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Abstract—This paper studies the performance of a Poisson
Mobile Ad hoc NETwork (MANET), that is owned by an
Operator, in the presence of a Jammer. The objective of the
Jammer is to degrade the spatial performance of the MANET
by causing interference, whereas the Operator’s objective is to
set a Medium Access Probability (MAP) that optimizes it. The
interaction between the Jammer and the Operator is modeled
taking into account the costs related to transmission energy.
This interaction is then transformed into a zero sum game by
constructing an anti-potential. First, we consider the case where
the receiver of a node is at a fixed distance and characterize the
Nash equilibria by considering two spatial performance metrics:
In the first case the Operator aims to maximize the number of
successful transmissions per unit area, and in the second case
the Operator aims to minimize the average delay per unit area.
We then consider the case where distance between a transmitter
and its receiver is not fixed. The Nash equilibria of the resulting
game is again characterized.

Index Terms—Mobile Ad hoc Networks (MANET); Stochastic
Geometry; zero-sum game;

I. INTRODUCTION

In this paper, we study an adversarial situation in wireless
Mobile Ad hoc NETworks (MANETs) called the jamming
game consisting of two players, namely, an Operator and
a Jammer. The objective of the Operator is to maximize a
suitably defined spatial performance metric and that of the
Jammer is to minimize it. In addition, the players take into
account the power consumption disutility incurred in order
to achieve the throughput. The jamming game we consider
amounts to choosing appropriate medium access probabilities
in the presence of the adversary jammer. Viewing the channel
and the available transmit power as resources, this jamming
game can also be viewed as a resource allocation problem in
the presence of an adversary.

Game theory is extensively used to study resource allocation
problems in networks [15]. These games often include infor-
mation theoretic aspects and/or communication theory. In that
context, game theory has not only been applied to situations of
competition over resources but also to adversarial situations,
which can often be modeled as zero-sum games.

It is well known that computing the Nash equilibria in
games is in general a hard problem. Indeed, this problem falls
into a class of problems introduced by Christos Papadimitriou
in 1994, called PPAD (Polynomial Parity Arguments on Di-
rected graphs). In view of this complexity, it becomes attractive
to identify classes of games for which one may compute the
equilibria at a low complexity. We thus study a jamming game
under some statistical assumptions on the mobility pattern,
which are on one hand reasonable in many real scenarios, and

on the other hand, allow for tractable and in several cases,
even explicit expressions for the Nash equilibrium.

We consider slotted time, and assume that the mobiles are
synchronized. The basic assumptions on our model are

• The location of the transmitters at each time slot forms
a homogeneous Poisson point process.

• Mobility is high, so that the location of the mobiles at dif-
ferent slots is an independent and identically distributed
(i.i.d) process.

• Medium access is controlled using Aloha
• Transmission success is based on SINR being larger than

some threshold.
• Every mobile has always a packet to send.

The geometric aspects of the location of the nodes becomes
important when the nodes are mobile; as the interference seen
at a given location depends on the relative location of other
nodes. In this paper we study a jamming problem in MANETs,
in which the locations of the nodes form a homogeneous
Poisson point process. We consider two models in Poisson
MANETs introduced in [16]. First, we study Poisson bipolar
model, in which the distance between the transmitter of a node
and its receiver is fixed. We then consider a simple receiver
selection model, where it is assumed that the set receivers
form another Poisson point process that is independent of the
transmitters.
Literature on Jamming Games: Jamming are among the
first problems involving conflicts in networks that have been
modeled and solved using game theory. The first publications
on these games go thirty years back with the pioneering work
[4], [5]. The question of the capacity achievable in channels
prone to jamming was one of the main concerns, and was thus
naturally studied within the information theory community,
see e.g. [6], [7], [9]. For a recent survey on wireless games
that includes jamming games, see [15]. Not only abstract
jamming models have been studied using game theory, but
also jamming of specific wireless local area networks, see
[11] that study the jamming of IEEE 802.11. In some cases an
adversary jammer may have access to signalling or information
channels, and may be able to harm more by jamming these
than by jamming the data transfer itself. Examples are jammers
that interfere the signalling protocols, see e.g. [20] who study
jamming signalling channels in a cellular network. [10] studies
the jamming game in multihop radio networks with ALOHA
multiple access scheme and Poisson assumption on the node
distribution. The paper considers a scenario in which the
network operator aims to maximize the expected forward
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progress of packets in a given direction, where as a Jammer
aims to minimize it. The resulting Nash equilibria of the zero
sum game are investigated numerically.
Our Contributions:The main contributions of the paper are
the following:

• We model a jamming game in the Poisson MANETs
with constraints on the transmission energies for both the
Jammer and Operator. We introduce an anti-potential that
allow us to the jamming game as a zero-sum game.

• Considering the Poisson bipolar model, we obtain explicit
expression for the saddle points of the game by consid-
ering utilities based on throughput and delay. We then
study the effect of the Jammer transmission power on
the equilibrium. We shown that if the Operator chooses
a transmit power higher than a certain level, then, at
equilibrium, he/she can operate without the Jammer being
active.

• In the receiver selection model, we again obtain explicit
expressions for the saddle points considering throughput
as the performance metric. We observe similar behavior
as in the case of bipolar model.

The Poisson assumption on the location of nodes allows us
to obtain utilities in a surprisingly simple explicit form, which
in turn allows us to obtain much insight on the property of
the equilibria and on the role of the transmission energy and
its cost.

The Poisson assumption is valid when
• the number of mobiles in disjoint sets are independent;
• the number of mobiles in any given set follows a Poisson

distribution. This class of point processes maximizes
entropy. It is often used for modeling the location of users
in e.g. mobile ad hoc networks.

In [21], in the context of cellular networks explicit expres-
sion are obtained for coverage and throughput with the Poisson
assumption on the base stations. In [19], we study the Poisson
MANET where each node is selfish. The Nash equilibria are
characterized by considering the transmission energy costs.

The paper is organized as follows: Section II introduces
the Poisson MANET model and discusses the performance
metrics of interest. In Section III we model the jamming game
and characterize the resulting equilibria of the Poisson bipolar
model with density of successful transmission and density
of delay as performance metrics. In Section IV we consider
cases where the distance between a node’s transmitter and its
receiver is not fixed. Finally, we end with some concluding
remarks in Section V.

II. MODEL AND SETUP

Consider the simplified mobile ad hoc network (MANET)
model called the Poisson bipolar model proposed in [1].
Assume that each node follows the slotted version of the Aloha
medium access control (MAC) protocol. Each dipole of the
MANET consists of a transmitter and an associated receiver.
We assume that each node has an infinite backlog of packets
to transmit to its receiver. Nodes are scattered in the Euclidian

space according to a homogeneous Poisson point process of
intensity λ1. Each node is associated with a multi- dimensional
mark that carries information about the transmission status,
fading condition, and the distance to receiver. We follow the
notation of [3]. Let Φ̃ = {Xi,Mi}i≥1 denote an independently
marked Poisson point, where

• Φ = {Xi}i≥1 denotes the Poisson point process of
intensity λ1, representing the location of nodes in the
Euclidean plane.

• {Mi = (Si, ei)}i≥1 denotes the independent marks of
the Poisson point process Φ, which are made of three
components:

– S = {Si}i≥1 denotes the channel condition between
nodes and their associated receivers. It is assumed
that channel conditions are independently and iden-
tically distributed (i.i.d.) across the nodes with a
generic distribution denoted as F with mean 1/µ.

– e = {ei}i≥1 are indicator functions that take value
1 if a given node decides to transmit in a given
time slot; otherwise they take value zero. They are
assumed to be i.i.d. across the nodes.

– The processes S, e are assumed to be independent of
each other.

• We assume that distance between the transmitter and its
associated receiver is at a fixed distance r.

Let l(x, y) denote the attenuation function between any two
given points x, y ∈ R2. We assume that this function just
depends on the distance between points, i.e., |x − y|. With a
slight abuse of notation we denote this function as l(x, y) =
l(|x− y|). We assume the following form for this attenuation
function

l(x, y) = (A|x− y|)−β for A > 0 and β > 2. (1)

The marks {ei}i≥1 indicate if a given node transmits in a
given time slot. Then the probability that the ith node transmits
is q1 := Pr{ei = 1} = E[e] (Medium Access Probability
(MAP)). Note that Φ defines a pair of independent Poisson
process representing transmitters Φ1 = {Xi, ei = 1} and non
transmitters Φ0 = {Xi, ei = 0} with intensities q1λ1 and
(1− q1)λ1 respectively. We assume that the channel between
the receiver of a given node and the transmitter of any other
node is also distributed as the random variable S. All the nodes
transmit at a fixed power denoted as P1. Signal transmitted
by a transmitter located at Xi is successfully received at its
associated receiver at location yi if the signal to interference
and noise ratio (SINR) at location yi is larger than some
threshold T , i.e.,

SINRi :=
PSl(|Xi − yi|)

IΦ̃1 +W
> T, (2)

where W denotes the thermal noise power at the receiver and
IΦ̃1 denotes the shot noise of the Poisson point process Φ1,
namely, IΦ̃1 =

∑
Xi∈Φ1 P1Sl(|Xi − yi|).

Consider a typical node at the origin, X0 = 0 with mark
M0 = (S0, e0). The typical node is said to be covered if (2)
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holds given that it is a transmitter, i.e, sends some packet.
Then the coverage probability of the typical node is

P0

{
PSil(r)

IΦ̃1 +W
> T

∣∣∣∣ e0 = 1

}
, (3)

where P0 denotes the Palm distribution [2][Chap. I] of the sta-
tionary marked Poisson point process Φ̃. By using Slivnyak’s
theorem [2], the coverage probability of a typical node when
all other nodes use MAP p is evaluated in [1][3] and denoted
as pc(r, pλ1, T ).

A. Spatial Performance metrics

Let us assume that all the nodes belong to a single Operator.
If the nodes have information about other nodes in their
vicinity, they can achieve a better performance by cooperating:
Nodes moving from dense clusters to sparse clusters can
increase their MAP as chances of collision reduce. Nodes
moving from sparse clusters to dense clusters can reduce
their MAP as chances of collision increase. We assume that,
because of mobility, nodes cannot gather such information
in each time slot and transmit with a MAP q1 that is set
by the Operator. Then the typical node is a transmitter with
probability q1 and a non-transmitter with probability (1− q1).
We call the product of the MAP and the coverage probability
of the typical node the goodput and denote it as

g(q1) := q1pc(r, q1λ1, T ). (4)

The set of nodes that transmit in a given slot form another
Poisson point process of intensity λ1q1. Let ds(q1) denote
the average number of successful transmissions in a unit
area. By Campbell’s formula [2][Sec. 2.1.2] for stationary
Poisson point processes this spatial performance metric is
given as the product of goodput and the intensity of the
Poisson point process, i.e., ds(q1) = λ1q1pc(r, q1λ1, T ). We
shall also consider the mean delay experienced by the nodes
in successfully transmitting the packets to their associated
receiver. We assume that if a packet transmission fails then the
packet is retransmitted till success. We also assume that nodes
can resample the channel in each slot. Recall our assumption
on the mobility model that locations of the nodes are i.i.d
across the time slot. Then by Little’s theorem [12] the mean
delay for a typical node is given by reciprocal of its goodput
given in (4). Let dt(q1) denote the spatial mean delay of nodes
per unit area. Then again using Campbell’s formula we get
dt(q1) = λ1/q1pc(r, q1λ1, T ). We refer to this quantity as
spatial density of delay. Note that we used the i.i.d assumption
on the nodes realization only to derive the spatial mean delay,
and not on the performance metric goodput.

In the following sections we analyze the spatial performance
of the network in the presence of a Jammer. In the next section
we introduce our game model. We then analyze the jamming
game considering the Poisson bipolar model with density of
success and density of delay as spatial performance metrics.

III. JAMMING GAME

In this section we consider a jamming game in the Poisson
bipolar MANET. Assume that there is a Jammer who also has
nodes that are scattered according to a Poisson point process
in the same geographical area. The Jammer aims to degrade
the performance of the Operator by causing interference.

Let λ2 denote the intensity of the nodes of the Jammer.
The transmitters of the Jammer can resample the channel
in each time slot and transmit at a fixed power P2. If a
transmitter of the Jammer is surrounded by a dense cluster
of nodes belonging to the Operator, then the degradation in
performance due to the interference from the Jammer may
not be significant; as the success probability is already low.
On the contrary, if a transmitter of the Jammer is surrounded
by a sparse cluster of nodes belonging to the Operator then,
the degradation in performance due to interference from the
Jammer could be significant. However, we assume that, due to
random mobility, the Jammer cannot gather such information.
Also the Jammer incurs costs from the energy transmissions.
Thus we assume that the Jammer keeps each of its transmitters
turned ON with probability q2 independently of its other
transmitters. The transmitters of the Jammer form a Poisson
point process of intensity q2λ2.

Recall that q1 denotes the MAP set by the Operator. A
transmission of a typical node of the Operator gets interference
from all the other nodes that are transmitting. Thus a typical
node gets interference from the nodes that form a Poisson
point process of intensity q1λ1 + q2λ2. In this section we
assume that the channel between the receiver of the typical
node and transmitters of all other nodes, both the Jammer and
the Operator, is distributed according to the random variable
S and take the same path loss model in (1). The probability
that a transmissions by the typical node is successful in the
presence of the Jammer can be easily computed following
the same steps as in [1][Lemma 3.2]. With some abuse of
notation we represent this quantity by pc(q1, q2). The proof of
the following lemma is given in Appendix B.

Lemma 1: Let each node of the Operator in the Poisson
bipolar MANET transmit with MAP q1 and let the Jammer
turns ON each of its transmitters with probability q2. Assume
that S is Rayleigh distributed with parameter µ and noise
power is zero, then

pc(q1, q2) = exp{−C(q1λ1 + q2λ2Q)}, (5)

where C = 2πr2T 2/βK(β), and Q = (P2/P1)
2/β

In the following, we consider performance metrics that are a
monotonically increasing functions of this success probability.
Let d(q1, q2) denote the generic performance metric of the
Poisson MANET that the Operator is interested in. In the
remaining of the paper when we write a performance metric
with two arguments q1 and q2, it is understood that the it is
calculated in the presence of the Jammer who turns ON each
of its node with probability q2, and the nodes of the Operator
uses MAP q1.

From Equation (5) it is clear that the Operator can improve
the performance of its nodes by increasing their transmission
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power, whereas the jammer can decrease it by increasing the
transmitting power of its nodes. Thus it is beneficial for both
the Operator and the Jammer to increase the transmission
power of their nodes. However, we assume that each node
incurs a transmission cost due to limited power available to
them. The average density of power dissipated among the
nodes of the Operator is λ1q1P1 and that among the nodes
of the Jammer is λ2q2P2. For jamming games with energy
constraints in cellular networks see [18]. Let ρ1 and ρ2 denote
the cost incurred by the Operator and the Jammer per unit
power transmitted, respectively. More formally, we define the
strategy, utility, and objective of the game between the Jammer
and the Operator as following:

Strategy: The strategy of the Operator is to choose a MAP
q1 ∈ [0, 1] with which each of its nodes can access the
channel. The strategy of the Jammer is to set a probability
q2 ∈ [0, 1] with which a transmitter is turned ON in a given
slot. Denote the joint strategy as q ∈ (q1, q2) = [0, 1]×[0, 1].

Utilities and objective: The objective of the Operator is to
choose a MAP q1 that maximizes the density of success of its
nodes taking into account average transmission costs among
its nodes. We define the utility of the Operator as

U1(q1, q2) = d(q1, q2)− ρ1λ1q1P1. (6)

The objective of the Jammer is to set a probability q2, with
which each of its transmitters is turned ON in a given slot,
that minimizes the density of the successful transmission of
the Operator taking into account the average transmission costs
incurred among its transmitters. We define the utility of the
Jammer as

U2(q1, q2) = −d(q1, q2)− ρ2λ2q2P2. (7)

In terms of the optimization problems, we can write the
objective of the Operator as to choose a q∗1 such that

q∗1 ∈ argmaxq1∈[0, 1]U1(q1, q2), (8)

and for the Jammer it is to choose a q∗2 such that

q∗2 ∈ argmaxq2∈[0, 1]U2(q1, q2). (9)

Note that the jamming game with the utilities in (6) and
(7) is not a zero sum game. This game can be studied as a
zero sum game with an anti- potential function obtained by
modifying the utilities of the players as below.

Anti potential: If we add the term ρ2λ2q2P2 to the utility
function of the Operator, then the set of optimal values q∗1 in
equation (8) does not change. We define the modified utility
function of the Operator as

U1(q1, q2) = d(q1, q2)− ρ1λ1q1P1 + ρ2λ2q2P2

Similarly, if we add the term ρ1λ1q1P1 to the utility function
of the Jammer, then the set of optimal values q∗2 in equation
(9) does not change. We define the modified utility function
of the Jammer as

U2(q1, q2) = −d(q1, q2)− ρ2λ2q2P2 + ρ1λ1q1P1.

If we consider a new game with this modified utilities, then the
resulting equilibrium, if exits, will be same as in the original
game. Notice that the modified utilities are such that U1(q) =
−U2(q) for all q. Hence, the new game constitutes a zero sum
game. In the following subsections we consider performance
metrics discussed in Subsection II-A, and analyze the resulting
equilibria.

A. Spatial density of Success as performance metric

In this subsection we assume that the Operator is interested
in the number of successful transmission per unit area. We
refer to this performance metric as density of successful
transmissions, and can be computed as

d(q1, q2) = λ1q1ps(q1, q2).

The anti-potential of the jamming game with this performance
metric is given by

U1(q1, q2) = λ1q1 exp{−C(q1λ1 + q2λ2Q)}
−λ1q1ρ1P1 + λ2q2ρ2P2.

The following lemma states relevant properties of this anti-
potential function U1(q).

Lemma 2: U1(q1, q2) is a quasi concave function in q1
and convex in q2. Assume that ρ1P1 < exp{−λ2CQ}, then
U1(·, q2) achieves the maximum in the interval (0, 1] if
λ1C ≥ 1.

Proof: See Appendix in C.
The utility function U1(q1, q2) is continuous in both the

arguments. The strategy space of both the players is convex
and compact. From Lemma 2, and using the Sion’s minmax
theorem [22] we can readily conclude that the jamming game
has a saddle point, i.e., there exists a q∗ = (q∗1 , q

∗
2) such that

for all (q1, q2)

U1(q1, q
∗
2) ≤ U1(q

∗
1 , q

∗
2) ≤ U1(q

∗
1 , q2).

By transforming the jamming game into a zero-sum game
we easily concluded that the saddle point of the jamming
game exists. We can also explicitly obtain the saddle point
as given in the following proposition. The saddle points are
characterized in terms of the Lambert function [14] which we
denote as W (x).

Proposition 1: Assume that λ1C ≥ 1. The Nash equilib-
rium of the jamming game are as following. If ρ1P1 ≥ 1,
then (0, 0) is an equilibrium. If ρ1P1 < exp{−λ2CQ} we
have the following cases.

• If ρ2P2 ≥ q̃1λ1CQ exp{−q̃1λ1C} then (q̃1, 0) is an
equilibrium, where q̃1 is given by

q̃1 =
1−W (eρ1P1)

λ1C
. (10)

• If ρ2P2 ≤ q1λ1CQ exp{−q1λ1C} exp{−Cλ2Q} then
(q1, 1) is an equilibrium, where q1 is given by

q1 =
1−W (eρ1P1 exp{λ2CQ})

λ1C
. (11)
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If (q∗1 , q
∗
2) is an interior equilibrium point then

q∗1 =
1

λ1C(1 +Q(ρ1P1/ρ2P2))
, (12)

and

q∗2 =
−1

CQ
log

{
ρ2P2 exp{λ1q

∗
1C}

λ1q∗1CQ

}
. (13)

Proof: See Appendix A
One can interpret the results of the above proposition as fol-
lows. Under the condition ρ1P1 ≥ 1 the utility of the Operator
is always negative, i.e., the total transmission energy cost for
the Operator is high, hence it is optimal for the Operator not to
allow any transmissions from its nodes. Once the nodes of the
MANET are not active then the Jammer will also turn OFF its
transmitter. The condition in the first bullet give a scenario in
which the operating cost for the Jammer is too high to allow
any transmissions from its nodes. Hence the Jammer keeps all
of its nodes turned OFF at equilibrium. The condition in the
second bullet gives a scenario in which the transmission costs
for the Jammer is low and all the transmitters are turned ON
at equilibrium. Equation (13) results in an interior point if

P2ρ2 < q∗1λ1QC exp{−q∗1λ1C}

and

P2ρ2 > QCq∗1λ1 exp{−q∗1λ1C} exp{−λ1CQ},

where q∗1 is given by Equation (12).
Let us proceed to study the effect of power and cost factors

on the equilibria. Let q∗1(q2) denote the best response of the
Operator when the Jammers’ strategy is q2. From Equation
(37) it is easy to note that the best response of the Operator
is a decreasing function in q2. Hence q1 ≤ q∗1(q2) ≤ q̃1 for
all q2 ∈ (0 1). Where q̃1 is the best response when q2 =
0, and q1 is the best response when q2 = 1. To understand
the bounds on the product ρ2P2 given in Proposition 1 more
clearly, let us define a function f : [0, 1] → R+ given by
f(q) = qλ1C exp{−qλ1C}. The function f attains maxima
at q = 1/λ1C, and is increasing in the interval [0, 1/λ1C].
Thus it is clear that

f(q̃1) ≥ f(q∗1(q2)) ≥ f(q1) for all q2 ∈ (0 1).

This verifies the consistency of the bounds on P2ρ2 given in
Proposition 1 and are shown in Figure 1.

Note that the upper bound and lower bound on ρ2P2

in Proposition 1 that determines the value of equilibrium
(q1, q2) are functions of the power transmitted by the Jammer
and the operator. In Figure 2, we show the variations of
Qf(q1) exp{−λ2CQ} and Qf(q̃1) as a function of P2 for a
given value of system parameters, price factors, and the power
P1 transmitted by the nodes of the Operator. In the region
marked A, P2 satisfies the relation

ρ2P2 ≤ QCq̃1λ1 exp{−q̃1λ1C} exp{−λ1CQ}.

If the power transmitted by the Jammer lies in this region,
then the Jammer turns ON all of his nodes at equilibrium. In
the region marked C, P2 satisfies the relation

P2ρ2 ≥ q1λ1QC exp{−q1λ1C} = Qf(q1).

If the power transmitted by the Jammer lies in this region,
then, at equilibrium, all the nodes of the Jammer are turned
OFF. In the region marked B, P2 satisfies the relation

P2ρ2 < q1λ1QC exp{−q1λ1C}

and

P2ρ2 > QCq̃1λ1 exp{−q̃1λ1C} exp{−λ1CQ}.

If the power transmitted by the Jammer lies this region B,
then the Jammer turns ON each of its nodes with probability
that is an interior point at equilibrium.

In Figure 3, we plot the best response (BR) of the Jammer
and the Operator. We choose one power level, P2, for the
Jammer from each of the region A, B, and C, with the power
level for the Operator fixed at the same value as that used in
Figure 2. In Figure 3 the blue lines correspond to the best
response of the Operator, and the red lines correspond to that
of the Jammer. The equilibrium for the corresponding value
of P2 are marked.

Nullifying the Jamming effect:For a given power level and
the cost factor of the Jammer if the condition P2ρ2 ≥ Qf(q̃1)
holds at equilibrium, then the Operator sees no Jamming
effect as all the nodes of the Jammer are turned OFF. Thus
it is interesting for the Operator to choose a power level
such that the Jammer turns OFF its nodes at equilibrium. It
is easy to note the Qf(q̃1) is a decreasing function in P1.
Indeed, f(q̃1) is a decreasing function in P1 as q̃1 is less
than ≤ 1/λ1C and decreasing in P1 (see Equation (10)).
Hence the product Qf(q̃1) is also decreasing in P1. Thus the
Operator can increase his power level, say to P ∗

1 , such that
P2ρ2 ≥ Qf(q̃1), and operate without the Jamming effect at
equilibrium. However, the Operator can do so provided its cost
factor is such that ρ1P ∗

1 ≤ 1.

B. Spatial density of delay as performance metric

In this section we assume that that the Operator aims to
minimize the spatial density of delay, whereas the Jammer
aims to maximize it. From the arguments in Subsection II-A,
we can write the spatial density of delay as the reciprocal of
the spatial density of success. Continuing the set up used in
the jamming game model, we write the performance metric
and the resulting anti-potential as

d(q1, q2) = −λ1 exp{C(λ1q1 + λ2q2Q)}
q1

(14)

and

U1(q1, q2) = −λ1 exp{C(λ1q1 + λ2q2Q)}
q1

−ρ1λ1q1P1 + ρ2λ2q2P2. (15)
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The following lemma states the properties of this anti-potential
function.

Lemma 3: U1(q1, ·) is a concave function for all q1 ∈
[0, 1]. U1(·, q2) is a concave function for all q2 ∈ [0, 1], and
attains maximum at an argument within the interval q1 ∈ [0, 1]
if λ1C ≥ 1.

Proof: See Appendix in D.
From the above lemma we see that the hypothesis of Sion’s

minmax theorem [22] holds. Hence the Nash equilibrium
exists. The following proposition characterizes the Nash equi-
libria.

Proposition 2: Assume that λ1C ≥ 1.

• Let q1 be the solution of

λ1

(q1)
2
exp{(λ1q1 + λ2Q)}(1− Cλ1q1) = ρ1P1,

and (λ2/λ1)ρ2P2q1 exp{−λ1Cq1} < exp{λ2CQ} − 1.
Then (q1, 1) is the Nash equilibrium.
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Figure 3. Best Response: λ1 = 2, λ2 = .5, ρ = .11, ρ2 = 0.05, β =
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• Let q̃1 be the solution of
λ1

(q̃1)2
exp{λ1Cq̃1}(1− Cλ1q̃1) = λ1ρ1P1,

and (λ2/λ1)ρ2P2q̃1 exp{−λ1Cq̃1} > exp{λ2CQ} − 1.
Then (q̃1, 0) is an equilibrium.
Proof: The proof follows by noting that −U1(q1, q2) is

convex in q2 and hence maximized at the extreme points.

IV. RECEIVER SELECTION MODELS

In the Poisson bipolar model of the last section we assumed
that the receiver of a node is at a fixed distance. In this section
we relax this condition. We consider two models for receiver
selection introduced in [16][Ch 17], namely, independent
nearest receiver (INR) model and MANET nearest receiver
(MNR) model.

A. Independent Nearest Receiver model
In the INR model we assume that the potential receivers

form a Poisson point process Φ0 of intensity λ0 and is
independent of the Poisson point process Φ. Each active node
of the Operator aims to transmit to the receiver that is nearest
to it. Let the random variable R denote the distance between
a typical node at the origin and to its nearest receiver. The
probability density function of R, denoted as FR, is given by

FR(r) = 2πλ0r exp{−λ0πr
2}, r ≥ 0.

Now consider the jamming game of Section III. Recall that
the Jammer turns ON each of its nodes with probability q2
and uses the power P2 to cause interference to the nodes of
the Operator. Let ds(INR, q1, q2) denote the density of the
successful transmissions of the Operator. Following the steps
of Lemma 1 and Proposition 17.2 in [16], we have

ds(INR, q1, q2)

= λ1q1

∫
r≥0

r exp{−πr2C1(q1λ1 + q2λ2Q)}dFR(r)

=
λ1λ0q1

C1(q1λ1 + q2λ2Q) + λ0
, (16)



7

where C1 = 2T 2/βK(β). Let ρ1 and ρ2 denote the cost factor
of the Operator and Jammer respectively. We define the utility
of the Operator and the Jammer with the energy cost as

U1(INR, q1, q2)
= ds(INR, q1, q2)− λ1q1ρ1P1

=
λ1λ0(1− ρ1P1)− λ1ρ1P1C1(q1λ1 + q2λ2Q)

C1(λ1 + q2/q1λ2Q) + λ0/q1
(17)

and

U2(INR, q1, q2) = −ds(INR, q1, q2)− λ2q2ρ2P2, (18)

respectively. As in Section III, by adding λ2q2ρ2P2 to Equa-
tion (17) and λ1q1ρ1P1 to Equation (18), we have an anti-
potential function given by

U1(INR, q1, q2) = U1(INR, q1, q2) + λ2q2ρ2P2(19)
= −(U2(INR, q1, q2) + λ1q1ρ1P1). (20)

B. MANET nearest receiver model

In the MNR model we assume that each transmitter picks
the nearest node of Φ that is not active in the considered time
slot. Let the Operator choose the MAP q1. Then the receivers
form a Poisson point process Φ0 of intensity (1−q1)λ1 which
is independent of the set of transmitters. Let ds(MNR, q1, q2)
denote the density of successful transmissions of the nodes of
the Operator when the Jammer turns ON each of its nodes
with probability q2. We have [16][Eq. 17.6]

ds(MNR, q1, q2) = ds(INR, q1, q2)

with λ0 = (1 − q1)λ. We define the utility of the Operator
with transmission cost as

U1(MNR, q1, q2)
= ds(MNR, q1, q2)− λ1q1ρ1P1

=
λ1(1− q1)λ1q1

C1(q1λ1 + q2λ2Q) + (1− q1)λ1
− λ1q1ρ1P1

=
λ1(1− ρ1P1)− q1λ1(λ1ρ1P1C1 + (1− λ1P1))

C1(1 + q2λ2/q1λ1Q) + 1/q1 − 1

+
λ1ρ1P1C1q2λ2Q

C1(1 + q2λ2/q1λ1Q) + 1/q1 − 1
. (21)

Comparing Equation (17) with Equation (21) we observe
that both the utility functions have the same structure. Hence-
forth we restrict our analysis of the jamming problem to the
case of INR model.

Saddle Point: It is clear that the anti-potential function
U1(INR, q1, q2) is a concave function in the strategy of
the Operator and a convex function in the strategy of the
Jammer. Then we can directly apply Sion’s minimax theorem
to conclude that Saddle point of the Jamming game exists.
The next proposition characterizes the equilibrium in the INR
receiver selection model.
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Proposition 3: The Nash equilibrium of the jamming game
are as following. If ρ1P1 ≥ 1, then (0, 0) is an equilibrium.
If ρ1P1 < λ0/(C1λ2Q+ λ0) we have the following cases.

• If ρ2P2 ≥ λ1λ0q̃1C1Q
(C1q̃1λ1+λ0)2

then (q̃1, 0) is an equilibrium,
where q̃1 is given by

q̃1 = min

{
1,

(λ0/
√
ρ1P1 − λ0)

λ1C1

}
. (22)

• If ρ2P2 ≤ λ1λ0q1C1Q
(C1q1λ1+C1λ2Qλ0+λ0)2

then (q1, 1) is an
equilibrium, where q1 is given by

q1 = min

{
1,

√
(C1λ2Qλ0 + λ2

0)/ρ1P1 − λ2QC1 − λ0

λ1C1

}
(23)

.

If (q∗1 , q
∗
2) is an interior equilibrium point, then

q∗1 =
λ0Qρ2P2

λ1C(ρ2P2 +Qρ1P1)2
(24)

and

q∗2 =
1

λ2C1Q

{√
(λ0λ1q∗1QC1)/ρ2P2 − C1λ1q

∗
1 − λ0

}
.

(25)
Proof: See Appendix E.

Note that, unlike in Proposition 1 we did not put the restriction
λ1C1 ≥ 1 in the above proposition. However, for Equation
(24) and (25) to result in an interior point we need the
conditions λ0Qρ2P2 ≤ C1λ1(ρ2P2 +Qρ1P1)

2, and

λ1λ2q1C1Q

(C1q1λ1 + C1λ2Qλ0 + λ0)2
≤ ρ2P2 ≤ λ1λ2q̃1C1Q

(C1q̃1λ1 + λ0)2
.

Figure 4 shows the bound on ρ2P2 as given in Proposition.
This has similar shape as that in 2. Hence, we can infer the
same kind of results for the INR receiver selection model.
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V. CONCLUSIONS

Geometric considerations play a very central role in wireless
communications, since the attenuation of wireless channels
strongly depend on the distance between transmitter and
receiver. Models that take into account the exact location of
mobiles are often too complex to analyze or to optimize. Our
objective in this paper is to analyze the performance of Poisson
MANET in the presence of an adversarial Jammer and study
the equilibrium properties.

More structured point processes can also be contemplated,
for instance exhibiting attraction (hot spots) or repulsion (more
elaborate medium access control than Aloha like e.g. CSMA).
We leave the analysis of medium access games under such
point processes for future research.
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APPENDIX A
PROOF OF PROPOSITION 1

If ρ1P1 ≥ 1, then the slope of U(·, q2) is negative for all
values of q2. Thus q1 = 0 is the unique maximizer of U(0, q2).
If q1 = 0 then q2 = 0 is the unique minimizer of U(0, q2).
Hence (0, 0) is an equilibrium.

Differentiating U1 with respect to q1 we have

∂U(q1, q2)

∂q1
= λ1 exp{−C(q1λ1 + q2λ2Q)}

×(1− q1λ1C)− λ1ρ1P1 (26)

Assume that ρ1P1 < exp{−λ2CQ}. Note that from Lemma
2, q1 and q̃1 lies in the interval [0, 1]. Let q2 = 0, then it
follows from Equation (37) and the definition of the Lambert
function [14], that the maximizer of U1(·, 0) is (10). Let q1 =
q̃1, the slope of U1(q̃1, ·) is

∂U1(q̃1, q2)/∂q2 =

− q1λ1CQ exp{−q̃1λ1C} exp{−CQq2λ2}+ ρ2P2,

which is positive for all values of q2 under the hypothesis
of the first bullet. This implies that U1(q̃1, ·) is an increasing
function in q2. Then q2 = 0 is the optimal strategy for the
Jammer. This verifies the claim in the first bullet. Assume
q2 = 1, then it follows from Equation (37) and the definition
of the Lambert function, that the maximizer of U1(·, 1) is (11).
Let q1 = q1, the slope of U1(q1, ·) is

∂U1(q1, q2)/∂q2 =

− q1λ1CQ exp{−q1λ1C} exp{−CQq2λ2}+ ρ2P2,

which is negative for all values of q2 under the hypothesis of
the second bullet. This implies that U1(q1, ·) is a decreasing
function in q2. Then the optimal value for the Jammer is to set
q2 = 1. This verifies the claim in second bullet. Let (q∗1 , q

∗
2) be

an interior equilibrium point, then the following simultaneous
equations hold.

q∗1λ1CQ exp{−q∗1λ1C} exp{−CQq∗2λ2} = ρ2P2.

exp{−C(q∗1λ1 + q∗2λ2Q)}(1− q∗1λ1C) = ρ1P1.

Solving these simultaneous equation we get the values in (12)
and (13).
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APPENDIX B
PROOF OF LEMMA 1

We calculate the probability that a transmission by a typical
node of the Operator is successful in the presence of Jammer.

Proof: Let the independently marked Poisson point pro-
cess Φ̃ = {Xi, ei}i≥1 denote the locations and the marks
associated with the the transmitters of the Jammer. We assume
that Φ̃ is independent of Φ̃. The marks {ei}i≥1 indicate if a
transmitter at location Xi is turned ON or OFF in a given
time slot. A given transmitter is turned ON with probability
E[ei] = q2. Let Φ

1
= {Xi, ei = 1} denote the set of

transmitters of the Jammer that are active. Then the shot
noise seen by a typical node that is placed at the origin
due to the active transmitters of the Jammer is given by
I
Φ̃

1 =
∑

Xi∈Φ
1 P2Sl(|Xi|). For notational simplicity write

I1 = IΦ̃1 and I2 = I
Φ̃

1 . The total interference at the typical
node is I1 + I2. Let pc(q1, q2) denote the success probability
of the typical node when the Operator uses the MAP q1 and
the Jammer turns ON its transmitters with probability q2. Then
from the definition of success probability in Equation (2) we
have

pc(q1, q2)

= Pr {Sl(r)P1 ≥ T (I1 + I2 +W )} (27)

= E
{
e

−µTI1
l(r)P1

}
E
{
e

−µTI2
l(r)P1

}
E
{
e

−µTW
l(r)P1

}
(28)

= E
{
e

−µTW
l(r)P1

}
LI1

(
−µT

l(r)P1

)
LI2

(
−µT

l(r)P1

)
, (29)

where Equation (28) follows from the assumptions that the I1,
I2 and W are independent, and S is Rayleigh distributed with
mean 1/µ. In Equation (29) LI1(s) and LI2(s) denotes the
Laplace of shot noise IΦ̃1 and I

Φ̃
1 respectively, evaluated at

s. We compute each term in the last expression as following:

LI1

(
−µT

l(r)P1

)
= exp

{
−2πλ1q1

∫
u≥0

(
1− E

[
e

−l(u)µT
l(r)

])
udu

}
(30)

= exp

{
−2πλ1q1

∫
u≥0

(
udu

1 + l(r)/T l(u)

)}
(31)

= exp
{
−2πλ1q1r

2T 2/βK(β)
}

(32)

where Equation (30) follows by applying the definition of
Laplace functional of Poisson point process. Equation (31)
follows by noting that expectation in Equation (30) is over
the Rayleigh distribution. K(β) = Γ(2/β)Γ(1−2/β)

β . Similarly

we calculate

LI2

(
−µT

l(r)P1

)
= exp

{
−2πλ2q2

∫
u≥0

(
1− E

[
e

−P2l(u)µT

l(r)P1

])
udu

}
(33)

= exp

{
−2πλ2q2

∫
u≥0

(
udu

1 + P1l(r)/P2T l(r)

)}
(34)

= exp
{
−2πλ2q2r

2T 2/β(P2/P1)
2/βK(β)

}
(35)

Substituting Equations (32), (35) in Equation (29) we get

pc(q1, q2) = E
{
e

−µTW
l(r)P1

}
exp

{
−C(λ1q1 + λ2q2(P2/P1)

2/β)
}
.

(36)
The intensity of the nodes of the Operator is given by λ1q1.
From the Campbell’s formula [2] for the stationary point
processes the density of successful transmission is given by
multiplying Equation (36) by λ1q1. This concludes the proof
by taking W ≡ 0.

APPENDIX C
PROOF OF LEMMA 2

It is easy to observe that the U1(q1, ·) is a convex function.
Differentiating U1 with respect to q1 once and twice we have

∂U(q1, q2)

∂q1
= λ1 exp{−C(q1λ1 + q2λ2Q)}

×(1− q1λ1C)− λ1ρ1P1 (37)

and
∂2U(q1, q2)

∂q21
= −λ1 exp{−C(q1λ1 + q2λ2Q)}

×(2− q1λ1C) (38)

respectively. First consider the case λ1C ≥ 1. For q1 ≥ 1/λ1C
the slope in (37) is negative. From Equation (38), it is clear
that Equation (37) is a decreasing function in q1 in the interval
[0, 1/λ1C], taking values λ1 exp{−Cq2λ2Q} − λ1ρ1P1 > 0
at q1 = 0, and −λ1ρ1P1 at q1 = 1/λ1C. Thus there exists a
unique q′1 ∈ [0, 1/λ1C] such that

exp{−C(q′1λ1 + q2λ2Q)}(1− q′1λ1C) = ρ1P1.

For all q1 ≤ q′1 the slope of U1(·, q2) is positive and for all
q1 ≥ q′1 it is negative. Hence we conclude that U1(·, q2) is a
quasi concave in q1 [13].

For the case λ1C < 1, the second derivative in (38) is
negative for all q1 ∈ [0, 1]. Hence U(q1, q2) is concave in q1.

APPENDIX D
PROOF OF LEMMA 3

It is easy to note that U1(q1, ·) is concave in q2. The
concavity in argument q1 can be verified by taking the second
derivative. The first and second order derivative of U1(q1, ·)
with respect to q1, after simplification, are as following.

∂U1(q1, q2)

∂q1
=

λ1

q21
exp{C(λ1q1 + λ2q2Q)}×

(1− Cλ1q1)− λ1ρ1P1 (39)
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and

∂2U1(q1, q2)

∂q21
= −λ1

q1
exp{C(λ1q1 + λ2q2Q)}×

((Cλ1 + 1/q1)
2 + 1/q1) (40)

respectively. Equation (40) is negative valued for all q1 ∈
[0, 1]. Hence U1(·, q2) is a concave function. Now assume
that λ1C ≥ 1. As (40) is negative valued, ∂U1(q1, q2)/∂q1 is a
decreasing function in q1 taking the value ∂U1(q1, q2)/∂q1 =
−λ1ρ1P1 at q1 = 1/λ1C. Hence maximum is achieved in the
interval [0, 1/λ1C].

APPENDIX E
PROOF OF PROPOSITION 3

If ρ1P1 ≥ 1 the slope of U(INR, ·, q2) is negative for
all values of q2. Thus q1 = 0 is the unique maximizer
of U(INR, q1, q2). If q1 = 0 then q2 = 0 is the unique
minimizer of U(INR, 0, q2). Hence (0, 0) is an equilibrium.
Differentiating anti-potential (19) with respect to q1 and q2,
we have

∂U(INR, q1, q2)/∂q1

=
(C1λ2q2Q+ λ0)λ0

(C1λ1q1 + C1λ2q2Q+ λ0)2
− ρ1P1 (41)

and (19) with respect to q1

∂U(INR, q̃1, q2)/∂q2 =

− λ1λ0q1C1Q

(C1λ1q1 + C1λ2q2Q+ λ0)2
+ ρ2P2, (42)

respectively. Assume that ρ1P1 < λ0/(λ2CQ + 1). Let q2 =
0, then it follows from Equation (41) that the maximizer of
U(INR, ·, 0) is (22). Let q1 = q̃1, the slope of U(INR, q̃1, ·) is

which is positive for all values of q2 under the hypothesis of
the first bullet. This implies that U(INR, q̃1, ·) is an increasing
function in q2. Then q2 = 0 is the optimal strategy for the
Jammer. This verifies the claim in the first bullet. Assume
q2 = 1, it follows from Equation (41) that the maximizer
of U(INR, ·, 1) is (23). Let q1 = q1, form Equation (42) the
slope of U(INR, q1, ·) is negative for all values of q2 under the
hypothesis of the second bullet. This implies that U(INR, q̃1, ·)
is a decreasing function in q2. Then the optimal value for the
Jammer is to set q2 = 1. This verifies the claim in second
bullet. Let (q∗1 , q

∗
2) be an interior equilibrium point, then from

(41) and (42) the following simultaneous equations hold.

(C1λ2q
∗
2Q+ λ0)λ0

(C1λ1q∗1 + C1λ2q∗2Q+ λ0)2
= ρ1P1 (43)

λ1λ0q
∗
1C1Q

(C1λ1q∗1 + C1λ2q∗2Q+ λ0)2
= ρ2P2 (44)

Taking the ratio of the above equations we obtain

(C1λ2q
∗
2Q+ λ0) =

ρ1P1λ1q
∗
1C1Q

ρ2P2
.

Substituting this relation in (44) we get (24). Using (24) and
the relation (44) we obtain (25).


