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Abstract

In this paper, we study dynamic routing games where the decision of an user is spatio-temporal control. Each user ships its

demand over time on a shared resource. We investigate the equilibrium of such systems and show the existence and uniqueness

of equilibrium. In the second part, we study a stochastic congestion games where there is only one shared resource and the

traffic is indivisible. The information structure that we consider is such that each user knows the state of its own buffer but

not aware of states and the actions taken by other users. The game can be described as a game with random environment. We

manage to characterize the structure of equilibria policies using linear programming.

I. INTRODUCTION

Routing gams are concerned with one or classes of individuals, where each class is characterized by a source-destination

pair and a demand function. A given network is shared by the users. Routes are chosen by the players so as to minimize

the delays. In road traffic engineering, routing games appeared in 1952 [5]. Non-cooperative routing has long been studied

both in the framework of road-traffic as well as in the framework of telecommunication networks. Such frameworks allow

to model the flow configuration that results in networks in which routing decisions are made in a non-cooperative and

distributed manner between the users. There can be finite or infinite number of users.

In the case of a infinite players each player is assumed to be atomless. By atomless we mean that the impact of routing

choices of a single player on the utilities of other players is negligible. The resulting flow configuration corresponds to the

Wardrop equilibrium [5]. This concept, has long been studied in the context of road traffic where there is an infinite of

players (drivers) [3]. In the telecommunication community, the mostly used routing game model introduced by Orda, Rom

and Shimkin [2] is that in which the number of players are finite, where a player (typically corresponding to a service

provider) takes the routing decisions for the whole class of users that it controls. It then decides on how to split the demand

it controls between various possible routes. They establish existence and uniqueness of Nash equilibrium over large class

of general cost functions. This approach also appeared in the road traffic literature (e.g. [1]) but was not much used there.

Such a routing game may be handled by models similar to [6] in the special case of a topology of parallel links.

An alternative class of routing games is the one in which a player has to route all the demand it controls through the

same path. A special case of such framework is the “congestion games” introduced by Rosenthal in [4]. All the above works

have been well studied in time-invariant networks in the last few years.

In this paper, we study a dynamic routing game where the decision of a user is spatio-temporal. The demand has to

be split not only over space but also over time. As an example, assume that N players have each its own demand which

should be shipped within a week from a given source to a destination. Thus a player has to split its demand into that



corresponding to each of the days of the week. At each day, the route corresponding to the daily demand of each player

should be determined. Examples of such games in road traffic can be found in [13].

A dynamic routing routing game over T days can often be transformed into an equivalent static one. Indeed, in the

equivalent static model, we make T replicas of the original network, one corresponding to each day. The source node for a

player in each of the replicated networks is connected to a node corresponding to the source for that player (and we do the

same with the destination). The fact that the game is repeated over time allows often to observe what other players did in

the past.

In section II we briefly overview some results in dynamic games that are relevant to the dynamic routing game: the

existence of equilibria within open-loop as well as closed-loop strategies and procedures for computing them. We obtain

explicit expression for equilibrium considering polynomial cost functions and study its structure. In section III a simple

stochastic congestion game is modeled in which only one unit of demand can arrive to each player. The state of a player

evolves according to whether they decide to transmit or not. We study the existence and structure of stationary policies. We

end with conclusion in section IV.

II. DYNAMIC GAME WITH FIXED DEMAND

Assume that there is a fixed amount of demand that has to be shipped over a link within a fixed time, say T days. We

consider two non-cooperative scenarios. In the first case the demand is considered as infinitely many users. In other case

we consider finite number of players, where each tries to ship their demand over the shared link in a selfish way so that

the total cost incurred by them is minimized. We study structure of spatio temporal equilibrium flows in both cases using

notion of Wardrop equilibrium in the former case and Nash equilibrium in the latter.

A. Non-atomic routing games

In the context of road traffic, Wardrop [5] proposed the following definition of equilibrium

“The journey times on all the routes actually used are equal, and less than those which would be experienced by a single

vehicle on any unused route”

Consider an amount d of demand that has to traverse a common shared link. Each player has to determine at what day

within a common finite set S to leave. Let xi be the amount of players that leave at day i. A player leaving in day i pays

a congestion cost f(xi) and a delay cost of i units. The vector x = (x1, ..., xT ) is said to be feasible if
∑T

i=1 xi = d. It is

a spatio temporal Wardrop equilibrium if there is some constant α > 0 such that for each i = 1, ..., T , we have

f(xi) + i ≥ α and xi(f(xi) + i− α) = 0

Equivalently,
all days for which xi > 0, f(xi) + i = α

and for all other i’s, f(0) + i ≥ α.
(1)

and for all i ∈ I we have xi = f (−1)(α− i) .

Thus if f is increasing then so is f (−1) and then xi is decreasing in i at equilibrium. Thus there is a threshold policy

such that till day i∗, some traffic is shipped everyday, and after that threshold nothing is shipped.



B. Atomic routing games

In this section we consider finite number of players N each competing for the link. The decision of each player influences

the cost of the others. Let the demand of each player i = 1, 2, · · · , N be di > 0 that has to be shipped to destination over a

period of T days. The amount of flow sent by player i in the jth day is denoted by xi
j and the vector xi = (xi

1, x
i
2, · · · , xi

T )

denotes the flow of user i. The vector xi is said to be feasible if
∑T

j=1 x
i
j = di. Let the vector xj = (x1

j , x
2
j , · · · , xN

j )

denote the amount of flow sent by each user on day j. The total flow on day j is denoted as xj =
∑N

i=1 x
i
j . For a given

flow configuration of users (x1,x2, · · · ,xN ), user i pays a congestion cost of f(xj) and delay cost of j per unit of its flow

on day j. The objective of each user is to minimizes his cost given by

J i(x1,x2, · · · ,xN ) =
T∑

j=1

xi
j(f(xj) + j)

subjected to its demand constraints. A feasible vector x∗ = (x∗1,x∗2, · · · ,x∗N ) is said to be Nash equilibrium if for each

user i = 1, 2, · · · , T .

J i(x∗1,x∗2, · · · ,x∗i, · · · ,x∗N ) ≤ J i(x∗1,x∗2, · · · ,xi, · · · ,x∗N ) for all feasible xi

.

The above spatio temporal dynamic game is completely equivalent to a static parallel link problem studied by [2] with

link cost xj
iJi(xi) with Ji(xi) = f(xi)+ i. When f is a positive, strictly increasing, convex and continuously differentiable

all the assumptions in type-B functions in [2] are satisfied. Hence the existence and uniqueness of Nash equilibrium hold.

Further the following property hold for the equilibrium flow.

Proposition 2.1: The total flow xj is non-increasing in each day.

Proof: Let Lj denote the set of all users who put a positive flow on day j, i.e., Lj = {i : xi
j > 0}. From the KKT

conditions for all i ∈ Lj there exists a λi such that (see, [2][eq. 2,3])

f(xj) + xi
jf

′(xj) + j = λi and f(xk) + xi
kf

′(xk) + k ≥ λi for all k ̸= j.

Summing over the set Lj (j > 1) we get

f(xj)|Lj |+ xjf
′(xj) ≤ f(xj−1)|Lj |+

∑
i∈Lj

xi
j−1f

′(xj−1) ≤ f(xj−1)|Lj |+ xj−1f
′(xj−1)

By the assumption that f and f ′ are monotonically increasing we obtain xj−1 ≥ xj for all j.

Ayesta et al. [7] showed while studying the load balancing non-cooperative game that the worst case Nash equilibrium

occurs when each user have the same amount of demand, i.e, when users are symmetric. Next we will calculate the Nash

equilibrium for this case.

Symmetric Users: Consider that every user has a fixed demand di = d to route. Cominetti, Correa, and Stier-Moses

[8][Sec. 4.2] showed that the game with symmetric users is a potential game [9] and the Nash equlilibrium can be obtained

as the solution of a single optimization problem as following. If x∗ = (x∗
1, x

∗
2, · · · , x∗

T ) is the solution of the following

optimization problem

minimize
x=(x1,x2,··· ,xT )

T∑
i=1

xi(f(xi) + i) + (N − 1)
T∑

i=1

∫ xi

0

(f(x) + i)dx

subject to − xi ≤ 0, i = 1, 2, · · · , T and
T∑

i=1

xi = d.



then flow profile at Nash equilibrium is given by xi = {x∗
1

N ,
x∗
2

N , · · · x∗
T

N } for each user i = 1, 2, · · · , N

Next we consider the special case when the congestion cost is polynomial, i.e., of the form f(x) = axp + b, for some

a, b > 0 and p > 1. Polynomial functions were introduced for congestion cost originally in the context of road traffic. In

[11] existence of equilibrium and its uniqueness are studied for the general network topology with polynomial congestion

cost. The following proposition gives values of the flow at equilibrium.

Proposition 2.2: For polynomial congestion cost the equilibrium flow is

x∗
j =


(

β−j−b
a+ ap

N

) 1
p

if j < β − b

0 otherwise

where β is such that it satisfies ∑
j:j<β−b

(
β − j − b

a+ ap
N

) 1
p

= d

Proof: See Appendix A.

Next we consider the case when players co-operate among themselves and try to minimize the cost.

C. Global Optimum

Consider the scenario as in the previous sub section II-B. The objective of each user when the total demand D is

minimize
(x1,x2,··· ,xT )

T∑
j=1

xj(f(xj) + j)

subject to − xj ≤ 0, j = 1, 2, · · · , T. and
T∑

j=1

xj = D.

Let (x∗
1, x

∗
2, · · · , x∗

T ) be the optimal value of flows that achieve minima. Then by the necessary KKT conditions there exist

a α > 0 such that the following hold

f(x∗
j ) + x∗

jf
′(x∗

j ) + j = α if x∗
j > 0 and

f(x∗
j ) + x∗

jf
′(x∗

j ) + j ≥ α if x∗
j = 0

(2)

Since we assumed that f is monotonically increasing and convex, the function F (x) = f(x) + xf ′(x) is monotonically

increasing. Also, by writing x∗
j = F−1(α − j) we observe that flow is monotonically decreasing till day j∗ and after that

nothing is shipped.

From equations (2) and (1) the following lemma is easy to verify

Lemma 2.3: Let x∗ = (x∗
1, x

∗
2, · · · , x∗

T ) denote the minimum of the global optimization problem
∑T

i=1(g(xi) + i · xi)

subjected to constraints, where g is a differentiable function. Define f(·) = g′(·) then x∗ is Wardrop equilibrium of the

game with cost function f if and only if it is a global optimum.

More general versions of the above results appear in [12][Chapter 18].

Again, considering the polynomial cost structure, optimal flows can be characterized as in the following proposition

Proposition 2.4: For the polynomial congestion cost optimal flow is

x∗
j =


(

β−j−b
a+ap

) 1
p

if j < β − b

0 otherwise,



where β is such that it satisfies ∑
j:j<β−b

(
β − j − b

a+ ap

) 1
p

= D.

With the Nash equilibrium flow and optimal flow in proposition 2.2 and proposition 2.4, we can compute social cost at

equilibrium and optimal cost and hence price of anarchy(PoA). For the polynomial cost function we obtain an upper bound

of
(

1+p
1+ p

N

)1+ 1
p

. For detailed proof see Appendix B.

III. STOCHASTIC CONGESTION GAME

A. Motivating examples

The game is motivated by the following scenario: N transport companies share a network of roads over which they

want to schedule their traffic on a day-to-day basis. The traffic to be routed by each company varies on a day-to-day basis

according to a given stochastic process. The objective of each company is to route its traffic in such a way so as to minimize

the average delay of its traffic. The cost incurred by a player, which represents the delay due to congestion on the roads

over which they schedule the traffic, depends not only the amount it routes but also on the amount the other players route

thereby leading to a game.

Another practical scenario where this game is played is that of a set of universities who share a cluster of processors

over which they want to schedule tasks which arrive according to a given stochastic process. At the beginning of each day,

each player has to decide the tasks it schedules over each of the processors with the knowledge that the delay incurred by

its tasks depends also on the scheduling policy of the other players.

In this section we assume that there is only one shared resource (road or processor), and that the traffic is indivisible,

that is, a player cannot divide its traffic over two or more slots. It should either route the entire traffic or wait. Unlike in

the previous section we consider the case where game is repeated infinitely many times. Description of our game model is

as following. We largely follow the notation used in [10].

B. Model

1) State space: At the beginning of a slot, player i can be either active or inactive. In the active state, the player has

some amount of traffic to ship from some source to some destination. It stays in this state until it routes this traffic

and then moves to the inactive state. The player then stays in the inactive state until a new unit of traffic arrives.

We shall assume that, when player i is in the inactive state, a new unit of traffic arrives with probability pi as a result

of which the player becomes active. Let xi
t denote the state of player i in slot t, and let xt denote the state vector at

the beginning of slot t. We denote state space of ith player as Xi = {0, 1}. Active state corresponds to 1 and inactive

state to 0.

2) Action set : At the beginning of a slot, an active player can decide either to route its traffic or to postpone. The actions

available to player i in slot t, ait, is thus a subset of {0, 1}. When a player in active mode decides to route, it empties

it buffer. We shall denote the action set of player i when it is in state x as Ai(x). Specifically, Ai(x = 0) = 0 and

Ai(x > 0) = {0, 1}. Let at = (a1t , a
2
t , · · · , aNt ) ∈

∏N
i=1 A

i(xi
t) denote the action vector at the beginning of slot t when

the state vector is xt. Define the local set of sate-action pair for player i as Ki = {(xi, si) : xi ∈ Xi, si ∈ Si(xi)},

and K−i denote the state-action set of all other users, i.e., K−i =
∏N

j ̸=i Kj

3) Dynamics of the state : The state of player i, xi
t evolves according to a Markov chain whose transition matrix in slot

t depends on the action ait and the current state. For each user we denote the transition probability from state x ∈ Xi



to y ∈ Xi when user takes action a ∈ Si(x) as P i
xay. When a player i is in inactive mode it can get a unit of traffic

with probability pi, hence takes values xi
t+1 = 1 with probability pi or remains in the inactive mode with probability

1−pi. Similarly, in the active mode if the action is to transmit then a new state becomes active with probability pi and

inactive with probability 1− pi. If the state is active and action is not to transmit than state remains active. Transition

probability matrix is as given by

P i
(·)a(·) =

 1− pi pi

1− pia pia

 (3)

4) Cost functions : In given slot t, an active player who routes its traffic incurs a cost which is a function of the number

of players who routed their traffic in that slot. On the other hand, if an active player decides to postpone, then it incurs

a fixed cost d which can be inferred as a penalty for the increased delay incurred by the traffic. Let cit :
∏N

i=1 Ki → R

be the cost incurred by player i in slot t, then

cit(xt,at) = f

(∑
i

xi
ta

i
t

)
+ d

(
(1− ait)x

i
t

)
. (4)

5) Policies and Information Define the history of player i at time t to be a sequence of its past state and actions including

the current state hi
t = (xi

1, a
i
1, x

i
2, a

i
2, · · ·xi

t−1, a
i
t−1). Let Hi

t denote the collection of all such histories. The policy of

a players i is a sequence of maps (ui
1, u

i
2, · · · ), where the maps are given by ui

t : H
i
t → M(Ai) with M(Ai) denoting

the probability vector on the set Si. Set of all policies of player i is denoted as U i and the collection U =
∏N

i=1 U
i is

called multi-polices. A stationary policy for a player i is a function ui : Xi → M(Ai) so that ui(·|xi) ∈ M(Ai(xi)).

Set of all stationary for player i is denoted as U i
S and the collection US =

∏N
i=1 U

i
S . Note that when the user is in

inactive mode then only possible action is 0, hence ui(0|xi = 0) = 1. In our model a stationary policy is completely

characterized by the probability of transmission in active state, i.e., qi := ui(1|1). We use both ui and its associated

qi to denote a stationary policy interchangeably. The transition probability matrix when the ith users stationary policy

is qi is given by

Pi(qi) =

 1− pi pi

qi(1− pi) 1− qi(1− pi)

 (5)

For any multi policy u ∈ U , let u−i denote the multi policy without the policy ui of the ith user and [u−i|vi] denote

the multi policy with the policy ui of ith user replaced by vi. We assume that each user i has information of its own

state and makes decision only based on this information.

6) Utility and the objective

The objective of player i is to select its strategies so as to minimize the total cost it incurs over the horizon. Let

β denote the distribution of the initial state. Let {Xt, At}t>0 denote the sequence of random variable on state and

action sets, where Xt = {X1
t , X

2
t , · · · , XN

t } and At = {A1
t , A

2
t , · · · , AN

t }. The state action pair {Xt, At} evolve

according to the distribution which is determined by multi policy u ∈ U , the transition probabilities and β. We denote

this distribution by PU
β and expectation with respect to this distribution as EU

β . Each user i = 1, 2, · · · , N seeks to

minimize his average expected cost.

Ci(U, β) = lim sup
T→∞

1

T
EU
β

T∑
t=1

cit(Xt, At) (6)

Below we restate the definition in [10][Def 2.1] for Nash equilibrium and optimal response for a stochastic game.



Definition 3.1: 1) A multi policies u ∈ U is said to be Nash equilibrium if i = 1, 2, · · · , N and for any vi ∈ U i

Ci(β, u) ≤ Ci(β, [u−i|vi]) for any vi ∈ U ii = 1, 2, · · · , N. (7)

2) For any multi policy u, policy ui of user i is said to be optimal response against u−i if (7) holds for any vi ∈ U i.

3) For any multi polices u, v ∈ U , v is said to be optimal response against u if for each user vi is the optimal response

against u−i.

Next we will study the existence of stationary Nash equilibrium and its properties.

C. Equilibrium and properties

Let π(qi) = (π(1|qi), π(0|qi)) denote the stationary distribution on the states of user i when he/she uses the stationary

policy qi ∈ U i
S , where the component π(x|qi) denotes the stationary probability of state x ∈ Ai. Markov chain of each user

is irreducible with the stationary distribution as a function of policy given by

π(1|qi) =
qi(1− pi)

qi + pi(1− qi)
and π(0|qi) =

pi
qi + pi(1− qi)

. (8)

The stochastic congestion game defined above satisfies all the assumptions in Theorem 2.1 in [10]. Hence, we have the

following existence result.

Proposition 3.2: The stochastic game has a stationary multi policy u ∈ US which is a Nash equilibrium.

The optimal response of the ith user when the other user use stationary policies can be computed from the linear programming.

D. Linear Programming

For any state action pair (x, a) ∈ Ki the expected cost incurred by the the i player when other user use stationary policy

u−i ∈ U−i
S is

ci,u(x, a) =
∑

(x−i,a−i)∈K−i

(∏
j ̸=i

uj(aj |xj)π(xj |qj)
)
ci(x,a), (9)

where qj denotes the probability associated with stationary strategy uj and x = [x−i|xi] a = [a−i|ai].

Let z∗i,u = {z∗i,u(x, a); (x, a) ∈ Ki} be such that it minimizes∑
(x,a)∈Ki

ci,u(x, a)zi,u(x, a) subjected to

∑
(x,a)∈Ki

zi,u(x, a)[δr(x)− P i
xar] ∀r ∈ Xi

zi,u(x, a) ≥ 0 ∀ (x, a) ∈ Ki and
∑

(x,a)∈Ki

zi,u(x, a) = 1

(10)

Then the optimal policy is given by

ui∗(a|x) =
z∗i,u(x, a)∑

a∈Ai z∗i,u(x, a)
. (11)

Next we will consider the case of symmetric users and characterize the Nash equilibrium



E. Symmetric users

Let p denote the probability that a packet arrives to each players. From equation (9) observe that ci,u(1, 0) = d(1) and

ci,u(0, 0) = 0. By substituting the the expected cost of ith player when the others use stationary strategy u−i in (10) the

best response of ith player is given by the following linear programming below. Let x := zi,u(1, 1),

minimize ci,u(1, 1)x+ ci,u(1, 0)
(
1− x

p

)
subjected to 0 ≤ x ≤ p

(12)

If x∗ is the optimal value of the above optimization problem than from equation (11) the best stationary response of ith

player is given by qi = x∗/
(
x∗ +

(
1− x∗/p

))
.

Now, considering two player case we characterize the Nash equilibrium as following.

Proposition 3.3: For any given functions f, d and packet arrival probability p, if there exists q ∈ [0 1] that satisfies

qπ(1|q)f(2) + (1− qπ(1|q))f(1)− d(1)

p
= 0,

then (q, q) is the stationary symmetric Nash equilibrium (SSNE). Further, if f(1) > d(1)
p then ’no-transmit’ for both player

is SSNE. If (1− p)f(2) + pf(1) < d(1)
p than ’transmit’ for both players is SSNE.

Proof: See Appendix C for proof and interpretation of results.

IV. CONCLUSION

We Studied the dynamic routing game in which there is both congestion and delay cost. We established the existence of

equilibrium and gave its properties when the number of players infinite and finite. When the demand of players is random,

we considered a simple stochastic congestion game and investigated the existence of stationary equilibrium policies and its

properties. Its interesting to consider more general model in stochastic game scenario and study its equilibrium properties.

For example, when buffer length is more than one.
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APPENDIX A: PROOF OF PROPOSITION 2.2

Proof:

minimize
x=(x1,x2,··· ,xT )

T∑
j=1

xj

N
(axp

j + b+ j) +
N − 1

N

T∑
j=1

∫ xj

0

(axp + b+ j)dx

subject to − xj ≤ 0, j = 1, 2, · · · , T.

and
T∑

j=1

xj = d.

If x∗ = (x∗
1, x

∗
2, · · · , x∗

T , ) is the optimal solution than by the necessary conditions of the KKT theorem there exits λj ≥ 0

for j = 1, 2, 3 . . . T and β ∈ R such that the following holds

ax∗p
j + b+ j +

ap

N
x∗p
j = β + λj for j = 1, 2, · · · , T (13)

x∗
jλi = 0 for i = 1, 2, · · · , T (14)

T∑
i=1

x∗
j = d (15)

substituting the value of λj from equation (13) into equation (14) we get

x∗
j · (ax

∗p
j + b+ j +

ap

N
x∗p
j − β) = 0.

if b + j ≥ β than it is clear that x∗
j = 0. Now consider the case b + j < β, we have either x∗

j0 or x∗
j > 0. Now suppose

that x∗
j = 0, then from equation (13) and the fact that λj ≥ 0 we get b + j ≥ β, which is a contradiction. Hence, for the

case b+ j < β, x∗
j is strictly positive and can be obtained as the solution of

ax∗p
j + b+ j +

ap

N
x∗p
j − β = 0 , i.e.,

ax∗p
j =

(
β − j − b

a+ ap
N

) 1
p

.

Substituting the above in equation (15) we get∑
j:j<β−b

(
β − αi− b

a+ ap
N

) 1
p

− d = 0.

This concludes the proof.

APPENDIX B: PRICE OF ANARCHY

We began by studying the properties of the lagrangian multiplier associated with equality constraints (β) as a function of

number of user. In this regard define a function Wi for each i = 1, 2, · · · , T as following

Wi(N, γ) = I{i+b<γ≤(i+1)+b}

(
γ − i− b

a+ ap
N

) 1
p

.

Also define W (N, γ) =
∑T

i=1 Wi(N, γ). Some of the properties of the function W are summarized in the following lemma.

Lemma 4.1: The function W is such that

1) For a fixed N , W is continuous and monotonically increasing in γ

2) For a fixed γ, W is monotonically increasing N .

3) For a fixed N , W (N, γ) = 0 has a unique solution denoted as γ(N) in the interval (1 + b,∞)



Proof: First, notice that for each i, Wi has a right limit at the point i + b given by Wi(N, i + b). It is clear that W

is continuous in each interval (i+ b < γ < (i+ 1) + b), we need to verify its continuity only at the boundaries. Fix j and

consider the difference

lim
γ→((j+1)+b)+

W (N, γ)− lim
γ→((j+1)+b)−

W (N, γ)

= Wj+1(N, (j + 1) + b)−Wj(N, (j + 1) + b)

=

j+1∑
i=1

(
(j + 1) + b− i− b

a+ ap
N

) 1
p

−D −
j∑

i=1

(
(j + 1) + b− i− b

a+ ap
N

) 1
p

+D = 0

Hence W is continuous. Also, Wi is strictly increasing in the interval (i+ b, (i+ 1) + b) for each i which implies that W

is strictly increasing. The second claim is straightforward. To prove the third part of the lemma notice that W starts from

−D < 0 at γ = 1 + b, then the claim follows from the first part of the lemma.

We next show that the unique zero of the function W is monotonically increasing in N .

Lemma 4.2: γ(N) is monotonically decreasing in N

Proof: Let γ(N1) and γ(N2) denote the unique roots of W (N1, γ) and W (N2, γ) respectively, and assume that

N1 < N2. We have

W (N1, γ(N1)) = 0 = W (N2, γ(N2)) ≥ W (N1, γ(N2)),

where the last inequality follows from second part of lemma 4.1. Now the claim directly follows from first part of the lemma

4.1.

From the previous lemma 4.2 it is easy to observe that as the number of symmetric users increases (with total demand

held constant), positive flow is sent on lesser number of days at equilibrium. Let LN denote set of days on which total flow

sent by N users is positive, i.e., LN = {i : i + b < γ(N)}.Then the observation made form the previous lemmas can be

written as LN+1 ⊂ LN . In particular, when the there is just one user, i.e., centrally controlled system, the positive flow is

send on maximum number of days.

Equilibrium social cost with N users is given by

DN =
∑
i∈LN

x∗
i (a(x

∗
i )

p + b+ i) =
∑
i∈LN

(
γ(N)− i− b

a+ ap
N

) 1
p
(
a

(
γ(N)− i− b

a+ ap
N

)
+ b+ i

)

=
∑
i∈LN

(
γ(N)− i− b

a+ ap
N

) 1
p
((

γ(N)− i− b

1 + p
N

)
+ b+ i

)

=
∑
i∈LN

(
γ(N)− i− b

a+ ap
N

) 1
p
(
γ(N) + p

N (i+ b)

1 + p
N

)
,

and optimal social cost is given by

D1 =
∑
i∈L1

x∗
i (a(x

∗
i )

p + b+ i) =
∑
i∈L1

(
γ(1)− i− b

a+ ap

) 1
p
(
a

(
γ(1)− i− b

a+ ap

)
+ b+ i

)

=
∑
i∈L1

(
γ(1)− i− b

a+ ap

) 1
p
((

γ(1)− i− b

1 + p

)
+ b+ i

)

=
∑
i∈L1

(
γ(1)− i− b

a+ ap

) 1
p
(
γ(1) + p(i+ b)

1 + p

)



PoA =

∑
i∈LN

(
γ(N)−i−b

a+ ap
N

) 1
p
(

γ(N)+ p
N (i+b)

1+ p
N

)
∑

i∈L1

(
γ(1)−i−b

a+ap

) 1
p
(

γ(1)+p(i+b)
1+p

)

≤

∑
i∈L1

(
γ(1)−i−b
a+ ap

N

) 1
p
(

γ(1)+ p
N (i+b)

1+ p
N

)
∑

i∈L1

(
γ(1)−i−b

a+ap

) 1
p
(

γ(1)+p(i+b)
1+p

)

≤
a

1
p (1 + p)1+

1
p
∑

i∈L1

(
γ(1)− i− b

) 1
p
(
γ(1) + p

N (i+ b)

)
a

1
p (1 + p

N )1+
1
p
∑

i∈L1

(
γ(1)− i− b

) 1
p
(
γ(1) + p(i+ b)

) ≤
(

1 + p

1 + p
N

)1+ 1
p

Where the first inequality follows as γ(N) ≤ γ(1) and LN ⊂ L1.

APPENDIX C: PROOF OF PROPOSITION 3.3

Let q be denote the stationary strategy of player-1, from (9) the value of the expected cost incurred by player-2 when

his/her action is to transmit in active state is given by

c2,u(1, 1) = qπ(1|q)f(2) + (1− q)π(0|q)f(1) + π(0|q)f(1).

Substituting the above in the objective function in (12), and differentiating with respect to x we get the following first order

optimality condition

qπ(1|q)f(2) + (1− qπ(1|q))f(1)− d(1)

p
= 0. (16)

Suppose player-1 chooses q such that the above equation is satisfied than any values of x ∈ [0 p] is optimal and any values

of q2 ∈ [0 1] is optimal response for player-2. Hence (q, q) is the stationary symmetric Nash equilibrium. To see the other

part of the proposition, substitute the expression for stationary distributions in (8), when the stationary policy is q, in (12)

to get (
q2(1− p)

q + p(1− q)
f(2) +

(
1− q2(1− p)

q + p(1− q)

)
f(1)− d(1)

p

)
x− d(1).

If player-1 chooses q1 = 0, x∗ = 0 is the minimizer of the above equation when f(1) > d(1)
p , hence (0, 0) is the SSNE. By

similar arguments we can show that (1, 1) is the SSNE when (1− p)f(2) + pf(1) < d(1)
p .


