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Abstract

We present HipHop.js, a synchronous reactive language that
adds synchronous concurrency and preemption to JavaScript.
Inspired from Esterel, HipHop.js simplifies the programming
of non-trivial temporal behaviors as found in complex web
interfaces or IoT controllers and the cooperation between
synchronous and asynchronous activities. HipHop.js is com-
piled into plain sequential JavaScript and executes on un-
modified runtime environments. We use three examples to
present and discuss HipHop.js: a simple web login form to
introduce the language and show how it differs from Java-
Script, and two real life examples, a medical prescription
pillbox and an interactive music system that show why con-
currency and preemption help programming such temporal
applications.
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1 Introduction

We present HipHop.js, a synchronous orchestration lan-
guage for JavaScript. To help web application development,
HipHop.js was built within Hop.js [35], which is itself a
multitier JavaScript extension dedicated to facilitate the pro-
gramming of web client-server asynchronous interactions
in various ways. But the HipHop.js compiler generates plain
JavaScript code that can be used in any server or client Java-
Script environment, without Hop.js and without any need
for an extra runtime support.

Our broad goal is to facilitate the design and program-
ming of complex applications by smoothly integrating three
computation models and programming styles that have been
historically developed in different communities and for dif-
ferent purposes. Let us first recall these models, which were
characterized in the 1980’s. i) Transformational programs
simply compute output values from input values, with com-
paratively simple interaction with their environment. This is
the domain of classical sequential programming languages.
ii) Asynchronous concurrent programs perform interactions
between their components or with their environment with
uncontrollable timing, using typically network-based com-
munication. This domain was started by Hoare’s CSP in the
1970’s, and languages such as Erlang [3] or CML [33] were
designed for it. Web programming in JavaScript or other lan-
guages also belongs to this category, but with an asymmetric
client/server view. iii) Synchronous reactive programs react
to external events in a conceptually instantaneous and deter-
ministic way: examples are real-time process control, com-
mand systems, communication protocol nodes, and, more
generally, temporal orchestration of complex activities. This
is the domain of synchronous languages, started in the 1980’s
by Esterel [5], Lustre [21], and Signal [20], followed by many
other languages and transformed into an industrial success
by SCADE 6 [10] for safety-critical applications.

Asynchronous and synchronous programs all use concur-
rency and communication, but differently: asynchronous
concurrency is inherently non-deterministic with commu-
nication taking arbitrary non-zero time; on the opposite,
synchronous concurrency is deterministic with communi-
cation in conceptually zero time. Both concurrency models
have found many applications, but they have remained quite
dissociated. We show that integrating HipHop.js’s synchrony
with JavaScript’s asynchrony can simplify web applications
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where reactive aspects are as important as interactive ones,
which we believe will become more and more frequent. To
the best of our knowledge, such a smooth blending of both
concurrency models in the context of a mainstream web-
oriented language has never been achieved before.

JavaScript is obviously adequate for programming trans-
formational and interactive or simple reactive systems. Its
object orientation helps handling data structures and imple-
menting classical algorithms. Its functional aspect makes
it suitable for implementing basic interactions and GUIs
using callbacks. But, on the asynchronous side, explicitly
coding the exchange data between servers and clients re-
mains mandatory. Hop.js removes the need for such manual
communication code. Servers and clients are written in the
same code, where locations of code fragments are specified
by multitier primitives [35] in the form of annotations telling
which server or client an expression belongs to. Then Hop.js
automatically generates secure communication code for the
necessary data transfers. In this paper, we will stick to basic
usage of Hop.js, because this is not our main subject and
because HipHop.js does not depend on Hop.js. All Hop.js
code in our examples could be written in plain JavaScript,
albeit with a significant size and complexity increase.

On the reactive side, JavaScript is based on an atomic exe-
cution mode that implements a kind of synchronous reaction.
ECMAScript 2015 [15] has augmented it by some basic fea-
tures that help asynchronous programming: yield stops the
control and restarts from there on demand; promises and
async simplify the blending of asynchronous executions into
sequential programming. These additions do help writing
basic temporal behaviors, but in a limited way. HipHop.js
keeps them but adds far more powerful features. First, syn-
chronous concurrency helps simplifying and modularizing
designs, and synchronous signaling makes it possible to in-
stantly communicate between synchronous concurrent state-
ments to exchange data and coordination signals. Second,
powerful event-driven reactive preemption statements bor-
rowed from Esterel finely control the lifetime of the arbi-
trarily complex program statements to which they apply,
instantly killing them when their control events occur; ex-
amples are abort(event){...}, every(event){...}, and a gen-
eral label-based preemptive escape mechanism compatible
with concurrency. Third, an extension of async that syn-
chronously signals termination completion to concurrent
statements and automatically performs automatic resource
cleaning when preempted for any reason. We show that their
combination makes reactive programming more powerful
and flexible than with plain JavaScript, because it makes the
temporal geometry of complex executions explicit instead
of hidden in implicit relations between state variables. Our
examples aim at illustrating the HipHop.js the programming
style and show its advantages.

An important point is that we chose to design HipHop.js
as a specific language, instead of a JavaScript extension as for
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Hop.js. This is because direct integration examples of con-
currency and preemption in classical sequential languages
always paid a semantic price we want to avoid. But we kept
the syntax very similar, with a simple way of using plain
JavaScript for any data computation.

To be executed, we compile a HipHop.js program into
sequential plain JavaScript code. Concurrency, communi-
cation, and preemption are compiled away by adequately
microscheduling the HipHop.js reactive statements in a way
that respects the HipHop.js semantics, identical to Esterel’s
one. The HipHop.js generated code is embedded into a Java-
Script reactive machine to be called from JavaScript using
a simple interface. At runtime, since JavaScript’s execution
is atomic, the execution of each HipHop.js reaction is unin-
terruptible, which is key to ensure its correctness. This is a
big bonus compared to compiling Esterel into C for instance,
where run-time reaction atomicity has to guaranteed by the
user separately for each usage, in a way that highly depends
on the execution environment.

In the sequel, we focus on the HipHop.js’s language design,
the programming style it offers, and its tight integration
with JavaScript. To illustrate the diversity of its potential
applications, we present three examples: a simple login GUI
to introduce the main constructs and the integration within
JavaScript, a medical application related to drug prescription,
and a larger scale interactive music platform used in actual
concerts that makes extensive use of all the expressiveness
HipHop.js has to offer.

The paper is organized as follows. In Section 2, we present
two implementations of the login web page: first in Java-
Script then in HipHop.js, introducing the language on-the-fly
and explaining of how it modularizes and simplifies temporal
programming; we complete the login implementation by the
Hop.js coding of a HTML GUI, showing how we make the
communication between HipHop.js, Hop.js, and HTML as
simple as possible. In Section 3, we show how easy it is
to extend the specification to make our application richer
while reusing the unmodified initial HipHop.js code, which
would be difficult in JavaScript. Section 4 is devoted to the
drug prescription and interactive music examples. Section 5
briefly describes the JavaScript runtime implementation of
HipHop.js programs. Section 6 discusses related work, and
we conclude in Section 7.

2 HipHop.js vs. JavaScript, by the Example
We introduce HipHop.js with a simple login panel as used by
many web applications. When both the user name and pass-
word are filled with at least two characters, a login button is
activated. When clicking it, the user credentials are checked
by sending them to a third-party server, e.g., an OAuth server.
The session starts when the server acknowledges login va-
lidity, which also makes a logout button appear; the user can
then logout by pressing it. A local clock starts when login
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is acknowledged and forces logout when timeout occurs.
During an active session, clicking login causes immediate
logout and restart of the login phase.

As the specification of the application is simple, JavaScript
would probably be considered well adapted to implement it.
Nevertheless, it is still of sufficient complexity to introduce
and illustrate the main features of HipHop.js and its advan-
tages vs. plain JavaScript. We will see more on this point in
Section 3 when adding a new feature to the specification.

2.1 A JavaScript Implementation

Let us first show how the application can be programmed
in JavaScript, to later emphasize the differences with the
HipHop.js version presented in Section 2.2 and give a first
comparison of both programming models. First, we focus
on event handling, delaying the HTML part to Section 2.4
and assuming that trivial listeners with obvious names are
associated with HTML elements. We use global variables
(registers) to model the application’s states. By convention,
we start their names with R’.

A first JavaScript component handles the name and pass-
word inputs using three registers and three functions:

1 function enableLoginButton() {

2 return (Rname.length >= 2 && Rpasswd.length >= 2);
3}

4 function nameKeypress(value) {

5 Rname = value;

6 RenablelLogin = enablelLoginButton();
7}

8 function passwdKeypress(value) {

9 Rpasswd = value;

RenablelLogin = enablelLoginButton();
1}

Enabling and disabling login is done by setting RenablelLogin.

The second JavaScript component is the authenticate
function, called-back by the GUI when the user clicks the lo-
gin button when it is enabled. Using RconnStatus and Rconn,
it disconnects from a possibly running session, updates the
GUI to notify the ongoing authentication, and sends an au-
thentication request to the server:

12 async function authenticate() {

let conn = ++Rconn;

logout();

RconnState = "connecting";

let v = await authenticateSvc(Rname, Rpasswd).post();
if(v & conn === Rconn) startSession();

13

The register Rconn and a local variable conn are set (line 13) to
number authentication requests and detect situations where
another authentication has been asked for before the current
one is completed. A session that might still be active is ter-
minated before requesting the new authentication (line 14).
The connection status is updated (line 15); the request is sent
over the network to the authentication server (line 16); when
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received, the return value is checked (line 17) to start a new
session once login has been approved. Notice the use of the
JavaScript reactive statements async and await.

The third component handles sessions. Using registers
RconnStatus, Rtime and Rintv, it declares the startSession
function invoked after a successful authentication (line 17):

19 function startSession() {
20 RconnState = "connected"; Rtime = 0;
Rintv = setInterval(function() {
if(++Rtime > MAX_SESSION_TIME) logout();
update();
}, 1000);
update();

21

22

23

24

25

26
The status is updated and the connection time is reset; a Java-
Script timer is started to increment the clock each second
(line 21) and to end the session after the expiration date
(line 22). Notice the use of a callback to implement a reactive
action (line 23).

The Logout function completes the implementation:

27 function logout() {
28 RconnState =
if( Rintv ) {

clearInterval( Rintv );

Rintv =

"disconnected";
29
30
31
32 }

33 }

It merely changes the connection status (line 28) and clears
the JavaScript timer if it is active.

This JavaScript source code looks relatively straightfor-
ward w.r.t our specification. Nevertheless, we make two ob-
servations. First, the global state variables Rname, Rpasswd,
RconnStatus, RenablelLogin, Rintv, and Rconn build hidden
control dependencies between the different components. In
practice, the number of such control variables grows with
the complexity of the problem. For less trivial problems, and
in particular when more and more features get added to the
specification, state variable interactions can lead to a large
number of implicit and pretty invisible global control states.
Understanding the possible control flows and checking their
consistency can become very complex. Second, the compo-
nents are not isolated from each other. For instance, the
authenticate component that requests for authentication
and starts a session calls the logout component to execute
some cleanup. This means that these components cannot
be developed and tested independently, and that even local
specification changes may involve modifying several com-
ponents in a non-trivial way. These are the very situations
where HipHop.js will show its full benefit, as we shall see in
Section 3 when modifying our login design.

false;

2.2 A HipHop.js Implementation

We now present our HipHop.js implementation, introducing
the HipHop.js reactive constructions as we go and showing
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how HipHop.js attacks the aforementioned programming
problems. Let us first summarize HipHop.js’s principles.

2.2.1 Principles of HipHop.js. HipHop.js’s synchrony
hypothesis [4, 5] is expressed as follows. A HipHop.js pro-
gram executes conceptually instantaneous steps that are
called reactions or instants. Within each instant, reactions ex-
ecute HipHop.js statements in sequence or in parallel, letting
them communicate using instantaneously broadcast signals.
Execution and signal broadcasting instantaneity ensure that
concurrency is deterministic, unlike asynchronous concur-
rency; error-prone manual synchronization is replaced by
automatic and correct run-time scheduling, as decribed in
Section 5 below.

Technically, HipHop.js separates two levels of languages:
a synchronous control level in the language proper, based on
specific temporal statements such as abort, every, fork/par
etc, which will be illustrated in the sequel, and plain Java-
Script data computations and test expressions used by these
statements. External and internal communication is achieved
by signals, which are divided into three classes: input signals
set by the host JavaScript program, output signals returned
to JavaScript when the reaction terminates, and local signals
used internally.

Syntactically speaking, HipHop.js is a DSL for JavaScript,
with a specific syntax. The switch from plain JavaScript
to HipHop.js occurs either for data expressions enclosed
in HipHop.js statements or in the hop {...} instantaneous
statement. HipHop.js programs are organized in modules. A
module declares its input and output signals in its interface,
which can be declared in the module header or separately.

At each reaction, each signal broadcasts a unique present /
absent status to all active temporal statements in its scope.
A pure signal S carries no more information and its status
is recomputed at each reaction, either as sent by the Java-
Script environment for an input, or by the program for a
local or output. Output and local signals are absent by default
and set present in each reaction only by executing one or
several instantaneous “emit S()” statements. The status of S
at current and previous instants are accessed in the HipHop.js
program’s JavaScript expressions using the forms S.now and
S.pre. In addition to the status, a valued signal has a unique
JavaScript value at each instant, which is persistent over
instants unlike for the status and can be initialized at signal
declaration time. The value is specified by the environment
for an input; for a local or output, it is updated by the current
value of exp each time an “emit S(exp)” HipHop.js statement
is executed. If several values are emitted in the same instant,
they are combined by a specific function declared with the
signal. The current value is accessed from HipHop.js’s Java-
Script expressions using S.nowval for current instant and
S.preval for the previous instant. Broadcasting implies that
all simultaneously active JavaScript data computations and

536

Gérard Berry and Manuel Serrano

tests enclosed in HipHop.js statements see the same signal
information.

The HipHop.js-JavaScript toplevel interface is achieved
by a JavaScript reactive machine that contains the HipHop.js
compiled code and provides a simple communication API
between the JavaScript environment and the HipHop.js code.
Before each reaction, the status and values of input signals
can be set by the host JavaScript program and passed to
HipHop.js via the reactive machine. Those of output signals
are returned to JavaScript via the reactive machine when the
reaction terminates. Those of HipHop.js local signals remain
local to the compiled JavaScript code.

For each reaction, the compiled JavaScript code atomically

performs a complete microscheduling of all HipHop.js active
sequential, concurrent, and preemption temporal statements,
see Section 5. HipHop.js takes benefit of JavaScript atomic ex-
ecution to avoid any run-time interference between reactive
execution and the evolution of the asynchronous environ-
ment. This makes the theoretical synchronous semantics
of HipHop.js automatically respected in practice, indepen-
dently of any valid HipHop.js compiling technology. This
brings a crucial advantage over traditional synchronous lan-
guages implementations, where atomicity is difficult for the
user to manually guarantee.
HipHop.js interface signals are different from
JavaScript events; but, in practice, it is common for a reactive
machine to directly bind input signals to JavaScript events
and to generate JavaScript events from HipHop.js output
signals. But this is by no way mandatory.

2.2.2 The Main HipHop.js Login Module. Our main
module has valued inputs name and passwd, with strings as
values, and pure inputs login/logout for the GUI buttons.
Its outputs are enablelLogin to control the visibility of the
login button, connState to display a connection status mes-
sage, and time to display the current connection time. It
involves three submodules, using the run keyword to dis-
tinguish running a temporal module from calling a Java-
Script function. Identity reads the GUI and enables the lo-
gin button, Authenticate calls the authorization service, and
Session manages an active session:

hiphop module Main(in name= , in login,
in logout, out enablelogin,

out connState="disconn",

inout time=0, inout connected) {

, in passwd=

run Identity(...);
} par {
every(login.now) {
run Authenticate(...);
if(connected.nowval) {
run Session(...);
} else {
emit connState("error");

1
2
3
4
5 fork {
6
7
8
9
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In the interface declaration, ‘=" defines the persistent ini-
tial values of valued signals, overridden by the first reception
for an input or by the first emission for any signal.

The run construct (line 6, 9, and 11) instantiates a submod-
ule in place by inlining its code and binding its environment
signals in the current lexical scope. The form “run M(...)”
means that each interface signal is implicitly bound to a sig-
nal of the same name in the lexical environment. Manual
binding of differently named signals can be done by “S as
S17if S is the interface signal. It will be used in Section 3.

Semantically speaking, fork/par (lines 5, 7) runs branches
in parallel in the same signal status/value environment. Op-
erationally, at each reaction, it picks one branch to execute
until it terminates or is blocked on a test for the status or
value of some yet unknown signal, then another branch, etc.
Signal emission in one branch can resume other branches,
and so on. This reaction-internal microscheduling is invisible
to the user but always gives deterministic and semantically
correct results. Deadlocks can occur but are always detected
and reported at runtime, with a compiler warning if such a
dynamic deadlock is possible, see Section 5.

The every construct (lines 8) implements a preemptive
loop that checks for a condition, here the presence of login.
An every loop starts its body when its condition is true, but
kills it immediately to restart it anew whenever the con-
dition is met again in some further instant. It is strongly
preemptive: at any instant where the body is alive and the
condition is true, the current instance of the body does not
execute, only the new one does. The condition can be any
JavaScript expression with the visible signals qualified by
now, pre, nowval, or preval. JavaScript variables can also be
declared and used provided they are not shared, i.e., read in
one parallel branch and written in another branch, which
would break determinism; they will not be used here.

The expression login.now is true when login is received in
the instant. Then, Authenticate is started, a previously active
Session being first automatically killed. When Authenticate
terminates, the value of connected is tested (line 10). If true,
Session is started to run the new session until further login,
logout, or time out. When Session terminates, the every
statement simply waits for a new login.

2.2.3 The Identity Module. The Identity module de-
tects when a login becomes possible and signals that fact. It
is defined as follows:

18 hiphop module Identity(in name, in passwd,
19 out enablelLogin) {
20 do {
emit enablelLogin(
name.nowval.length>=2 && passwd.nowval.length>=2);

} every(name.now || passwd.now)
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Here, every is at the end of the do statement: the emit state-
ment is executed at module start time and terminates in-
stantly; it is re-executed whenever at least one of the two
inputs name and passwd is present; enableLogin is emitted
with a Boolean value true if and only if name and passwd
both have 2 or more characters, which updates the GUI as
explained in Section 2.4.

2.2.4 The Authenticate Module. The Authenticate mod-
ule checks the validity of the identity at each click on login
and emits the connected signal with value true if the connec-
tion succeeds and false otherwise:

25 hiphop module Authenticate(in name, in passwd,
26 out connState, out connected) {
emit connState('"connecting");
async connected {

authenticateSvc(name.nowval, passwd.nowval)

.post().then(v => this.notify(v));

27
28
29
30
31 }
32 3}

First, the body emits a new connection state (line 27) that
updates the GUI automatically, see Section 2.4. Second, it
executes an async statement (line 28) enriched with a comple-
tion signal, here connected, and a plain JavaScript statement
that is expected to take time in term of reactions, i.e., not to
complete during the current reaction. When started, async
immediately triggers the JavaScript evaluation of its body,
locally blocking its local HipHop.js control thread but not
blocking other parallel branches to let the rest of this global
HipHop.js reaction proceed. At line 29, the HipHop.js async
body is a JavaScript promise that invokes the non-blocking
remote web service authenticateSvc. When this promise
completes, the expression “this.notify(v)” (line 30) pro-
vokes the broadcast towards the rest of the program of the
connected output with v’s value, and Authenticate termi-
nates.

Two major points must be noted w.r.t. the JavaScript pre-

vious code. First, Main’s every outer loop (line 8 of Main)
instantly kills and restarts Authenticate when a new login
is received. Thus, pending authentications are automatically
discarded without needing the counter used in JavaScript.
Second, there is no need to explicitly execute the logout
cleanup operation when a new login occurs, unlike for Java-
Script. As we shall see later, this operation is automatically
triggered by “every(login.now)...” in Main.
The HipHop.js async signal-enriched form
is the element that enables reactive programs to harmo-
niously blend synchronous and asynchronous computations.
It makes it possible to control external asynchronous compu-
tations within the semantically well-defined and determin-
istic world of reactive synchronous computations. It is also
a major evolution of HipHop.js w.r.t. Esterel’s exec, which
only offers a very restricted and complicated link to C.
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2.2.5 The Session and Timer Modules. The Session mod-
ule is in charge of running a session and handling discon-
nection:

33 hiphop module Session(connState, time, logout) {

emit connState("connected");

abort(logout.now || time.nowval > MAX_SESSION_TIME) {
run Timer(time);

34
35
36

37 }

38 emit connState("disconnected");

39 3}

It starts a new session by emitting connState to update the
GUI and by starting a timeout timer. Here, the abort con-
struct executes its body until the condition is met: it aborts
the timer and terminates when the session duration is over.

The Timer module is part of the standard HipHop.js library
but, for completeness, we include it here since it stresses
another essential feature of HipHop.js:

40 hiphop module Timer(time) {
async {
this.react({[time.signame]: this.sec = 0});
this.intv = setInterval(() =>
this.react({[time.signame]: ++this.sec}), 1000);
} kill {
clearInterval(this.intv);

41
42
43
44
45
46
47 }
48 }

Our async wrapping of the JavaScript setTimeout function
has two important aspects. First, in the async body, this
refers to the async itself, which in turn refers to the reactive
machine. In the inner JavaScript call to SetInterval, the
form this.react(...) tells JavaScript to queue a reactive
machine reaction every second with input the current value
of time in seconds. Since the setInterval JavaScript function
never terminates, there is no need for an async completion
signal such as connected for Authenticate. Second, this async
will be automatically killed either by the Session’s abort
statement when its timeout condition is met or by the super-
enclosing “every(login.now)” of Main if a new login occurs.
In both cases, the kill clause of async will automatically
free the timer resource by calling the clearInterval Java-
Script function. Generally speaking, no user of Timer needs
to explicitly call this cleanup action when it kills the timer
for any reason. This is a major modularity enhancement.

2.3 Comparing JavaScript and HipHop.js

We are now in position for an early comparison of both
HipHop.js and JavaScript implementations.

Control. JavaScript uses global variables to represent the
state of the application; note that the ES6 async/await ex-
tensions do not help with this respect. HipHop.js uses an
explicit control state defined by the concurrent positions in
the code where the control has stopped at the end of each
instant. This enables HipHop.js modules to be developed and
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tested separately, which facilitates application validation and
the building and reuse of library modules.

Preemption. The power of preemption clearly appears
in the Main and Timer modules. In Main, a new login cancels
all current activities. In Timer, cleanup occurs automatically
without caring about why the module is killed. Symmet-
rically, modules that kill Timer do not need to care about
cleanup. This factoring out process can be viewed as a con-
current generalization of finalization in algorithmic program-
ming languages, but with a clear and deterministic semantics
compatible with concurrency thanks to perfect synchrony.

In summary HipHop.js’s explicitly temporal programming
style leads to behavioral modularity, which is missing in
JavaScript. The differences with JavaScript might seem mun-
dane for such a simple application. But they will become
much more visible with greater application complexity, as
we shall see in Section 3.

2.4 Integration within the Web Page

We finish the login application by describing the interplay be-
tween HipHop.js, JavaScript, and HTML. We use Hop.js [35],
a multitier extension of JavaScript that makes it possible
to intertwine server-side and client-side code in the same
source code, using the “~’ mark to distinguish them. Hop.js
also extends JavaScript syntax with that of HTML, whose
tags simply become an alternate syntax for standard func-
tion calls. Hop.js also extends HTML with react nodes that
update their content automatically when the expression they
depends on need to be re-evaluated. Finally, Hop.js supports
Common]JS modules on both server and client. Although
HipHop.js and Hop.js are independent and address different
problems, they have been designed to be complementary:
Hop.js helps programming the asynchronous code deploy-
ment and communication between servers and clients, while
HipHop.js helps programming synchronous patterns on both
sides. Here is the server HipHop.js code.

1 service login() {

2 return <html>

3 <head>
<script src="hiphop" lang="hiphop"/>
<script src="./login.hh.js" lang="hiphop"/>

const M=require("./login.hh.js");

</script>
</head>
<input onkeyup=~{M.react({name: this.value})}/>
<input onkeyup=~{M.react({passwd: this.value})}/>
<button class=~{this.disabled=!M.enablelLogin.nowval}

onclick=~{M.react({login: true})}>

login
</button>
<react>status=~{M.connState.nowval }</react>

4
5
6 <script defer>
7
8
9

<button class=~{M.connState.nowval}
onclick=~{M.react({logout: true})}>
logout
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</button>
<div class=~{M.connState.nowval}>
time: <react>~{M.time.nowval}</react>
</div>
</html>

20
21
22
23
24

25 }

In the generated HTML page sent by the server’s login ser-
vice, the require call loads the client module ./login.hh.js
from the server and binds its exports to the client-side M
variable, whose value is the Hop.js code of a HipHop.js reac-
tive machine. To perform a synchronous reaction to a GUI
user action, the application invokes M’s react method (lines
10, 11, 13, and 18), with arguments the emitted input signal
names and optionally their value. For instance, line 10, name
is emitted with the contents of the input box, and, line 18,
the machine reacts to logout button click by emitting logout
with value true. For HipHop.js output signals, their names
are attributes of the reactive machines; thus their statuses
and values can be directly accessed after a reaction. Finally,
note that in this example, all the reactive execution takes
place on the client-side: all the react calls are executed inside
“-expressions.

In the above code, the boundary between traditional
HTML code and reactive HipHop.js code is kept clear. Both
can be developed separately, for instance by GUI designers
for the HTML part and by computer engineers for the re-
active part. This was one of our main requirements when
designing Hop.js and HipHop.js.

3 Login Panel 2.0

To better illustrate HipHop.js’s temporal programming
power, let us evolve our login panel specification: for ver-
sion 2.0, after a fixed number of unsuccessful connection
attempts, the whole system should freeze for a quarantine
period.

In JavaScript, we need to add a new register to count
the number of unsuccessful authentications, and to mod-
ify authenticate to increment or reset this register accord-
ing to the result of authenticateSvc. We also need to ex-
plicitly ignore pending authentication replies and modify
nameKeypress and passwdKeypress to disable the login button
when in quarantine. Finally, we need a quarantine boolean
state register and a JavaScript timer to reset it when the
timeout expires. Almost all the initial implementation com-
ponents need to be modified and re-tested to handle the
quarantine. This is obviously a serious reengineering prob-
lem (left to the reader).

In HipHop.js we simply add to the unmodified body of
Main V1 a new parallel Freeze module that listens to Main’s
connected signal and emits in turn two signals, freeze after
a fixed number of successive unsuccessful connections and
restart when the quarantine is over:

48 hiphop module Freeze(var max, var attempts,
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sig, tmo, freeze, restart) {

do {

await count(attempts, sig.now);

emit freeze();

abort(tmo.nowval > max) {

run Timer(tmo as time);

55 }

emit restart();
} every(sig.now &% sig.nowval);

58 }

The behavior reads trivially. The module body is an infinite
loop reset by every reception of sig with value true, in our
example by any valid connection. The body of this loop is a
temporal sequence: waiting for attempts receptions of sig,
which provokes immediate emission of freeze, then waiting
for timeout to emit restart.

The new MainV2 program is as follows:

59 hiphop module MainV2(tmo) implements ${Main.interface} {
60  signal freeze, restart;
fork {
loop {
weakabort (freeze.now) { run Main(...); }
emit connState("quarantine");
emit enablelLogin(false);
await restart.now;
emit connState("disconnected");

61
62
63
64
65
66
67

68 }

69 } par {

70 run Freeze(max=5, attempts=3, sig as connected, ...)
71 }

72}

The interface of MainV2 is directly imported of that of Main
using implements. The loop form implements an infinite loop
(line 62) with instantaneous restart when the body termi-
nates (the body is not allowed to terminate instantly when
started). The weakabort form (line 63) implements a weak
abortion. It is similar to abort but does execute its body at
abortion time, while abort would prevent this last execution.
Here, when freeze occurs, Main is immediately killed and
will only be restarted at next restart. The weakabort con-
struct is necessary because it is Main that sends connected
to Freeze. Using abort would provoke a causality prob-
lem leading to microscheduling deadlocks: Main would emit
connected (false) that would provoke emit(freeze), which
itself would prevent Main to execute. This deadlock would
be detected and an error message generated by HipHop.js.

The outer loop restarts the weakabort statement that imme-
diately restarts Main afresh. It is important to note that when
weakabort starts it does not immediately check freeze.now.
In terms of abortion, abort and weakabort are delayed, that
is, check their condition only at instants strictly following
their start. It would also be possible to do the check at start
time by using the immediate keyword between abort and the
condition.
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On line 70, we have used new syntactic elements for run-
ning the Freeze module. First, in addition to signals, a module
interface can declare variables. Here the Freeze module de-
clares the max and attempts variables. When invoking the
module we pass them 5 and 3. Second, we use the syntax
“sig as connected” to mean that the signal named sig in
Freeze’s interface is bound to the signal connected of the
environment.

In conclusion, with HipHop.js, we have been able to evolve
our application by reusing the previous design unchanged,
which also avoids lots ot retesting. Readability and smooth
evolution are prominent advantages of HipHop.js compared
to traditional algorithmic programming languages for imple-
menting complex behavioral applications.

4 Two Real-Life Applications

HipHop.js has been designed to help programming applica-
tions that rely on complex temporal behaviors and that use
modern execution environments. GUI usually implemented
as web pages and gateway or server computing fall into this
category. In this section, we present two such applications.
The first one is still under development. The second is used
in production.

4.1 Medical Prescriptions

Drug prescriptions are most often temporal, specifying when
to take a given drug with side conditions about mistakes
not to be made. Unfortunately, they are often quite fuzzy
and the delivery of drugs is not always well-traced in hos-
pitals, which generates quite a large number of accidents
damageable to patients [23]. We plan to use HipHop.js to
make prescriptions temporally rigorous and ensure their full
traceability using web/smartphone applications, and possi-
bly later develop smart IoT pillboxes with the very same
HipHop.js code. We illustrate this here with the prescription
of Lisinopril, which is a major hypertension drug. This exam-
ple is tiny, but work continues on more complex ones (with
Pr. Steven Belknap, Institute for Public Health and Medicine,
Northwestern University, USA).

4.1.1 Lisinopril Prescription as a Specification. Ignor-
ing the dosage and treatment duration that are not relevant
here, the official Lisinopril prescription looks trivial:

Take 1 tablet once daily with time-window 8PM

to 11PM and time-wall 8 hours between doses.

This looks simple and natural for a doctor but, for a com-
puter scientist, the scheduling looks underspecified, even
nonsensical: if a dose is taken each day between 8PM and
11PM, why add that two doses must be separated by more
than 8 hours, which is redundant? The hidden reason is that
harmful delivery mistakes are frequent in hospitals. Another
potential mistake is clearly missing: what if no dose is given
for a long time? In order to automatize the enforcement of
the prescription, we need to turn it into a rigorous temporal
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behavior definition, with appropriate warnings for minor
mistakes and error messages for major ones.

Here is a question-answer session we had with a doctor.
Q: what if a tablet is taken outside the specified window?
A: the 8-11 window is better, but no big deal provided that
the 8h distance constraint is satisfied. Q: what if no tablet is
taken for a long time? A: that’s real bad, 34h should be the
maximum. Q: would you like a computerized system to help
preventing the 8h and 34h errors? A: certainly, provided it
is simple to use by patients and heavily saturated nurses. Q:
would it be useful to automatically log all events for later
individual error analysis and, more generally, data analysis
on a large number of patients? A: absolutely!

We propose a simple HipHop.js program driving a web/s-
martphone GUI. Our design choices are as follows:

1. A time display shows a minute-base clock with background
green during the 8PM-11PM period and orange outside this
period; another time display shows when the previous dose
was taken; two buttons Try and Confirm control tablet de-
livery and confirmation; a text display shows errors and
warnings (a beeper could be trivially added).

2. Doses are delivered and recorded by two successive
presses: first on Try to check that the timing is valid, and
then on Confirm to assert that the dose has been swallowed.
3. The Try and Confirm buttons are smart. First, they are
inactive when pressing them should be disallowed, e.g., for 8
hours after the last Confirm for Try, or does not make sense:
Try should become inactive once pressed and Confirm should
be active only after this moment and only until pressed.
Second, they embed a timer that raises an alarm (blinking
red, beeping, etc.): for Try, if the previous dose was taken
more than 30h ago, as a warning for approaching the 34h
limit; for Confirm, if not pressed in reasonable time after Try.
4. All user and system actions are recorded in a log file with
their date (easy and not detailed here).

Of course, there is still room for mistakes, for instance
if an actually taken dose remains unconfirmed after a long
time. The log should help analyzing such mistakes.

4.1.2 The HipHop.js Implementation. Here is the
HipHop.js program, with a button module and a main mod-
ule. After the login example, these programs should read
trivially ans stress once more the interplay between synchro-
nous sequence, concurrency, and abortion.

hiphop module Button (var d, in Tick, in B,
out Active, out Alert) {

emit Active(true); emit Alert(false);
abort (B.now) {

await count(d, Tick.now);

do { emit Alert(true); } every(Tick.now);
3
emit Alert(false); emit Active(false);
}

hiphop module Lisinopril extends Intf {
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signal InDoseWindow;
fork {
run Clock (...);
} par {
loop {
DoseOK: fork {
run Button(d=TryDelay, Tick as Mn, B as Try,
Active as TryActive, Alert as TryAlert);
// Try received, deliver but warn if out of dose window
emit DeliverDose();
if (!InDoseWindow.nowval) {
emit TryNotInWindowWarning ();

3
// phase 2 : wait for confirmation, keep alerting if late

run Button(d=ConfDelay, Tick as Mn, B as Conf,
Active as ConfActive, Alert as ConfAlert);

// confirmation received

emit RecordDose(Time.nowval);

break DoseOK; //end of phases 1 and 2

} par {

// in phases 1-2, error if too long wait since last dose

await count(MaxDoselInterval-MinDoselInterval, Mn.now);

sustain NoDoseSinceToolLongError();

}

// phase 3 : wait for min delay to allow Try again

abort count(MinDoseInterval, Mn.now) {
every(Try.now) { emit TryTooCloseError(); }

3
3
3
3

This program introduces a new HipHop.js construct: the
DoseOK label coupled with “ break 0OK”. This break instantly
terminates the fork/par statement, weakly preempting the
other parallel branch that would otherwise keep warning
for no dose after its delay. That a break also instantaneously
preempts concurrent activities makes perfect and determin-
istic sense in synchronous concurrent languages, which is
not the case for asynchronous languages - when it exists.

Adding a Reset interface button would be trivial by en-
closing Main’s body in “every(Reset.now) {...}”. We did
not do it because of column width limitation.

4.2 Skini: Massively Interactive Music

Skini [30] is a web-based music composition and execution
environment for live performances with broad audience par-
ticipation through connected smartphones, smart watches,
tablets, or PCs. Skini is designed to help the composer to
find a balance between structured and interactive music. The
music is built from patterns that are brief composed music
elements, dynamically assembled in a continuous flow by
real-time audience interaction. The patterns characterize the
architecture of the music to be played. Their successive se-
lections by the audience during the show creates a unique
interpretation of the musical composition. Skini is used on a
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regular basis for performances, concerts 1. and music teach-
ing 2. Note that Skini’s music is based on the dynamic modi-
fication of a precomposed structure, which contrasts with
the local actions most interactive music systems focus on.

Skini extensively uses Hop.js and HipHop.js. Its server-
multiple clients architecture is implemented using Hop.js.
Its GUI, mostly executed on audience mobile phones, is im-
plemented in Hop.js and HTML as for the login example of
Section 2.4. Audience interaction is entirely programmed
in HipHop.js since it requires extensive and complex event-
based programming. All musical components, from the score
to synthesizer control, are modeled as synchronously concur-
rent HipHop.js modules that interact though synchronous
signals.

4.2.1 Music Scores. The composer first creates a set of
music patterns used for his piece, which are short music seg-
ment of 1 or 2 seconds. Patterns are accessible for selection
to the audience only via groups and tanks that are activated
or deactivated upon audience interactions. Patterns in an
active group (resp. tank) can be selected multiple times (resp.
only once) by the audience.

The composed musical path is the sequencing of group
and tank activations and deactivations. For instance, the com-
poser may choose to activate a group of patterns only after
a fixed number of patterns of another group. Group activa-
tion/deactivation may also depend on constraints between
groups, such as exclusion rules between groups that involve
incompatible instruments or enforced group sequences to
avoid too repetitive selections by the audience. Managing
patterns, groups, and tanks for an interactive composition is
obviously an orchestration problem. With Skini’s the solu-
tion is to build a HipHop.js reactive program whose inter-
active execution drives standard digital audio workstation
(daw) for sound generation.

4.2.2 Score Programming. A HipHop.js score program
controls the groups and tanks dynamically proposed to the
audience during the performance. Selecting a pattern has
two effects: first, its music is planned to be played; second, it
impacts the future of the music as it may activate or deacti-
vate other groups and tanks. The general HipHop.js program
structure is as follows:

e Each group is implemented as a data structure con-
trolled by two HipHop.js signals: an input signal sent
by an auditor who selects one of its patterns when the
group is active, with input value the selected pattern;
an output signal telling Hop.js to flag the group as
activated or deactivated.

e Tanks are implemented as arrays of one-pattern
groups.

https://www.cirm-manca.org/manca2017
Zhttps://aide-aux-projets.sacem.fr/actualites/les-fabriques-a-musique
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e Groups that play together are implemented as
fork/par HipHop.js constructs.

e Sequences of groups are simply implemented as code
sequences.

e Dependencies between groups and tanks are imple-
mented using wait and preemption statements.

Here is an excerpt of a typical HipHop.js Skini score:

1 abort(seconds.nowval === 20) {
2 emit ActivateCellos(true);

3 await count(5, CellosIn.nowval);
4 run TrombonesTank();

5 fork {
6
7
8
9

run TrumpetsTank();

} par {
run HornsTank();

10 }

This fragment defines the sequencing of decisions. It will
run for 20s. It first activates the Cellos group and waits for
5 cello patterns to be selected by the audience. Then the
selected patterns are queued and played by the synthesizer
under the control of Hop.js, HipHop.js being not needed for
this simple operation. After 5 selections of cello patterns,
the score enables TromboneTank that plays once each of its
patterns, as dynamically selected by the audience. When
the tank is exhausted, the same process is started for both
TrumpetsTank and HornsTank, which play synchronously.

Using HipHop.js for such scores has two benefits. First the
orchestration constructs are aligned with the musical con-
straints expressed by the composer with groups and tanks.
In the above fragment the sequencing of lines 2 and 3 imple-
ments a construct such as “after the audience has asked for
5 cello patterns, offer to play trombones”. Second, HipHop.js
score programming suppresses implementation details that
would be unavoidable with another language, making score
composing more direct and flexible. It becomes easy to ex-
periment variations, postpone the moment where trombones
become active, add a new set of instruments at will, deac-
tivate a group after the audience has adopted a particular
behavior, etc. In other words, HipHop.js enables the com-
poser to develop his score incrementally using a high-level
try-and-error approach.

5 HipHop.js Implementation

When developing HipHop.js, our goal was to augment the ex-
pressiveness and power of JavaScript reactive programming
by adding the Esterel concurrency and preemption state-
ments. It was not to develop new compiling techniques for
these primitives. Many ways to compile them into sequential
code have been developed in the past with different simplic-
ity / efficiency trade-offs [32]. Our HipHop.js to JavaScript
compiler borrows from these studies. It works in three phases.
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Phase 1 is textual parsing and construction of a HipHop.js
abstract syntax tree. Phase 2, the core one, expands all nested
control structures into synchronously concurrent boolean
operations [6]. The structure it builds, borrowed from hard-
ware design, is called an augmented boolean circuit; see below.
The same process has been used by Esterel compilers to gen-
erate both hardware circuits and software code in production
environments. Its big advantage is to fully and faithfully im-
plement Esterel’s constructive semantics [6], which is also the
reference semantics for HipHop.js. Phase 3 finally builds the
run-time reactive machine code by generating its interface
and then its reaction function, implemented as a linear-time
software simulator of the circuit’s electrical behavior.

We also provide an API to directly build abstract syntax
trees from within JavaScript, which makes it possible to skip
Phase 1 by constructing and compiling abstract HipHop.js
code on the fly, this even on web client side; we plan to do this
for future net-discovery based applications. Thus, the real
core of the compiler consists only of phases 2 and 3; it is quite
small, about 4.000 lines of JavaScript code, and the compiling
time of a HipHop.js program is roughly proportional to its
source code size.

5.1 From HipHop.js to Augmented Boolean Circuits

The augmented boolean circuit generated by Phase 2 is an
extension of the classical notion of a sequential circuit in
hardware design. It consists of a list of equations between
nets, a hardware name for boolean variables. Input nets have
no equation, and the other nets have a single equation that
can be of two types. A combinational equation defines a
net from other nets using a boolean expression; it can be
augmented by a data expression corresponding to a Java-
Script expression in the HipHop.js program, and by data
dependencies to other augmented nets due to HipHop.js’s
statement sequencing. The calculation and assignment are
instantaneous. A register equation implements a unit delay,
as for pre in Lustre [21]. Its lhs net is assigned an initial value
at first reaction; at each following reaction, the rsh value
computed in this reaction is assigned to the lhs net only at
the very end of the reaction, or equivalently at the start of
the next reaction (at the next clock rising edge in hardware).

5.2 Run-Time Execution

Execution is linear in the number of net connections and data
dependencies. It always terminates with an empty fifo if the
generated circuit contains no combinational cycle, i.e, cycle
involving only and, or, not expressions or data dependencies.
Only a combinational cycle can block execution, by reaching
a synchronous deadlock: think for instance of the equation
“X=not X”, which corresponds to “if (!X.now){emit(X)}” in
HipHop.js: it means “emit X if you don’t receive it”. This is an
obvious contradiction to the synchrony principle that states
that a signal is received if and only if emitted; see [6] for
an extensive discussion of synchronous causality. However,
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some cycles that always lead to correct execution can be
useful in making synchronous programs more symmetric
or in reducing their size [27]. At runtime, correct cycles are
correctly computed, but synchronous deadlocks cycles are
always detected with an appropriate error message. This is
a major advantage compared to deadlocks in asynchronous
languages and systems, which block the system or part of it
with no error detection and reporting.

Note that the fact that JavaScript executes this value prop-
agation in an atomic way is absolutely critical for its correct-
ness, since it forbids any change to the inputs during the
execution; any input status or value change in the middle of
the execution would violate synchrony making it semanti-
cally wrong. JavaScript’s atomicity is definitely a bless.

Our evaluation scheme has strong relation with both de-
notational semantics and electrical propagation of voltages
in digital circuits. In the pure case (no data expressions and
tests), our forward propagation system algorithm computes
the least fixpoint semantics of the equations interpreted in
Scott’s ternary logic on {L, 0, 1}, where L means undefined.
It also exactly mimics the stabilization of voltages in circuits
during a clock cycle, see [27].

5.3 Memory Footprints and Time Performance

The generated circuit size is most often linear in HipHop.js
source code size. But quadratic expansion can occur in special
cases, due to a subtle phenomenon called reincarnation of
statements and signals by loops. Reincarnation makes the
same source statement execute several times in the same
instant but in different environments. Although semantically
quite subtle, reincarnation is technically easy to handle at
compile time [6, 37]. It is fully supported by HipHop.js.

For HipHop.js execution, each net is implemented as a
JavaScript object containing 12 to 15 properties: the array of
other nets it is connected to, its undefined or boolean state,
the number of nets it still depends on because of control or
data dependencies, the JavaScript data expression if needed,
a reference to its reactive machine, and some debug infor-
mation. For large programs, nodes are on average connected
to two other nets. The number of bytes per net depends on
the underlying JavaScript implementation. With Hop.js on a
64bit platform, any JavaScript object is 32 bytes plus 8 bytes
per property, and an array has 6 extra words. That is each
node is on average in between 192 and 216 bytes. The Lisino-
pril application presented in Section 4.1 is compiled into
399 nets, using about 86KB of memory. Skini music scores
are much bigger programs (see Section 4.2). For instance, a
typical classical music score® can compiled into up to 10,000
nets, which occupy about 2.1MB of memory.

Reaction execution time is roughly linear in circuit size.
Obviously, this raises no performance problem for small ap-
plications such as Lisinopril but it might become problematic

3https://soundcloud.com/user-651713160
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for very large applications. For instance Skini scores are quite
large programs and subject to stringent time constraints be-
cause their executions must be kept in sync with the external
synthesizers that drive the music. A score pulse is about 100-
200 beats per minute, which means that Skini reactions must
complete within at most 300ms. We have measured that even
for the largest available score the HipHop.js reaction time
never exceeds 15ms, so the current speed is clearly good
enough to follow the pulses.

Our current circuit simulation balances simplicity of com-
pilation and execution with decent speed. If more speed is
needed in the future, more size- and speed-efficient tech-
niques for implementing synchronous reactive languages
are available [32] and will be implemented in HipHop.js.

6 Related Work

HipHop.js is a JavaScript-based direct descendant of the Es-
terel synchronous language, which was designed in the 80’s
for static embedded systems such as conventional real-time
controllers. HipHop.js adapts Esterel’s ideas and style to the
dynamic world of web programming, where JavaScript is
prominent. From Esterel its borrows the programming style,
the core semantics and some implementation techniques.
Its major advantage its that the integration with JavaScript
is much easier and tighter than Esterel’s loose integration
with C, especially for the linking of asynchronous and syn-
chronous activities that was limited and cumbersome in
Esterel. This is essential for mixed asynchronous / synchro-
nous applications. HipHop.js subsumes former preliminary
attempts [7, 38] that used an API with no concrete syntax
and a rudimentary connection between JavaScript and the
synchronous parts. Also, albeit not discussed here for lack of
space, HipHop.js is dynamic at source-code level: it allows
the user to partially reconfigure the program between two
synchronous reactions while keeping the control state con-
sistent. This is necessary to cope with the web programming
model where programs can be sent by servers through the
network after client configuration discovery for instance;
synchrony is crucial for making this process safe.

In the object-oriented community, reactive systems are
traditionally implemented using the observer pattern [19].
The Scala.React technical report [26] and the IoT security
survey [8] show the weakness of this practice with an ex-
tensive list of arguments. The main one is the limitation to
implement a state machine with global data structures and
side effects, which makes complex observer-based designs
difficult to implement correctly, maintain, and modify as
their composability is weak. These are the very reasons that
have motivated the design of HipHop.js to be based on syn-
chronous concurrency, which is composable by construction.

There are two kinds of synchronous concurrent languages.
On the one hand, those geared to the systematic use of pre-
emptive structures that control the life and death of activities,
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mainly Esterel and the synchronous graphical programming-
oriented offsprings of Harel’s Statecharts [2, 10, 22, 39]. On
the other hand, those oriented to stream-based programming,
such as Lustre [21] and Signal [20]. We have shown that pre-
emption is quite fundamental for the applications we aim at,
which is why we chose Esterel as a basis. But fancy stream-
based programming is not yet available in HipHop.js, which
is still a weakness (SCADE 6 [10] combines both aspects, but
in a simpler purely synchronous framework).

More recently, SCL [40] is a very interesting and promis-
ing extension of Esterel main notions for C where signals
are replaced by standard variables, with an even richer mi-
croscheduling. It would be a good start for a web-related
work similar to ours but with single language integration in
view, provided it does not restrict too much the rest of the
host language.

Web-oriented dataflow reactive languages have been
widely used to program GUIs as they can be used to relieve
the programmer from imperatively updating the interface.
Functional Reactive Programming, initially proposed in the
context of lazy languages [16] has been adapted to imperative
languages such as Scheme [11, 12], F# [31] and JavaScript.
Flapjax [28] was the first of this kind for the Web; it has
inspired other language designs such as Elm [14] and Ur-
Web [9]. It has also probably inspired many industrial frame-
works such as JavaFx [13] Adobe Flex [36], React.js [17], or
Vue.js [41]. Hop.js react DOM nodes find their inspiration
in these studies. But, as for UrWeb dyn tag, Hop.js’s tags are
more focused than all these frameworks as they only serve
one purpose: the update of precisely identified DOM nodes.
These constructs are not really relevant to the control-based
orchestration issues we want to address.

LuaGravity [34] and later Scala.React [26] both propose
embedding synchronous reactive programming in a general
purpose language. They propose to blend reactive and se-
quential programming using reactors, which are similar to
our HipHop.js reactive machine. But neither LuaGravity nor
Scala.React enforce a clear boundary between the reactive
and sequential components. This dramatically impacts the
programming style, the implementation, and the tooling.

Reference [24] evaluates the impact of reactive program-
ming on web applications. Its authors compare different pro-
gramming models, in particular JavaScript promises and Java-
Script-based data-flow programming as found in Flapjax or
React.js. Its authors mostly focus on the programming of the
Model-View-Controller pattern. We think that the problem of
implementing reactive systems is more general. For instance,
none of the examples considered in their study required pre-
emption as used here. We think that preemptive operations
are absolutely fundamental, for instance when processing
parallel queries to handle the first answer and abort the other
queries. The Orc programming language [25] was designed
specially with this objective in mind. It supports high-level
operators for combining, forking, and synchronizing streams.
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These operations are complementary with HipHop.js that
yet supports no notion of temporal streams, although Lua-
Gravity gives some direction for encoding them on top of
our reactive machine. Integrating the notion of temporal
stream into HipHop.js might be a direction for future work.

Managing the states of web applications is the explicit
objective of various popular industrial frameworks. For in-
stance, Flux [18] and Redux [1] are two JavaScript frame-
works created to better organize the handling of the global
state. Flux’s architecture is unidirectional: user actions are
broadcast by a dispatcher to a set of local stores that each hold
part of the global state and that themselves can send back
change signals to update the application’s view. HipHop.js
implicit signal broadcasting makes this pattern easy to im-
plement using local signals to store the state components
and output signals to realize the updates. Redux has no dis-
patcher but a single store and reducers that are functions
in charge of parts of the state. The main reducer and its
sub-reducers, if concerned by the action, return a new state
from the unmodified current state. The new global state is
obtained by composing these results. This pattern is also
easy to implement in HipHop.js using signals to store state
components, with S.pre and S.preval for the original state
and S and S.val for the new state status and values. Com-
paring such patterns implemented in standard languages
with dedicated domain-specific languages is a question to be
permanently debated.

Microsoft’s durable functions [29] is an orchestration li-
brary available for C# and JavaScript. It supports a subset of
the HipHop.js core constructs: parallel and sequential compo-
sition, synchronization, pause, and asynchrony / synchrony
blending, but only rudimentary preemptive structures.

7 Conclusion

We have shown how to unify three basic programming
paradigms: transformational, interactive, and reactive. For
the reactive part, we have introduced the reader to HipHop.js,
which incorporates Esterel’s synchronous reactive program-
ming model and semantics into Hop.js that itself facilitates
programming the interactive part. JavaScript takes care of
transformational aspects, Hop.js of interactive aspects, and
HipHop.js of reactive aspects, in a tightly integrated way.
Thanks to synchronous technology, HipHop.js concurrent
constructs are compiled into equivalent plain JavaScript
sequential code that can be atomically executed either on
servers or on clients.

We have illustrated the HipHop.js programming style by
three examples to show that programming and reusing tem-
poral behaviors is facilitated by synchronous sequencing,
concurrency, signalling, and preemption, the main addition
of HipHop.js w.r.t. JavaScript and Hop.js.

http://hop.inria.fr/hiphop
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