unsafe mode
In the previous subsections we described rules that the program-
mer has to follow and algorithms to check at runtime that they are
respected, throwing errors otherwise. One can consider that those
checks are a tool to debug a program and that there is no point in
performing them once the program has been tested and debugged.
(The checks in question should not be confused with the use of pre-
lock sets which are needed at runtime to avoid deadlocks.) Then we
offer an “unsafe” mode in which those checks are deactivated, in or-
der to improve the performance of programs that are considered to
be tested. However when we benchmarked our implementation the
cost of our functions was dominated by the cost of the underlying
functions described in Section 4; we could not measure a significant
difference between the “safe” and “unsafe” modes of our library.

2.4 Condition variables
Condition variables, or condvars, are a common synchronization
mechanism. They allow threads to wait on a condvar until it is
signaled by another thread. A condvar should be protected by a
mutex, i.e., threads signaling or waiting on a particular condvar
must own the associated mutex, and the waiting function takes this
mutex as an argument to atomically unlock it before waiting, and
reacquire it after receiving a signal.

The pthread library offers condvars, and it turns out that pthread
condvars can be used directly with jthread mutexes, with the
pcondvar/jmutex waiting function defined as a simple wrapper
around the original pcondvar/pmutex waiting function.

Indeed the new waiting function, given a pthread condvar cv
and a jthread mutex m, only needs to free m and wait on cv with
a pthread mutex (these two operation performed atomically), and
then reacquire m.

The needed atomicity as well as the unlocking and reacquisition
of m require the protection of big-lock. Therefore big-lock is
also used whenever our waiting function calls the pthread waiting
function.

If we neglect implementation details the code is as follows.
It uses the lower-level lock-n function that will be described in
Section 4.

(define (j-condition-variable-wait! cv::pcondvar m::jmutex)
(p-synchronize big-lock

(unlock m)
(p-condition-variable-wait! cv big-lock)
(lock-n m) ))

Note that while our library allows the use of condvars, it doesn’t
prevent condvar-based deadlocks: any thread can start waiting on a
condvar that will never be signaled.

3. Starvation and asymptotic deadlock
Starvation is a non-consensual notion, especially for a language
such as Hop which features purposely non-terminating programs
and dynamic creation of an arbitrary number of threads and mu-
texes.

To explain what it means for our library to be starvation-free we
must first define the concept of asymptotic deadlock.

3.1 Dependency between threads
Hereafter we use the following formalism: in a program using
mutexes, at a given instant in the execution, we define a partial
order over threads as follows: t1 ≺ t2 if and only if ∃ m. t1 owns
m ∧ t2 is waiting to lock m.

Let ≺+ and ≺∗ be respectively the transitive closure and the
symmetric transitive closure of ≺. We say that t2 depends on t1
whenever t1 ≺+ t2. We say that t1 is an ascendancy of t2 and that
t2 is a descendancy of t1.

We say that a program is in a deadlock situation if ∃ t. t ≺+ t,
i.e., if relation ≺∗ is not antisymmetric. Our library, by using
the mechanisms described in Section 2, guarantees the absence of
deadlock according to this definition.

3.2 Asymptotic deadlock
During a non-terminating execution of a program, a thread t is in
an asymptotic deadlock situation if the number of t’s ascendancies
tends toward +∞.

3.2.1 Example
For example, here is a program that yields an asymptotic deadlock:

(define (m0 (make-mutex)))
(define (P m)

(thread
(synchronize m

(let ((n (make-mutex)))
(P n)
... ; takes some time
(synchronize n

#f )))))
(P m0)

This program creates an infinite number of threads and equally
many mutexes. Each thread creates a mutex n, starts a thread, and
gives n to it. Each thread t locks the mutex it got from its parent
for the whole duration of its execution, and t tries to lock the mutex
that it created itself.

Let us assume that each thread takes such time between start-
ing its child thread and executing its synchronize n that the
synchronize is executed only after the child thread could lock
n. The parent can thus never lock it. Therefore no mutex is ever
unlocked and/because no thread ever terminates.

This situation is not a deadlock as there is no dependency cycle.
This program is authorized in our library, whether the mutexes are
in different regions (no cycle between regions) or in the same one
(Rule 3).

This is not a starvation situation in the classical sense either as
each thread is waiting for a mutex that is owned by another thread,
while starvation usually refers to a situation in which a resource is
free (or periodically freed) but never given to a particular thread
that wants it.

Therefore we categorize this situation under a separate concept
which we call asymptotic deadlock.

3.2.2 Detection
It seems to us that one rudimentary means to help the programmer
solving asymptotic deadlocks would be to instrument the locking
functions used so as to maintain the number of ascendancies of
each waiting thread, and to output a warning whenever this number
exceeds a given threshold. This is left for future work.



3.3 Starvation-freedom
In this paper we use the following “negative” definition of starva-
tion: We say that a program is starvation-free if and only if during
any execution, if each thread making progress eventually releases
all the mutexes it owns and if there are no asymptotic deadlocks
then each thread eventually makes progress.

The multiple locking algorithm described in the next section is
starvation-free, i.e., any program using it is starvation-free.

4. Multiple locking
In this section we describe the design of mutexes and of an op-
eration locking n mutexes simultaneously while guaranteeing
starvation-freedom.

In this section our mutexes support explicit locking, i.e., sep-
arate (un)locking functions that we call lock-n and unlock (we
only need to unlock one mutex at a time). These are the basic blocks
used to implement the higher-level structured locking introduced in
the previous section. We then implement prelocks. Prelocks are first
locked and immediately released. This pattern is handled efficiently
by our implementation.

Our algorithms rely on an underlying mutual exclusion mecha-
nism which in our implementation is the pthread library.

Reminder: the semantics presented in Appendix A summarizes
what we is explained here.

4.1 Problem
The semantics of [2] avoids deadlocks but not starvation as it im-
poses no constraints on the lock-n operation. A valid implemen-
tation could rely on a simple waiting mechanism such as: if all n
mutexes are free, then acquire them, else wait for a time when they
all be free, which may well never happen if other threads repeat-
edly lock the n mutexes separately and in a non coordinated way.
The thread that wants to lock all n mutexes is starving.

Our solution relies on a fair scheduling of threads that are wait-
ing to lock mutexes. This scheduling is presented in this section.

Note: We are talking about high-level scheduling with no
preemption, unrelated to the low-level preemptive scheduling of
threads by the operating system.

4.2 Basics of our solution
At any given instant in the execution of a program, we called A the
set of active threads, i.e., the threads that own mutexes and/or are
waiting to lock some. The main idea of our solution is to define on
A a total order < with the following invariant:

(I) ∀ t1, t2. t1 ≺∗ t2 ⇒ t1 < t2

This is equivalent to considering that active threads are in a global
(waiting) queue. We will use the two points of view indifferently
and we shall note the queue Q = (A , <). Note that the global
queue is used in the formal presentation of the algorithms but the
actual implementation never constructs it explicitly.

The order relationship is defined algorithmically: at the begin-
ning of the execution Q is empty; during the execution, the order
is modified each time Q gains or loses a thread or the situation
evolves relevantly:

• when a thread t becomes active, i.e., when it does not own any
mutex and starts waiting to lock one, t is inserted at the end of
Q, i.e., set to be greater than all previously active threads;

• when a thread t becomes inactive, i.e., when it unlocks its last
mutex, it is removed from Q.

The order relationship is used as follows: a thread waiting to
lock one or more mutexes may do so if and only if no smaller thread
is owning or waiting to lock any of those mutexes.

Notation We shall write the concatenation of two queues Q1 and
Q2 as follows: Q1 ·Q2

We shall define subqueues using the following list comprehen-
sion: for Q = (A , <) and a given predicate p on threads:

[t in Q | p(t)] , ({t ∈ A | p(t)}, <)

4.3 Nested locks
A lock is nested if it is executed by a thread that already owns
some mutexes. This happens during the execution of nested jthread
synchronize blocks, but we do not take their lexical scope into
account in this section.

We have to define how Q evolves when an already active thread
tX starts waiting for new mutexes mi. We call strategies the possi-
ble evolutions of Q. To preserve invariant (I), a strategy must take
into account the new ≺ relations that appear between tX and the
owners of mutexes mi if they exist.

One natural strategy could be to systematically move tX to the
end of Q as if it was a new active thread. However, some threads
might be waiting for some mutexes owned by tX ; these threads
should then also be moved to be kept behind tX in Q. Q would
evolve as follows:
Q→ [t in Q | tX ⊀∗ t] · [t in Q | tX ≺∗ t]

4.3.1 Possibility of starvation
In practice we have never observed starvation with this simple
strategy, although it can happen as with the following example:

(define R (make-region))
(define m1 (make-mutex R))
(define m2 (make-mutex R))
(define m3 (make-mutex R))

(thread ; tx
...
(synchronize m1 :prelock (list m2 m3)

#f ))

(while #t
(thread ; ta(i)

(synchronize m1 :prelock m2
...
(synchronize m2

#f )))
(thread ; tb(i)

(synchronize m3 :prelock m2
...
(synchronize m2

#f )))
)

This program creates 3 mutexes, a thread tx that tries to lock
all 3 mutexes at the same time, and infinitely many pairs of threads
(ta,i, tb,i) locking respectively {m1, m2} and {m3, m2}.

During the execution, tx may be blocked indefinitly. Here is
why. We assume tx is not the first one to execute its synchronize
and several ta,i and tb,i are already in Q.

Whenever a ta,n executes its synchronize m2 it is moved
to the end of Q. At this point ta,n owns only m1; therefore its
descendancies include tx and the other ta,i but no tb,i. tx goes
behind all tb,i but keeps its relative position to all ta,i. Conversely
whenever a tb,n executes its synchronize m2 tx is moved behind
all ta,i but keeps its relative position to all tb,i.

Therefore, as long as ta,i and tb,i keep being run, tx is perpetu-
ally moving backwards in Q and never enters its critical section.



4.4 Starvation-free nested locks
One way to prevent starvation is to always favor the thread which
has been waiting for the longest time over others. We call this
thread the doyen and we denote it td.

The doyen may depend on other threads; therefore, we stipulate
that this set of threads (td included) must always be before the
others in Q. We now have 2 invariants:

(I) ∀ t1, t2. t1 ≺+ t2 ⇒ t1 < t2

(J) ∀ t1, t2. t1 ≺∗ td ∧ t2 6≺∗ td ⇒ t1 < t2

At any time threads may enter or leave the set of td’s ascendan-
cies and thus go from one side of td in Q to the other.

A proof that this mechanism is starvation-free is given in Ap-
pendix B.

4.4.1 Strategy
Invariants (I) and (J) are sufficient to make our library starvation-
free regardless of the strategy used. In our implementation, here is
what we chose to do when a thread tX already in Q starts waiting
for new mutexes:

• If td < tX then tX and its descendencies are moved to the back
of Q, i.e.,
Q→ [t in Q | tX ⊀∗ t] · [t in Q | tX ≺∗ t]

• If tX < td then tX keeps its position in Q and among its
new ascendancies, those that must be moved because they are
behind tX are moved to the front of Q along with their own
ascendancies, i.e.,
Q→ let S = {t ∈ Q | t ≺+ tX ∧ tX <Q t} in

[t in Q | ∃ t′ ∈ S. t ≺∗ t′] · [t in Q | @ t′ ∈ S. t ≺∗ t′]

We only experimented with one strategy as differences between
strategies mainly show in the case of complex dependencies be-
tween threads, and we had a hard time finding programs with
complex nesting of critical sections (see Section 5). We chose the
present strategy for its relative simplicity given the data structures
we chose for our implementation (see below): mutexes are always
moved to one end of Q; our choice of which mutexes to move
seems to us like a relatively natural way to satisfy (I).

4.5 Implementation
In this section we sketch the implementation of the jthread library.

4.5.1 Data structures
The global order on threads Q is represented by the following data
structures:

• Each mutex m has a doubly linked queue (list) containing m’s
owner and the possible threads waiting for m (if they exist)
with respect to the global order. These local queues allow to
browse thread dependencies without having to traverse a global,
arbitrarily long queue.

• Each thread has an integer rank (that can be read by the other
threads) such that the order on ranks matches the order on
threads. Ranks are used for instance to efficiently insert an
already active thread into the queue of a mutex.

We also maintain a global queue Qw of waiting threads. Threads
are put in and out of Qw respectively when the start waiting for
mutexes and when they enter their critical section. This queue is
never reorganized. Its sole purpose is to determine td, which is the
first element of Qw unless Qw is empty.

4.5.2 Basic optimization of prelocks
Our locking operation is used to acquire mutex and also to prelock
them, i.e.. In the case of prelocking, the mutexes are released
immediately after having been locked. This is optimized by using
lightweight locking.

Our lock function actually takes as arguments a list of mutexes
to really lock and a list of mutexes to prelock. Our function doesn’t
actually lock and unlock the latter; it starts waiting as for locking
but at the last moment it simply does nothing.

Furthermore, in order for a thread t to enter its critical section,
t doesn’t need to be the first in the queue of each mutex to prelock,
but only to be the first in the queue of the mutex to lock and that
all the mutexes to prelock are free. In our implementation, threads
take such opportunities to make progress whenever they arise.

However, our current implementation does not prioritize threads
differently according to whether they must lock or prelock the
mutexes they are acquiring, to take into account the lower resource
occupation of prelocking. Such an optimization is left for future
work.

5. Performance
In this section we present measures of the performance of our
library compared to pthread in several micro-benchmarks and two
“real” programs. The results are as follows:

• as for the raw locking/unlocking performance with and with-
out contention, jthread mutexes are much slower than pthread
mutexes;

• in another micro-benchmark, the program using jthread is
slightly faster because deadlock avoidance allows to use a more
efficient algorithm that leads to deadlocks when implemented
with pthread;

• we were able to use jthread instead of pthread in the Hop
Web server and the Hop MP3 decoder with no change to the
programs themselves and it had no impact on their performance.

The two libraries (pthread and jthread) benefit from several op-
timizations of mutex locking that we developed relatively indepen-
dently of our present work [16]. One of these optimizations is syn-
chronization lifting which makes structured locking almost as fast
as explicit locking despite the fact that structured locking constructs
have to handle exceptions.

All our benchmarks used the safe mode of our library. As we
said in Section 2.3, in other measurements we did not observe a
significant performance gap between the safe and unsafe modes.

All the benchmarks except the Hop Web server were run on a
Linux 3.12 kernel hosted by an Intel Xeon E5-1660.

5.1 Micro-benchmarks
5.1.1 Raw locking/unlocking performance
We wrote two micro-benchmarks in which respectively one or
several threads repeatedly lock one unique mutex to perform an
elementary floating-point operation.

Reported times are obtained by summing cpu and system times.

Without contention The value reported here is the minimal value
observed out of two consecutive runs.

pthread jthread

sync 1.06s 13.23s

With contention See Figure 1.
We can see that as for the raw locking/unlocking performance,

our library is approximately 12 times slower than pthread without
contention, and between 3 and 50 slower than pthread with con-
tention.
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Figure 1. Raw locking performance with contention. This bench-
mark starts n thread, each of which to lock and unlock one same
mutex 106/n times.

5.1.2 Deadlock avoidance
We describe here a small benchmark with about 100 lines of code.
In this benchmark n threads access p mutexes. Each thread repeat-
edly executes a task. This task is to randomly choose 2 mutexes
m1 and m2, and then to do a “job” in 2 phases. The thread must
own m2 for the second phase and m1 during all of the job. Here is a
prototype implementation:

(synchronize m1
(work)
(synchronize m2

(work)
))

In our implementation to “work” is to do some number of
arithmetic operations.

With the pthread library the above program compiles but leads
to deadlocks, for instance when one thread choses mutexes mi and
mj and another thread choses mj and mi (the same ones, swapped).

To make the program deadlock-free we shall assume an order-
ing on mutexes and never nest synchronizes in the reverse order:

(if (< m1 m2)
; then
(synchronize m1

(work)
(synchronize m2

(work)
))

; else
(synchronize m2

(synchronize m1
(work) ; requires m1
(work) ; requires m1 and m2
)))

With the jthread library the first program creates region cycles at
runtime and thus raises errors. To prevent errors, one must assign
all p mutexes to the same region and then use the appropriate
prelocks:

(synchronize m1 :prelock m2
(work)
(synchronize m2

(work)
))

Results We ran the program with 4 threads and 4 mutex in order
to observe a high rate of contention. The value reported here is the
minimal real running time observed out of three consecutive runs.

pthread jthread

avoid 9.35s 8.34s

This micro-benchmark is an example of a case in which our
library allows for more parallelism, by locking m2 later in the cases
where m2< m1. In this example the gain in parallelism compensates
for the intrinsic cost of our functions, making the program using our
library (slightly) faster.

5.2 Benchmarking Realistic Applications
The first two micro-benchmarks presented in Section 5.1 measure
the intrinsic speeds of acquiring and releasing locks of the jthread
library and compare them to those of standard posix-like libraries.
This is an important comparison elements which shows that dead-
lock avoidance and deadlock detection, as currently implemented
in the jthread library, come with a price.

To go one step beyond, we conducted an experiment for estimat-
ing the impact of the jthread library on realistic applications: we
used two existing multi-threaded Hop applications that we linked
against the jthread library and compared the performances of
those of the initial applications.

Both applications were already working and apparently deadlock-
free, which was confirmed when we used our library. In both cases
we applied no modification to the existing code. Thus, by default,
each mutex was in its own region. In both cases, the application
was executed in safe mode and completed without any region cycle
error (Rule 1), i.e., no prelock was required. As there was only one
mutex in each region, Rule 2 could not have been violated.

These two experiments contrasts with the result of the micro-
benchmarks as they reveal a minor impact of the jthread library.
These two experiments are described in the two following sections.

5.2.1 Hop
The Hop runtime environment consists of a full-fledged Web server
equipped with dynamic compilers that compile Hop client side
programs dynamically into HTML and JavaScript. The Web server
is optimized for serving dynamic responses as fast as possible. Hop
is bootstrapped. Its source code counts 75 KLOC. We used this
application, i.e., Hop itself, to measure the impact of the jthread
library on a typical server-like application.

In order to handle several requests in parallel, Hop is multi-
threaded. The threads are executed in a shared memory and they
are preempted by the operating system. Hop relies on mutexes
to implement the critical sections such as the ones needed by the
various caches that Hop uses for avoiding recompiling client-side
codes.

For comparing the performances of the two Hop versions we
followed the traditional methodology for measuring the perfor-
mances of Web servers. It consists in emitting a variable amount
of requests to a server and measuring the number of responses the
server can sustain. The workloads are generated by httperf [5], a
dedicated tool. We executed the tests on a Linux 3.9 kernel hosted
by an Intel Xeon W3570.

We compared the performances of the two Hop servers on two
kinds of requests: static requests and dynamic requests. The results
are presented in Figures 2 and 32.

2 This benchmark was performed using a previous version of our multiple
locking algorithm from which we expect only minor differences in perfor-
mance on this benchmark.
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dynamic contents. Each session consists in 5 consecutive requests
that are sent using a single persistent connection.

The experiment shows no significant impact on the overall Hop
performance due to the jthread library. The two versions of the
server behave almost identically.

5.2.2 Performance Evaluation of a Multimedia Application
Our second experiment estimates the impact of the jthread li-
brary on the performance of a MP3 music player implemented in
Hop. This benchmark is a Hop application of about 1,300 lines of
code. It has been extracted from a larger multimedia application
which has been conceived for low-end ARM machines. Since it is
critical for the MP3 player to be fast enough, the source code has
been highly optimized for speed. In particular, the implementation
of the parallelism has been carefully crafted and lock acquisition
minimized as much as possible. In this experiment, the time spend
in the actual hardware audio system being irrelevant to our exper-
iment, we modified the application to discard the decoded bytes
instead of playing them.

The MP3 player implements a traditional producer/consumer
algorithm. The producer reads the bytes of a MP3 music file from
the local file system or from the network. The consumer decodes
them into raw music bytes. The two threads are synchronized using
mutexes and condition variables.

We ran the audio player on a large MP3 file of 60 minutes of
music. This whole execution locks approximately 18,700 mutexes.

The time figures reported here are the minimum cpu+sys time
of 3 consecutive executions.

mp3 decoder

hop 3.72s
hopj 3.94s

The time figures shows that on this realistic concurrent appli-
cation, the jthread library does not impact on the overall perfor-
mance. This contrasts the results obtained on micro-benchmarks
and confirms the results already observed with the Hop benchmark.

5.3 Complex benchmarks
We have not found yet a program commonly used for benchmark-
ing mutexes and with complex nesting of critical sections, which
would allow to meaningfully compare different strategies. In par-
ticular, among SPECjvm2008 [17], the Java Grande Forum Multi-
threaded Benchmarks [18], and the performance tests of the JSR
166 project [13] several programs use structured locking but no
nested locks. In the Debian Shootout [8] two programs use mu-
texes: in chameneos-redux there are no nested locks, while the
use of mutexes in thread-ring does not come down to structured
locking.

We see two possible interpretations of this rarity – at least
among benchmarks – of programs using mutexes in a complex way:
either such programs are too difficult to develop and maintain, or
there is little need for them. These two interpretations lead to two
opposite assessments of the usefulness of the present work.

The fact that mutexes are one of the most widely used synchro-
nization mechanism in shared memory concurrency reassures us in
our project to make safe use of mutexes easier.

6. Conclusion and future work
We designed and implemented a mutex library that guarantees the
absence of deadlocks, partly by raising outright errors which are
easier to debug than actual deadlocks, as in dynamic typing, and
partly by actively avoiding deadlocks, thus allowing to express ef-
ficient algorithms that would otherwise be prone to deadlocks. Our
functions require more information from the programmer in some
cases, but our library is easy to program with and mixes well with
modularity, and we were able to use it in two existing applications
with no modification. We showed that while our library has bad raw
locking performance compared to pthread, using jthread instead of
pthread had little impact on the performance of those two real-size
applications.

The starvation-free algorithm for multiple locking that we
provided could be incrementally improved upon, or replaced al-
together as the high-level deadlock-avoiding part of our library
should integrate well with other multiple locking algorithms which
could, for instance, trade the guarantee of starvation-freedom for
better raw locking performance.

Given that our deadlock avoidance mechanism relies on the
ability to acquire several mutexes simultaneously, we could offer
this feature to the programmer with a construct such as

(synchronize* l :prelock p)

with l and p being the lists of mutexes to respectively lock and
prelock. We experimented with this but did not yet settle on a
semantics for this construct.



Finally, our work could be ported to another language based on
structured programming and structured locking and, as in [2], it
could also be coupled with a static analysis that would infer region
and/or prelock annotations.

As for asymptotic deadlocks, which we defined in this paper, it
would be interesting to know if existing or novel locking mecha-
nisms would allow to prevent them.
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A. Formal semantics
In this appendix we present a formal semantics that combines the
mechanisms that we described in sections 2 and 4. The semantics is

parametrized by the strategy used in the multiple locking algorithm.
The strategy appears in the semantic rules as a function S which
takes as arguments the global queue Q and most of the state of the
system and returns a new queue Q′. We described in Section 4.4.1
the strategy that we chose for our implementation.

We give the formal semantics of a minimalistic language only
featuring the constructs of our library. For the sake of clarity we
exclude condition variables from this semantics. For each aspect
of the semantics the reader is referred to the explanations given in
previous sections.

A.1 Language
In our language, the only values are mutexes, sets of mutexes,
and unit, and the only operations are structured locking and the
launching of a thread. This language only makes sense as part
of a larger language – such as Hop – featuring general-purpose
constructs such as functions.

In the present language, “mutexes” are simply integers distinct
from one another and attributed in increasing order: m1 < m2 if
and only if m1 was instantiated before m2.

r regions
x variables
v ::= () | x | {v∗} values
e ::= v expressions

| {e∗}
| (thread e)
| (let (x (mutex r)) e)
| (sync e e e)
| (wait v v e) (runtime expression)
| (insync e) (runtime expression)

Informal typing We only consider expressions in which:

• sets {e∗} only contain expressions that reduce to mutexes;
• in (sync e0 e1 e2), e0 always reduces to a mutex and e1 always

reduces to a set.

The programmer can only create sets. However, our semantics
internally uses the usual mathematical operations on those sets.

A.2 Redexes and evaluation contexts
ρ ::= (thread e) redexes

| (let (x (mutex r)) e)
| (sync v v e)
| (wait v v e) | (insync v)

E ::= [] | E[F] evaluation contexts
F ::= [] | {..., [], ...} frames

| (sync [] e e) | (sync e [] e)
| (insync [])

A.3 Configurations
Threads are of the form E[ρ]id where

• id is an identifier;
• E is an evaluation context;
• ρ is a redex.

The only thing we expect from thread identifiers is that they be
distinct from each other.

Association sets of stacks
Each thread has some values associated to it, some of which

change (only) when the thread enters a critical section and are
restored to their previous value when the thread exits that critical
section.



j fresh
RT || A || N || O ||W || E[(thread e)]i → >j ∗RT || ∅j ∗A || 0j ∗N || ∅j ∗O || ∅j ∗W || E[()]i || ej

(THREAD)

RM || RR || n || E[(let (x (mutex r)) e)]i → rn+1 ∗RM || (r,>) ∗RR || n+ 1 || E[({x 7→ n+ 1}e)]i
(LET MUTEX)

L = {l} ∪ P L ∩ oi = ∅ ∀m ∈ L. RM (m) = r
∀m ∈ L. m ∈ A(i) ∨m ≥ N(i) Q′ = S (Q,QW , oi : O,W, i, l, P )

Q || QW || (r : rs)i ∗RT || RM || A || oi : O || W || E[(sync l P e)]i
→ Q′ || QW · i || (r : r : rs)i ∗RT || RM || A || oi : O || Li ∗W || E[(wait l P e)]i

( WAIT
RULES 2&3 )

L = {l} ∪ P L ∩ oi = ∅ ∀m ∈ L. RM (m) = r′

r 6<∗ r′ Q′ = S (Q,QW , oi : O,W, i, L, P )

Q || QW || (r : rs)i ∗RT || RM || RR || oi : O || W || E[(sync l P e)]i
→ Q′ || QW · i || (r′ : r : rs)i ∗RT || RM || (r′, r) ∗RR || oi : O || Li ∗W || E[(wait l P e)]i

( WAIT
RULE 1 )

({l} ∪ P ) ∩O = ∅ ∀ j. i ≤Q j ∨ l 6∈W (j) QW
l 6= [] ∨QW

r = []

Q || QW
l · i ·QW

r || ai ∗A || nsi ∗N || oi ∗O || wi ∗W || n || E[(wait l P e)]i
→ Q || QW

l ·QW
r || (P : a)i ∗A || (n : ns)i ∗N || (l : o)i ∗O || ∅i ∗W || n || E[(insync e)]i

( ENTER
NO NEW DOYEN

)

({l} ∪ P ) ∩O = ∅ ∀ j. i ≤Q j ∨ l 6∈W (j) Q′ = [j in Q | j ≺∗ d] · [j in Q | j 6≺∗ d]

Q || i · d ·QW || ai ∗A || nsi ∗N || oi ∗O || wi ∗W || n || E[(wait l P e)]i
→ Q′ || d ·QW || (P : a)i ∗A || (n : ns)i ∗N || (l : o)i ∗O || ∅i ∗W || n || E[(insync e)]i

( ENTER
NEW DOYEN

)

o 6= ∅
(r0 : r)i ∗RT || (a0 : a)i ∗A || (n0 : ns)i ∗N || (o0 : o)i ∗O || E[(insync v)]i

→ ri ∗RT || ai ∗A || nsi ∗N || oi ∗O || E[v]i

( UNLOCK
NESTED

)

Ql · i ·Qr || (r0 : >)i ∗RT || (a0 : ∅)i ∗A || (n0 : 0)i ∗N || (o0 : ∅)i ∗O || E[(insync v)]i
→ Ql ·Qr || >i ∗RT || ∅i ∗A || 0i ∗N || ∅i ∗O || E[v]i

( UNLOCK
TOP-LEVEL

)

Figure 4. Semantic rules

In configurations, these values are represented as sets of pairs
associating to each thread identifier a stack of values, with the top
value of the stack being the current value for the thread.

Components
Each configuration is formed of 11 components:

• Q is the queue (the ordered set) of active thread ids (see Sec-
tion 4);

• QW is the queue of waiting threads ids; if QW 6= ∅ its first
element is the doyen (4.4);

• RT is a stack set associating to each thread its current re-
gion (2.1);

• RM associates to each mutex its (immutable) region (2.1);
• RR is a set of region pairs (r1, r2) such that r1 < r2; RR is

such that relation < is the transitive closure of this set (2.1);
• A is a stack set associating to each thread the set of mutexes

that the thread is explicitly authorized to lock, i.e., the prelock
set of the thread’s current critical section or ∅ if the thread is not
in a critical section (2.2);

• N is a stack set associating to each thread the last attributed mu-
tex identifier (> 0) when the thread entered its current critical
section, or 0 if the thread is not in a critical section (2.2.1);

• O is a set associating to each thread a stack that contains all the
mutexes currently owned by the thread and reflects the nesting
of the critical sections the thread is currently in;

• W is a stack set associating to each thread id the set of mutexes
that the thread is currently waiting to lock;

• n is the (integer) value of the last mutex to have been instanti-
ated (2.2.1);

• T is the (unordered) set of threads.

Chemical style
To simplify a little the semantic rules, and to represent the

concurrent execution of the various components, we shall use the
following syntax for configurations:

Γ ::= Q |QW |RT |RM |RR |A |N |O |W | n | t | (Γ || Γ)
where t is a single thread (t ∈ T ).

We assume that parallel composition is commutative and asso-
ciative, so that the rules can be expressed following the “chemical
style” of [1], specifying local “reactions” of the form Γ → Γ′ that
can take place anywhere in the configuration.

Syntactic sugar and other notation

• x : l means that x and l are respectively the head and tail of a
list or pile

• q1 · q2 is the concatenation of queues q1 and q2
• x ∗ S , {x} ∪ S
• xi , (i, x)

• If (i, (x : l)) ∈ S then S(i) , x



A.4 Rules
The rules of the semantics are presented in Figure 4.

Configurations that would raise errors in our implementation,
namely, unauthorized acquisitions, are irreducible.

B. Proof of starvation-freedom
B.1 Indefinite progression
During an execution of a program, we consider that the possible
evolutions of a thread t fall into 3 cases:

• t terminates, i.e., eventually terminates;
• t ends up blocked forever (never making progress);
• t is indefinitely making progress, i.e., either ends up never being

blocked anymore, or enters infinitely many critical sections.

Let t be a thread. We say that “if t makes progress it eventually
does X” if t cannot indefinitely make progress or terminate and not
do X.

B.2 Property
We now prove that the algorithm presented in Section 4 is starvation-
free (see Section 3.3), i.e., that for any execution of any program,
if each thread making progress eventually releases the mutexes it
owns and if the number of ascendancies of no waiting thread tends
towards infinity then each thread eventually makes progress.

For this proof we assume structured locking with no condition
variables. This proof is based on the fact that all queuing, effective
taking and unlocking operations are done sequentially under a
global lock.

B.3 Proof
Let us assume that each thread making progress eventually releases
all the mutexes it owns.

B.3.1 Lemma
If a given doyen never makes progress, then the number of its
ascendancies tends towards infinity.

B.3.2 Proof of the lemma
Let us assume that td never makes progress. Then we algorithmi-
cally construct an infinite family (Sk) of non-empty and disjoint
sets of ascendancies of td.

At any instant, let n be the number of Sk already computed.
S0..Sn−1 are fixed and they only contain threads that are blocked
forever, while Sn is currently being computed.

At any instant, for any p ≤ n, let Sp
∞ = {t | t ≺∗ td} \⋃

0..p Sk. Note that ∀ p, q. p < q ⇒ Sq
∞ ⊂ Sp

∞.
At any instant, we will show that for all p ≤ n the following

invariant holds:
(Kp) ∀ t ∈ Sp

∞. ∃ t′ ∈ Sp. t ≺∗ t′
At n = 0 we set S0 = {td}. By hypothesis, td will never make

progress. (K0) will clearly be true at any future instant.
At n > 0, assuming that S0..Sn−1 are fixed and only con-

tain threads that will never make progress, and assuming that
(K0)..(Kn−1) will always hold, let us assign
Sn := {t | ∃ t′ ∈ Sn−1. t ≺ t′}

and let Sn evolve as follows: whenever ∃ t ∈ Sn. ¬(∃ t′ ∈
Sn−1. t ≺ t′), then Sn := Sn \ {t}.
Proof of (Kn)

Let us prove that (Kn) holds when Sn is initialized and at any
subsequent instant, by induction over time:

When Sn is initialized, ∀ t ∈ Sn
∞. t ∈ Sn−1

∞ therefore since
(Kn−1), ∃ t′′ ∈ Sn−1. t ≺∗ t′′, therefore, by definition of Sn,
(Kn) holds.

Subsequently, (Kn) could become false in 3 cases:

1. A new t ∈ Sn
∞ appears. Let us then show that ∃ t′ ∈ Sn. t ≺∗

t′. The present case can arise in 2 ways:

(a) t becomes an ascendancy of td. Since (J) holds, it cannot
be because t acquires m waited by t1 ≺∗ td. Thus it must
be because t1 ≺∗ td starts waiting for m owned by t.
t1 ∈ Sn−1

∞ because other ascendancies of td are blocked.
Let us distinguish between 2 cases:

i. t1 ∈ Sn. Then t′ = t1. X

ii. t1 ∈ Sn
∞. Then by induction hypothesis, i.e., (Kn)

applied to t1, ∃ t′ ∈ Sn. t ≺ t1 ≺∗ t′. X
(b) t leaves Sn but t ≺∗ td still holds. Then because of (Kn−1),
∃ t′′ ∈ Sn−1. t ≺∗ t′′, but not t ≺ t′′ because t is leaving
Sn, therefore t ≺ t1 ≺+ t′′ and we conclude as before. X

2. For t, t′ as in (Kn), t′ leaves Sn. This means that t′ is unlocking
mutexes, i.e., is making progress, which contradicts t ≺∗ t′. X

3. For t, t′ as in (Kn), t ≺∗ t′ becomes false but t ∈ S∞ still
holds. This means that t is unlocking one or more mutexes.
Because of (Kn−1), ∃ t′′ ∈ Sn−1. t ≺∗ t′′. There are 2 cases:

(a) t ≺ t1 ≺+ t′′ and we conclude as before. X

(b) t ≺ t′′. We distinguish between 2 sub-cases:

i. If t ≺ t′′ was true since Sn was initialized or before,
then we could have t ∈ Sn, which is not the case by
hypothesis. X

ii. Otherwise, when t ≺ t′′ became true, t ∈ Sn
∞ held,

thus by induction hypothesis we had ∃ t′ ∈ Sn. t ≺∗ t′.
Then this relation still holds. Indeed, since we assume
structured locking, t did not yet release the mutexes it
owns that are involved in this relation, since it just re-
leased the mutexes it acquired afterwards, and the other
threads involved in the relation did not make progress
either. X

Thus (Kn) holds and will hold at any future instant. � (Kn)
Let tm = min<

⋃
0..n−1 Sk. Then,

Sn = ∅ (Kn)
=⇒ Sn ∪ Sn

∞ = ∅
=⇒ ∀ t ≺∗ td. t ∈

⋃
0..n−1 Sk

(J)
=⇒ @ t. t < tm
(I)

=⇒ tm makes progress

Yet by induction (over n) hypothesis, all threads in
⋃

0..n−1 Sk

are blocked forever; therefore Sn will never be empty.
Yet Sn can only lose threads, therefore at some point it will

stop evolving forever. After this point, if at least one thread t ∈ Sn

kept making progress indefinitely, t would eventually release all
the mutexes it owns and leave Sn, which is impossible. Therefore
at some point all threads in Sn will be blocked forever.

We then proceed to computing Sn+1.
This constructs an infinite family of non-empty and disjoint sets

of ascendancies of td, therefore the number of td’s ascendancies
tends towards infinity. � (Lemma)

Thus by contraposition, if for no thread t the number of ascen-
dancies of t tends towards +∞, then td eventually makes progress.

Then if some threads never made progress, it is clear that one
of them would end up being the doyen, and thus would eventually
make progress. (Contradiction.)

Therefore each thread eventually makes progress. �


