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Abstract— Consider a network whose nodes have some initial
values, and it is desired to design an algorithm that builds
on neighbor to neighbor interactions with the ultimate goal
of convergence to the average of all initial node values or
to some value close to that average. Such an algorithm is
called generically “distributed averaging”, and our goal in this
paper is to study the performance of a subclass of distributed
averaging algorithms where the information exchange between
neighboring nodes (agents) is subject to deterministic uniform
quantization. With such quantization, the precise average can-
not be achieved (except in exceptional cases), but some value
close to it, called quantized consensus. It is shown in this paper
that in finite time, the algorithm will either cause all agents
to reach a quantized consensus where the consensus value is
the largest integer not greater than the average of their initial
values, or will lead all variables to cycle in a small neighborhood
around the average, depending on initial conditions. In the latter
case, tight bounds for the size of the neighborhood are given,
and it is further shown that the error can be made arbitrarily
small by adjusting the algorithm’s parameters in a distributed
manner.

I. INTRODUCTION

There has been considerable interest recently in developing
algorithms for distributing information among members of
interactive agents via local interactions (e.g., a group of
sensors [1] or mobile autonomous agents [24]), especially
for the scenarios where agents or sensors are constrained by
limited sensing, computation, and communication capabili-
ties. Notable among these are algorithms intended to cause
such a group to reach a consensus in a distributed manner
[17], [21]. Consensus processes play an important role in
many other problems such as Google’s PageRank [16], clock
synchronization [27], and formation control [14].

One particular type of consensus process, distributed av-
eraging, has received much attention lately [4], [10], [12],
[23], [29]. Most existing algorithms for precise distributed
averaging require that agents are able to send and receive real
values with infinite precision. However, a realistic network
can only allow messages with limited length to be transmitted
between agents due to constraints on the capacity of com-
munication links. With such a constraint, when a real value
is sent from an agent to its neighbors, this value will be
truncated and only a quantized version will be received by
the neighbors. With such quantization, the precise average
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cannot be achieved (except in particular cases), but some
value close to it can be achieved, called quantized consensus
(the formal definition is given in Section IV). A number
of papers have studied this quantized consensus problem
and various probabilistic quantization strategies have been
proposed to cause all the agents in a network to reach a
quantized consensus with probability one (or at least with
high probability) [2], [3], [13], [18]–[20]. Notwithstanding
this, the problem of how to design and analyze consensus
algorithms with deterministic quantization effects remains
open [6], [15].

In this paper, we thoroughly analyze the performance of
a class of deterministic distributed averaging algorithms in
which the information exchange between neighboring agents
is subject to certain types of uniform quantization. It is shown
that in finite time, the algorithms will either cause all agents
to reach a quantized consensus where the consensus value
is the largest integer not greater than the average of their
initial values, or lead all agents’ variables to cycle in a
small neighborhood around the average, depending on initial
conditions. In the latter case, we give tight error bounds
for the size of the neighborhood and it is further shown
that the error can be made arbitrarily small by adjusting the
algorithm’s parameters in a distributed manner, at a cost of
slower convergence.

A. Literature Review

Most of the related works for distributed averaging with
quantized communication use either a deterministic algo-
rithm (as our approach in this paper) or a probabilistic one.

There are only a few publications which study deter-
ministic algorithms for quantized consensus. In [21] the
distributed averaging problem with quantized communica-
tion is formulated as a feedback control design problem
for coding/decoding schemes; the paper shows that with
an appropriate scaling function and some carefully chosen
control gain, the proposed protocol can solve the distributed
averaging problem, but some spectral properties of the Lapla-
cian matrix of the underlying fixed undirected graph have to
be known in advance. More sophisticated coding/decoding
schemes were proposed in [22] for time-varying undirected
graphs and in [30] for time-varying directed graphs, all
requiring carefully chosen parameters. Control performance
of logarithmic quantizers was studied in [7] and recently a
novel but complicated dynamic quantizer has been proposed
in [28]. A biologically inspired algorithm was proposed in [9]
which makes all agents reach some consensus with arbitrary
precision, but at the cost of not preserving the desired



average. Most closely related to the problem considered
here is the work of [15] where a deterministic algorithm
of the same form as in this paper has been only partially
analyzed and the authors have approximated the system by
a probabilistic model and left the design of the weights as
an open problem.

Over the past decade quite a few probabilistic quantized
consensus algorithms have been proposed. The probabilis-
tic quantizer in [2] ensures almost sure consensus at a
common but random quantization level for fixed (strongly
connected) directed graphs; although the expectation of the
consensus value equals the desired average, the deviation of
the consensus value from the desired average is not tightly
bounded. An alternative algorithm which gets around this
limitation was proposed in [18] by adding dither to the
agents’ variables. The probabilistic algorithm in [3], called
“interval consensus gossip”, causes all n agents to reach
a consensus in finite time almost surely on the interval in
which the average lies, for time-varying (jointly connected)
undirected graphs. Stochastic quantized gossip algorithms
were introduced in [20], [31] and shown to work properly.
The effects of quantized communication on the randomized
gossip algorithm were analyzed in [8].

Another thread of research has studied quantized con-
sensus with the additional constraint that the value at each
node is an integer. The probabilistic algorithm in [19] causes
all n agents reach quantized consensus almost surely for a
fixed (connected) undirected graph; convergence time of the
algorithm was studied in [13], with bounds on its expected
value. In [5] a probabilistic algorithm was introduced to
solve the quantized consensus problem for fixed (strongly
connected) directed graphs using the idea of “surplus”.

II. DISTRIBUTED AVERAGING

Consider a group of n > 1 agents labeled 1 to n. Each
agent i has control over a real-valued scalar quantity xi called
an agreement variable which the agent is able to update its
value from time to time. Each agent can only communicate
with its “neighbors”. Neighbor relations are described as
follows: agent j is a neighbor of agent i if (i, j) ∈ E is an
edge in a given undirected n-vertex graph G = (V, E) where
V = {1, 2, . . . , n} is the vertex set and E is the edge set. We
assume that the graph G is connected and does not change
over time. Initially each agent i has a real number xi(0).
Let xave(k) = 1

n

∑
i∈V xi(k) be the average of values of all

agreement variables in the network at time k; we will refer
to xave(0) simply as xave. The purpose of the distributed
averaging problem is to devise an algorithm for each agent
which enables all n agents to asymptotically determine in
a decentralized manner, the average of the initial values of
their scalar variables, i.e., limk→∞ xi(k) = xave.

A well studied approach to the problem is for each agent
to use a linear iterative update rule of the form

xi(k + 1) = wiixi(k) +
∑
j∈Ni

wijxj(k), ∀i ∈ V, (1)

where k is a discrete time index, Ni is the set of neighbors of
agent i and the wij are real-valued weights to be designed.
Eq. (1) can be written in a matrix form as x(k+1) = Wx(k),
where x(k) is the state vector of agreement values whose
ith element equals xi(k), and W is the weight matrix whose
ijth entry equals wij . A necessary and sufficient condition
for the convergence of Eq. (1) to the desired average for any
initial values x(0) is that each row sum and each column
sum of W is equal to 1 and all eigenvalues of W , with the
exception of a single eigenvalue of value 1, have magnitude
strictly less than unity [29]. A well-known choice of weights
satisfying this condition is called Metropolis algorithm where
the nonzero entries of the weight matrix are given by wij =

1
max{di,dj}+1 , ∀(i, j) ∈ E and wii = 1−

∑
j∈Ni

wij , ∀i ∈ V ,
where di = |Ni| is the number of neighbors of agent i, or
equivalently, the degree of vertex i in G.

III. QUANTIZED COMMUNICATION

In a network where links have constraints on the capacity
and have limited bandwidth (e.g., digital communication
networks), messages cannot have infinite length. However,
the distributed averaging algorithm requires sending real (in-
finite precision) values through these communication links.
Therefore, with digital transmission, the messages transmit-
ted between neighboring agents will have to be truncated.
If the communication bandwidth was limited, the more
the truncation of agents’ values, the higher would be the
deviation of agent’s value from the desired average consensus
xave.

To model the effect of quantized communication, we
assume that the links perform a quantization effect on the
values transmitted between agents. We still assume that
each agent i can have infinite bandwidth to store its latest
value xi(k) and perform computations. However, whenever
agent i sends its value xi(k) through the communication
network, its neighbors will receive a quantized value of
xi(k). A quantizer is a function Q : R → Z that maps
a real value to an integer. In this paper we will study the
performance of the distributed averaging algorithm due to
deterministic quantization which entails two quantizers: a
truncation quantizer Qt(x) which truncates the decimal part
of a real number and keeps the integer part, and a rounding
quantizer Qr(x) which rounds a real number to its nearest
integer. These quantizers are defined as follows [8], [25]:

Qt(x) = bxc, and Qr(x) =

{
bxc if x− bxc < 1/2

dxe if x− bxc ≥ 1/2
.

These map R into Z and have quantization jumps of size 1.
Note that quantizers having a generic real positive quanti-
zation step ε can be simply recovered by a suitable scaling:
Q(ε)(x) = εQ(x/ε) [8]. Thus the results in this paper cover
these generic quantizers as well.

IV. PROBLEM FORMULATION

Suppose that all n agents adhere to the same update rule
of Eq. (1). Then with a quantizer Q(x), the network equation



would be

xi(k + 1) = wiixi(k) +
∑
j∈Ni

wijQ(xj(k)), ∀i ∈ V. (2)

Simple examples show that this algorithm can cause the
system to shift far away from the initial average xave [11].

Since agents know exactly the effect of the quantizer, for
the agents not to lose any information caused by quanti-
zation, at each iteration k each agent i can send out the
quantized value Q(xi(k)) (instead of sending xi(k)) and
store in a local scalar ci(k) the difference between the real
value xi(k) and its quantized version, i.e.,

ci(k) = xi(k)−Q(xi(k)).

Then, the iteration update of agent i can be modified as

xi(k+ 1) = wiiQ(xi(k)) +
∑
j∈Ni

wijQ(xj(k)) + ci(k). (3)

A major difference between this equation and (2) is that here
no information is lost; i.e., the total average is conserved in
the network, as we will show shortly after. The state equation
of the system defined by (3) is

x(k + 1) = WQ (x(k)) + x(k)−Q (x(k)) . (4)

For any W where each column sums to 1 (i.e., 1TW = 1T

where 1 is the vector of all ones), the total sum of all n
agreement variables does not change over time, i.e., if agents
followed the protocol of equation (4), then

1Tx(k + 1) = 1T (WQ (x(k)) + 1Tx(k)− 1TQ (x(k))

= 1TQ (x(k)) + 1Tx(k)− 1TQ (x(k))

= 1Tx(k) = 1Tx(0) = nxave. (5)

Thus the average is also conserved (i.e., xave(k) =
xave, ∀k). Equation (4) would be our model of dis-
tributed averaging with deterministic quantized communica-
tion where the quantizer can take the form of the truncation
Qt or the rounding one Qr. It is worth noting that the two
quantizers can be related by the following equation:

Qr(x) = Qt(x+ 1/2).

Given a model with the rounding quantizer Qr in (4), by
taking y(k) = x(k) + 1

21, the system evolves as:

y(k + 1) = y(k) +WQt(y(k))−Qt(y(k))

y(0) = x(0) +
1

2
1.

Therefore, by the analyzing the above system which has a
truncation quantizer Qt, we can deduce the performance of
x(k) that satisfies equation (4) with a rounding quantizer
Qr because they are related by a simple translation equation
(y(k) = x(k)+ 1

21). Therefore the effects of the two quantiz-
ers are essentially the same. With this nontrivial observation
in mind, we focus on the analysis of the truncation quantizer
only in the rest of this paper. The results can then easily be
extended to the case of the rounding quantizer.

In the sequel we will completely characterize the behavior
of system (4) and its convergence properties. But first, we
have the following definition:

Definition 1. A network of n agents reaches a finite-time
quantized consensus if there is an iteration k0 such that

Q(xi(k)) = Q(xj(k)), ∀i, j ∈ V, ∀k ≥ k0.

V. DESIGN AND ANALYSIS OF THE SYSTEM

In this section, we carry out the analysis of the proposed
quantized consensus system. As mentioned earlier, we only
consider the truncation quantizer Qt in (4). Then the system
equation can be written as:

x(k + 1) = W bx(k)c+ x(k)− bx(k)c. (6)

This can be written in a distributed way for every i ∈ V as
follows:

xi(k + 1) = xi(k) +
∑
j∈Ni

wji (bxj(k)c − bxi(k)c) , (7)

= xi(k) +
∑
j∈Ni

wjiLji(k), (8)

where Lji(k) , bxj(k)c − bxi(k)c = −Lij(k). The non-
linearity of the system due to quantization complicates the
analysis, and traditional stability analysis of linear systems
(such as ergodicity, products of stochastic matrices, etc.) can-
not be applied here as the system might not even converge.

The system behavior depends of course on the design of
the weight matrix. In distributed averaging, it is important to
consider weights that can be chosen locally and guarantee
desired convergence properties. We impose the following
assumption on W which can be satisfied in a distributed
manner.

Assumption 1: The weight matrix W in our design has
the following properties:
• W is a symmetric doubly stochastic matrix:
wij = wji ≥ 0 ∀i, j ∈ V, and

∑
i wij =

∑
j wij = 1,

• Dominant diagonal entries of W :
wii > 1/2 for all i ∈ V ,

• Network communication constraint: if (i, j) /∈ E , then
wij = 0,

• For any link (i, j) ∈ E we have wij ∈ Q+, where Q+

is the set of positive rational numbers.
These are also sufficient conditions for the linear system (1)
to converge. The choice of weights being rational numbers is
not restrictive because any practical implementation would
satisfy this property intrinsically (we use it here to prove
convergence results).

We now state the main result of this paper which will be
proved in the following subsections V-A,V-B, and V-C.

Main Convergence Result 1. Consider the quantized system
(6). Suppose that Assumption 1 holds. Then for any initial
value x(0), there is a finite time iteration where either

1) the system reaches quantized consensus, or
2) the nodes’ values cycle in a small neighborhood

around the average, where the neighborhood can be



made arbitrarily small by a decentralized design of
the weights (having trade-off with the speed of conver-
gence).

A. Cyclic States

We study in this subsection the convergence properties of
the system equation (6) under Assumption 1. Let us first
show that due to quantized communication, the states of the
agents lie in a discrete set. Since wij ∈ Q+ for any link (i, j),
we can write wij =

aij
bij

where aij and bij are co-prime
positive integers. Suppose that Bi is the Least Common
Multiple (LCM) of the integers {bij ; (i, j) ∈ E , j ∈ Ni}.
Let ci(k) = xi(k) − bxi(k)c; then we have ci(k) ∈ [0, 1).
Moreover,

ci(k + 1) = xi(k + 1)− bxi(k + 1)c

= xi(k) +
∑
j∈Ni

wij × Lji(k)− bxi(k + 1)c

= bxi(k)c+ ci(k) +
∑
j∈Ni

aij
bij

Lji(k)− bxi(k + 1)c

= ci(k) +
Z(k)

Bi
, (9)

where Z(k) ∈ Z is an integer. Then, with a simple recursion,
we can see that for any iteration k we have:

ci(k) = ci(0) +
Z̃(k)

Bi
, (10)

where Z̃(k) ∈ Z. Since ci(k) ∈ [0, 1), this equation shows
that the states of the nodes are quantized, and the decimal
part can have maximum Bi quantization levels. We now give
the following definition,

Definition 2. The quantized system (6) enters a cycle in finite
time if there exists a positive integer P and a finite time k0
such that x(k + P ) = x(k) ∀k ≥ k0. We call P the cycle
period.

Proposition 1. Suppose that Assumption 1 holds. Then, the
quantized system (6), starting from any initial value x(0),
enters a cycle in finite time.

Proof. Let m(k) and M(k) be defined as follows:

m(k) , min
i∈V
bxi(k)c, M(k) , max

i∈V
bxi(k)c. (11)

Notice that for any k, we have

xi(k + 1) = xi(k) +
∑
j∈Ni

wjiLji(k)

≤ ci(k) + bxi(k)c+ (
∑
j∈Ni

wji) (M(k)− bxi(k)c)

≤ ci(k) +M(k),

from which it follows that bxi(k + 1)c ≤ M(k), and hence
M(k + 1) ≤ M(k). By a simple recursion we can see that
the maximum cannot increase, M(k) ≤ M(0). Similarly,
we have m(k) ≥ m(0). As a consequence, bxi(k)c ∈
{m(0),m(0)+1, . . . ,M(0)−1,M(0)} is a finite set. More-
over, from equation (10), ci(k) belongs to a finite set that can

have at most Bi elements. Since xi(k) = bxi(k)c + ci(k),
and each of the elements in the sum belongs to a finite
set, xi(k) belongs to a finite set. But from equation (6),
we have x(k + 1) = f (x(k)) where the function f(.) is
a deterministic function of the input state at iteration k, so
the system is a deterministic finite state automata. States of
deterministic automata enter a cycle in finite time [26], and
therefore the system is cyclic.

B. Convergence Analysis

In this subsection, we will study the stability of the above
system using a Lyapunov function. Equation (10) implies that
there exist three fixed strictly positive constants γ1, γ2, γ3 >
0, independent of time and only dependent on initial values
and the network structure, which satisfy the following:
• For any i and any iteration k such that ci(k) >(∑

j∈Ni
wij

)
, we have: ci(k)−

∑
j∈Ni

wij ≥ γ1 > 0,

• For any i and any iteration k such that c̄i(k) >(∑
j∈Ni

wij

)
, we have: c̄i(k)−

∑
j∈Ni

wij ≥ γ2 > 0,

• For any i and any iteration k, we have: c̄i(k) ≥ γ3 > 0,
where c̄i(k) = 1− ci(k). Let m(k) and M(k) be defined as
in (11). Let us define the following set:

Sk = {y ∈ Rn, |yi −m(k)− 1| ≤ αi},

where αi = 1 − wii + γ, γ = min{γ12 ,
γ2
2 , γ3}. The set Sk

depends on the iteration k because the value m does. Since
according to the system (6), m(k) cannot decrease and M(k)
cannot increase as indicated earlier, then Sk can only belong
to one of the M(0) − m(0) possible compact sets at each
iteration k. Furthermore, if Sk changes to a different compact
set due to an increase in m, it cannot go back to the old one
as m cannot decrease.

Let us define the following candidate Lyapunov function:

V (k) = d(x(k), Sk) = min
y∈Sk

||y − x(k)||1

= min
y∈Sk

∑
i∈V
|yi − xi(k)| (12)

By minimizing along each component of y independently,
we get V (k) =

∑
i max{|xi(k)−m(k)− 1| − αi, 0}. Let

us determine the change in the proposed candidate Lya-
punov function. In order to understand the evolution of
∇Vk = V (k + 1)− V (k), we group the nodes depending on
their values at iteration k into 6 sets, X1(k), X2(k), X3(k),
X4(k), X5(k), and X6(k):
• Node i ∈ X1(k) if m(k) ≤ xi(k) < m(k) + 1− αi,
• Node i ∈ X2(k) if m(k)+1−αi ≤ xi(k) < m(k)+1,
• Node i ∈ X3(k) if m(k)+1 ≤ xi(k) ≤ m(k)+1+αi,
• Node i ∈ X4(k) if m(k)+1+αi < xi(k) < m(k)+2,
• Node i ∈ X5(k) if m(k)+2 ≤ xi(k) < m(k)+2+αi,
• Node i ∈ X6(k) if m(k) + 2 + αi ≤ xi(k).

For simplicity we will drop the index k in the notation of
the sets and m(k) when there is no ambiguity.

Any increase in V (k) is due to nodes changing to a higher
set. However, any node changing its set to a higher one,
should have neighbors in the higher sets that cause V (k) to



decrease by at least the same amount. The following lemma
makes this argument formal.

Lemma 1. Consider the quantized system (6). Suppose that
Assumption 1 holds. If m(k+1) = m(k), we have ∇Vk ≤ 0.

Proof. The proof of this lemma can be found in [11] and is
omitted here due to space constraints.

Lemma 1 implies that V (k) is non-increasing with time.
To show that V (k) is eventually decreasing, we need some
notation. Let R(k0) = min{k − k0; k ≥ k0,∇Vk ≤ −β}
where β > 0 is a positive constant. We will show that if
there exists at least one node in {X1, X2, X3} at k0 and
m(k) = m(k0) for k ≤ R(k0), then we can have a fixed
upper bound on R(k0). In fact, R(k0) corresponds to the
first time after k0 when V (k) strictly decreases, and an upper
bound on this time interval is given by the following lemma:

Lemma 2. If {X4, X5, X6} 6= φ at an iteration k0, and
m(k) = m(k0) for k ≥ k0, then R(k0) ≤ n

(
1 + 1

2δ

)n−1
,

where δ = min(i,j)∈E wij .

Proof. The proof of this lemma can be found in [11] and is
omitted here due to space constraints.

We also need the following lemma.

Lemma 3. Suppose that Assumption 1 holds. For the quan-
tized system (6), at any time k0, there is a finite time
k1 ≥ k0 such that for k ≥ k1, either {X4, X5, X6} = φ
or m(k) > m(k0).

Proof. We prove this result by contradiction. Suppose that
{X4, X5, X6} 6= φ and m(k) = m(k0) for k ≥ k0.
Therefore we can apply Lemma 2 to show that there is a
finite time R(k0) for ∇Vk ≤ −β, otherwise ∇Vk ≤ 0. For
k > k0 + n

(
V (k0)
β + 1

) (
1
2δ + 1

)n−1
, V (k) has decreased

at least
(
V (k0)
β + 1

)
times; then

V (k) ≤ V (k0)− β ×
(
V (k0)

β
+ 1

)
≤ −β < 0,

which is a contradiction since V (k) ≥ 0 is a Lyapunov
function. As a result, there exists an iteration k1 satisfying
k1 ≤ k0 +n

(
V (k0)
β + 1

) (
1
2δ + 1

)n−1
such that for k ≥ k1,

either {X4, X5, X6} = φ or m(k) > m(k0).

We are now in position to prove the following proposition.

Proposition 2. Consider the quantized system (6). Suppose
that Assumption 1 holds, and let α = maxi αi. Then for any
initial value x(0), there is a finite time iteration where either
• the values of nodes are cycling in a small neighborhood

around the average such that :{
|xi(k)− xj(k)| ≤ αi + αj for all i, j ∈ V
|xi(k)− xave| ≤ 2α for all i ∈ V,

(13)

• or the quantized values have reached consensus, i.e.{
bxi(k)c = bxj(k)c for all i, j ∈ V
|xi(k)− xave| < 1 for all i ∈ V.

(14)

Proof. The value m(k) cannot increase more than M(0) −
m(0) number of times because M(k) is non-increasing.
Therefore, applying Lemma 3 for M(0)−m(0) times, we see
that {X4, X5, X6} = φ in a finite number of iterations (say it
is T ). For k ≥ T , if we look at the system y(k) = −x(k), we
see that y(k) satisfies equation (6). It is not difficult to check
that by a similar argument for y(k), either X1 or X3 can
be nonempty, but not both. Therefore, the two possibilities
in Proposition 2 are just a consequence of the following two
possible cases.
Case {X1, X4, X5, X6} = φ: Here all nodes are in {X2, X3}
and by the definition of the sets we have |xi(k)− xj(k)| ≤
αi + αj for all i, j ∈ V , so nodes are cycling (due to
Proposition 1) around m+ 1. Moreover, since the average is
conserved from Eq. (5), we have:

|xi(k)− xave| = |xi(k)− xave(k)|
≤ |max

i
xi(k)−min

i
xi(k)| ≤ 2α.

Case {X3, X4, X5, X6} = φ: Here all nodes are in {X1, X2}
and by the definition of the sets we have reached quantized
consensus. Since for any i and j we have ci(k), cj(k) ∈
[0, 1), then |xi(k)− xj(k)| < 1 and as in the previous case
due to Eq. (5), we have |xi(k)− xave| < 1.

Corollary 1. Consider the quantized system (6). Suppose
that Assumption 1 holds. If the initial values x(0) satisfy,

α ≤ xave − bxavec ≤ 1− α, (15)

where α = maxi αi, then the network reaches quantized
consensus.

Proof. If the system was cyclic, then for any node i ∈ V , we
have i ∈ {X2, X3}, so xi(k) ∈ [m+1−αi,m+1+αi]. This
implies that xave(k) ∈ [m+1−αi,m+1+αi], but since the
average is conserved (from equation (5)), it also implies that
xave ∈ [m+ 1− αi,m+ 1 + αi]. From the latter condition,
since α = maxi αi, then if α ≤ xave − bxavec ≤ 1− α, the
system cannot be cyclic, and by Proposition 2, it must reach
quantized consensus.

C. Design of weights with arbitrarily small error

If the system has reached quantized consensus, the values
of the agents’ agreement variables become stationary and the
deviation of these values from the average is no larger than
1. In the case when the system does not reach quantized
consensus but becomes cyclic, Proposition 2 shows that
the deviation of nodes’ values from the average is upper
bounded by 2α where α = maxi αi. It is possible to
make the deviation arbitrarily small by adjusting the weights
in a distributed manner. Toward that end, we propose the
following modified Metropolis weights:

wij =
1

C (max{di, dj}+ 1)
, ∀(i, j) ∈ E

wii = 1−
∑
j∈Ni

wij , ∀i ∈ V

where C is any rational constant such that C ≥ 2. It
can be easily checked that the proposed weights satisfy



Assumption 1. Moreover, the choice of C can be used to
control the error. Notice that for any i ∈ V , we have
wii > 1 − 1

C ≥ 1 − 1
C + γ, so α ≤ 1

C . This shows
that given an arbitrary level of precision known to all the
agents, the agents can choose the weights with large enough
C in a distributed manner, so that the neighborhood of the
cycle will be close to the average with the given precision.
Notice that if xave 6= bxavec, then for α small enough,
the system cannot be cyclic and only quantized consensus
can be reached (Corollary 1). In other words, for systems
starting with different initial values, having a smaller α leads
more of these systems to converge to quantized consensus
(and of course if they cycled, they will cycle in a smaller
neighborhood as well due to Proposition 2).

It is worth mentioning that this arbitrarily small neigh-
borhood weight design has a trade-off with the speed of
convergence of quantized consensus protocol (small error
weight design leads to slower convergence).

VI. CONCLUSION

In this paper, we have studied the performance of dis-
tributed averaging protocols subject to deterministic commu-
nication quantization. We have shown that quantization due
to links can force quantization on the state. Depending on
initial conditions, the system either converges in finite time to
a quantized consensus, or the nodes’ values are entering into
a cyclic behavior oscillating around the average. For more
discussions, simulations, and fully detailed proofs we refer
the reader to our technical report [11], all of which could
not be included here due to space constraints.

For future work, it will be interesting to quantify the length
of a period of the cycle when the system enters a cycle.
We also plan to extend our results to the cases when the
neighbor graph may change over time and the agents may
update their variables in an asynchronous manner. Although
cyclic behavior of the system will generally not occur for the
above cases, the quantized consensus can still be achieved.
The analysis tools presented in this paper are promising for
these more complicated and challenging cases.
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[3] F. Bénézit, P. Thiran, and M. Vetterli. The distributed multiple voting
problem. IEEE Journal of Selected Topics in Signal Processing,
5(4):791–804, 2011.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip
algorithms. IEEE Trans. Inf. Theory, 52:2508–2530, June 2006.

[5] K. Cai and H. Ishii. Quantized consensus and averaging on gossip
digraphs. IEEE Transactions on Automatic Control, 56(9):2087–2100,
2011.

[6] Y. Cao, W. Yu, W. Ren, and G. Chen. An overview of recent
progress in the study of distributed multi-agent coordination. Industrial
Informatics, IEEE Transactions on, 9(1):427–438, Feb 2013.

[7] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri. Communi-
cation constraints in coordinated consensus problems. Automatica,
44(3):671–684, 2008.

[8] R. Carli, P. Frasca, F. Fagnani, and S. Zampieri. Gossip consensus
algorithms via quantized communication. Automatica, 46:70–80, 2010.

[9] A. Censi and R. M. Murray. Real-valued average consensus over noisy
quantized channels. In Proceedings of the 2009 American Control
Conference, pages 4361–4366, 2009.

[10] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and
A. Scaglione. Gossip algorithms for distributed signal processing.
Proceedings of the IEEE, 98(11):1847–1864, 2010.

[11] M. El Chamie, J. Liu, and T. Başar. Design and Analysis
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