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Abstract—Clustering of a graph is the task of grouping its calculate the clustering. Moreover their output is biasseard
nodes in such a way that the nodes within the same cluster are equal size clusters (so small communities tend to disappear

well connected_, but they are less connected to nodes in different using these algorithms). A complete survey of fithness measur
clusters. In this paper we propose a clustering metric based LS .
and clustering is given in [9].

on the random walks’ properties to evaluate the quality of a i . .
graph clustering. We also propose a randomized algorithm that ~ In this paper, we introduce a new fitness measure for eval-

identifies a locally optimal clustering of the graph according to uating a clustering algorithm based on random walks’ proper
the metric defined. The algorithm is intrinsically distributed and  tjes. Roughly speaking, our fitness index is higher the faste
asynchronous. If the graph represents an actual network whe  onq60m walk constrained to the cluster reaches its stagona

nodes have computing capabilities, each node can determine itsd. tributi d the sl it f the cluster & th
own cluster relying only on local communications. We show that IStribution an e Slower It escapes 1rom the cluster |

the size of clusters can be adapted to the available processingunconstrained case. Both effects can be quantified coirsider
capabilities to reduce the algorithm's complexity. the eigenvalues of appropriate matrices. Beside intraduci

this new metric, we propose a randomized algorithm for
clustering the network accordingly. The algorithm leal
A community of nodes (or a cluster of nodes) in a networkecause it relies only on a partial view of the entire netwbrk
is a group of vertices that are well connected to each othparticular, if the graph represents the topology of a networ
but are less connected with the remaining part of the networkhere nodes have computing capabilities, the algorithm can
Detecting clusters in networks has many applications. Comnrun in parallel at each node without the need of a central
nities in social networks are formed by people having commamit. Being local, clusters can be formed in parallel and the
interest. Clusters in the web graph can group pages witbmputation complexity is distributed among clusters. The
similar topics. E-commerce, classification, computerorisi algorithm can also find small clusters that are more difficult
bioinformatics, and machine learning are only few areas tf be detected by the global clustering methods.
application of network clustering. The organization of the paper is as follows: in Section Il we
To Compare different graph clustering outputs, it is ne@resent the notation used across the paper, in Section Il we
essary to introduce a quality metric, that is also called thetroduce our new fithness measure. Section IV describes the
objective function. There is still no consensus on whichrivet local clustering algorithm. Section V compares its perfance
is the best one. One of the most used metrics is modularity @4 different networks. Section VI concludes the paper.
which gives a score to the cluster by comparing the number of
edges falling inside the clusters with the number of edges of
random graph having similar characteristic as the origima. Let G = (V,E) be an undirected unweighted connected
One of its drawbacks is that it cannot distinguish smallteltss graph withoug self-loops, wher® = {1,...n} is the set of
having links of ordeiO(y/m) wherem is the total number of vertices and¥ is the set ofn = |E| edges. Letlz (i) = |{j €
links [2]. The silhouette index [3] uses distances betwéwn tV such that(j, i) € E}| be the degree of a nodein G, D¢
nodes presented in the cluster and those outside it, itsdiav be a diagonal matrix having on its diagonal the degree of the
being its high computational cost as it requires to compue tnodes inG and let A¢ be the adjacency matrix of the graph
shortest path between all node pairs. Another approach {4]wherea;; = 1 if (i,5) € E, anda,;; = 0 otherwise. For
evaluates a clustering score by using the concept of intany setS C V, let Dg(S) (resp.Ag(S)) be the sub-matrix of
cluster conductance, but it ignores internal cluster dgnsiDg (resp.Ag) obtained considering only rows and columns
Using this metric, some graph partitioning algorithms lblaseorresponding to the vertices ifi. Let G(S) = (S5, E(S))
on PageRank vectors of a graph have been proposed in [Sh®the subgraph induced & C V where E(S) = {(i,j) €
find a cut with a certain conductance in the graph. All thesg|i, j € S}. Observe that in generdl; (S) # D¢ s) because
metrics turn out to be biased toward large communities [6R(.S) contains the degree of nodes in the original gréph
Many practical algorithms have been proposed as hierachiahich are different from their degrees in the induced suplgra
clustering [7], Markov clustering [8], bisecting K-meard G(S). Conversely,Aq(S) = Ag(s) as the adjacency matrix
spectral clustering [4]. Their drawback is that they arebglo is not changed. If? is a substochastic matrix (a square matrix
clustering methods which require as input the entire graphwith nonnegative entries so that every row adds up to at most

I. INTRODUCTION

II. NOTATION



1), leto(P) = |A1(P)| be the largest eigenvalue in module of First, we definesc, as
P. When P is stochastic, les(P) =1 — [X2(P)| € [0,1] be N .
its spectral gabwhere\,(P) is the second largest eigenvalue sc, 2 5 (Do, + 1) HAce,) + 1))

in module of P. Finally, I is the identity matrix. that is th ral f the t it babilit o
A clusteringCq of a graphG is a partition of the vertices at1s the spectral gap ot the transition probability ma

such thatCr — {C:. . Cu} where(h U .. UCy — V and & simple rano!om walk on the subgraph induced by the cluster
N :G(b for{ alll’clustgisC and(lJ inc Iliet Cli) = nodesC, adding self-loops [10]. This value ranges betwéen
{5 c UCGz € C\} be the cluuster thz;t contcgins nodeLet for a disconnected graph andfor a fully connected network

f:V — R be a scoring function for the nodes, define a clusttg.\"fl clique). Given a random walk starting at tidefrom a

score f(C,) = 5. ). and a clustering algorithm scoren.Od? in_ the cluster, thg difference between the propability
f(Cu) =2, () 949 distribution of the position of the random walker at time

_ k _ n .
F(Ca) = 2oumr f(Cu) = 225 S (D). and its stationary distribution can be boundedAft —s¢, )?,
I1l. THE RANDOM WALK FITNESS MEASURE with A being an appropriate constant. Then the latger, the
. . . . . faster the distribution converges to its stationary dbstion,
In this section, we introduce a new scoring functiffi)

. . .. i.e. the faster the random watkixes The spectral gap of the
that can serve as a quality measure for a clustering algorith o . -
: : ) o ransition probability matrix is then also a measure of hasiw
A good clustering algorithm identifies clusters that areIweII: nnected the network within a cluster is. The presencgof
connected internally, but weakly connected with the rest oP ' P o

. A L . as a multiplicative factor in the scoring function guaraste
the network. Inspired by .thls mtumv_e qef|n|t|on, the fuion that the first two properties are satisfied. Moreover, duéi¢o t
f should have the following properties:

) o interlacing property of eigenvalues [11], adding more $ink
1) A cluster whose induced subgraph is disconnectg@iyeen the nodes of the same cluster usually increases the

should receive the minimum score. spectral gap while removing links decreases it, which stppo
2) A clique graph clustered as a single cluster should hay&s third property of a good clustering function.
the highest score among all clusterings for graphs with go-ond. we define

the same number of nodes.

3) For a given clustering, adding links within clusters oc, éo(Dg(C’u)_lAG(Cu)).
should increase the score while removing them should
only decrease the score. Given thatD¢(C,,) considers the degrees of the nodiesthe

4) For a given clustering, adding links between differerriginal graphG, @ = D¢ (C,) ' Aq(C,) is a substochastic
clusters should decrease the score while removing thenatrix. If we consider the transition probability matrix of
should increase the score. a random walk on the whole grapf, @ is the submatrix

5) Within a cluster, the higher the degree of a node, tlbtained by extracting only the rows and the columns cor-
more it contributes to the score. responding to the nodes i,. Given a random walk on

6) Boundary nodes in a cluster that have links to othéf starting at a node in C,, and assuming tha) is a
clusters have less score than internal nodes. primitive matrix, it is possible to show [12] that the cornidital

The new scoring metric we propose satisfies the properti@@bability distribution given that th% random walk doed no
above. Given a graph clusteridg; = {C1, ..., C}.}, the score €xit from C, converges tor € [0,1]'/°! (we consider only

of a vertexi € V is given by the probabilities for the nodes i@, for all the other nodes
the probability is clearly O under the conditioning evetiat
f(@) = ai X sc@) X ooy, satisfies the following equation” Q@ = 77 ¢(Q). Theno(Q)

wherec) quanifies how ast  rancom walk (C() £, 02 SEted 38 he probalty hal st ach st e
(and then constrained to the clusté(i)) reaches its steady . 3 9 o y
spent a long time irC,°. The termoc, quantifies then the

state distribution,o ;) corresponds to the probability that . :
a random walk on the whole grapfi that starts inside the effegt of out_er links connecting the clust_ﬁg to other clusters.
Obviously, it ranges betweem and 1. It is equal tol when

cluster C(i) keeps staying inside the cluster at a followin . ) .

step (see below for a more formal definition), and ﬁna"qhgaeirlfpna?rtlilcnuliat;evtvvﬁz(rea’,rj nfdﬁssg‘é::?ﬁengcﬂ?;Iir;/t\:gﬁnir;?e d
«; differentiates among different nodes in the same clustlt-%ri | 100 if th T)_r hG(C) has no link. Addin )
according to the last two properties. Given this definitidn ?inkss elt?;t\a/lvegn clustirzucgnagnly( déz:rez;lv?lile rémoving

the scoring function, the score of clustey, is: them can only increase it. The factef, guarantees that the
fourth property is satisfied.
f(Cu) = (Z ai> 5C,0C, -

1€Cy 2The inverseDg(C,)~! always exists becausBg(C,,) is a diagonal

Below we define formally the different quantities, sc. and matrix having strictly positive diagonal valued4 (i) > 1 becauseG is

. . connected).
gc, and show tha;f(.) has all the requ'red properties. SOtherwise if we consider that the random walk initial pasitiin C,

follows the probability distributionr, o(Q) is simply the probability that the
Lif P is a scalar, we considei( P) = 1 by convention. random walker does not exit frof,, at each step.



Finally, o; represents the contribution of a node to the final We observe that both the bounds are tight for the fully
score depending on its connectivity to other clusters. Tisfgya connected graph (let us denoteit,). Indeed nodes ik,
the last two properties required for the functignthe value are grouped in a single cluste€{ = V) and f(V) = 2m

«; is chosen as follows: sinceds“t = 0 for any vertexi andsy = oy = 1.
Jin Due to the following proposition, the subgraph induced by
a; & — a cluster of the optimal clustering is connected as long as it
1 4 dout . )
i has at least an internal link.

where d!" = dg(c()) (i) is the number of nodes i (i)
connected ta andd?* = dg (i) —di" is the number of nodes
in V\C'(4) connected ta.

Proposition 2. LetC;, = {C4, ..., Ci} be an optimal cluster-
ing for a graph G, then for anyC,, € Cf, if the subgraph
G(C,) has at least one link, it is connected.

IV. CLUSTERING ALGORITHM Proof: We sketch a proof of the proposition by contra-
The function f presented in the previous section givegiction. Suppose there exists a graph whose optimal clagter
a scoring mechanism to evaluate a clustering algorithm. @ outputs a clustelC,, such thatG(C,) has at least one
particular, the optimal clustering algorithm can be writies link, but it is disconnected. It follows thaf(C,) = 0 since
follows: s¢, = 0 for disconnected graphs. However, there is a subset of
verticesH C C, such that/H| > 2 and G(H) is connected
Argmax  f(Ca) (1) (because there is at least one link @(C,)) and it holds
Ce={CrCk} f(H) > 0. Now if we replaceC,, with two clustersH and
Let C be the solution of (1) and™ = f(C{) be its value. C, — H, the new clustering has a strictly higher value than
Finding the optimal clustering and its value can be very expeC{ (contradiction). ]
sive, so we WI|| give first some bounds on the 9pt|mal v_alug Local Search Clustering Algorithm
f* and we will propose a local search clustering algorithm i ) )
that can be implemented with an acceptable complexity andThe optimal clustering can be computationally costly be-

in a distributed way. cause calculating the spectral gap of a random walks has
complexityO(n3). In this section, we present a local clustering
A. Bounds onf* algorithm that allows the clustering to be done in a distebiu
Proposition 1. For the clustering optimization problerfl), Way. In particular clusters can be determined in parallele T
the following bounds hold for the optimal valyfé: algorithm applies the generic local search approach. Xet
be the set of all possible clusterings of graph We define
2xmxsy < f*<2xm, (2) two clusterz andy belonging toX to be neighbors if and

where sy is the spectral gap of the simple random walk Olgnly if they differ only for a single vertex that belongs toaw
ifferent clusters inc and iny. A local search algorithm for

all the graphG =1- X (D+DHA+D).
graphc (sv 2(< DA+ ))) clustering operates as follows:

Proof: For any clusterings = {C1, ..., Ci} of the graph 1) Letx be some initial clustering;
G we have, 2) While there is a neighboring-clusteringy with higher
dm score value {(y) > f(x)), setz :=y.
fCa) =) _fli)y=> Wsc(i)oc(i) 3) Return the firgal) (Iocaglh)/ optimal) solution.
! i ! ' The algorithm is an iterative one. In our local clustering
< Z i — < Zdz}n < ZdG(i) algorithm we follow the abovg steps_but we add some ran-
f 1+ dj P P domness in choosing the neighbor in step two. In fact, at
=2xm, every iteration, a cluster, say (,, is chosen uniformly at
random. This random cluster selects one of the outgoing link
wherem is the number of links in the grapf and the first uniformly at random and proposes to the endpoint npdie
inequality follows from bothsc, andoc, being at most equal the adjacent cluster, to disconnect from that cluster and to
to one. From this upper bound, it follows th&atC;) < 2xm. join C,. If joining C,, can increase the value of the clustering
The optimal clustering has a value greater than any pOSSik}l@nj will accept the proposal, otherwise it will reject it and
clustering. Taking the graph as one cluster= {V'} isavalid no change in the clustering will take place. In particular, a
clustering ofG. Thus, a lower bound on the optimal value cagetajled description of the local clustering algorithm igeg

be derive as follows: in Algorithm 1. The algorithm runs at most ft,,,, iterations,
* in but it can easily changed so that it stops after a given number
> f(Ce={V}) = di" x sy x1 S . . .
;72 f(Ce =V} ; ! v of consecutive iterations without any change of the clister

Algorithm 1 presents some interesting features. In fact, at
every iteration, only two clusters are involved in the altjon,
where sy is the spectral gap of the simple random walk owhile the others are idle. It is then simple to distribute
all the graphG (sy =1 — Ay ((D + ) YA+ I))). m the algorithm among the different clusters that can work

=2Xm X sy,



Algorithm 1 Local Clustering Algorithm Aandz >y , we have:
1: G=(V,E)whereV =1..nandE = 1..m.

2: Initial clusteringC% = {C1, ..., C,,} whereC; = {i}. 9@ +1)+9ly —1) > g(x) +9(y)-
3 B, ={(i,j) € Eli € Cu,j ¢ Cu} is the set ofC,'s Proof: Let h(x) = g(x + 1) — g(z), sinceg is convex,
outgoing links. theng/(z) is strictly increasing, so
4: for k=1: T, do
5. Ch=cCh 'l r+1>
6: let C, be a cluster chosen uniformly at random from = ¢ (z+1)>g¢'(z),
C& . . = h/(z) > 0, soh(x) is strictly increasing
7. let (i,7) be a link chosen uniformly at random from
Eér : and adding that: > y we can write:

8: let C, be the cluster containing (i.e. C,, = C(4));

9: (), proposes tg to join (if it didn't yet propose toj z>y-1
after the last change withi@’, occurred) ; = h(z) > h(y = 1),
1: if f(Cu)+ f(Cy) < f(CuU{j}) + f(Cu\{j}) then = gx+1)—g(@)>gy) —gy—1),
11: j accepts the proposal;
and the lemma follows. ]

12: Cy— CyU{j}

13: Cy — C\j); Now we show the following proposition:

14: if C(j) = ¢ then Proposition 3. The local clustering Algorithm 1 calculates
15: RemoveC, from CE; the optimal clustering for a clique grapli, in a finite
16: end if number of iterations almost surely T, is large enough,
17:  else i.e. Algorithm 1 onk,, outputs a single clustefs = {V'}.

18: j rejects the proposal; . . : .

1o: enjd ifJ prop Proof: First note that the optimal clustering on a clique

K, isCf = {V} since f(Cq = {V}) = 2m that is an upper
bound on f*. It remains to prove that the local algorithm
terminates with one cluster of all nodes. &t be any cluster
in this graph, and let,, = |C,,| be its number of vertices, so
sc, = 1 since the subgraph induced 6y, is also a clique,
and oc, = "= since the matrixD¢(C,) *Ac(C,) has
dimensions,, x n,, and any of its elements has the valyg

asynchronously and in parallel as follows: at any time agkcept the diagonal elements that are equal, ttherefore
inactive cluster can wake up and can propose to a node from

200 k<« k+1;

21:  If all clusters don't have any more proposélseak;
22: end for

23: return Cf !

another inactive cluster to join it, both clusters will bet® F(C) = Z di" oo

active until acceptance or rejection of the proposal. Itls® a “ = 1+ dout v
possible that at every time each cluster is matched to anothe

one and evaluates the possibility to acquire/yield a node to Z ny — 1 w1 x Pu” 1
several matching clusters can be active at the same time and icC. 1+n—mny n—1

the computations is distributed in a parallel way. Findllging (1 — 1)2
the algorithm randomized, it is possible to run it multigraés = Duh ,
and then select the best solution across all the differam.ru (n=1)(n —nu +1)

Moreover, at every iteration, a cluster can increase by maad it depends only on the size of the cluster. get,) =
imum one node. The complexity of the algorithm originate$(C.), sinceg(n,,) is strongly convex im,, whenn,, € [1, 7],
from calculating the functionf which in its turn depends then according to the algorithm and due to Lemma 1, any node
on the number of nodes in the cluster. So depending on théthat belongs to the clusté&r,) receiving a proposal from a
available computational power, we can restrict the maximu@tuster C,, will accept this proposal ifC,| > |C,| and will
number of nodes in a cluster. For example, if the calculation reject otherwise due to the following equation,

the spectral gap is affordable for graphs with only few heddr . N 7
nodes, then clusters reaching this limit will stop initigtithe FC D + FCAT}) = g(ICul + 1) +9(Co = 1)

algorithm and proposing to other nodes to join. (3)
In addition, the local clustering algorithm performs wefl o > g(1Cul) + 9(ICu]) (4)
clique-like graphs. The following simple lemma will prepar = f(Cy) + f(Cy). (5)

the result The transition from (3) to (4) is due to Lemma 1. Therefore,

any proposal from the cluster with largest number of vestice
Lemma 1. Letg : A — R be a scalar strongly convex functionto other nodes is accepted (I€t* . be the cluster with
(¢"(z) > 0), then for anyr andy such thatr, z+1,y,y—1 € maximum number of vertices at iteratidy), |C* .| cannot



Fig. 1. The network of social relationship between the memioérthe
Karate Club. After the split, the members represented by arsch&longs to
one sub-club and the members represented by a circle to the satheclub
(the image is taken from [1]). Fig. 2. Clustering the karate club by applying Algorithm 1.

decrease while it can increase by one with a probabilityelarg
than1/n. The algorithm terminates whe@'* | = n, so with
probability 1 there is an iterationk” such that all the nodes
form a single cluster and the algorithm terminates. It isyeas

to check thafE(K) < n?. ]

V. NUMERICAL EXAMPLES

In this part, we study the performance of our local clustgrin

algorithm. We consider real world networks whose ground
truth is known. We apply our algorithm on these networks and Fig. 3. Clustering the karate club by applying modularitycaighm.
compare the algorithm’s results with actual clusteringr. frat
example will be the Zachary’s Karate Club [13], it is a social
network of friendships between 34 members of a karate club
at a US university in the 70s. Links in this network represe
social interactions outside of the club itself. Due to a donfl ) ) . .
the club was split into two sub-clubs in which the membel%lgomhm tp classify the nodes_ Into dlﬁgrent clust_ers.

We applied our local clustering algorithm to this network.

moved to one of the two new generated groups. Fig. 1 shows A . :
the partition of the Karate club. yP’he results are shown in Fig. 5. The local clustering albarit

We apply our local clustering algorithm to the karate clu ves 14 clusters, and we see that the a_llgorlthm was able to
network and the results are given in Fig. 2. Starting fro nd correctly most of the clusters. In particular, the diffiece

34 different clusters as initial input (every node is coeséd

a cluster) and based on the connection and the spectral gap
of the clusters, our algorithm identifies 3 clusters (oneenor
than the ground truth). Moreover the two nodes 31 and 9 are
not assigned to the correct cluster. Notice that this is gst
local maximum for the optimization problem. For comparison
Fig. 3 shows the results of clustering using the modularity
clustering algorithm [14], we see that it identifies even enor
clusters than our method (4) and node 10 is not correctly
assigned in comparison to the ground truth.

The other example we consider is the network of American
College football teams in Division | during Fall 2000 regula
season [15]. Division | was made up by 115 teams divided
in 12 conferences. A link in the graph corresponds to a game
played between the two teams. Teams in the same conference
are more likely to play games than teams from different
conferences. Fig. 4 shows the teams grouped according to
the conference they belong to. While most of conferences
have good clustering properties (good connections ingide t
clusters and week connections among them), there are some
conferences for which this is not true. For conference 1 f@gl'le‘;'ef
example there is only one game (one link) among its members,

d the clubs have played most of their games against teams in
ifferent conferences. In those cases we expect the dlugter

The ground truth of the conferences (clusters) in Alneerican
ootball network.



Fig. 5. Clustering the American College football network hyplging Fig. 6. Clustering the American College football network tpplying the
Algorithm 1. Nodes with the same color are classified as onstaluthe modularity algorithm. Nodes with the same color are classifiedree cluster
algorithm terminates with 14 clusters, 2 more than the groumih)t (the algorithm terminates with 10 clusters).
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