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Abstract

The problem of guessing a random string is studied. It arises in the analysis of the strength

of secret-key cryptosystems against guessing attacks. Expected number of guesses, or

more generally moments of the number of guesses needed to break the cryptosystem grow

exponentially with the length of the string. This thesis studies the rate of exponential

growth of these moments using the theory of large deviations.

A close relation between guessing and compression is first established. For systems

with large key rates, it is shown that if the source’s sequence of so-called information spec-

trum random variables satisfies the large deviation property with a certain rate function,

then the limiting guessing exponent exists and is a scalar multiple of the Legendre-Fenchel

dual of the rate function. This is then used to rederive several prior results. The large

deviations approach brings to light the relevance of information spectrum in determining

guessing exponents.

For systems with key-rate constraints, bounds are derived on the limiting guessing

exponents for general sources. The obtained bounds are shown to be tight for station-

ary memoryless, Markov, and unifilar sources, thus recovering some known results. The

bounds are obtained by establishing a close relationship between error exponents and cor-

rect decoding exponents for fixed rate source compression on the one hand and exponents

for guessing moments on the other.
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Chapter 1

Introduction

Let X be a random variable taking values on a finite set X. Alice conducts a random

experiment and obtains outcome x. Bob is interested in determining the outcome of this

experiment, knowing only the alphabet set X and distribution of the random variable. He

submits a sequence of guesses to Alice stepping through the elements in X. Alice replies

either “Yes” or “No” to each of Bob’s guesses and charges a fixed amount for each guess.

Bob should determine the realization with as few guesses as possible to minimise his

cost. There are several applications that motivate this problem. Consider cipher systems

employed in digital television or DVDs to block unauthorized access to special features.

The ciphers used are amenable to such exhaustive guessing attacks and it is of interest to

quantify the effort needed by an attacker.

More generally, consider the classical cipher system of Shannon [1] shown in figure

1.1. Let Xn be a message string of length n taking values on X
n. This message should

be communicated securely from a transmitter to a receiver, both of which have access to

a common secure key Uk of k purely random bits independent of Xn. The transmitter

computes the cryptogram Y = fn(Xn, Uk) and sends it to the receiver over a public

channel. The cryptogram may be of variable length, and R = k/n is the key rate of the

system. The encryption function fn is invertible for any fixed Uk. The receiver, knowing

Y and Uk, computes Xn = f−1
n (Y, Uk). The functions fn and f−1

n are published. A

wiretapping attacker has access to the cryptogram Y , knows fn and f−1
n , and attempts

1



1.1 Prior work 2

Figure 1.1: Shannon Cipher System

to identify Xn without knowledge of Uk. The attacker can use knowledge of the statistics

of Xn. The attacker now aims to identify the message using as few guesses as possible,

having now tapped the cryptogram (a problem studied by Merhav & Arikan [2]). We

assume that the attacker has a test mechanism that tells him whether a guess X̂n is

correct or not. For example, the attacker may wish to attack an encrypted password or

personal information to gain access to, say, a computer account, or a bank account via

internet, or a classified database [2]. In these situations, successful entry into the system

provides the natural test mechanism. We assume that the attacker is allowed an unlimited

number of guesses.

In this thesis, we analyse the performance of such guessing attacks using the theory

of large deviations.

1.1 Prior work

Let Pn denote the probability mass function (pmf) of the message strings taking values

on X
n. Consider the situation where the key rate is sufficiently large (for example, larger

than log |X|) so as to render the cryptogram useless to the attacker. In this case we have

perfect secrecy. The attacker then simply submits guesses based on the knowledge of Pn.
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Massey [3] observed that the expected number of guesses needed to identify the realization

is minimized by guessing in the decreasing order of Pn-probabilities. Define the guessing

function G∗
n : X

n → {1, 2, · · · , |X|n} to be one such optimal guessing order1. G∗
n(xn) = g

implies that xn is the gth guess. Arikan [4] considered the growth of E [G∗
n(Xn)ρ] as a

function of n for an independent and identically distributed (iid) source with marginal pmf

P1 and ρ > 0. Moments of guessing are of interest because they describe the tail behavior

of G∗
n(Xn); see end of this section. Arikan [4] showed that the growth is exponential in

n; the limiting exponent which we will call guessing exponent

E(ρ) := lim
n→∞

1

n
log E[G∗

n(Xn)ρ] (1.1)

exists and equals ρHα(P1) with α = 1/(1+ρ), where Hα(Pn) is the Rényi entropy of order

α for the pmf Pn, given by

1

1 − α
log

(

∑

xn∈Xn

Pn(xn)α

)

, α 6= 1. (1.2)

Arikan & Merhav remark that their proof in [5] for the limiting guessing exponent is

equally applicable to finding the limiting exponent of the moment generating function of

compression lengths. Moreover, the two exponents are the same. The latter is a problem

studied by Campbell [6].

Malone & Sullivan [7] showed that the limiting exponent E(ρ) of an irreducible Markov

chain exists and equals the logarithm of the Perron-Frobenius eigenvalue of a matrix

formed by raising each element of the transition probability matrix to the power α. From

their proof, one obtains the more general result that the limiting exponent exists for any

source if the Rényi entropy rate of order α,

lim
n→∞

n−1Hα(Pn), (1.3)

1If there are several strings with the same probability of occurrence, they may be guessed in any order
without affecting the expected number of guesses.
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exists for α = 1/(1 + ρ). Pfister & Sullivan [8] showed the existence of (1.1) for a

class of stationary probability measures where the probability of finite-length strings are

approximately determined by letter combinations. For such a class, they showed that

the guessing exponent has a variational characterization (see (2.23) later). For unifilar

sources Sundaresan [9] obtained a simplification of this variational characterization using

a direct approach and the method of types.

Merhav & Arikan [2] studied discrete memoryless sources (DMS) for all positive key

rates and characterized the best attainable guessing moments required by an attacker. In

particular, they showed that for a DMS with governing single letter pmf P1 on X, the

value of the optimal exponent for the ρth moment (ρ > 0) is given by

E(R, ρ) = max
Q

{ρ min{H(Q), R} − D(Q ‖ P1)} . (1.4)

The maximization is over all pmfs Q on X, H(Q) is the Shannon entropy of Q, and

D(Q ‖ P ) is the Kullback-Leibler divergence between Q and P . They also showed that

E(R, ρ) increases linearly in R for R ≤ H(P ), continues to increase in a concave fashion

for R ∈ [H(P ), H
′

], where H
′

is a threshold, and is constant for R > H
′

. Unlike the

classical equivocation rate analysis, atypical sequences do affect the behavior of E(R, ρ)

for R ∈ [H(P ), H
′

] and perfect secrecy is obtained, i.e., cryptogram is uncorrelated with

the message, only for R > H
′

> H(P ). Perfect secrecy is thus clearly obtained when

R > log |X|. Merhav & Arikan also determined the best achievable performance based

on the probability of a large deviation in the number of guesses, i.e., the tail behavior

of G∗
n(Xn), and showed that the corresponding exponent equals the Legendre-Fenchel

transform of E(R, ρ) as a function of ρ. Sundaresan [9] extended the above results to

unifilar sources. Hayashi & Yamamoto [10] proved coding theorems for the Shannon

cipher system with correlated outputs (Xn, Zn) where the wiretapper is interested in Xn

while the receiver in Zn.
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1.2 Our contribution

We give a large deviations perspective to these results, shed further light on the afore-

mentioned connection between compression and guessing, and unify all prior results on

existence of limiting guessing exponents. Specifically, we show that if the sequence of

distributions of the information spectrum (1/n) log(1/Pn(Xn)) (see Han [11]) satisfies the

large deviation property, then the limiting exponent exists. This is useful because several

existing large deviations results can be readily applied. We then show that all previously

considered cases in the literature (without side information and key-rate constraints) sat-

isfy this sufficient condition. The large deviation ideas are already present in the works of

Pfister & Sullivan [8] and the method of types approach of Arikan & Merhav [5]. Our work

brings out the essential ingredient (the sufficient condition on the information spectrum)

and enables us to see all these specific results under one light.

Further, we extend Merhav & Arikan’s notion of computational secrecy to general

sources. One motivation is that secret messages typically come from the natural lan-

guages which can be well-modelled as sources with memory, for e.g., a Markov source of

appropriate order. Another motivation is that the study of general sources clearly brings

out the connection between guessing and compression, as discussed next.

As with other studies of general sources, information spectrum plays a crucial role in

this thesis. We show that E(R, ρ) is closely related to

(a) the error exponent of a rate-R source code

(b) the correct decoding exponent of a rate-R source code, when exponentiated proba-

bilities are considered (see Sec.3.3.2).

In particular, the exponents in (a) and (b) appear in the first and second terms when we

rewrite E(R, ρ) for a DMS as

E(R, ρ) = max

{

ρR − min
Q:H(Q)>R

D(Q ‖ P ), min
Q:H(Q)≤R

{ρH(Q) − D(Q ‖ P )}

}

.
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This brings out the fundamental connection between source coding exponents and key-

rate constrained guessing exponents. Further, unlike the case for the probability of a large

deviation in the number of guesses [2, Sec. V], both the error exponent and the correct

decoding exponent determine E(R, ρ). We extend the above result to general sources by

getting upper and lower bounds on E(R, ρ). We then show that these are tight for DMS,

Markov, and unifilar sources. The bounds may be of interest even if they are not tight

because the upper bound specifies the amount of effort need by an attacker and the lower

bound specifies the secrecy strength of the cryptosystem to a designer.

The limiting case as ρ ↓ 0 in (b) yields the classical framework for probability of

correct decoding. This special case is related to the work of Han [12] and Iriyama [13]

who studied the dual problem of rates required to meet a specified error exponent or a

specified correct decoding exponent.

1.3 Organization of the thesis

This thesis is organized as follows. In chapter 2 we focus attention on the system with

perfect secrecy. We first study the tight relationship between guessing and compression.

We state the relevant large deviations results and the main sufficiency condition. We

then re-derive prior results by showing that each case satisfies the sufficient condition.

All the proofs are relegated to the end of the chapter. We then conclude the chapter with

a concise summary.

In chapter 3 we consider guessing for key-rate constrained systems. We first define

the problem precisely and relate it to a modification of Campbell’s compression problem

[6]. We give bounds on the limits of exponential rate of guessing moments, in terms

of information spectrum quantities. We then evaluate these bounds for some specific

examples to recover prior results. Yet again, all proofs of claimed results of this chapter

are relegated to the end of the chapter. We then conclude the chapter with a summary.

In chapter 4 we make some concluding remarks and discuss some open problems.



Chapter 2

Perfect Secrecy

Let Xn = (X1, · · · , Xn) denote n letters of a process where each letter is drawn from a

finite set X. The joint probability mass function (pmf) is given by (Pn(xn) : xn ∈ X
n). Let

xn be a realization and suppose that we wish to guess this realization by asking questions

of the form “Is Xn = xn?”, stepping through the elements of X
n until the answer is “Yes”.

A guessing function

Gn : X
n → {1, 2, · · · , |X|n}

is a bijection that denotes the order in which the elements of X
n are guessed. If Gn(xn) =

g, then the gth guess is xn. We wish to minimize the expected number of guesses, i.e.,

EPn
[Gn(Xn)] where the expectation1 is with respect to Pn. As observed by Massey [3]

the expected number of guesses is minimized by guessing in the decreasing order of Pn-

probabilities. We denote this optimal guessing strategy by G∗
n.

Our interest in this chapter is to study the exponential growth rate of moments,

E[G∗
n(Xn)ρ] for a given ρ > 0, i.e, to study

E(ρ) := lim
n→∞

1

n
log E[G∗

n(Xn)ρ],

whenever limit exists2. Before we do so we establish equivalence between the problem of

1In the subsequent sections we drop subscript Pn and use the notation E[Gn(Xn)] to mean expectation
with respect to Pn when there is no ambiguity.

2Results in this chapter can be found in [14] and [15].

7
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guessing and source compression.

2.1 Guessing and Compression

In this section we relate the problem of guessing to one of source compression. An in-

teresting conclusion is that robust source compression strategies lead to robust guessing

strategies.

For ease of exposition, let us assume that the message space is simply X. The extension

to strings of length n is straightforward. Let N denote the set of natural numbers. A

length function L : X → N is one that satisfies Kraft’s inequality

∑

x∈X

exp{−L(x)} ≤ 1. (2.1)

To each guessing function G, we associate a pmf QG on X and a length function LG as

follows.

Definition 2.1.1 Given a guessing function G, we say QG defined by

QG(x) = c−1 · G(x)−1, ∀x ∈ X, (2.2)

is the pmf on X associated with G. The quantity c in (2.2) is the normalization constant.

We say LG defined by

LG(x) = ⌈− log QG(x)⌉ , ∀x ∈ X, (2.3)

is the length function associated with G.

Observe that

c =
∑

a∈X

G(a)−1 =

|X|
∑

i=1

1

i
≤ 1 + ln |X|, (2.4)

and therefore the pmf in (2.2) is well-defined. We record the intimate relationship between

these associated quantities in the following result. (This is also available in the proof of

[16, Th. 1, p.382]).
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Proposition 2.1.2 Given a guessing function G, the associated quantities satisfy

c−1 · QG(x)−1 = G(x) ≤ QG(x)−1, (2.5)

LG(x) − 1 − log c ≤ log G(x) ≤ LG(x). (2.6)

Proof: The first equality in (2.5) follows from the definition in (2.2), and the second

inequality from the fact that c ≥ 1.

The upper bound in (2.6) follows from the upper bound in (2.5) and from (2.3). The

lower bound in (2.6) follows from

log G(x) = log
(

c−1 · QG(x)−1
)

= − log QG(x) − log c

≥ (⌈− log QG(x)⌉ − 1) − log c

= LG(x) − 1 − log c.

We now associate a guessing function GL to each length function L.

Definition 2.1.3 Given a length function L, we define the associated guessing function

GL to be the one that guesses in the increasing order of L-lengths. Messages with the

same L-length are ordered using an arbitrary fixed rule, say the lexicographical order on

X. We also define the associated pmf QL on X to be

QL(x) =
exp{−L(x)}

∑

a∈X
exp{−L(a)}

. (2.7)

Proposition 2.1.4 For a length function L, the associated pmf and the guessing function

satisfy the following:

1. GL guesses messages in the decreasing order of QL-probabilities;

2.

log GL(x) ≤ log QL(x)−1 ≤ L(x). (2.8)
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Proof: The first statement is clear from the definition of GL and from (2.7).

Letting 1{E} denote the indicator function of an event E, we have as a consequence

of statement 1) that

GL(x) ≤
∑

a∈X

1 {QL(a) ≥ QL(x)}

≤
∑

a∈X

QL(a)

QL(x)

= QL(x)−1, (2.9)

which proves the left inequality in (2.8). This inequality was known to Wyner [17].

The last inequality in (2.8) follows from (2.7) and Kraft’s inequality (2.1) as follows:

QL(x)−1 = exp{L(x)} ·
∑

a∈X

exp{−L(a)} ≤ exp{L(x)}.

Let {L(x) ≥ B} denote the set {x ∈ X | L(x) ≥ B}. We then have the following easy

to verify corollary to Propositions 2.1.2 and 2.1.4.

Corollary 2.1.5 For any G, its associated length function LG, and any B ≥ 1, we have

{LG(x) ≥ B + 1 + log c}

⊆ {G(x) ≥ exp{B}}

⊆ {LG(x) ≥ B} . (2.10)

Analogously, for any L, its associated guessing function GL, and any B ≥ 1, we have

{GL(x) ≥ exp{B}} ⊆ {L(x) ≥ B}. (2.11)

The inequalities between the associates in (2.6) and (2.8) indicate the direct relationship

between guessing moments and Campbell’s coding problem [6], and that the Rényi en-

tropies are the optimal growth exponents for guessing moments, as highlighted in the
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following Proposition.

Proposition 2.1.6 Let L be any length function on X, GL the guessing function as-

sociated with L, P a pmf on X, ρ ∈ (0,∞), L∗ the length function that minimizes

E [exp{ρL∗(X)}], where the expectation is with respect to P , G∗ the guessing function

that proceeds in the decreasing order of P -probabilities and therefore the one that mini-

mizes E [G∗(X)ρ], and c as in (2.4). Then

E [GL(X)ρ]

E [G∗(X)ρ]
≤

E [exp{ρL(X)}]

E [exp{ρL∗(X)}]
· exp{ρ(1 + log c)}. (2.12)

Analogously, let G be any guessing function, and LG its associated length function. Then

E [G(X)ρ]

E [G∗(X)ρ]
≥

E [exp{ρLG(X)}]

E [exp{ρL∗(X)}]
· exp{−ρ(1 + log c)}. (2.13)

Also,
∣

∣

∣

∣

1

ρ
log E [G∗(X)ρ] −

1

ρ
log E [exp{ρL∗(X)}]

∣

∣

∣

∣

≤ 1 + log c. (2.14)

Proof: Observe that

E [exp{ρL(X)}]

≥ E [GL(X)ρ] (2.15)

≥ E [G∗(X)ρ]

≥ E [exp{ρLG∗(X)}] exp{−ρ(1 + log c)} (2.16)

≥ E [exp{ρL∗(X)}] exp{−ρ(1 + log c)}, (2.17)

where (2.15) follows from (2.8), and (2.16) from the left inequality in (2.6). The result in

(2.12) immediately follows. A similar argument shows (2.13). Finally, (2.14) follows from

the inequalities leading to (2.17) by setting L = L∗.

Thus if we have a length function whose performance is close to optimal, then its

associated guessing function is close to guessing optimal. The converse is true as well.

Moreover, the optimal guessing exponent is within 1+log c of the optimal coding exponent
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for the length function.

2.1.1 Strings of length n

Let us now consider strings of length n. Let X
n denote the set of messages and consider

n → ∞. Let M(Xn) denote the set of pmfs on X
n. By a source, we mean a sequence of

pmfs (Pn : n ∈ N), where Pn ∈ M(Xn). We replace the normalization constant c in (7)

by cn and observe that

cn ≤ 1 + n ln |X|.

If we normalize both sides of equation (2.14) by n, the difference between two quantities as

a function of n decays as O((log n)/n), and vanishes as n tends to infinity. The following

theorem follows immediately.

Theorem 2.1.7 Given ρ > 0, the limit

lim
n→∞

n−1 log E[G∗
n(Xn)ρ]

exists if and only if the limit

lim
n→∞

inf
Ln

n−1 log E[exp{ρLn(Xn)}]

exists. Furthermore, the two the limits are equal.

It is therefore sufficient to restrict our attention to the Campbell’s coding problem [6]

and study if the limit

lim
n→∞

inf
Ln

1

n
log E[exp{ρLn(Xn)}] (2.18)

exists, where the infimum is taken over all length functions Ln : X
n → N.

2.1.2 Universality

Before we proceed to studying the limit, we make a further remark on the connection

between universal strategies for guessing and universal strategies for compression.
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Let T denote a class of sources. For each source in the class, let Pn be its restriction to

strings of length n and let L∗
n denote an optimal length function that attains the minimum

value E [exp{ρL∗
n(Xn)}] among all length functions, the expectation being with respect

to Pn. On the other hand, let Ln be a sequence of length functions for the class of sources

that does not depend on the actual source within the class. Suppose further that the

length sequence Ln is asymptotically optimal, i.e.,

lim
n→∞

1

nρ
log E [exp{ρLn(Xn)}] = lim

n→∞

1

nρ
log E [exp{ρL∗

n(Xn)}] ,

for every source belonging to the class. Ln is thus “universal” for (i.e., asymptotically

optimal for all sources in) the class. An application of (2.12) with cn in place of c followed

by the observation (1 + log cn)/n → 0 shows that the sequence of guessing strategies GLn

is asymptotically optimal for the class, i.e.,

lim
n→∞

1

nρ
log E [GLn

(Xn)ρ] = lim
n→∞

1

nρ
log E [G∗(Xn)ρ] .

Arikan and Merhav [5] provide a universal guessing strategy for the class of discrete

memoryless sources (DMS). For the class of unifilar sources with a known number of states,

the minimum description length encoding is asymptotically optimal for Campbell’s coding

length problem (see Merhav [18]). It follows as a consequence of the above argument that

guessing in the increasing order of description lengths is asymptotically optimal. The

left side of (2.12) is the extra factor in the expected number of guesses (relative to the

optimal value) due to lack of knowledge of the specific source in class. Sundaresan [19]

characterized this loss as a function of the uncertainty class.
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2.2 Large Deviation Results

We begin with some words on notation. Recall that M(Xn) denotes the set of pmfs on

X
n. The Shannon entropy for a Pn ∈ M(Xn) is

H(Pn) = −
∑

xn∈Xn

Pn(xn) log Pn(xn) (2.19)

and the Rényi entropy of order α 6= 1 is (1.2). The Kullback-Leibler divergence or relative

entropy between two pmfs Qn and Pn is

D(Qn ‖ Pn) =











∑

xn∈Xn

Qn(xn) log
Qn(xn)

Pn(xn)
, if Qn ≪ Pn,

∞, otherwise,

(2.20)

where Qn ≪ Pn means Qn is absolutely continuous with respect to Pn. Recall that a

source is a sequence of pmfs (Pn : n ∈ N) where Pn ∈ M(Xn). It is usually obtained via

n-length marginals of some probability measure in M(XN). Also recall the definitions of

limiting guessing exponent in (1.1) and Rényi entropy rate in (1.3) when the limits exist.

G∗
n is an optimal guessing function for a pmf Pn ∈ M(Xn). From the results in Section

2.1 on the equivalence between guessing and compression, it is sufficient to focus on the

Campbell coding problem (see (2.18)).

Our first contribution is a proof of the following implicit result of Malone & Sullivan

[7]. The proof is given in Section 2.4.1.

Proposition 2.2.1 Let ρ > 0. For a source (Pn : n ∈ N), E(ρ) exists if and only if the

Rényi entropy rate (1.3) exists. Furthermore, E(ρ)/ρ equals the Rényi entropy rate.

The question now boils down to the existence of the limit in the definition of Rényi entropy

rate. The theory of large deviations immediately yields a sufficient condition. We begin

with a definition.

Definition 2.2.2 (Large deviation property) [20, Def. II.3.1] A sequence (νn : n ∈
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N) of probability measures on R satisfies the large deviation property (LDP) with rate

function I : R → [0,∞] if the following conditions hold:

• I is lower semicontinuous on R;

• I has compact level sets;

• lim supn→∞ n−1 log νn{K} ≤ − inft∈K I(t) for each closed subset K of R;

• lim infn→∞ n−1 log νn{G} ≥ − inft∈G I(t) for each open set G of R.

Several commonly encountered sources satisfy the LDP with known and well-studied

rate functions. We describe some of these in the examples treated subsequently.

Let νn denote the distribution of the information spectrum given by the real-valued

random variable −n−1 log Pn(Xn). The following proposition gives a sufficient condition

for the existence of the limiting Rényi entropy rate (and therefore the limiting guessing

exponent).

Proposition 2.2.3 Let the sequence of distributions (νn : n ∈ N) of the information

spectrum satisfy the LDP with rate function I. Then the limiting Rényi entropy rate of

order 1/(1 + ρ) exists for all ρ > 0 and equals

β−1 sup
t∈R

{βt − I(t)},

where β = ρ/(1 + ρ). Consequently, the limiting guessing exponent exists and equals

(1 + ρ) sup
t∈R

{βt − I(t)}.

The function I∗(β) := supt∈R {βt − I(t)} is the Legendre-Fenchel dual of the rate

function I.
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2.2.1 Additional results from Large Deviations Theory

In order to study the examples in Section 2.3, we state some additional results on LDP

of transformed variables. (See [21, Sec. 4.2]), [22, Th. 6.12 and 6.14]).

Proposition 2.2.4 (Contraction Principle) Let (ξn : n ∈ N) denote a sequence of X -

valued random variables where X is a complete separable metric space (Polish space). Let

νn denote the distribution of ξn for n ∈ N, and the sequence of distributions (νn : n ∈ N)

on X satisfy the LDP with rate function I : X → [0,∞]. Let φ : X → R be a continuous

function. The sequence of distributions of (φ(ξn) : n ∈ N) on R also satisfies the LDP

with rate function J : R → [0,∞] given by

J(y) = inf{I(x) : x ∈ R, φ(x) = y}.

Proposition 2.2.5 (Exponential Approximation) Let the sequence of distributions

of (ξn : n ∈ N) satisfy the LDP with rate function I on R. Assume also that the sequence

of random variables (ζn : n ∈ N) is superexponentially close to (ξn : n ∈ N) in the following

sense: for each δ > 0

lim sup
n→∞

1

n
log Pr{|ξn − ζn| > δ} = −∞. (2.21)

Then the sequence of distributions of (ζn : n ∈ N) also satisfies the LDP on R with the

same rate function I. The condition in (2.21) is satisfied if

lim
n→∞

sup
xn∈Xn

|ξn(xn) − ζn(xn)| = 0. (2.22)

2.3 Examples

We are now ready to apply Proposition 2.2.3 to various examples. In all the examples

that follow, our goal is to show that the sufficient condition for the existence of the

limiting guessing exponent holds, i.e., that the sequence of distributions of the information

spectrum satisfies the LDP.
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Example 2.3.1 (An iid source) This example was first studied by Arikan [4]. Recall

that an iid source is one for which Pn(xn) =
∏n

i=1 P1(xi), where P1 is the marginal of X1.

It is then clear that the information spectrum can be written as a sample mean of iid

random variables

−n−1 log Pn(Xn) = −n−1

n
∑

i=1

log P1(Xi).

It is well-known that the sequence (νn : n ∈ N) of distributions of this sample mean

satisfies the LDP with rate function given by the Legendre-Fenchel dual of the cumulant

of the random variable − log P1(X1) (see for example [20, Th. II.4.1] or [11, eqn. (1.9.66-

67)]):

log E

[

exp
{

β(− log P1(X1))
}

]

= log

(

∑

x∈X

P1(x)α

)

= (1 − α)Hα(P1).

The Legendre-Fenchel dual of the rate function is therefore the cumulant itself ([20, Th.

VI.4.1.e]). An application of Proposition 2.2.3 yields that (1 + ρ) times this cumulant,

given by ρHα(P1), is the guessing exponent. We thus recover Arikan’s result [4].

The rate function I can also be obtained using the contraction principle (Proposition

2.2.4) as follows. This method will provide a recipe to obtain the limiting guessing expo-

nent in subsequent examples. Consider a mapping that takes xn to its empirical pmf in

M(X). Empirical pmf is then a random variable. The distribution of Xn induces a pmf

on M(X). It is well-known that the sequence of distributions of these empirical pmfs,

indexed by n, satisfies the level-2 LDP3 with rate function I
(2)
P1

(·) = D(· ‖ P1). See for

example [20, Th II.4.3]. Observe that the mapping from the empirical pmf to the infor-

mation spectrum random variable is continuous. We can therefore use the contraction

principle to get a formula for I in terms of I
(2)
P1

(·) as follows [20, Th II.5.1]. For any t in

3Level-1 refers to sequence of distributions (indexed by n) of sample means, level-2 refers to sample
histograms, and level-3 to sample paths.
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R, let

θ(t) :=
{

Q ∈ M(X) :
∑

x∈X

Q(x) log
1

P1(x)
= t

}

,

i.e.,

θ(t) =
{

Q ∈ M(X) : H(Q) + D(Q ‖ P1) = t
}

.

Then

I(t) = inf{I
(2)
P1

(Q) : Q ∈ θ(t)}.

Using this, we can write

I∗(β) = sup
t∈R

{

βt − inf
Q∈θ(t)

D(Q ‖ P1)
}

= sup
t∈R

sup
Q∈θ(t)

{

βt − D(Q ‖ P1)
}

= sup
Q∈M(X)

{

β(H(Q) + D(Q ‖ P1)) − D(Q ‖ P1)
}

= (1 + ρ)−1 sup
Q∈M(X)

{

ρH(Q) − D(Q ‖ P1)
}

,

thus yielding

E(ρ) = sup
Q∈M(X)

{

ρH(Q) − D(Q ‖ P1)
}

. (2.23)

This formula extends to more general sources, as is seen in the next few examples.

Example 2.3.2 (Markov source) This example was studied by Malone & Sullivan [7].

Consider an irreducible Markov chain taking values on X with transition probability

matrix π. Our goal is to verify that the sufficient condition holds and to calculate E(ρ)

defined by (1.1) for this source.

Let Ms(X
2) denote the set of stationary pmfs defined by

Ms

(

X
2
)

=
{

Q ∈ M
(

X
2
)

:
∑

x1∈X

Q(x1, x) =
∑

x2∈X

Q(x, x2)∀x ∈ X

}

.
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Denote the common marginal by q and let

η(· | x1) :=







Q(x1, ·)/q(x1), if q(x1) 6= 0,

1/|X|, otherwise.

We may then denote Q = q × η, where q is the distribution of X1 and η the conditional

distribution of X2 given X1. It is once again well known that the empirical pmf random

variable satisfies the level-2 LDP with rate function I
(2)
π (Q), given by [23]

I(2)
π (Q) = D(η ‖ π | q)

:=
∑

x1∈X

q(x1)D(η(· | x1) ‖ π(· | x1)).

As in Example 2.3.1, the contraction principle then yields that the sequence of distribu-

tions of information spectrum satisfies the LDP with rate function I given by

I(t) = inf{I(2)
π (Q) : Q ∈ θ(t)}.

where for t in R, θ(t) ⊂ Ms(X
2) is defined by

θ(t) =

{

Q ∈ Ms(X
2) :

∑

x1,x2

Q(x1, x2) log
1

π(x2|x1)
= t

}

.

By Proposition 2.2.1, the limiting guessing exponent exists. Perron-Frobenius theory

(Seneta [24, Ch. 1], see also [25, pp.60-61]) yields the cumulant directly as log λ(β),

where λ(β) is unique largest eigenvalue (Perron-Frobenius eigenvalue) of a matrix formed

by raising each element of π to the power α. (Recall that α = 1/(1+ρ) and β = ρ/(1+ρ)).

Thus E(ρ) = (1 + ρ) log λ(β), and we recover the result of Malone & Sullivan [7]. It is

useful to note that the steps that led to (2.23) hold in the Markov case (with appropriate

changes to entropy and divergence terms) and we may write

E(ρ) = sup
Q∈Ms(X2)

{

ρH(η | q) − D(η ‖ π | q)
}

, (2.24)
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where H(η | q) is the conditional entropy of X2 given X1 under the joint distribution Q,

i.e.,

H(η | q) := −
∑

x∈X

q(x)H(η(· | x)).

Example 2.3.3 (Unifilar source) This example was studied by Sundaresan in [9]. A

unifilar source is a generalization of the Markov source in Example 2.3.2. Let X denote

the alphabet set as before. In addition, let S denote a set of finite states. Fix an initial

state s0 and let the joint probability of observing (xn, sn) be

Pn(xn, sn) =
n

∏

i=1

π(xi, si | si−1)

where π(xi, si | si−1) is the joint probability of (xi, si) given the previous state si−1. The

dependence of Pn on s0 is understood. Furthermore, assume that π(xi, si | si−1) is such

that si = φ(si−1, xi), where φ is a deterministic function that is one-to-one for each fixed

si−1. Such a source is called a unifilar source.

PS,X(si−1, xi) and φ completely specify the process: the initial state S0 is random with

distribution that of marginal of S in PS,X , the rest being specified by PX|S(xi | si−1) and

φ. Example 2.3.2 is a unifilar source with S = X, φ(si−1, xi) = xi, and PS,X = q×π where

q is the stationary distribution of the Markov chain.

Let Ms(S × X) denote the set of joint measures on the indicated space so that the

resulting process (Sn : n ≥ 0) is a stationary and irreducible Markov chain. Let a

Q ∈ Ms(S × X) be written as Q = q × η. For any t in R, let

θ(t) :=







Q ∈ Ms(S × X) :
∑

(s,x)

Q(s, x) log
1

π(x | s)
= t







.

Then the sequence of distributions of information spectrum −n−1 log Pn(Xn) satisfies the

LDP ([11, eqn. (1.9.30)]) with rate function given (once again via contraction principle)

by

I(t) = inf{D(η ‖ π | q) : Q ∈ θ(t)}.
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The limiting exponent therefore exists. Following the same procedure that led to (2.23)

in the iid case and (2.24) for a Markov source, we get

E(ρ) = sup
Q∈Ms(S×X)

{

ρH(η | q) − D(η ‖ π | q)
}

, (2.25)

where H(η | q) and D(η ‖ π | q) are analogously defined, and the result of Sundaresan [9]

is recovered.

Example 2.3.4 (A class of stationary sources) Pfister & Sullivan [8] consider a class

of stationary sources with distribution P ∈ M
(

X
N
)

that satisfy two hypotheses H1 and

H2 of [8, Sec. II-B]. Hypothesis H1 assumes that for any ε > 0 and any neighborhood

of the given source, there is a stationary and ergodic approximation that is absolutely

continuous with the given source such that the excess of the given source’s Shannon en-

tropy rate over that of the approximation is at most ε. Hypothesis H2 is given by (2.27)

below. Under these hypotheses, they prove that E(ρ) exists, and provide a variational

characterization analogous to (2.25), i.e.,

E(ρ) = sup
Q∈MP

s

{

ρH(Q) − D(Q ‖ P )
}

, (2.26)

where H(Q) is the Shannon entropy rate, and with Pn and Qn restrictions of P and Q to

n letters

D(Q ‖ P ) = lim
n→∞

n−1
∑

xn

Qn(xn) log
Qn(xn)

Pn(xn)
.

MP
s is the set of stationary sources that satisfy Qn ≪ Pn for all n.

En route to this result, Pfister & Sullivan [8] show that the sequence of distributions

of the empirical process satisfies the level-3 LDP for sample paths. We first state this

precisely, and then use this as the starting point to show the sufficient condition that the

information spectrum satisfies the LDP.

For an x ∈ X
N given by x = (x1, x2, · · · ), we define xn = (x1, · · · , xn) as the first n

components of x in the usual way. In the other direction, given an xn ∈ X
n, let [xn] ∈ X

N

denote the periodic point in X
N obtained by repeating (x1, · · · , xn). Let τ : X

N → X
N
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denote the shift operator defined by

(τ(x))i = xi+1,∀i ∈ N.

Consider a stationary source P whose letters are X1, X2, · · · . Define the empirical process

of measures

Tn(Xn, ·) = n−1

n−1
∑

i=0

δτ i([Xn])(·).

This is a measure on X
N that puts mass 1/n on the following strings:

[xn], τ([xn]), τ 2([xn]), · · · , τn−1([xn]).

Let Ms denote set of stationary distributions on X
N. Pfister & Sullivan show that the

distributions of the Ms-valued process Tn(Xn, ·) satisfies the level-3 LDP with rate func-

tion I
(3)
P (·) = D(· ‖ P ) under hypotheses H1 and H2 of their paper. We next use this to

show that the sequence of distributions of the information spectrum satisfies the LDP.

Hypothesis H2 of Pfister & Sullivan assumes the existence of a continuous mapping

eP : X
N → R satisfying

lim
n→∞

sup
xn∈ΣP

n

∣

∣

∣

∣

n−1 log Pn(xn) +

∫

XN

eP dTn([xn], ·)

∣

∣

∣

∣

= 0, (2.27)

where ΣP
n denotes the support set of Pn.

By the compactness of X
N, eP is uniformly continuous. Under the weak topology on

the separable metric space MP
s (XN), the mapping

φ : MP
s (XN) → R

defined by Q 7→
∫

XN eP dQ is a continuous mapping. Hence by the contraction principle,

by setting X = Ms we get that the sequence of distributions of (φ(Tn(Xn, ·) : n ∈ N)
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satisfies the LDP with rate function I given by

I(t) = inf
{

D(Q ‖ P ) : Q ∈ MP
s , φ(Q) = t

}

.

Furthermore, given hypothesis H2 and (2.27), an application of the exponential approx-

imation principle (Proposition 2.2.5) indicates that the sequence of distributions of the

information spectrum too satisfies the LDP with the same rate function I, and we have

verified that the sufficient condition holds.

What remains is to calculate this rate function. For this, we return to Pfister &

Sullivan’s work and use D(Q ‖ P ) = φ(Q) − H(Q) [20, Prop. 2.1] to write

I(t) = inf
Q∈MP

s

{

D(Q ‖ P ) : H(Q) + D(Q ‖ P ) = t
}

.

Finally, the Legendre-Fenchel dual of the rate function is computed as in the steps

leading to (2.23)-(2.25), yielding (2.26).

Example 2.3.5 (Mixed source) Consider a mixture of two iid sources with letters from

X. We may write

Pn(xn) = λ
n

∏

i=1

R(xi) + (1 − λ)
n

∏

i=1

S(xi)

where λ ∈ (0, 1) with R,S ∈ M(X) the two marginal pmfs that define the iid components

of the mixture. It is easy to see that the guessing exponent is the maximum of the guessing

exponents for the two component sources. We next verify this using Proposition 2.2.3.

The sequence of distributions of the information spectrum satisfies the LDP with rate

function given as follows (see Han [11, eqn. (1.9.41)]). Define

θ1 =
{

Q ∈ M(X) : D(Q ‖ S) − D(Q ‖ R) ≥ 0
}

,

θ2 =
{

Q ∈ M(X) : D(Q ‖ S) − D(Q ‖ R) ≤ 0
}

,
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and for t ∈ R

At = θ1 ∩
{

Q ∈ M(X) : H(Q) + D(Q ‖ R) = t
}

Bt = θ2 ∩
{

Q ∈ M(X) : H(Q) + D(Q ‖ S) = t
}

.

The rate function (via the contraction principle) is given by

I(t) = min

{

inf
Q∈At

D(Q ‖ R), inf
Q∈Bt

D(Q ‖ S)

}

.

From Proposition 2.2.3 we conclude that the limiting guessing exponent exists. I∗(β) is

then

sup
t∈R

{

βt − min
{

inf
Q∈At

D(Q ‖ R), inf
Q∈Bt

D(Q ‖ S)
}

}

= max

{

sup
t∈R

sup
Q∈At

{

βt − D(Q ‖ R)
}

,

sup
t∈R

sup
Q∈Bt

{

βt − D(Q ‖ S)
}

}

= max

{

sup
Q∈θ1

{

βH(Q) − (1 − β)D(Q ‖ R)
}

,

sup
Q∈θ2

{

βH(Q) − (1 − β)D(Q ‖ S)
}

}

= (1 + ρ)−1 max

{

sup
Q

{

ρH(Q) − D(Q ‖ R)
}

,

sup
Q

{

ρH(Q) − D(Q ‖ S)
}

}

= (1 + ρ)−1 max
{

ρHα(R), ρHα(S)
}

,

yielding

E(ρ) = max
{

ρHα(R), ρHα(S)
}

.

2.4 Proofs

We now prove Propositions 2.2.1 and 2.2.3.
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2.4.1 Proof of Proposition 2.2.1

From Theorem 2.1.7 it is sufficient to show that the limit in (2.18) for Campbell’s coding

problem exists if and only if the Rényi entropy rate exists, with the former ρ times the

latter.

Fix n. In the rest of the proof, we use the notation EPn
[·] for expectation with respect to

distribution Pn. The length function can be thought of as a bounded (continuous) function

from X
n to R and therefore our interest is in the logarithm of its moment generating

function of ρ, the cumulant. The cumulant associated with a bounded continuous function

(here Ln) has a variational characterization [26, Prop. 1.4.2] as the following Legendre-

Fenchel dual of the Kullback-Leibler divergence, i.e.,

log EPn

[

exp{ρLn(Xn)}
]

= sup
Qn∈M(Xn)

{

ρEQn
[Ln(Xn)] − D(Qn ‖ Pn)

}

. (2.28)

Taking infimum on both sides over all length functions, we arrive at the following chain

of inequalities:

inf
Ln

log EPn

[

exp{ρLn(Xn)}
]

(2.29)

= inf
Ln

sup
Qn∈M(Xn)

{

EQn
[ρLn(Xn)] − D(Qn ‖ Pn)

}

= sup
Qn∈M(Xn)

inf
Ln

{

EQn
[ρLn(Xn)] − D(Qn ‖ Pn)

}

+ Θ(1) (2.30)

= sup
Qn∈M(Xn)

{

ρHn(Qn) − D(Qn ‖ Pn)
}

+ Θ(1) (2.31)

= ρH 1

1+ρ
(Pn) + Θ(1). (2.32)

Equation (2.30) follows because (i) the mapping

(Ln, Qn) 7→ EQn
[ρLn(Xn)] − D(Qn ‖ Pn)

is a concave function of Qn, (ii) for fixed Qn and for any two length functions L1
n and L2

n,

for any λ ∈ [0, 1], the function Ln = ⌈λL1
n + (1 − λ)L2

n⌉ is also a length function and
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EQn
[Ln] = λEQn

[L1
n] + (1 − λ)EQn

[L2
n] + Θ(1).

(iii) M(Xn) is compact and convex, and therefore the infimum and supremum may be

interchanged upon an application of a version of Ky Fan’s minimax result [27]. This

yields a compression problem, the infimum over Ln of expected lengths with respect to a

distribution Qn. The answer is the well-known Shannon entropy H(Qn) to within 1 bit,

and (2.31) follows. Lastly, (2.32) is a well-known identity which may also be obtained

directly by writing the supremum term in (2.31) as

(1 + ρ) sup
Qn∈M(Xn)

{

EQn

[

−

(

ρ

1 + ρ

)

log Pn(Xn)

]

− D(Qn ‖ Pn)
}

and then applying (2.28) with −(ρ/(1 + ρ) log Pn(Xn)) in place of ρLn(Xn) to get the

scaled Rényi entropy.

Normalize both (2.29) and (2.32) by n and let n → ∞ to deduce that (2.18) exists if

and only if the limiting normalized Rényi entropy rate exists. This concludes the proof.

2.4.2 Proof of Proposition 2.2.3

This is a straightforward application of Varadhan’s theorem [28] on asymptotics of in-

tegrals. Recall that νn is the distribution of the information spectrum n−1 log Pn(Xn).

Define F (t) = βt. Since the (νn : n ∈ N) sequence satisfies the LDP with rate function I,

Varadhan’s theorem (see Ellis [20, Th. II.7.1.b]) states that if

lim
M→∞

lim sup
n→∞

1

n
log

∫

t≥M
β

exp{nβt} dνn(t) = −∞ (2.33)

then the limit

lim
n→∞

1

n
log

∫

R

exp{nβt} νn(dt) = sup
t∈R

{βt − I(t)} (2.34)

holds. The integral on the left side in (2.34) can be simplified by defining the finite

cardinality set

An = {−n−1 log Pn(xn) : ∀xn ∈ X
n} ⊂ R
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and by observing that

∫

R

exp{nβt} νn(dt) =
∑

t∈An

exp{nβt}
∑

xn:Pn(xn)=exp{−nt}

Pn(xn)

=
∑

xn

Pn(xn)1−β

=
∑

xn

Pn(xn)
1

1+ρ = exp
{

βH1/(1+ρ)(Pn)
}

.

Take logarithms, normalize by n, take limits, and apply (2.34) to get the desired result.

It therefore remains to prove (2.33).

The event {t ≥ M
β
} occurs if and only if

{

Pn(xn) ≤ exp{−nM
β

}
}

. The integral in (2.33)

can therefore be written as

∑

t∈An,t≥M
β

∑

xn:Pn(xn)=exp{−nt}

exp{nβt}Pn(xn) =
∑

xn:Pn(xn)≤exp{−nM
β

}

Pn(xn)
1

1+ρ

≤ |X|n · exp
{ −nM

β(1 + ρ)

}

.

The sequence in n on the left side of (2.33) is then

log |X| −
M

β(1 + ρ)
,

a constant sequence. Take the limit as M → ∞ to verify (2.33). This concludes the proof.

2.5 Summary

In this chapter we first showed that the problem of finding the limiting guessing expo-

nent is equal to that of finding the limiting compression exponent under exponential costs

(Campbell’s coding problem). We then saw that the latter limit exists if the sequence

of distributions of the information spectrum satisfies the LDP (sufficient condition). The

limiting exponent was the Legendre-Fenchel dual of the rate function, scaled by an ap-

propriate constant. It turned out to be the limit of the normalized cumulant of the
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information spectrum random variable. While some of these facts can be gleaned from

the works of Pfister & Sullivan [8] and Merhav & Arikan [5], our work sheds light on

the key role played by the information spectrum and the large deviation property of

their distributions. We checked that the sufficient condition held in all previously studied

examples (perfect secrecy, no side information).

Existence of limiting cumulants and their differentiability (with respect to ρ) imply

the LDP (Gärtner-Ellis theorem [20, Th. II.6.1]). Here however we have proceeded in the

reverse direction to conclude existence of the limiting cumulants given the LDP. Our ap-

proach enabled us to exploit several well-known results on the LDP and the corresponding

rate functions for a wide class of random processes.



Chapter 3

Key Constrained Sources

In this chapter we consider secret transmission of a general source over a Shannon cipher

system with an arbitrary positive key rate. The key rate may not be sufficient to achieve

perfect secrecy. The best achievable guessing exponent is used as a measure of the cryp-

tosystem’s strength against a wiretapper’s guessing attacks1. We prove upper and lower

bounds on the guessing exponents. We also relate them to fixed rate source coding error

and correct decoding exponents. We then show that the upper and lower bounds are tight

for DMS, Markov, and unifilar sources. Before we begin with the problem statement, we

recall the set-up of the Shannon cipher system (see figure 1.1).

Let Xn be a message taking values in X
n. This message should be communicated

securely from a transmitter to a receiver, both of which have access to a common secure key

Uk of k purely random bits independent of Xn. The transmitter computes the cryptogram

Y = fn(Xn, Uk) and sends it to the receiver over a public channel. The cryptogram may

be of variable length, and R = k/n is the key rate of the system. The encryption

function fn is invertible for any fixed Uk. The receiver, knowing Y and Uk, computes

Xn = f−1
n (Y, Uk). The functions fn and f−1

n are published.

1Results in this chapter can be found in [29].

29
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3.1 Problem Statement

Let M(Xn) be the set of pmfs on X
n. By a source, we mean a sequence of pmfs (Pn : n ∈

N), where2 Pn ∈ M(Xn) and N denotes the set of natural numbers.

For a given cryptogram Y = y, define a guessing strategy

Gn(· | y) : X
n → {1, 2, · · · |X|n}

as a bijection that denotes the order in which elements of X
n are guessed. Gn(xn |

y) = g indicates that xn is the gth guess, when the cryptogram is y. With knowledge

of Pn, the encryption function fn, and the cryptogram Y , the attacker can completely

calculate all the posterior probabilities of plaintexts PXn|Y (· | y) given the cryptogram.

The attacker’s optimal guessing strategy is then to guess in the decreasing order of these

posterior probabilities PXn|Y (· | y). Let us denote this optimal attack strategy as Gfn
.

Let (fn : n ∈ N) denote the sequence of encryption functions known to the attacker. We

assume that attacker employs the optimal guessing strategy.

For a given ρ > 0, key rate R > 0, define the normalized guessing exponent

Eg
n(R, ρ) := sup

fn

1

n
log E [Gfn

(Xn | Y )ρ] .

The supremum is taken over all encryption functions. Further define performance limits

of guessing moments as in [2]:

Eg
u(R, ρ) := lim sup

n→∞
Eg

n(R, ρ) (3.1)

Eg
l (R, ρ) := lim inf

n→∞
Eg

n(R, ρ). (3.2)

Our interest in this chapter is to derive bounds on Eg
u(R, ρ) and Eg

l (R, ρ), and evaluate

them for some specific examples.

2Sometimes we use PXn in place of Pn when we refer to the distribution of random vector Xn.
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3.2 Guessing with key-rate constraints and source

compression

In this section we establish a connection between guessing and source compression subject

to a new cost criterion. We next define the related compression quantities. Recall that a

length function Ln : X
n → N is a mapping that satisfies Kraft’s inequality:

∑

xn∈Xn

exp{−Ln(x)} ≤ 1.

Every length function yields an attack strategy with a performance characterized as fol-

lows.

Proposition 3.2.1 Let Ln be any length function on X
n. There is a guessing list Gn

such that for any encryption function fn, we have

Gn(xn | y) ≤ 2 exp {min {Ln(xn), nR}} .

Proof: We use a technique of Merhav and Arikan [2]. Let GLn
denote the guessing

function that ignores the cryptogram and proceeds in the increasing order of Ln lengths.

Suppose GLn
proceeds in the order xn

1 , x
n
2 , · · · . By Proposition 2.1.4, we need at most

exp{Ln(xn)} guesses to identify xn (This is a simple consequence of the fact that there

are at most exp{Ln(xn)} strings of length less than or equal to Ln(xn)).

As an alternative attack, consider the exhaustive key-search attack defined by the follow-

ing guessing list:

f−1
n

(

y, uk
1

)

, f−1
n

(

y, uk
2

)

, · · ·

where uk
1, u

k
2, · · · is an arbitrary ordering of the keys. This strategy identifies xn in at

most exp{nR} guesses. Finally, let Gn(· | y) be the list that alternates between the two

lists, skipping those already guessed, i.e., the one that proceeds in the order

xn
1 , f

−1
n

(

y, uk
1

)

, xn
2 , f

−1
n

(

y, uk
2

)

, · · · . (3.3)
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Clearly, for every xn, we need at most twice the minimum of the two original lists.

We now look at a weak converse in the expected sense to the above. Recall from

Proposition 2.1.2 that for any guessing function Gn, there exists a length function LGn

that satisfies

LGn
(xn) − 1 − log cn ≤ log Gn(xn) ≤ log LGn

(xn), (3.4)

where cn =
∑|X|n

i=1
1
i
.

Proposition 3.2.2 Fix n ∈ N, ρ > 0. There is an encryption function fn and a length

function Ln such that every guessing strategy Gn (and in particular Gfn
) satisfies

E [G(Xn | Y )ρ] ≥
1

(ecn)ρ(2 + ρ)
E [exp {ρ min {Ln (Xn) , nR}}] ,

where e denotes exp{1}.

Proof: See section 3.5.1. The proof is an extension of Merhav & Arikan’s proof of [2,

Th.1] to sources with memory. The idea is to identify an encryption mechanism that

maps messages of roughly equal probability to each other. Our proof also suggests an

asymptotically optimal encryption strategy for sources with memory.

Remark 3.2.3 Note that log cn ≤ log(1 + n log |X|), so that (log cn)/n = O((log n)/n).

Propositions 3.2.1 and 3.2.2 naturally suggest the following coding problem: identify

Es
n(R, ρ) := min

Ln

1

n
log E [exp {ρ min {Ln(Xn), nR}}] . (3.5)

The minimum is taken over all length functions. We may interpret the cost of using

length Ln(xn) as exp {min{Ln(xn), nR}}, i.e., the cost is exponential in Ln, but saturates

at exp{nR} and so all lengths larger than nR enjoy a saturated cost. Then Es
n(R, ρ) is

the minimum normalized exponent of the ρth moment of this new compression cost. In

analogy with (3.1) and (3.2) we define

Es
u(R, ρ) = lim sup

n→∞
Es

n(R, ρ)
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Es
l (R, ρ) = lim inf

n→∞
Es

n(R, ρ)

The following is a corollary to Propositions 3.2.1 and 3.2.2, and relates Eg
n(R, ρ) and

Es
n(R, ρ).

Corollary 3.2.4 For a given R, ρ > 0, we have

|Es
n(R, ρ) − Eg

n(R, ρ)| ≤
log((2ecn)ρ(2 + ρ))

n
. (3.6)

Proof: Let L∗
n be the length function that achieves Es

n(R, ρ). Using Proposition 3.2.1,

and after taking expectation, we have the guessing strategy Gn that satisfies

E [exp {ρ min {L∗
n(Xn), nR}}]

≥ sup
fn

1

2ρ
E [Gn(Xn | Y )ρ]

≥ sup
fn

1

2ρ
E [Gfn

(Xn | Y )ρ]

≥
1

(2ecn)ρ(2 + ρ)
E [exp {ρ min {Ln(Xn), nR}}]

for some fn and Ln, given by Proposition 3.2.2,

≥
1

(2ecn)ρ(2 + ρ)
E [exp {ρ min {L∗

n(Xn), nR}}] .

Take logarithms and normalize by n to get (3.6).

We now state the equivalence between compression and guessing.

Theorem 3.2.5 (Guessing-Compression Equivalence) For any ρ > 0 and R > 0,

we have Es
u(R, ρ) = Eg

u(R, ρ) and Es
l (R, ρ) = Eg

l (R, ρ).

Proof: From Corollary 3.2.4, magnitude of the difference between Eg
n(R, ρ) and Es

n(R, ρ)

decays as O((log n)/n) and vanishes as n → ∞.

Thus, the problem of finding the optimal guessing exponent is the same as that of

finding the optimal exponent for the coding problem in (3.5). When R ≥ log |X|, the

coding problem in (3.5) reduces to the one considered by Campbell in [6]; this is a case

where perfect secrecy is obtained and was studied in chapter 2. Proposition 3.2.1 shows

that the optimal length function attaining the minimum in (3.5) yields an asymptotically
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optimal attack strategy on the cipher system. Moreover, the encryption strategy in the

proof of Proposition 3.2.2 (see section 3.5.1) is asymptotically optimal, from the designer’s

point of view.

In the rest of the chapter we focus on the equivalent compression problem and find

bounds on Es
u and Es

l .

3.3 Growth Exponent for the Modified Compression

Problem

We begin with some words on notation. Recall that M(Xn) denotes the set of pmfs on

X
n. The Shannon entropy and the Rényi entropy of order α 6= 1 for a Pn ∈ M(Xn) are

as defined in (2.19) and (1.2), respectively. The Kullback Leibler divergence or relative

entropy between two pmfs Qn and Pn is given by (2.20).

Let (Xn : n ∈ N) denote a sequence of random variables on X
n, with corresponding

sequence of probability measures denoted by X := (PXn : n ∈ N). Thus X is a source and

Xn its n-letter message output. Abusing notation, we let M(XN) denote the set of all se-

quences Y = (PY n : n ∈ N) of probability measures, and for each B := (Bn ⊆ X
n : n ∈ N),

we define

M(B) :=
{

Y ∈ M(XN) : lim
n→∞

PY n(Bn) = 1
}

.

In the rest of this section X is a fixed source. For any Y ∈ M(B) and ρ > 0, define

Eu(Y,X, ρ) := lim sup
n→∞

1

n
{ρH(PY n) − D(PY n ‖ PXn)}

and

El(Y,X, ρ) := lim inf
n→∞

1

n
{ρH(PY n) − D(PY n ‖ PXn)}.

We next state a large deviation result that plays a key role in the derivation of bounds

on Es
u and Es

l .
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Proposition 3.3.1 For all ρ ≥ 0 and B = (Bn ⊆ X
n : n ∈ N), we have

(1 + ρ) lim sup
n→∞

1

n
log

∑

xn∈Bn

P
1

1+ρ

Xn (xn) = max
Y∈M(B)

Eu(Y,X, ρ) (3.7)

(1 + ρ) lim inf
n→∞

1

n
log

∑

xn∈Bn

P
1

1+ρ

Xn (xn) = max
Y∈M(B)

El(Y,X, ρ) (3.8)

The maximum-achieving distribution in (3.7) and (3.8) is X∗ = (P ∗
Xn : n ∈ N) where

P ∗
Xn(·) =

P
1

1+ρ

Xn (·)
∑

y∈Bn
P

1

1+ρ

Xn (y)
. (3.9)

Proof: See section 3.5.2.

Remark 3.3.2 This proposition is a generalization of Iriyama’s [13, Prop. 1], which is

obtained by setting ρ = 0.

3.3.1 Upper Bound on Es
u

We first obtain an upper bound on Es
u. We use EXn [·] to denote the expectation with

respect to distribution PXn .

Proposition 3.3.3 (Upper Bound) Let R > 0 and ρ > 0. Then

Es
u(R, ρ) ≤ min

0≤θ≤ρ

[

(ρ − θ)R + max
Y∈M(XN)

Eu(Y,X, θ)

]

Proof: We first recall the useful variational formula [26, Prop. 1.4.2]

log EXn [exp{U(Xn)}] = sup
PY n

{EY n [U(Y n)] − D(PY n ‖ PXn)} . (3.10)
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for any U : X
n → R, where R denotes set of real numbers. Observe that

log EXn [exp {ρ min{Ln(Xn), nR}}]

= sup
PY n

[ρEY n [min{Ln(Y n), nR}] − D(PY n ‖ PXn)] (3.11)

≤ sup
PY n

[ρ min{EY n [Ln(Y n)] , nR} − D(PY n ‖ PXn)] (3.12)

= sup
PY n

{

min
0≤θ≤ρ

[(ρ − θ)nR + θEY n [Ln(Y n)] − D(PY n ‖ PXn)

}

(3.13)

= min
0≤θ≤ρ

sup
PY n

{

(ρ − θ)nR + θEY n [Ln(Y n)] − D(PY n ‖ PXn)

}

(3.14)

= min
0≤θ≤ρ

{

(ρ − θ)nR + sup
PY n

{

θEY n [Ln(Y n)] − D(PY n ‖ PXn)

}}

.

In the above sequence of inequalities, (3.11) follows from the variational formula (3.10)

with U(xn) = ρ min{Ln(xn), nR}. Inequality (3.12) follows from Jensen’s inequality be-

cause min{Ln, nR} is concave in Ln for a fixed nR. Equality (3.13) follows from the

identity

ρ min{a, b} = min
0≤θ≤ρ

{θa + (ρ − θ)b}.

Equality (3.14) follows because the term within braces is linear in θ, concave in PY n , and

M(Xn) is compact; these permit an interchange of sup and inf by an application of a

version of Ky-Fan’s minmax theorem [27]. Taking infimum over Ln, and interchanging

the infimum over Ln and the min over θ, we get

inf
Ln

log EXn [exp {ρ min{Ln(Y n), nR}}]

≤ min
0≤θ≤ρ

{

(ρ − θ)nR + inf
Ln

sup
PY n

{

θEY n [Ln(Y n)] − D(PY n ‖ PXn)

}}

= min
0≤θ≤ρ

{

(ρ − θ)nR + sup
PY n

{

θ inf
Ln

EY n [Ln(Y n)] − D(PY n ‖ PXn)

}

+ O(1)

}

(3.15)

= min
0≤θ≤ρ

{

(ρ − θ)nR + sup
PY n

{

θH(PY n) − D(PY n ‖ PXn)

}

+ O(1)

}

(3.16)

= min
0≤θ≤ρ

{

(ρ − θ)nR + θH 1

1+θ
(PXn) + O(1)

}

. (3.17)
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Equality (3.15) follows because the function inside the inner braces is concave in PY n ,

asymptotically linear in Ln (see proof of Proposition 2.2.1 in Chapter 2), and M(Xn) is

compact; this allows us to interchange inf and sup. Inequality (3.16) follows because infi-

mum of expected compression lengths over all prefix codes is within 1 bit of entropy. The

last equality follows from the well known variational characterization for Rényi entropy,

sup
PY n

{θH(PY n) − D(PY n ‖ PXn)} = θH 1

1+θ
(PXn), (3.18)

a fact that can also be gleaned from the variational formula (3.10). Divide both sides of

(3.17) by n and take limit supremum as n → ∞ to get

Es
u(R, ρ) ≤ lim sup

n→∞
min

0≤θ≤ρ

{

(ρ − θ)R +
θ

n
H 1

1+θ
(PXn)

}

≤ min
0≤θ≤ρ

{

(ρ − θ)R + θ lim sup
n→∞

1

n
H 1

1+θ
(PXn)

}

(3.19)

= min
0≤θ≤ρ

{

(ρ − θ)R + max
Y∈M(XN)

Eu(Y,X, θ)

}

,

where inequality in (3.19) follows by noting that

min
0≤θ≤ρ

{

(ρ − θ)R +
θ

n
H 1

1+θ
(PXn)

}

≤

{

(ρ − θ∗)R +
θ∗

n
H 1

1+θ∗
(PXn)

}

for every θ∗ satisfying 0 ≤ θ∗ ≤ ρ, and the last inequality follows from Proposition 3.3.1.

This completes the proof.

From the above proof it is clear that the upper bound holds with equality, when

Jensen’s inequality holds with equality in (3.12), i.e, the random variable

(1/n) min{Ln(Xn), nR}

tends asymptotically to a constant. This would happen, for example, when normalized

encoded lengths concentrate around the entropy rate of the source.
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3.3.2 Lower Bound on Es

l

We now derive a lower bound on Es
l . For a given distribution PY n arrange the elements

of set X
n in the decreasing order of their probabilities as done in Sundaresan [9, Sec. IV].

Enumerate the sequence from 1 to |X|n. Henceforth refer to a message by its index. Let

TR(Y n) denote the first M = ⌊exp{nR}⌋ elements in the list. We denote the probability

of this set by FY n , i.e.,

FY n =
∑

xn∈TR(Y n)

PY n(xn),

and the probability of the complement of this set T c
R(Y n) by F c

Y n . Let the restriction of

PY n to this set TR(Y n) be P ′
Y n . Let L∗

n denote the length function that attains Es
n(R, ρ).

As the length functions are uniquely decipherable we have exp{L∗
n(i)} ≥ i.

Proposition 3.3.4 (Lower Bound) For a given ρ > 0 and rate R > 0, we have

Es
l (R, ρ) ≥ max

{

ρR + lim inf
n→∞

1

n
log F c

Xn , (1 + ρ) lim inf
n→∞

1

n
log

∑

xn∈TR(Xn)

P
1

1+ρ

Xn (xn)

}

.

(3.20)

Remark 3.3.5 The first term contains limit infimum of the error exponent for a rate-R

source code. The second exponent is the correct decoding exponent for a rate-R code when

ρ ↓ 0.

Proof: The variational formula (3.10) applied to the function U(xn) = ρ min{Ln(xn), nR}

gives

min
Ln

log EXn [exp {ρ min {Ln(Xn), nR}}]

= min
Ln

sup
PY n

{ρEY n [min{Ln(Y n), nR}] − D(PY n ‖ PXn)}

≥ sup
PY n

{

ρ min
Ln

EY n [min{Ln(Xn), nR}] − D(PY n ‖ PXn)

}

(3.21)
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where the interchange of min and sup yields the lower bound in (3.21). Fix a distribution

PY n and consider the first term in (3.21). Using the enumeration indicated above, we may

write

min
Ln

EY n [min{Ln(Y n), nR}]

=

|X|n
∑

i=1

PY n(i) min{L∗
n(i), nR}

=
M

∑

i=1

PY n(i) min{L∗
n(i), nR} +

|X|n
∑

i=M+1

PY n(i)nR

≥
M

∑

i=1

PY n(i) log G∗
n(i) + nRF c

Y n (3.22)

≥ FY n

M
∑

i=1

PY n(i)

FY n

LG∗

n
(i) − log e(1+ n log |X|) + nRF c

Y n (3.23)

≥ FY nH(P ′
Y n) − log e(1 + n log |X|) + nRF c

Y n . (3.24)

Inequality (3.22) follows because L∗
n(i) ≥ log i = log G∗

n(i) with G∗
n the guessing strategy

that guesses in decreasing order of PY n probabilities. LG∗

n
in (3.23) denotes the length

function given by (3.4). Inequality (3.24) follows from the source coding theorem’s lower

bound. Substitute (3.24) in (3.21), normalize by n, and take limit infimum to get

Es
l (R, ρ) ≥ lim inf

n→∞

1

n
sup
PY n

{

FY nH(P ′
Y n) + F c

Y nnR − D(PY n ‖ PXn)

}

.

PY n may be thought of as a triplet made of P ′
Y n , FY n , and the restriction of PY n to T c

R(Y n).

We now perform the optimization

sup
PY n

{FY nH(P ′
Y n) + F c

Y nnR − D(PY n ‖ PXn)} (3.25)

in four steps.

Step 1: We first optimize over permutations of strings. It is easy to verify that for the

optimization it is enough to restrict attention to those distributions for which the set

TR(Y n) equals TR(Xn).
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Step 2: We now optimize over restriction of PY n to T c
R(Y n). Fix a distribution PY n , the

sum in
∑

xn∈T c
R

(Xn)

PY n(xn) log
PY n(xn)

PXn(xn)

is minimized if for any two elements xn, yn ∈ TR(Xn), PY n(xn) ≥ PY n(yn) ⇔ PXn(xn) ≥

PXn(yn). Indeed, by the log sum inequality we have

∑

xn∈T c
R

(Xn)

PY n(xn) log
PY n(xn)

PXn(xn)
≥ F c

Y n log
F c

Y n

F c
Xn

,

with equality if and only if PY n(xn) = PXn(xn)
F c

Y n

F c
Xn

for all xn ∈ TR(PXn).

Step 3: To optimize over P ′
Y n rewrite (3.25) as

sup
PY n

{

ρFY nH(P ′
Y n) + F c

Y nρnR −
M

∑

i=1

PY n(i) log
PY n(i)

PXn(i)
−

Xn
∑

M+1

PY n(i) log
PY n(i)

PXn(i)

}

= sup
P ′

Y n ,FY n

{

ρFY nH(P ′
Y n) + F c

Y nρnR −

M
∑

i=1

PY n(i) log
PY n(i)

PXn(i)
− F c

Y n log
F c

Y n

F c
Xn

}

(3.26)

= sup
P ′

Y n ,FY n

{

ρFY nH(P ′
Y n) + ρnRF c

Y n − FY nD(P ′
Y n ‖ P ′

Xn) − D(FY n||FXn)

}

= sup
FY n

{

ρFY nH 1

1+ρ
(P ′

Xn) + F c
Y nρnR − D(FY n ‖ FXn)

}

. (3.27)

Equality (3.26) is obtained by substituting attained lower bound in Step-2. In (3.27)

P ′
Y n and P ′

Xn denote conditional distributions of PY n and PXn given TR(Y n) and TR(Xn)

respectively, which we argued were equal in Step-1. D(FY n||FXn) denotes the divergence

between binary random variables whose probabilities are {FY n , 1 − FY n} and {FXn , 1 −

FXn} respectively. Finally we used variational characterization of Rényi entropy given in

(3.18) to arrive at (3.27).

Step 4: We now optimize over FY n ∈ [0, 1]. Let Z be a binary random variable defined

as

Z =







ρH 1

1+ρ
(P ′

Xn) with probability FY n ,

ρnR with probability 1 − FY n
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By EFY n [Z] we mean the expectation of Z with respect to the the above distribution.

Since Z is a positive random variable, the variational formula yields

sup
FY n

{EFY n [Z] − D(FY n ‖ FXn)} = log EFXn [exp{Z}] .

Continuing with the chain of equalities from (3.27) we get

sup
FY n

{

FY nρH 1

1+ρ
(P ′

Xn) + F c
Y nρnR − D(FY n ‖ FXn)

}

= log

{

F c
Xn exp{nRρ} + FXn

(

M
∑

i=1

P ′
Xn

1

1+ρ (i)

)1+ρ
}

= log







F c
Xn exp{nRρ} +

(

M
∑

i=1

P
1

1+ρ

Xn (i)

)1+ρ






. (3.28)

Finally normalize both sides of (3.28) by n, take limit infimum, and apply [21, Lemma

1.2.15], which states that the exponential rate of a sum is governed by the maximum of

the individual terms’ exponential rates, to get the desired result.

In the subsequent subsections we further lower bound each of the two terms under

max on the right side of (3.20). For an arbitrary source we first recall the source coding

error exponent. We also identify the growth rate of sum of exponentiated probabilities of

the correct decoding set. We then relate these to the terms in the lower bound obtained

in (3.20). We largely follow the approach and notation of Iriyama [13], which we now

describe.

For the given X = (PXn : n ∈ N) and a Y = (PY n : n ∈ N), we define the upper

divergence Du(· ‖ ·) and lower divergence Dl(· ‖ ·) by

Du(Y ‖ X) := lim sup
n→∞

1

n
D(PY n ‖ PXn)

Dl(Y ‖ X) := lim inf
n→∞

1

n
D(PY n ‖ PXn).
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For a Y = (PY n : n ∈ N), denote spectral sup-entropy-rate [12, Sec. II], [11] as

H(Y) := inf

{

θ : lim
n→∞

Pr

{

1

n
log

1

PY n(Y n)
> θ

}

= 0

}

.

Also define, as in [13, Sec. II], the following quantity which determines the performance

under mismatched compression:

R(Y,X) := sup

{

θ :lim
n→∞

Pr

{

1

n
log

1

PXn(Y n)
< θ

}

=0

}

.

Decoding Error Exponent

In this subsection we recall the decoding error exponent for fixed-rate encoding of an

arbitrary source. We identify the first term in (3.20) as composed of the exponent of

minimum probability of decoding error, and obtain a lower bound for it, or alternatively

an upper bound on the error exponent. This is made precise in the following definitions.

By an (n,Mn, ǫn)-code we mean an encoding mapping

φn : X
n → {1, 2, · · · ,Mn}

and a decoding mapping

ψn : {1, 2, · · ·Mn} → X
n

with probability of error ǫn := Pr{ψn(φn(Xn)) 6= Xn}. R is r-achievable if for all η > 0

there exists a sequence of (n,Mn, ǫn)-codes such that

lim sup
n→∞

1

n
log

1

ǫn

≥ r (3.29)

lim sup
n→∞

1

n
log Mn ≤ R + η. (3.30)

The infimum fixed-length coding rate for exponent r is

R̂(r|X) = inf{R : R is r-achievable}.
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On the other hand, the supremum fixed-length coding exponent for rate R is

Ê(R|X) = sup{r : R is r-achievable}.

Han [13] and Iriyama [11, Sec. 1.9] use a pessimistic definition for fixed rate source coding,

i.e., the limit infimum in (3.29), and obtain expressions for the infimum coding rate. For

our bounds we need optimistic definitions. Iriyama [13, Eqn. (13)] obtained a lower

bound on the infimum coding rate R̂(r|X) under the optimistic definition. We however

work with the error exponent, and obtain an upper bound on supremum coding exponent.

This suffices to lower bound the first term in (3.20).

Obviously, the best exponent is obtained by encoding only the highest M realizations

and hence

Ê(R|X) = lim sup
n→∞

1

n
log

1

F c
Xn

so that

−Ê(R|X) = lim inf
n→∞

1

n
log F c

Xn .

The following Proposition upper bounds the supremum coding exponent.

Proposition 3.3.6 For any rate R > 0,

Ê(R|X) ≤ inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X).

Proof: See section 3.5.3.

Remark 3.3.7 Notice that when R ≥ log |X|, we have an infimum over an empty set and

hence Ê(R|X) = ∞.

Correct Decoding Exponent

We now study a generalization of the exponential rate for probability of correct decoding.

For a given (n,Mn, ǫn)-code, let

An := {xn ∈ X
n : ψn(φn(xn)) = xn}
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denote the set of correctly decoded sequences. For a given ρ > 0, R is (r, ρ)-admissible if

for every η > 0 there exists a sequence of (n,Mn, ǫn)-codes such that

(1 + ρ) lim inf
n→∞

1

n
log

∑

xn∈An

P
1

1+ρ

Xn (xn) ≥ r (3.31)

lim sup
n→∞

1

n
log Mn ≤ R + η. (3.32)

The infimum fixed-length admissible rate for a given r and ρ > 0 is

R∗(r, ρ|X) = inf{R : R is (r, ρ)-admissible}.

Clearly, the set {R : R is (r, ρ)-admissible} is closed and so R∗(r, ρ|X) is (r, ρ)-admissible.

The supremum fixed-length coding exponent for a given R and ρ is

E∗(R, ρ|X) = sup{r : R is (r, ρ)-admissible}.

Remark 3.3.8 The choice of limit infimum in (3.31) makes the definition of admissibility

pessimistic. For ρ ↓ 0 the above definitions reduce to the special case of exponential rate

for probability of correct decoding (see [11, Sec. 1.10]).

Clearly, An should be TR(Xn) to maximise the left side of (3.31) and hence

E∗(R, ρ|X) = (1 + ρ) lim inf
n→∞

1

n
log

∑

xn∈TR(Xn)

P
1

1+ρ

Xn (xn).

The following Proposition gives an expression for E∗(R, ρ|X) and generalizes [13, Thm.

4] to any arbitrary ρ > 0. En route to its derivation we find the expression for R∗(r, ρ|X).

Proposition 3.3.9 For any ρ > 0 and r > 0,

R∗(r, ρ|X) = inf
Y:El(Y,X,ρ)≥r

H(Y) (3.33)

E∗(R, ρ|X) = sup
H(Y)≤R

El(Y,X, ρ). (3.34)
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Proof: See section 3.5.4

3.3.3 Summary of Bounds on Es
u and Es

l

We now combine Propositions 3.3.3, 3.3.4, 3.3.6, and 3.3.9 of the previous subsections to

obtain the main result of this chapter.

Theorem 3.3.10 For a given ρ > 0 and R > 0,

max

{

ρR − inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X), sup
H(Y)≤R

El(Y,X, ρ)

}

≤ Es
l (R, ρ) ≤ Es

u(R, ρ)

≤ min
0≤θ≤ρ

{

(ρ − θ)R + max
Y

Eu(Y,X, θ)
}

. (3.35)

Proof: The last inequality was proved in Proposition 3.3.3. Proposition 3.3.4 indicates

that

Es
l (R, ρ)

≥ max

{

ρR + lim inf
n→∞

1

n
log F c

Xn , (1 + ρ) lim inf
n→∞

1

n
log

∑

xn∈TR(Xn)

P
1

1+ρ

Xn (xn)

}

= max
{

ρR − Ê(R|X), E∗(R, ρ|X)
}

(3.36)

≥ max

{

ρR − inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X), sup
H(Y)≤R

El(Y,X, ρ)

}

, (3.37)

where (3.36) follows from the definitions of Ê(R|X) and E∗(R, ρ|X), and (3.37) from

Propositions 3.3.6 and 3.3.9.

3.4 Examples

In this section we evaluate the bounds for some examples where they are tight, and recover

some known results.
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Example 3.4.1 (Perfect Secrecy) First consider the perfect secrecy case, for example,

R ≥ log |X|. Because of Remark 3.3.7 and because we may take θ = ρ in the upper bound

in (3.35), the limiting exponential rate of guessing moments simplifies to

sup
Y

El(Y,X, ρ) ≤ Es
l (R, ρ) ≤ Es

u(R, ρ) ≤ max
Y

Eu(Y,X, ρ).

On account of (3.8) in Proposition 3.3.1, sup in the left-most term is achieved. From

Proposition 3.3.1, upper and lower bounds are ρ times the liminf and limsup Rényi en-

tropy rates of order 1
1+ρ

. In Proposition 2.2.3 of chapter 2 we showed that whenever

the information spectrum of the source satisfies the large deviation property with rate

function I, the Rényi entropy rate converges and limiting guessing exponent equals the

Legendre-Fenchel dual of the scaled rate function I1(t) := (1 + ρ)I(t), i.e.,

Es
u(ρ) = Es

l (ρ) = sup
t∈R

{ρt − I1(t)}.

In the next examples, we consider the case R < log |X|.

Example 3.4.2 (An iid source) This example was first studied by Merhav & Arikan

[2]. Recall that an iid source is one for which Pn(xn) =
∏n

i=1 P1(xi), where P1 denotes the

marginal of X1. We will now evaluate each term in (3.35).

We first argue that

inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X) = inf
PY :H(PY )>R

D(PY ‖ P1). (3.38)

To prove that the left side in (3.38) is less than or equal to the right side, let PY ∈ M(X)

be such that H(PY ) > R. Construct an iid source Ŷ (PŶ n : n ∈ X) such that PŶi
= PY

for all 1 ≤ i ≤ n. By definition of Du(Ŷ ‖ X) we get,

Du(Ŷ ‖ X) = D(PY ‖ P1)
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and by definition of R(Ŷ,X) we have

R(Ŷ,X) − Du(Ŷ ‖ X) = H(PY ) > R. (3.39)

From (3.39), we conclude that “ ≤” holds in (3.38).

To prove “≥” in (3.38) we use the following result:

inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X) ≥ inf
Y:Hl(Y)>R

Du(Y ‖ X), (3.40)

where Hl(Y) = lim infn→∞
1
n
H(PY n). Proof of above inequality follows from a straight-

forward manipulation of [13, Cor. 1], and is therefore omitted. Because of (3.40) it is

sufficient to prove

inf
Y:Hl(Y)>R

Du(Y ‖ X) ≥ inf
PY :H(PY )>R

D(PY ‖ P1). (3.41)

Let Y be such that Hl(Y) > R. Construct a source Ŷ such that, PŶi
= PYi

for 1 ≤ i ≤ n

and Ŷ1, Ŷ2, · · · , Ŷn are independent. Let Z be another source such that, Z1, Z2, · · · , Zn is

an iid sequence with distribution

PZj
=

1

n

n
∑

i=1

PYi
, j = 1, 2, · · · , n.

Now, by convexity of divergence, we have

D(PY n ‖ PXn) = D(PY n ‖ PŶ n) + D(PŶ n ‖ PXn)

≥ D(PŶ n ‖ PXn) ≥ D(PZn ‖ PXn)

= nD(PZ1
‖ P1) (3.42)

and by concavity of Shannon entropy

H(PY n) ≤
n

∑

i=1

H(PYi
) ≤ nH(PZ1

). (3.43)
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Normalize by n take limsup in (3.42) and liminf in (3.43) to get Du(Y ‖ X) ≥ D(PZ1
‖ P1)

and H(PZ1
) > R for a PZ1

that is a limit point of the sequence (n−1
∑n

i=1 PYi
, n ∈

N). From these we conclude that (3.41) holds. This proves (3.38). Following a similar

procedure as above, we can bound the other terms in (3.35) for an iid source as

sup
Y:H(Y)≤R

El(Y,X, ρ) ≥ sup
PY :H(PY )≤R

{ρH(PY ) − D(PY ‖ P1)} (3.44)

and

sup
Y

Eu(Y,X, θ) = sup
PY

{θH(PY ) − D(PY ‖ P1)}. (3.45)

Substitution of (3.38) and (3.44) in the lower bound of (3.35) yields

Es
l (R, ρ) ≥ max

{

ρR − inf
PY :H(PY )>R

D(PY ‖ P1), sup
PY :H(PY )≤R

{ρH(PY ) − D(PY ‖ P1)

}

= sup
PY

{ρ min{H(PY ), R} − D(PY ‖ P1)} . (3.46)

Similarly substitution of (3.45) in the upper bound of (3.35) yields

Es
u(R, ρ) ≤ min

0≤θ≤ρ

{

(ρ − θ)R + sup
PY

{θH(PY ) − D(PY ‖ P1)}

}

= sup
PY

{

ρ min
0≤θ≤ρ

{(ρ − θ)R + θH(PY )} − D(PY ‖ P1)

}

(3.47)

= sup
PY

{ρ min{H(PY , R)} − D(PY ‖ P1)} , (3.48)

where the interchange of sup and min in (3.47) holds because the function within braces

is linear in θ and concave in PY . From (3.46) and (3.48), we recover Merhav & Arikan’s

result (1.4) for an iid source [2, Eqn. (3)].

Example 3.4.3 (Markov source) In this example we focus on an irreducible stationary

Markov source taking values on X and having a transition probability matrix π.
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Let Ms(X
2) denote the set of stationary pmfs defined by

Ms

(

X
2
)

=
{

Q ∈ M
(

X
2
)

:
∑

x1∈X

Q(x1, x) =
∑

x2∈X

Q(x, x2),∀x ∈ X

}

.

Denote the common marginal by q and let

η(· | x1) :=







Q(x1, ·)/q(x1), if q(x1) 6= 0,

1/|X|, otherwise.

We may then denote Q = q × η, where q is the distribution of X1 and η the conditional

distribution of X2 given X1. Following steps similar to the iid case, we have

Es
u = Es

l = sup
Q∈Ms(X2)

{

ρ min{H(η | q), R} − D(η ‖ π | q)
}

,

where

H(η | q) :=
∑

x∈X

q(x)H(η(· | x)).

is the conditional one-step entropy, and

D(η ‖ π | q) =
∑

x1∈X

q(x1)D(η(· | x1) ‖ π(· | x1)).

For a unifilar source the underlying state space forms a Markov chain and the entropy

and divergence of the source equals those of the underlying Markov state space source

[30, Thm. 6.4.2]. The arguments for the Markov source are now directly applicable to a

unifilar source.

3.5 Proofs

3.5.1 Proof of Proposition 3.2.2

Let Pn be any pmf on X
n. Enumerate the elements of X

n in the decreasing order of their

probabilities. For convenience, let M = exp{nR}. If M does not divide |X|n, append a
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few dummy messages of zero probability to make the number of messages N a multiple of

M . Index the messages from 0 to N − 1. Henceforth, we identify a message by its index.

Divide the messages into groups of M so that message m belongs to group Tj, where

j = ⌊m/M⌋, and ⌊·⌋ is the floor function. Enumerate the key streams from 0 to M − 1,

so that 0 ≤ u ≤ M − 1. The function fn is now defined as follows. For m = jM + i set

fn(jM + i, u)
∆
= jM + (i ⊕ u) ,

where i ⊕ u is the bit-wise XOR operation. Thus messages in group Tj are encrypted to

messages in the same group. The index i identifying the specific message in group Tj, i.e.,

the last nR bits of m, are encrypted via bit-wise XOR with the key stream. Given u and

the cryptogram, decryption is clear – perform bit-wise XOR with u on the last nR bits

of y.

Given a cryptogram y, the only information that the attacker gleans is that the message

belongs to the group determined by y. Indeed, if y ∈ Tj

Pn {Y = y} =
1

M
Pn {X

n ∈ Tj}

and therefore

Pn {X
n = m | Y = y} =







Pn{Xn=m}
Pn{Xn∈Tj}

, ⌊m/M⌋ = j,

0, otherwise,

decreases with m for m ∈ Tj, and is 0 for m /∈ Tj. The attacker’s best strategy Gfn
(· | y) is

therefore to restrict his guesses to Tj and guess in the order jM, jM +1, · · · , jM +M −1.

Thus, when xn = jM + i, the optimal attack strategy requires i + 1 guesses.
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We now analyze the performance of this attack strategy as follows.

E [Gfn
(Xn|Y )ρ] =

N/M−1
∑

j=0

M−1
∑

i=0

Pn{X
n = jM + i}(i + 1)ρ

≥

N/M−1
∑

j=0

M−1
∑

i=0

Pn{X
n = (j + 1)M − 1}(i + 1)ρ (3.49)

≥

N/M−1
∑

j=0

Pn{X
n = (j + 1)M − 1}

M1+ρ

1 + ρ
(3.50)

≥
1

1 + ρ

N/M−1
∑

j=0

M−1
∑

i=0

Pn{X
n = (j + 1)M + i}Mρ

(3.51)

=
1

1 + ρ

N−1
∑

m=M

Pn{X
n = m}Mρ (3.52)

where (3.49) follows because the arrangement in the decreasing order of probabilities

implies that

Pn{X
n = jM + i} ≥ Pn{X

n = (j + 1)M − 1}

for i = 0, · · · ,M − 1. Inequality (3.50) follows because

M−1
∑

i=0

(i + 1)ρ =
M

∑

i=1

iρ ≥

∫ M

0

zρ dz =
M1+ρ

1 + ρ
,

inequality (3.51) follows because the decreasing probability arrangement implies

Pn{X
n = (j + 1)M − 1} ≥

1

M

M−1
∑

i=0

Pn{X
n = (j + 1)M + i}.
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Thus (3.52) implies that

N−1
∑

m=0

Pn{X
n = m} (min{m + 1,M})ρ

=
M−1
∑

m=0

Pn{X
n = m}(m + 1)ρ +

N−1
∑

m=M

Pn{X
n = m}Mρ

≤ E [Gfn
(Xn|Y )ρ] + (1 + ρ)E [Gfn

(Xn|Y )ρ]

= (2 + ρ)E [Gfn
(Xn|Y )ρ] . (3.53)

Let G be the guessing function that guesses in the decreasing order of Pn-probabilities

without regard to Y , i.e., G(m) = m+1. Let LG be the associated length function, given

in (3.4). Now use (3.53), Proposition 2.1.2, and (3.4) to get

E [Gfn
(Xn|Y )ρ] ≥

1

2 + ρ
E [(min {G(Xn),M})ρ]

≥
1

2 + ρ
E

[(

min

{

exp{LG(Xn)}

ecn

,M

})ρ]

≥
1

(ecn)ρ(2 + ρ)
E [exp {ρ min {LG(Xn), nR}}] .

Since Gfn
is the strategy that minimizes E [G(Xn | Y )ρ] , the proof is complete.

3.5.2 Proof of Proposition 3.3.1

We begin with the following Lemma. Recall that M(X) is the set of all probability

measures on X and M(B) the subset of M(X) with support set B ⊆ X:

M(B) = {ν ∈ M(X) : ν(B) = 1}.

Lemma 3.5.1 For any ρ > 0, µ ∈ M(X) and B ⊆ X

(1 + ρ) log
∑

x∈B

µ
1

1+ρ (x) = max
ν∈M(B)

{ρH(ν) − D(ν ‖ µ)}.
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Proof: Let µB(x) = µ(x)
µ(B)

1{x ∈ B}. We then have

(1 + ρ) log
∑

x∈B

µ
1

1+ρ (x)

= (1 + ρ) log
∑

x∈B

µB

1

1+ρ (x) + log µ(B)

= (1 + ρ) max
ν∈M(B)

{

∑

x∈B

ρ

1 + ρ
ν(x) log

1

µB(x)
− D(ν ‖ µB)

}

+ log µ(B) (3.54)

= (1 + ρ) max
ν∈M(B)

{

ρ

1 + ρ
{H(ν) + D(ν ‖ µ)} − D(ν ‖ µ)

}

(3.55)

= max
ν∈M(B)

{ρH(ν) − D(ν ‖ µ)} . (3.56)

where (3.54) follows from the variational formula for Rényi entropy of µB. The maximum

achieving distribution in (3.56) is µ∗ ∈ M(B) given by

µ∗(x) =
µ

1

1+ρ (x)
∑

y∈B µ
1

1+ρ (y)
1{x ∈ B}.

Remark 3.5.2 [13, Lemma 1] is the special case when ρ = 0.

We now prove (3.8); proof of (3.7) is similar and therefore omitted. We begin by showing

“≤” in (3.8). Let X∗ = (P ∗
Xn : n ∈ N) ∈ M(B) be as defined in (3.9). It is straightforward

to verify by direct substitution that

(1 + ρ) log
∑

xn∈Bn

P
1

1+ρ

Xn (xn) = ρH(P ∗
Xn) − D(P ∗

Xn ‖ PXn).

Normalize by n and take limit infimum, and use the definition of El(X
∗,X, ρ) to get

(1 + ρ) lim inf
n→∞

1

n
log

∑

x∈Bn

P
1

1+ρ

Xn (x) = El(X
∗,X, ρ) (3.57)

≤ max
Y∈M(B)

El(Y,X, ρ).
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To prove “≥” in (3.8), let Y = (PY n : n ∈ N) ∈ M(B) be an arbitrary sequence. We

may assume that for all sufficiently large n, PY n ≪ PXn holds; otherwise El(Y,X, ρ) =

−∞ and the inequality “≥” holds automatically. Define Y∗ = (P ∗
Y n : n ∈ N) ∈ M(B) by

P ∗
Y n(y) =

PY n(y)

PY n(Bn)
1{y ∈ Bn}.

It is clear that P ∗
Y n ∈ M(Bn) for every n. From Lemma 3.5.1, we have

(1 + ρ) log
∑

xn∈Bn

P
1

1+ρ

Xn (xn) = max
PY n∈M(Bn)

{ρH(PY n) − D(PY n ‖ PXn)}

≥ ρH(P ∗
Y n) − D(P ∗

Y n ‖ PXn). (3.58)

We now study each term on the right side of (3.58). The entropy term is lower bounded

as follows.

ρH(P ∗
Y n)

=
ρ

PY n(Bn)

{

∑

xn∈Bn

PY n(xn) log
1

PY n(xn)

}

+ ρ log PY n(Bn)

=
ρ

PY n(Bn)







H(PY n) −
∑

xn∈Bc
n

PY n(xn) log
1

PY n(xn)







+ ρ log PY n(Bn)

=
ρ

PY n(Bn)
{H(PY n) − PY n(Bc

n)H(PY n|Bc
n) + PY n(Bc

n) log PY n(Bc
n)} + ρ log PY n(Bn)

≥
ρ

PY n(Bn)
{H(PY n) − PY n(Bc

n)n log X + PY n(Bc
n) log PY n(Bc

n)} + ρ log PY n(Bn).

(3.59)
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The divergence term is upperbounded, as in the proof of Iriyama’s [13, Prop. 1], as

follows:

D(P ∗
Y n ‖ PXn)

= − log PY n(Bn) +
1

PY n(Bn)

∑

xn∈Bn

PY n(xn) log
PY n(xn)

PXn(xn)

= − log PY n(Bn) +
1

PY n(Bn)
D(PY n ‖ PXn) −

1

PY n(Bn)

∑

xn∈Bc
n

PY n(xn) log
PY n(xn)

PXn(xn)

≤ − log PY n(Bn) +
1

PY n(Bn)
D(PY n ‖ PXn) −

PY n(Bc
n) − PXn(Bc

n)

PY n(Bn)
(3.60)

≤ − log PY n(Bn) +
1

PY n(Bn)
D(PY n ‖ PXn) +

1

PY n(Bn)
. (3.61)

In inequality (3.60) we used the fact that log x ≥ 1 − 1
x

for all x > 0 and in inequality

(3.61) we used the relation PY n(Bc
n) − PXn(Bc

n) ≥ −1. Substitution of (3.59) and (3.61)

in (3.58) and the fact that limn→∞ PY n(Bn) = 1 yields

(1 + ρ) lim inf
n→∞

1

n
log

∑

xn∈Bn

P
1

1+ρ

Xn (xn)

≥ lim inf
n→∞

1

n
{ρH(PY n) − D(PY n ‖ PXn) − O(1)}

= El(Y,X, ρ).

Since the choice of Y = (PY n : n ∈ N) ∈ M(B) was arbitrary, we have proved “≥” in

(3.8).

From (3.57) and (3.8), it is clear that the maximum is attained by X∗, the distribution

defined in (3.9). This completes the proof.

3.5.3 Proof of Proposition 3.3.6

The proof proceeds along lines similar to Iriyama [13, Th. 2] with modifications to account

for our interest in Ê(R|X) instead of rate R̂(r|X). We begin with the following Lemma.
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Let (fn : n ∈ N) denote a sequence of real functions on (Xn : n ∈ N). Define f by

f(Y) := sup
{

θ : lim
n→∞

Pr {fn(Y n) < θ} = 0
}

.

Lemma 3.5.3 For all a > −∞, we have

− inf
Y:f(Y)>a

Du(Y ‖ X) ≤ lim inf
n→∞

1

n
log Pr{fn(Y n) ≥ a} ≤ − inf

Y:f(Y)≥a
Du(Y ‖ X).

Proof: Iriyama’s [13, Prop. 2] is the same as above with Dl and limsup. That proof is

applicable with obvious changes, and is therefore omitted.

Define

Ẽ(R|X) = inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X).

We may assume Ẽ(R|X) < ∞. Otherwise the Proposition holds trivially. Suppose there

exists a sequence of (n,Mn, ǫn)-codes such that

r = lim sup
n→∞

1

n
log

1

ǫn

> Ẽ(R|X). (3.62)

We will show the contrapositive implication that

lim sup
n→∞

1

n
log Mn > R + η for some η > 0.

By definition of Ẽ(R|X), since r > Ẽ(R|X), there exists Ŷ such that r > Du(Ŷ ‖ X),

and R(Ŷ,X) − Du(Ŷ ‖ X) > R, i.e., R(Ŷ,X) − Du(Ŷ ‖ X) > R + η1 for some η1 > 0.

For arbitrary δ > 0 define

Tn :=

{

xn :
1

n
log

1

PXn(xn)
≥ R(Ŷ,X) − δ

}

and the set of correctly decoded sequences

An := {xn ∈ X
n : ψn(φn(xn)) = xn}.
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Then

ǫn = Pr{Ac
n} ≥ Pr{Ac

n ∩ Tn} = Pr{Tn} − Pr{Tn ∩ An}

and so

Pr{Tn ∩ An} ≥ Pr{Tn} − ǫn. (3.63)

If we set fn(xn) = 1
n

log 1
PXn (xn)

, we have f(Ŷ) = R(Ŷ,X). The first inequality of Lemma

3.5.3 then implies that

lim inf
n→∞

1

n
log Pr{Tn} ≥ − inf

Y:R(Y,X)>R(Ŷ,X)−δ
Du(Y ‖ X)

≥ −Du(Ŷ ‖ X).

By definition of liminf there exists sufficiently large n0 such that for all n ≥ n0

Pr{Tn} ≥ exp{−n(Du(Ŷ ‖ X) + δ)}. (3.64)

Next, by definition of limsup in (3.62) there exists a subsequence (nj : j ∈ N) such that

ǫnj
≤ exp{−nj(r − δ)}, j ∈ N (3.65)

Also

Pr(Tn ∩ An) =
∑

xn∈Tn∩An

PXn(xn) ≤ |An| exp{−n(R(Ŷ,X) − δ)}

≤ Mn exp{−n(R(Ŷ,X) − δ)}. (3.66)

Substitution of (3.64)-(3.66) in (3.63) yields

Mnj
exp

{

−nj(R(Ŷ,X) − δ)
}

≥ exp
{

−nj(Du(Ŷ ‖ X) + δ)
}

− exp {−nj(r − δ)}
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which on rearrangement gives

Mnj
≥ exp

{

nj(R(Ŷ,X) − Du(Ŷ ‖ X) − 2δ)
}

·
(

1 − exp
{

−nj(r − Du(Ŷ ‖ X) − 2δ)
})

(3.67)

for all sufficiently large j. Choose δ such that 2δ < min
(

r − Du(Ŷ ‖ X), η1

)

. Take

logarithm, normalize by n, and take limit as j → ∞ in (3.67) to get

lim sup
n→∞

1

n
log Mn ≥ R(Ŷ,X) − Du(Ŷ ‖ X) − 2δ

> R + η1 − 2δ = R + η

for η = η1 − 2δ. This concludes the proof.

3.5.4 Proof of Proposition 3.3.9

We use the following notations in this proof. For each B = (Bn : n ∈ N) define

|B| := lim sup
n→∞

1

n
log |Bn|

and

S(Y) :=
{

B : lim
n→∞

PY n(Bn) = 1
}

.

Note that B ∈ S(Y) ⇔ Y ∈ M(B). We will first prove prove (3.33). Define a set

B(r, ρ|X) =

{

B := (Bn : n ∈ N) : (1 + ρ) lim inf
n→∞

1

n
log

∑

xn∈Bn

P
1

1+ρ

Xn (xn) ≥ r

}

. (3.68)

Then, by definition,

R∗(r, ρ|X) = inf {|B| : B ∈ B(r, ρ|X)} . (3.69)

Fix a B ∈ B(r, ρ|X), Proposition 3.3.1 then implies

(1 + ρ) lim inf
n→∞

1

n
log

∑

xn∈Bn

P
1

1+ρ

Xn (xn) = max
Y:B∈S(Y)

El(Y,X, ρ).
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We can therefore conclude using (3.68) that the following set equivalence holds

B(r, ρ|X) =
⋃

El(Y,X,ρ)≥r

S(Y). (3.70)

From (3.69) and (3.70) we get

R∗(r, ρ|X) = inf







|B| : B ∈
⋃

El(Y,X,ρ)≥r

S(Y)







= inf
Y

{|B| : El(Y,X, ρ) ≥ r,B ∈ S(Y)}

= inf
Y:El(Y,X,ρ)≥r

H(Y),

where last equality follows because

H(Y) = inf {|B| : B ∈ S(Y)}

as proved by Han & Verdú [31]. This proves (3.33).

We now prove (3.34). We first show that if R is (r, ρ)-admissible then

r ≤ sup
H(Y)≤R

El(Y,X, ρ)

. Since R is (r, ρ)-admissible, definition of R∗(r, ρ|X) and (3.33) imply

R ≥ R∗(r, ρ|X) = inf
Y:El(Y,X,ρ)≥r

H(Y),

i.e., for all δ > 0 there exists a Ŷ such that

El(Ŷ,X, ρ) ≥ r and H(Ŷ) < R + δ,

which further implies that

r ≤ sup
H(Y)<R+δ

El(Y,X, ρ).
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Since δ was arbitrary, letting δ ↓ 0 yields

r ≤ sup
H(Y)≤R

El(Y,X, ρ),

and the converse part is proved.

For the direct part it is sufficient to show that given ρ, any R with

r := sup
H(Y)≤R

El(Y,X, ρ),

is (r, ρ)-admissible. By choice of r, for all δ > 0, there exists a Ŷ such that

El(Ŷ,X, ρ) > r − δ and H(Ŷ) ≤ R.

This implies that

inf
El(Y,X,ρ)>r−δ

H(Y) ≤ R.

Since δ was arbitrary, let δ ↓ 0 and use (3.33) to get

R ≥ inf
El(Y,X,ρ)≥r

H(Y) = R∗(r, ρ|X),

i.e., is (r, ρ)-admissible. This completes the proof.

3.6 Summary

In this chapter we saw the close connection between the problem of guessing a source

realization given a crytogram and the problem of compression with saturated exponential

costs. The latter is a modification of a problem posed by Campbell [6]. The exponents for

the two problems coincide. We used the information spectrum approach to obtain upper

and lower bounds on the guessing exponents. We related the terms in the lower bound

to the error exponent and a generalization of correct decoding exponent for fixed length

block source codes. We then evaluated these bounds for stationary memoryless, Markov,
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unifilar sources, and showed that in these cases the upper and lower bounds are tight.



Chapter 4

Conclusion

In this thesis we analyzed the strength of Shannon cipher systems using guessing exponents

as performance metrics. These exponents captured the effort needed by an attacker who

employs exhaustive guessing attacks. We first considered the case when key rate was

large, i.e., perfect secrecy, and related the problem of finding guessing exponents to one

of the compression with exponential costs, a problem introduced and solved by Campbell

[6]. We then analyzed this source coding problem using large deviations theory and gave

a sufficient condition for the existence of the limiting guessing exponent: the sequence

of distributions of the information spectrum should satisfy a large deviation property.

We also gave several examples to illustrate the recipe to evaluate the limiting guessing

exponent when the sufficiency condition holds.

For the key rate constrained cryptosystem we related the guessing exponent to the

exponent of a modified Campbell compression problem with saturated exponentiated

costs. We then found upper and lower bounds on the exponents for general sources

using the information spectrum approach. These bounds were given in terms of source

coding error exponents and correct decoding exponents (with exponentiated probabilities).

The bounds were shown to be tight for DMS, Markov, unifilar sources which recovered

previously known results.

In both the perfect secrecy and key rate constrained cases, our approach was to relate

the problem of guessing to one of compression with exponentiated costs. The information

62
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spectrum played a key role in our study, and tools from large deviations theory readily

yielded either the exponents themselves or bounds on these exponents (in the case of the

key rate constrained cryptosystem).

We end this thesis with a compilation of some open questions.

• Is there a weaker sufficient condition for the limiting Rényi entropy rate to ex-

ist? In other words, can the sufficient condition of chapter 2 that the sequence of

distributions of the information spectrum satisfy the LDP be relaxed?

• We showed that the upper and lower bounds on E(R, ρ) in chapter 3 are tight in

some special cases (iid, Markov, unifilar sources). But they may not be tight in

general. Is there an example where the bounds are not tight? If so, is there a more

satisfactory expression for E(R, ρ)?

• Suppose that a source is compressed using the Lempel-Ziv compression algorithm

[32]. Suppose further that this compressed sequence of bits are transmitted over

a constant bit rate channel that has a buffer of finite size. Probability of buffer

overflows [18] may be of interest. If the normalized Lempel-Ziv coding lengths

satisfy the LDP such probabilities can be evaluated using large deviation theory.

What is the most general subset within the set of stationary ergodic sources for

which the normalized Lempel-Ziv coding lengths satisfy the LDP?

• How do the results in chapter 3 extend to the case when the receiver is provided

with additional side information? Such a problem may be of interest when the

attacker has additional information correlated with the source. For example, the

time at which the message was sent may yield side information about the message

itself. Alternatively, the amount of energy expended by the cryptosystem during

its encryption operation may yield critical information about the message. It is

interesting to note that Arikan [4] analyzed the perfect secrecy case to lower bound

the search effort of sequential decoders given the received signal. The same technique

also yields a lower bound to the search effort of a sphere decoder for space-time codes

[33]. However, extensions to key rate constrained cryptosystems remain open.
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• Recall the work on Hayashi & Yamamoto [10] which considered a cryptosystem

encrypting a correlated source (Xn, Zn) where the receiver was interested in Zn and

the wiretapper in Xn. Can their coding theorems be extended to general sources?

How are their answers related to fixed rate source coding exponents.

• If guessing to within a distortion is allowed, can the result of Merhav & Arikan [5] be

extended to general sources? Both cases of perfect secrecy and key-rate constrained

secrecy remain open. This problem and its connection to compression are of interest

in search applications, where a search engine may return all matches that are within

a certain proximity of a guess.
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