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Distributed Weight Selection in Consensus Protocols
by Schatten Norm Minimization
Mahmoud El Chamie, Giovanni Neglia, and Konstantin Avrachenkov∗

Abstract—This paper studies the weight optimization problem
for average consensus protocols by reformulating it as a Schatten
norm minimization with parameter p. We show that as p
approaches infinity, the optimal solution of the Schatten norm
induced problem recovers the optimal solution of the original
problem. Moreover, by tuning the parameter p in our proposed
minimization, we can simply trade-off the quality of the solution
(i.e., the speed of convergence) for communication/computation
requirements (in terms of number of messages exchanged and
volume of data processed). We then propose a distributed
algorithm to solve the Schatten norm minimization and we
show that it outperforms the other distributed weight selection
methods.

I. INTRODUCTION

A network is formed of nodes (or agents) and communi-
cation links that allow these nodes to share information and
resources. We consider each node i in the network to store
in a local memory a scalar xi(0) ∈ R, called the estimate.
Average consensus protocols are algorithms that can allow
nodes to reach consensus on the average of all initial estimates
(
∑

i xi(0)

n ) relying only on neighbor to neighbor communi-
cation. Consensus algorithms are used in many applications
and distributed control problems for different and various
systems [1], [2], and [3]. For a complete overview of consensus
protocols we refer the reader to [4], [5], [6], [7] and the
references therein.

An iterative algorithm for achieving the average consensus
is the following: at iteration k + 1, node i updates its state
value xi as follows:

xi(k + 1) = wiixi(k) +
∑
j∈Ni

wijxj(k), (1)

where Ni is the set neighbors of node i, wij is the weight
selected by node i for the value sent by its neighbor j and
wii is the weight selected by node i for its own value. We
can put the weights in an n by n matrix W where n is the
number of nodes in the network. A necessary and sufficient
condition for system (1) to converge starting from any initial
condition [8] is to select W such that W1 = 1, 1TW = 1T ,
and µ(W ) < 1 where 1 is the vector of all ones and µ(W ) is
the second largest eigenvalue of W in module.

Xiao and Boyd in [8] formulated a general Fastest Dis-
tributed Linear Averaging (FDLA) problem as a non-convex
optimization to find W that guarantees the fastest convergence.
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They showed that if the solution space is restricted to symmet-
ric weight matrices, then the symmetric FDLA problem can
be formulated as a Semi-Definite Program (SDP) that can be
solved by a centralized unit using interior point methods. Kim
et al. in [9] approximate the general FDLA using the qth-
order spectral norm minimization (q-SNM). For a symmetric
weight matrix, solving the q-SNM is equivalent to solving the
symmetric FDLA problem. Their algorithm is centralized and
has a higher complexity than the SDP. Solving the problem of
optimal weight selection in a distributed way is still an open
problem.

In this paper we study distributed techniques to optimally
select the weights of average consensus protocols. We address
the problem of selecting the weights in a given network in
order to have a fast speed of convergence for these protocols.
We approximate the problem of optimal weight selection by
the minimization of the Schatten p-norm of a matrix with
some constraints related to the connectivity of the underly-
ing network. We then provide a totally distributed gradient
method to solve the Schatten norm optimization problem. By
tuning the parameter p in our proposed minimization, we can
simply trade-off the quality of the solution (i.e., the speed
of convergence) for communication/computation requirements
(in terms of number of messages exchanged and volume of
data processed). The theoretical contribution of this paper is
as follows: we formulate a new optimization problem (the
Schatten norm minimization) for weight selection problem
of average consensus, then we show that i) the formulated
problem is an approximation of the optimal weight selection
problem, and ii) it can be implemented in a totally decen-
tralized fashion. Simulation results on random graphs and on
real networks show that our approach provides very good
performance already for values of p that only need limited
information exchange.

The paper is organized as follows: In section II we introduce
the notation used across the paper. In section III we propose
Schatten p-norm minimization as an approximation of the
original problem and in section IV we show how its solution
can be computed in a distributed way and evaluate its com-
putation and communication costs. Section V compares the
performance of our algorithm and that of other known weight
selection algorithms on different graph topologies. Section VI
summarizes the paper.

II. NOTATION

The network is considered as an undirected graph G =
(V,E) where V is the set of nodes (V = {1, . . . , n}), E is
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the set of edges, (i, j) ∈ E if nodes i and j are neighbors and
can communicate (E = {1, . . . ,m}, i.e., we label the edges
from 1 to m). If link (i, j) has label l, we write l ∼ (i, j).
We denote by w the vector of dimensions m× 1, whose l-th
element wl is the weight associated to link l, then if l ∼ (i, j)
it holds wl = wij = wji. A is the adjacency matrix of graph
G, i.e., aij = 1 if (i, j) ∈ E and aij = 0 otherwise. CG is the
set of all real n × n matrices M corresponding to graph G,
i.e., mij = 0 if (i, j) /∈ E. D is a diagonal matrix where dii
(or simply di) is the degree of node i in the graph G. Q is
the n ×m incidence matrix of the graph, such that for each
l ∼ (i, j) ∈ E, Qil = +1 and Qjl = −1 and the rest of the
elements of the matrix are null. L is the laplacian matrix of
the graph, so L = D−A. It can also be seen that L = QQT .
The n× n identity matrix is denoted by In. Given that W is
real and symmetric, it has real eigenvalues (and then they can
be ordered). We denote by λi the i-th largest eigenvalue of W ,
and by µ the largest eigenvalue in module non considering λ1,
i.e., µ = max{λ2,−λn}. Let σi be the i-th largest singular
value of a matrix, Tr(X) be the trace of the matrix X and
ρ(X) be its spectral radius. ||X||σp denotes the Schatten p-
norm of matrix X , i.e., ||X||σp = (

∑
i σ

p
i )1/p. Finally we use

the symbol d
dX f(X), where f is a differentiable scalar-valued

function f(X) with matrix argument X ∈ Rm×n, to denote
the n×m matrix whose (i, j) entry is ∂f(X)

∂xji
.

III. SCHATTEN NORM MINIMIZATION

The problem of finding the weight matrix that guarantees
the fastest convergence can be formalized as follows (see [8]):

Argmin
W

µ(W )

subject to W = WT , W1 = 1, W ∈ CG,
(2)

where the last constraint on the matrix W is derived from
the assumption that nodes can only communicate with their
neighbors and then necessarily wij = 0 if (i, j) 6∈ E.
Problem (2) is called in [8] the “symmetric FDLA problem”.

The above minimization problem is a convex one and the
function µ(W ) is non-smooth convex function. It is convex
since when W is a symmetric matrix, we have µ(W ) = ρ(W−
J) = ||W−J ||2 where J = 1

n11
T , so µ(W ) is a composition

between an affine function and the convex matrix L-2 norm
function [10]. The function µ(W ) = ρ(W −J) is non-smooth
since the spectral radius of a matrix is not differentiable at
points where the eigenvalues coalesce [11]. The process of
minimization itself in (2) tends to make them coalesce at the
solution.

We change the original minimization problem in (2) by
considering a different cost function that is a monotonic
function of the Schatten Norm. The minimization problem we
propose is the following one:

Argmin
W

f(W ) = ||W ||pσp

subject to W = WT , W1 = 1, W ∈ CG,
(3)

where p is an even positive integer. The following result
establishes that (3) is a smooth convex optimization problem
and also it provides an alternative expression of the cost

function in terms of the trace of W p. For this reason we refer
to our problem also as Trace Minimization (TM).

Proposition 1. f(W ) = ||W ||pσp = Tr(W p) is a scalar-valued
smooth convex function on its feasible domain when p is an
even positive integer.

Proof. We have Tr(W p) =
∑n
i=1 λ

p
i . Since W is symmetric,

its non-zero singular values are the absolute values of its non-
zero eigenvalues [12]. If p is even,

∑n
i=1 λ

p
i =

∑n
i=1 σ

p
i .

Therefore, Tr(W p) = ||W ||pσp.
The Schatten norm ||W ||σp is a nonnegative convex func-

tion. Hence f is convex because it is the composition of a
non-decreasing convex function—the function xp where x is
non-negative—and a convex function [10].

The function is also differentiable and we have
d
dW

Tr(W p) = pW p−1, (4)

(see [13, p. 411]).

We now illustrate the relation between (3) and the optimiza-
tion (2). The following lemmas will prepare the result:

Lemma 1. For any symmetric weight matrix W whose rows
(and columns) sum to 1 and with eigevalues λ1(W ) ≥
λ2(W ) ≥ · · · ≥ λn(W ), there exist two integers K1 ∈
{1, 2, . . . n − 1},K2 ∈ {0, 1, 2, . . . n − 1} and a positive
constant α < 1 such that for any positive even integer p we
have:

1 + τ(W )pK1 ≤ Tr(W p) ≤ 1 + τ(W )p(K1 +K2α
p), (5)

where

τ(W ) =

{
ρ(W ) = max{λ1(W ),−λn(W )} if ρ(W ) > 1,

µ(W ) = max{λ2(W ),−λn(W )} if ρ(W ) ≤ 1.
(6)

Proof. Due to space limits the proof is presented in [14].

We now show that the the Schatten-p optimization problem
(3) gives a stable matrix.

Lemma 2. Let us denote by W(p) the solution of the mini-
mization problem (3). If the graph of the network is connected
then τ

(
W(p)

)
< 1 for p sufficiently large.

Proof. Due to space limits the proof is presented in [14].

We are now ready to state our main results in the following
propositions:

Proposition 2. If the underlying graph is connected, then
the solution of the Schatten Norm minimization problem (3)
satisfies the consensus protocol convergence conditions for p
sufficiently large. Moreover as p approaches∞, this minimiza-
tion problem is equivalent to the minimization problem (2)
(i.e., to minimize the second largest eigenvalue µ(W )).

Proof. Due to space limits the proof is presented in [14].

Proposition 3. The Schatten Norm minimization (3) is an
approximation for the original problem (2) with a guaranteed
error bound,

|µ(W(SDP ))− µ(W(p))| ≤ µ(W(SDP ))× ε(p),
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where ε(p) = (n − 1)1/p − 1 and where W(SDP ) and W(p)

are the solutions of (2) and (3) respectively.

Proof: Due to space limits the proof is presented in [14].

Remark: Comparing the results of Schatten Norm mini-
mization (3) with the original problem (2), we observe that
on some graphs the solution of problem (3) already for p = 2
gives the optimal solution of the original problem (2); this
is for example the case for complete graphs.1 However, on
some other graphs, it may give a weight matrix that does not
guarantee the convergence of the consensus protocol because
the second largest eigenvalue is larger than or equal to 1
(the other convergence conditions are intrinsically satisfied).
Nevertheless, a suitable projection of the matrix on the set
of stable matrices can be done in distributed way (see our
technical report [14] for more details).

IV. A DISTRIBUTED ALGORITHM FOR SCHATTEN NORM
MINIMIZATION

Given that problem (3) is smooth and convex, it can be
solved by interior point methods which would be a centralized
solution. In this section we are going to show a distributed
gradient-type algorithm to solve problem (3). We call an
algorithm distributed when each node only needs to retrieve
information from a limited neighborhood (possibly larger than
Ni) in order to calculate the weights on its incident links.
The constraint W = WT in the optimization requires any two
neighbors i and j to choose the same weight on their common
link l ∼ (i, j) i.e., wij = wji = wl. The last condition
W1 = 1 means that at every node i the sum of all weights
on its incident links plus its self-weight wii must be equal to
one. This condition is satisfied if nodes choose first weights
on links, and then adapt consequently their self-weights wii.
Moreover these two constraints lead to the possibility to write
W as follows: W = I−Q×diag(w)×QT , where w ∈ Rm is
the vector of all the weight links wl, l = 1...m. It follows that
Schatten Norm minimization (3) is equivalent to the following
unconstrained problem:

minimize h(w) = Tr
(
(I −Q× diag(w)×QT )p

)
. (7)

We will give a distributed algorithm to solve the Schatten
Norm minimization (3) by applying gradient techniques to
problem (7). Since the cost function to optimize is smooth and
convex as we proved in Proposition 1, if the gradient technique
converges to a stationary point, then it converges to the global
optimum. The gradient method uses the simple iteration:

w
(k+1)
l = w

(k)
l − γ

(k)g
(k)
l ∀l = 1...m ,

where γ(k) is the stepsize at iteration k and g
(k)
l is the l-th

component of the gradient g(k) of the function h(w). At every
iteration k, starting with a feasible solution for link weights,

1This can be easily checked. In fact, for any matrix that guarantees conver-
gence of average consensus protocol, it holds µ(W ) ≥ 0 and Tr(W 2) ≥ 1
(because 1 is an eigenvalue of W ). The matrix Ŵ = 1/n11T (corresponding
to each link having the same weight 1/n) has eigenvalues 1 and 0 with
multiplicity 1 and n− 1 respectively. Then µ(Ŵ ) = 0 and Tr(Ŵ 2) = 1. It
follows that Ŵ minimizes both the cost function of problem (2) and (3).

w
(k)
l , we calculate the gradient g(k)l for every link, and then

we obtain a new weight value w
(k+1)
l . There are different

conditions on the function h(.) and on the stepsize sequence
that can guarantee convergence. A distributed computational
model for optimizing a sum of non-smooth convex functions
is proposed in [15], [16] and its convergence is proved
for bounded (sub)gradients for different network dynamics.
For a similar objective function, the authors in [17] study
the convergence of a projected (sub)-gradient method with
constant stepsize. For unbounded gradients, the algorithm in
[18, Section 5.3.2, p. 140] guarantees global convergence but
requires a centralized calculation of the stepsize sequence. Be-
cause the objective function in (7) has unbounded gradient, our
distributed implementation combines ideas from unbounded
gradients methods and the projecting methods using theorems
from [19].

In particular, we will add a further constraint to (7), looking
for a solution in a compact set X , and we will consider the
following projected gradient method:

w(k+1) = PX

(
w(k) − γ(k)g(k)

)
,

where PX() is the projection on the set X . We can show that
by a particular choice of X and γ(k) the method converges
to the solution of the original problem. Moreover, all the
calculations can be performed in a distributed way on the basis
of local knowledge. In particular, we will show that:

• nodes incident to l are able to calculate g
(k)
l using

only information they can retrieve from their (possibly
extended) neighborhood;

• the stepsize sequence γ(k) is determined a priori and then
nodes do not need to evaluate the function h or any other
global quantity to calculate it;

• the projection on set X can be performed component-
wise, and locally at each node;

• the global convergence of the projected gradient method
is guaranteed.

We will start by gl and show that it only depends on infor-
mation local to nodes i and j incident to the link l ∼ (i, j),
then we will discuss the choice of the stepsize γ(k) and of the
projection set X .

A. Locally Computed Gradient

Consider the link l ∼ (i, j), since wl = wij = wji and
wii = 1−

∑
s∈Ni

wis, we have:

dwst
dwl

=



+1 if s = i and t = j

+1 if s = j and t = i

−1 if s = i and t = i

−1 if s = j and t = j

0 else.

(8)
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The gradient gl of the function h(w) for l ∼ (i, j) can be
calculated as follows:

gl =
dh(w)

dwl
=

df(I −Q× diag(w)×QT )

dwl

=
∑
s,t

∂f

∂wst

dwst
dwl

=
∂f

∂wij

dwij
dwl

+
∂f

∂wji

dwji
dwl

+
∂f

∂wii

dwii
dwl

+
∂f

∂wjj

dwjj
dwl

=
∂f

∂wij
+

∂f

∂wji
− ∂f

∂wii
− ∂f

∂wjj

= p
(
(W p−1)ji + (W p−1)ij − (W p−1)ii − (W p−1)jj

)
.
(9)

In the last equality we used equation (4).
It is well know from graph theory that if we consider W to

be the adjacency matrix of a weighted graph G, then (W s)ij
is a function of the weights on the edges of the i − j walks
(i.e., the walks from i to j) of length exactly s (in particular if
the graph is unweighted (W s)ij is the number of distinct i−j
s-walks [20]). Since for a given p the gradient gl, l ∼ (i, j),
depends on the {ii, jj, ij, ji} terms of the matrix W p−1, gl
can be calculated locally by using only the weights of links and
nodes at most p2 hops away from i or j.2 Practically speaking,
at each step, nodes i and j need to contact all the nodes up to
p/2 hops away in order to retrieve the current values of the
weights on the links of these nodes and the values of weights
on the nodes themselves. An advantage of our approach is that
it provides a trade-off between locality and optimality. In fact,
the larger the parameter p, the better the solution of problem
(3) approximates the solution of problem (2), but at the same
time the larger is the neighborhood from which each node
needs to retrieve the information. When p = 2, then gl where
l ∼ (i, j) only depends on the weights of subgraph induced
by the two nodes i and j. For p = 4, the gradient gl depends
only on the weights found on the subgraph induced by the set
of vertices Ni ∪Nj .

B. Choice of Stepsize and Projection set

The global convergence of gradient methods (i.e., for any
initial condition) has been proved under a variety of different
hypotheses on the function h to minimize and on the step
size sequence γ(k). In many cases the step size has to be
adaptively selected on the basis of the value of the function or
of the module of its gradient at the current estimate, but this
cannot be done in a distributed way for the function h(w).
This leads us to look for convergence results where the step
size sequence can be fixed ahead of time. Moreover the usual
conditions, like Lipschitzianity or boundness of the gradient,
are not satisfied by the function h(.) over all the feasible
set. For this reason we add another constraint to our original
problem (7) by considering that the solution has to belong to
a given convex and compact set X . Before further specifying
how we choose the set X , we state our convergence result.

2If a link or a node is more than p/2 hops away both from node i and
node j, then it cannot belong to a i− j walk of length p.

Proposition 4. Given the following problem

minimize h(w) = Tr
(
(I −Q× diag(w)×QT )p

)
,

subject to w ∈ X (10)

where X ⊆ Rm is a convex and compact set, if
∑
k γ

(k) =∞
and

∑
k

(
γ(k)

)2
< ∞, then the following iterative procedure

converges to the minimum of h in X:

w(k+1) = PX

(
w(k) − γ(k)g(k)

)
, (11)

where PX(.) is the projection operator on the set X and g(k)

is the gradient of h evaluated in w(k).

Proof. The function h is continuous on a compact set X , so
it has a point of minimum. Moreover also the gradient g is
continuous and then bounded on X . The result then follows
from Proposition 8.2.6 in [19, pp. 480].

For example, γ(k) = a/(b + k) where a > 0 and b ≥ 0
satisfies the step size condition in Proposition 4.

While the convergence is guaranteed for any set X convex
and compact, we have two other requirements. First, it should
be possible to calculate the projection PX in a distributed
way. Second, the set X should contain the solution of the
optimization problem (7). About the first issue, we observe
that if X is the cartesian product of real intervals, i.e., if X =
[a1, b1] × [a2, b2] × . . . [am, bm], then we have that the l-th
component of the projection on X of a vector y is simply the
projection of the l-th component of the vector on the interval
[al, bl], i.e.,

[PX(y)]l = P[al,bl](yl) =


al if yl < al,

yl if al ≤ yl ≤ bl,
bl if bl < yl.

(12)

Then in this case Eq. (11) can be rewritten component-wise
as

w
(k+1)
l = P[al,bl](w

(k)
l − γ

(k)g
(k)
l ).

We have shown in the previous section that gl can be calculated
in a distributed way, then the iterative procedure can be
distributed. About the second issue, we have from the bound
of matrix norms (see [13])

||W ||∞ ≤ ρ(W ), (13)

where ||W ||∞ = maxi,j |wij |. A consequence of inequal-
ity (13) is that if we choose X = [−1, 1]m, we include in the
feasibility set all the weight matrices with spectral radius at
most 1, and in particular the the matrix solution of problem (2)
(it satisfies the convergence conditions). The same is true
for the solution of problem (7) for p large enough because
of Proposition 2. The following proposition summarizes our
results.

Proposition 5. If the underlying graph is connected, then the
following distributed algorithm converges to the solution of
the Schatten norm minimization problem for p large enough:

w
(k+1)
l = P[−1,1](w

(k)
l − γ

(k)g
(k)
l ), ∀l = 1, . . . ,m, (14)

where
∑
k γ

(k) =∞ and
∑
k

(
γ(k)

)2
<∞.
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C. Complexity of the Algorithm

Our distributed algorithm for Schatten Norm minimization
requires to calculate at every iteration, the stepsize γ(k), the
gradient g(k)l for every link, and a projection on the feasible
set X . Its complexity is determined by the calculation of
link gradient gl, while the cost of the other operations is
negligible. For p = 2, gl = 2 × (2Wij − Wii − Wjj), so
the computational complexity for nodes is negligible, but the
communication complexity is 1 message carrying a single real
value (wii) per link, per node and per iteration. For p = 4,
gl = 4

(
(W 3)ij+(W 3)ji−(W 3)ii−(W 3)jj

)
, and as discussed

in the previous section, each of the 4 terms can be calculated
only locally from the weights within 2-hops from i or j. The
computational complexity for calculating gl is in the worst
case O(∆3) where ∆ is the largest degree in the network. In
order to calculate gl locally, the communication complexity
would be to send two messages per link per node and per
iteration. The first message carries at most ∆ values (the
weight vector Wi) and the second message carries one real
value ((W 3)ii). Due to space limit, we refer the reader to the
technical report [14] for details on both computational and
communication costs.

Remark: If p is larger than twice the diameter of the
graph, then each agent requires the knowledge of all the link
weights in the network. In this case, it is better to revert to
the centralized version of the Schatten norm minimization.

V. PERFORMANCE EVALUATION

In this section we compare the speed of convergence of the
average consensus protocol when the weight matrix W is the
solution of the Schatten norm minimization, the solution of the
FDLA problem, or it is selected according to other distributed
approaches (see [21], [8]): max degree weights (MD) (wl =

1
maxi{di}+1 ∀l = 1, . . . ,m), local degree (metropolis) weights
(LD) (wl = 1

max{di,dj}+1 l ∼ (i, j) ∀l = 1, . . . ,m), and
optimal constant weights (OC) (wl = 2

λ1(L)+λn−1(L)
∀l =

1, . . . ,m).
As we have discussed in section III, the speed of con-

vergence is asymptotically determined by the second largest
eigenvalue in absolute value (µ(W )). The simulations are done
on random graphs: Erdös-Renyi (ER) graphs and Random
Geometric Graphs (RGG), given that they are connected. The
random graphs are generated as following :

• For the ER random graphs, we start from n nodes
fully connected graph, and then every link is removed
from the graph with probability 1 − q and is kept with
a probability q. We have tested the performance for
different probabilities q given that the graph is connected.

• For the RGG random graphs, n nodes are thrown uni-
formly at random on a unit square area, and any two
nodes within a connectivity radius r are connected by
a link. We have tested the performance for different
connectivity radii given that the graph is connected. It
is known that for small connectivity radii the nodes tend
to form clusters.
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Fig. 1. Performance comparison between the optimal solution of the FDLA
problem (labeled FDLA) and the approximated solutions obtained solving the
Schatten Norm minimization for different values of p (labeled TM).
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Fig. 2. Performance comparison between Schatten Norm minimization (TM)
for p = 2 and p = 4 with other weight selection algorithms on RGG graphs.

A. Comparison with the optimal solution

We first compare µ
(
W(p)

)
of the solution W(p) of the

Schatten p-norm (or Trace) minimization problem (3) with
its minimum value obtained solving the symmetric FDLA
problem (2). To this purpose we used the CVX solver ([22]).
This allows us also to evaluate how well problem (3) ap-
proximates problem (2) for finite values of the parameter p.
The results in Fig. 1 have been averaged over 100 random
graphs with 20 nodes generated according to the Erdos-Renyi
(ER) model, where each link is included with probability
q ∈ {0.2, 0.3, 0.4, 0.5}. We see from the results that as we
solve the trace minimization for larger p, the asymptotic
convergence speed of our approach converges to the optimal
one as proven in Proposition 2.

B. Other distributed approaches: Asymptotic Convergence
Rate

We compare now our algorithm for p = 2 and p = 4
with other distributed weight selection approaches. Fig. 2
shows the results on connected Random Geometric Graphs
(RGG) with 100 nodes for different values of the connectivity
radius r. We provide 95% confidence intervals by averaging
each metric over 100 different samples. We see in Fig. 2
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Fig. 3. Communication overhead of local algorithms for a different number
of consensus rounds.

that on RGG for p = 2 and p = 4 the TM algorithm
reaches faster convergence than the other known algorithms
even when the graph is well connected (large connectivity
radius). However, the larger the degrees of nodes, the higher
the complexity of our algorithm. Interestingly even performing
trace minimization for the smallest value p = 2 nodes are
able to achieve faster speed of convergence than a centralized
solution like the OC algorithm.

C. Communication Complexity of Local Algorithms

We have shown above that the weight matrix with minimum
Schatten norm allows nodes to converge faster than the other
heuristics, and then to exchange less messages, if a mecha-
nism is implemented to stop consensus when estimates are
close enough to the actual average. At the same time, the
Schatten norm minimization algorithm may require itself a
large number of messages to calculate the weights, while other
local weight selection algorithms, like MD or LD, require a
negligible communication exchange. In order to have a fair
comparison, it is important then to consider on how many
“consensus rounds” the additional communication overhead
of our algorithm can be amortized.

In this section we perform such comparison on RGG with
100 nodes and connectivity radius 0.1517. The total commu-
nication overhead of the local algorithms is plotted in Fig. 3.
The figure shows the total number of messages transmitted
on a link, considering both those needed initially to calculate
the weights and those needed to determine the average with a
relative error from consensus precision (10−3) for a different
number of consensus rounds. The TM algorithms have high
initial communication overhead (due to the slow convergence
of the gradient method for weight calculation), but then the
more the consensus rounds we have the more the messages
are saved in comparison to the simpler methods. Note that
the asymptotic results are reflected in the slopes of the lines.
As the figure shows, if the network is used for more than 8
consensus rounds then TM p = 4 is recommended, while
TM p = 2 starts outperforming LD and MD already for 2
consensus rounds.

VI. CONCLUSION

We have proposed in this paper an approximated solution
for the FDLA problem by minimizing the Schatten p-norm of
the weight matrix. Our approximated algorithm converges to
the solution of the FDLA problem as p approaches infinity,
and in comparison to it, has the advantage to be suitable for a
distributed implementation. Moreover, simulations on random
and real networks show that the algorithm outperforms other
common distributed algorithms for weight selection.
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