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Abstract— In this paper, we consider optimal design strate-
gies in consensus protocols for networks vulnerable to adver-
sarial attacks. First we study dynamic (multi-stage) weight
selection optimal control for consensus protocols. For the
general (multi-stage) case, the solution exists but can rarely be
expressed in closed-form. In view of this, we apply optimization
techniques to obtain a locally (and possibly globally) optimizing
feasible control path. For the one-stage case, however, we obtain
a closed-form solution for the optimal control and provide
sufficient conditions for the existence of a control that makes the
system reach consensus in only one iteration. We then consider
a game theoretical model for the problem of a network with an
adversary corrupting the control signal with noise. We derive
the optimal strategies for both players (the adversary and the
network designer) of the resulting game using a saddle point
equilibrium (SPE) solution in mixed strategies.

I. INTRODUCTION

Consensus algorithms are gaining a lot of attention in
recent years. These algorithms contribute, as a fundamental
block, to the design of many applications such as formation
control [1], load balancing [2], distributed state estimation
in power systems [3], and data fusion in sensor networks
[4]. Consensus in networks can be subject to changing net-
work topology [5], quantization in communication [6], [7],
communication delays [8], and adversarial intervention [9].

In consensus algorithms, nodes execute update rules to
reach consensus based on neighbor to neighbor weighted
average linear iterations. As in any protocol, some parameters
(e.g., the weights) can be tuned for faster convergence. For
instance, [10] formulates a semi-definite program (SDP) for a
fixed weight selection algorithm to achieve fast convergence
of consensus protocols independent of initial nodes’ values,
and a distributed implementation for an approximation of
the SDP is given in [11]. Another approach is to design
time-varying weights, for example [12], [13] study finite-
time consensus by arbitrary time-varying weights chosen at
the time of design using matrix factorization techniques. Ref-
erence [14] considers dynamic weights for least mean square
design in correlated or uncorrelated initial node values. For
a complete overview of consensus protocols, we refer the
reader to [6], [15], and the references therein.
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Further, networks can be susceptible to attacks from ad-
versaries willing to drive the system away from consensus.
There are different types of adversaries that can harm the
network. For example compromised strategic nodes (like
faulty nodes or stubborn ones [16], [17]) can harm the state
of the network. Other types of strategic intervention include
adversaries that cut communication links or insert noise
signals in the agents’ interaction protocol [9]. Yet another
type of adversaries inject false data (collected by nodes) into
the system, which bypass bad-data detection mechanisms.
False data injections are known as stealth attacks and are
widely studied for the security of state estimation in electric
power networks [3], [18]. In order to mitigate the effect of an
adversary, security procedures should be taken into account
in the design of optimal strategies in consensus protocols.

Our present work shares with this set of references the
same objectives of designing time-varying weights for faster
consensus and studying optimal strategies for networks that
are vulnerable to attacks. In the first part we study time-
varying weights for consensus protocols within the frame-
work an optimal control formulation. We apply optimiza-
tion techniques to obtain a locally (and possibly globally)
optimizing feasible control path and provide necessary and
sufficient conditions for the existence of a control that
makes the system reach consensus in only one iteration. The
difference with previous related work is that in this paper we
consider the initial values in our dynamic weight design. In
the second part we study adversaries that can compromise
these weights. We propose a game theoretical framework
for an adversary that can add noise to the weights to drive
the system away from consensus. We derive the optimal
strategies using a saddle point equilibrium (SPE) solution
in mixed strategies for both players (the adversary and the
network designer) of the resulting game.

II. PROBLEM FORMULATION

A network is comprised of nodes (or agents) and commu-
nication links that allow these nodes to share information
and resources. Consider a network where each of the n
nodes in a network has a scalar xi(k) ∈ R called node’s
state variable that is located (and can be updated) in its
local memory where k is a discrete time index where xi(0)
is its initial value. Average consensus protocols are algo-
rithms where nodes, subject to some given communication
constraints, reach consensus on the average of all initial
values (xave := 1

n

∑
i xi(0)). We model the network as an

undirected connected graph G = (V,E) where V = 1, . . . , n
is the set of vertices (nodes) and E = 1, . . . ,m is the set



of edges (links). We use the notation s ∼ (ij) to indicate
that the vertices i and j are incident to the link s. One
class of algorithms to achieve consensus is obtained by nodes
updating their values in a synchronized and iterative way as
follows:

x(k + 1) = W (k)x(k), (1)

where x(k) is the state vector having xi(k) for i = 1, . . . , n
as its elements and W (k) is the weight matrix at iteration k
satisfying wij = 0 if (ij) /∈ E.

Under some conditions on the weights W (k), the values
at the nodes are guaranteed to converge asymptotically to the
average

lim
k→∞

x(k) = x̄,

where x̄ = xave1 and 1 is the vector of all ones. One such
set of conditions is given in [10] with fixed weights (i.e.,
W (k) = W ∀k):

1TW = 1T , W1 = 1, ρ(W − 1

n
11T ) < 1,

where ρ(.) is the largest eigenvalue in magnitude of a
matrix. By the first condition, the average in the network
is conserved, namely

1Tx(k) = 1Tx(0) = nxave ∀k, (2)

the second ensures stability, and the last condition guarantees
contraction on the weight matrix. At any iteration k, we can
define the squared error Lk from consensus as follows:

Lk = ||x(k)− x̄||22 = yT
k yk, (3)

where yk = x(k)− x̄.
In this paper, we design time-varying weight matrices

W (k) such that consensus forms in the least number of
iterations (achieving faster convergence) under the criterion
of minimum squared error. Our work differs from the earlier
work in the literature in that we design the weights depending
on the initial values, i.e., W (k) = W (k,x(0)).

III. OPTIMAL WEIGHT SELECTION ON UNDIRECTED
GRAPHS

Toward the goal stated above, since we are dealing with
an undirected graph, we consider the following properties
for the weight matrix for all k:

W (k) = W (k)T and W (k)1 = 1. (4)

Therefore, equation (2) is satisfied for all k and the average
is conserved. Moreover, we can consider a vector uk ∈ Rm

as the control variable that represents the weights on the
undirected links (each link s ∼ (ij) is given a control u(k)s ).
At stage k, the network designer will select a control uk.
In particular, due to equation (4) we can write the weight
matrix as a function of the control vector as follows:

W (k) = In −Qdiag(uk)QT , (5)

where In is the n by n identity matrix, Q is an n × m
incidence matrix of the graph G (each column corresponds
to an edge such that if column s ∼ (ij) ∈ E, then Qis = +1

and Qjs = −1 while all other elements of the column are
zeros).

For any iteration k, the square error Lk metric measures
the distance of the system from the average. Since the goal
is to reach faster the consensus fast, cost is assigned only to
the last stage. The optimal control problem is then given as
follows:

argmin
u0,...,uN−1

LN , subject to

yk+1 = yk −Qdiag(uk)QTyk, for k = 0, . . . , N − 1,
(6)

where N is the number of stages in this optimization. We
first show that an optimal control exists.

A. Existence of a Solution

Let JN := x(N)Tx(N), and note that the cost function
of the optimization problem can be written as

LN = yT
NyN = x(N)Tx(N)− 2x̄Tx(N) + x̄T x̄

= JN − 2xave1
Tx(N) + nx2ave = JN − nx2ave.

Then minimizing LN is equivalent to minimizing the func-
tion JN because the term nx2ave depends only on the initial
values. Let us define the product matrix U(k1:k2) as follows:

U(k1:k2) =


W (k1)W (k1 + 1) . . .W (k2) if k1 < k2

W (k1)W (k1 − 1) . . .W (k2) if k1 > k2

W (k1) if k1 = k2.

To show that an optimal control (u∗k, k = 0, . . . , N − 1)
exists, we write the optimization as an unconstrained one:

argmin
u0,...,uN−1

f(u0, . . . ,uN−1) (7)

where

f(u0, . . . ,uN−1) = JN = x(N)Tx(N)

= x(0)TUT
(N−1,0)U(N−1,0)x(0). (8)

Since the elements of the matrix U(N−1,0) are linear in the
control variables, and UT

(N−1,0)U(N−1,0) is a positive semi-
definite matrix, f(.) is a quadratic function and bounded
from below, and hence there exists at least one control
(u∗k, k = 0, . . . , N − 1) that globally minimizes f .

B. Necessary Conditions

To find necessary conditions for the optimal control, we
apply the maximum principle [19, p. 24] to problem (6). For
k = 0, . . . , N − 1, the system equation, performance index,
and Hamiltonian are given as:
• System equation: yk+1 = yk −Qdiag(uk)QTyk,
• Performance index: LN = yT

NyN ,
• Hamiltonian:

Hk = λTk+1

(
yk −Qdiag(uk)QTyk

)
, (9)

where λk+1 is the costate variable corresponding to
iteration k.

Then, the costate equation and the associated boundary
condition are:



• Costate: λk = ∂Hk

∂yk
=
(
In −Qdiag(uk)QT

)
λk+1,

• Boundary condition: λN = yN .

Any optimal control should minimize the Hamiltonian
[19]. Since the Hamiltonian is linear in the unconstrained
control variables, if any coefficient of a control variable in
(9) is nonzero, the optimal control would be unbounded. But
an optimal control exists as we have already shown, so all
the coefficients of the control variables in (9) are necessarily
equal to zero, i.e.,

∂Hk

∂uk
=
(
QTyk

)
�
(
QTλk+1

)
= 0, for k = 0, . . . , N − 1,

(10)
where � is the element-wise product of the vectors and 0
is the vector of all zeros. Equation (10) provides necessary
conditions for a controller to minimize (8).

For example, when N = 1, the necessary conditions (10)
reduce to,

(
QTy0

)
�
(
QTy1

)
= 0, i.e.,

(xi(0)−xj(0))(xi(1)−xj(1)) = 0 for all (ij) ∈ E. (11)

Let G′ = (V,E′) be a sub-graph of G defined on the same
set of vertices, V , and with links E′ ⊆ E such that (ij) ∈ E′
if (ij) ∈ E and xi(0)− xj(0) 6= 0. Then we have:

Proposition 1. If G′ = (V,E′) is connected, then any
optimal control u∗ drives the system to consensus in one
iteration, i.e.,

x̄ =
(
In +Qdiag(u∗)QT

)
x(0).

Proof. From (11), xi(1) = xj(1) ∀(ij) ∈ E′. If G′ is
connected, then there is a path in E′ between any two
vertices, and thus xi(1) = xj(1) ∀i, j ∈ V . Using also
the fact that the average is conserved (by (2)), we get
xi(1) = xave ∀i ∈ V .

C. Locally Optimal Solution

In the general case, the optimization problem (7) is com-
putationally hard because the function f(u0, . . . ,uN−1) is
not convex (it is convex in the variables of each stage, uk,
but not jointly convex). We therefore turn our attention to
locally optimal solutions, and to obtain such a solution we
apply the gradient method to (8).

Proposition 2. Let f(u0, . . . ,uN−1) be given by (8). Then,
for k = 0, . . . , N − 1, the gradient g(k)l = ∂f

∂u
(k)
l

of the

function f with respect to its variables u(k)l where u(k)l is
the l-th element of the vector uk corresponding to link (ij)
(l ∼ (ij)) at stage k, is given as follows:

g
(k)
l = 2[(AkW (k)Bk)ij + (AkW (k)Bk)ji

− (AkW (k)Bk)ii − (AkW (k)Bk)jj ], (12)

where Ak and Bk are as follows:1

Ak = UT
(N−1:k+1)U(N−1:k+1), if N − 1 ≥ k + 1,

Bk =
(
U(k−1:0)x(0)

) (
U(k−1:0)x(0)

)T
, if k − 1 ≥ 0.

(13)

1Where Ak = In if N−1 < k+1 and Bk = x(0)x(0)T if k−1 < 0.

Proof. By using the commutative property of the trace
operator (i.e., Tr(XY ) = Tr(Y X) for any conformable
matrices X and Y ), f(.) can be written for k = 0, . . . , N−1:

f(u0, . . . ,uN−1) = x(0)TUT
(N−1,0)U(N−1,0)x(0)

= Tr
(
W (k)TAkW (k)Bk

)
, (14)

where Ak and Bk are given by (13) and are
independent of the variables of stage k (i.e.,
∂(Ak)st

∂u
(k)
l

= ∂(Bk)st

∂u
(k)
l

= 0 ∀s, t ∈ V , and k = 0, . . . , N − 1).

From matrix calculus, if h(W ) = Tr(WTAWB), then
∂h

∂wij
= 2 (AWB)ij , and since W = In − Qdiag(u)QT ,

then for any ul such that l ∼ (ij) we have

∂wst

∂ul
=


+1 if (s = i and t = j) or (s = j and t = i)

−1 if (s = i and t = i) or (s = j and t = j)

0 else.
(15)

Thus,

∂h

∂ul
=
∑
s,t

(
∂h

∂wst

)
∂wst

∂ul
= 2

∑
s,t

(AWB)st
∂wst

∂ul

= 2 [(AWB)ij + (AWB)ji − (AWB)ii − (AWB)jj ] .
(16)

We can apply equation (16) to every stage separately and
this ends the proof.

Let us stack up all the elements u(k)l in one vector w, and
also stack up all the elements g(k)l in one vector g.

Proposition 3. Consider the following gradient iterative
procedure

w(t+1) = w(t) − γtg(t),

where γt = 1
(1+t)||g|| is the stepsize and w(0) = 0. Then

the elements u
(k)
l of the vector w converge to a locally

minimizing solution of the optimization problem (6).

Proof. The given procedure is a standard (sub-)gradient
method for optimization and the convergence has been
widely studied under the diminishing step-size rule:
limt→∞ γt = 0 and

∑∞
t=1 γt =∞ (see [20]).

D. Closed-Form Solution for the One-Stage Problem

Consider now the case N = 1, that is with only one stage.
Then the control would be a single vector u where each
component is the weight for the corresponding edge. The
optimization problem in this case is convex:

uS = argmin
u

f(u), (17)

where uS is the solution set (possibly an infinite set) and

f(u) = x(0)T (In −Qdiag(u)QT )(In −Qdiag(u)QT )x(0)

= ||x(0)−Qdiag(u)QTx(0)||2

= ||x(0)−Qdiag(QTx(0))u||2 = ||Du− b||2,

where
D = Qdiag(QTx(0)), and b = x(0). (18)



The problem is then reduced to a least squares approxi-
mation problem, where any element in the solution set uS

satisfies what is known as the normal equations:

DTDu = DTb, ∀u ∈ uS .

Moreover, uS is not empty, with at least one solution
û = D+b, where D+ is the pseudo inverse of D that can
be obtained using the singular value decomposition of D. If
DTD is a positive definite matrix, then D+ = (DTD)−1DT

and û is the unique solution to the least squares problem.
We denote by S the minimum value of the function f(u):

S = f(û) = ||(DD+ − I)b||2. (19)

IV. NETWORK WITH ADVERSARY IN DISCRETE TIME

Suppose that there is an adversary that can add noise onto
the weights of the links. The adversary’s objective is to drive
the system away from consensus. Considering only one stage
optimization (N = 1), the state equation would become

x(1) = W (u,v)x(0)

= (In −Qdiag(u + v)QT )x(0), (20)

where W (u,v) is the weight matrix that depends on the
control u ∈ U1 = Rm and the noise of the adversary
v ∈ U2 = {y; y ∈ Rm, ||y|| ≤ C}, where C is a given
positive constant and can be seen as the power constraint
of the adversary (the larger C the more powerful is the
adversary). The cost function is

J(u,v) = x(1)Tx(1)

= ||(In −Qdiag(u + v)QT )x(0)||2

= ||D(u + v)− b||2, (21)

where D and b are given by (18). The adversary (v) is the
maximizer of J(u,v) while the network designer (u) is the
minimizer in this zero-sum two-person game.

Definition 1. A pair (u∗ ∈ U1,v
∗ ∈ U2) is a saddle point

in pure strategies of J(u,v) if the following holds:

J(u∗,v) ≤ J(u∗,v∗) ≤ J(u,v∗), for all (u ∈ U1,v ∈ U2).

The lower value V and the upper value V of the game
are defined by

V = sup
v∈U2

inf
u∈U1

J(u,v) , and V = inf
u∈U1

sup
v∈U2

J(u,v).

Since the strategy spaces are decoupled, V ≤ V . If fur-
thermore V = V , then the common value is called the
value of the game. Existence of a saddle point guarantees
existence of the value [21]. As J is a quadratic function of
u, and J(u,v) ≥ 0 for all (u ∈ U1,v ∈ U2), then for any
given v ∈ U2, J attains a minimum on U1 [22]. Moreover,
since U2 is compact, and J is a continuous function on its
domain of definition, for any given u ∈ U1, J attains a
maximum on U2 by the Weierstrass Theorem. Therefore, we
can replace infu∈U1

by minu∈U1
and supv∈U2

by maxv∈U2

in the definitions of the upper and lower values. In the sequel,
we will show that actually the game does not have a value,

and hence does not have a saddle point (in pure strategies).
It however has a saddle point in mixed strategies (shortly to
be defined).

A. The max-min solution

In the max-min solution, the network designer has access
to the strategy played by the adversary.

argmin
u

J(u,v) = argmin
u
||D(u + v)− b||2 = D+b− v.

Then we have,

max
v

min
u
J(u,v) = max

v
J(D+b− v,v) = max

v
S = S,

where S is the value of the one player optimization problem,
given by (19) and is independent of v.

B. The min-max solution

In the min-max solution, the adversary has access to the
strategy of the controller. Note that J can be written as:

J(u,v) = ||D(u + v)− b||2

= bTb + uTDTDu− 2bTDu

+ vTDTDv + 2vT
(
DTDu−DTb

)
.

Consider the following strategy v1 by the adversary:{
v1 ∈ R(DTD) ∩ U2 if DTDu−DTb = 0

v1 = C (DTDu−DTb)
||DTDu−DTb|| otherwise,

(22)

where R(DTD) is the range of the matrix DTD. Therefore,

min
u

max
v

J(u,v) ≥ min
u
J(u,v1)

= min
u

(vT
1D

TDv1 + 2vT
1

(
DTDu−DTb

)︸ ︷︷ ︸
>0

+ bTb + uTDTDu− 2bTDu)

> min
u

(
bTb + uTDTDu− 2bTDu

)
= S.

Hence, maxv minu J(u,v) < minu maxv J(u,v), which
means that there is no saddle point in pure strategies.

C. A Saddle-Point Equilibrium (SPE) in Mixed Strategies

Since an SPE does not exist in pure strategies, we allow
players to randomize their actions through mixed strategies.
A mixed strategy for the network designer is a probability
distribution µ on U1, and we denote the space of all such
probability distributions by M1. Similarly, a mixed strategy
for the adversary is a probability distribution ν on U2, and the
space of all such probability distributions is denoted by M2.
The average cost corresponding to a pair (µ ∈M1, ν ∈M2)
is given by

J̄(µ, ν) =

∫
U1×U2

J(u,v)dµ(u)dν(v).

Definition 2. A pair (µ∗ ∈M1, ν
∗ ∈M2) is a saddle point

equilibrium in mixed strategies if the following holds:

J̄(µ∗, ν) ≤ J̄(µ∗, ν∗) ≤ J̄(µ, ν∗), for all (µ ∈M1, ν ∈M2).



Proposition 4. Consider the following strategies:

µ∗(u) : u = D+b with probability 1, (23)

and

ν∗(v) :

{
v = Cp with probability 1/2
v = −Cp with probability 1/2,

(24)

where p is any unit eigenvector of the matrix DTD corre-
sponding to the largest eigenvalue λmax(DTD). Then the
pair (µ∗, ν∗) is an SPE in mixed strategies.

Proof. Let us recall the cost function:

J(u,v) = bTb + uTDTDu− 2bTDu

+ vTDTDv + 2vT
(
DTDu−DTb

)
= ||Du− b||2 + vTDTDv + 2vT

(
DTDu−DTb

)
.

Then the average cost under the given pair of strategies is,

J̄(µ∗, ν∗) = ||DD+b− b||2 + (Cp)TDTD(Cp)× (1/2)

+ (−Cp)TDTD(−Cp)× (1/2)

= S + C2λmax. (25)

But we have,

J̄(µ∗, ν) = ||DD+b− b||2 +

∫
U2

νTDTDν dν(v)

≤ S + max
v,||v||≤C

vTDTDv

= S + C2λmax = J̄(µ∗, ν∗), (26)

J̄(µ, ν∗) = C2λmax +

∫
U1

||Dµ− b||2 dµ(u)

≥ C2λmax + min
u
||Du− b||2

= S + C2λmax = J̄(µ∗, ν∗). (27)

Since we have for any pair (µ ∈M1, ν ∈M2),

J̄(µ∗, ν) ≤ J̄(µ∗, ν∗) ≤ J̄(µ, ν∗),

then (µ∗, ν∗) is a saddle point equilibrium.

Remark: The saddle point is not unique, as any (µ, ν)
where µ is a point distribution in the set uS of (17) (or
any distribution on this set due to the interchangeability
property of saddle points [21]), and ν as in (24) where p
is any eigenvector corresponding to λmax(DTD) (or any
distribution on these vectors) is also a saddle point. However,
if D is full column rank, and λmax has geometric multiplicity
of 1, then the saddle point is unique.

V. SIMULATIONS

A. Optimal control

We illustrate the results obtained on a numerical example.
Given the sample network of Fig. 1 and the initial values,
we are interested in selecting the controls on links, uk =

(u
(k)
12 , u

(k)
23 , u

(k)
34 )T , so that the system reaches consensus. We

limit the number of stages to N = 3 because in that case

Fig. 1. Network with 4 communicating nodes. xi(0) is the initial value
of node i, and uij is the control value (or weight) of link (ij).

k = 0 k = 1
x(0) u∗

0 x(1) u∗
1 1

0
0
0


 0.8665

0
0


 0.1335

0.8665
0
0


 0.2201

0.6051
0


J0 = x(0)Tx(0) = 1 J1 = 0.7686

k = 2 k = 3
x(2) u∗

2 x(3) 0.2949
0.1808
0.5243

0


 0.3934

0.0708
0.4768


 0.25

0.25
0.25
0.25


J2 = 0.3945 J3 = 0.25

TABLE I
OPTIMAL CONTROL RESULTS FOR THE NETWORK IN FIG. 1.

the diameter is equal to 3 and an optimal control that drives
the system to consensus exists.

Table I shows the optimal control (u∗k, k = 0, 1, 2) for
the given network. The control is obtained by the gradient
descent iterative procedure of Proposition 3 where the initial
starting point of the gradient was selected 0 on all links of
the three stages. The results indicate that with only three
iterations, the system reaches consensus. To compare with
other weight selection algorithms, we apply the algorithm
given in [10] obtained for a related semi-definite program
(SDP). That algorithm finds a fixed set of weights for all
iterations that guarantee fastest convergence independent of
initial values (worst-case analysis). For the network example
in Fig. 1, the SDP assigns a value 0.5 to all weights for all
iterations, and the resulting state vector after three iterations
is xSDP (3) = (0.375, 0.375, 0.125, 0.125)T , which has a
cost of J3 = 0.3125 (thus higher cost than our time-
varying weights) and needs an infinite number of iterations
to converge. It is worth mentioning that the SDP weights are
designed for worst-case node initial values, and thus have
the advantage that they guarantee convergence starting from
any initial values. However, the optimal control in this paper
is designed for a given starting value, and thus if the initial
node values change, the control values must be readjusted.

B. Adversarial intervention

In this subsection, we study the effect of an adversary
disrupting the communication on networks with connected
random geometric graphs (RGGs) topology where n nodes
are thrown uniformly at random on a unit square, and any two
nodes within a connectivity radius r are connected by a link

(the simulations are done with r =
√

0.6× log(n)
n given that

the graph is connected). RGGs are generally used as models
for wireless sensor networks, and disruption of communi-
cation can be accomplished by insertion of high intensity
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Fig. 2. The cost function due to different adversary settings: absence
of adversary, uniform random adversary that adds a random noise to the
control values, and saddle point adversary that randomizes its strategy in
accordance with the saddle point equilibrium.

signals on communication links. The additive white noise can
also be considered as an adversarial input in our settings. We
compare the results on different RGGs with different sizes
(number of nodes n) for n ∈ {20, 40, 60, 80, 100}. Fig. 2
depicts the different costs on the resulting network with
and without the presence of the adversary, averaged over
150 independent runs. We consider only one-stage games
where the initial cost function is given by J0 = x(0)Tx(0).
For any node i, the initial node value xi(0) is selected at
random uniformly within the interval [0, 1]. We assume that
the adversary power constraint is ||v|| ≤ 1 (i.e., C = 1).
We see from Fig. 2 that the network without an adversary
achieves the least cost J1. An adversary selecting uniformly
random strategy from the n-dimensional unit sphere does
not substantially affect the cost; however, an adversary with
the same power constraint playing the strategy of the sad-
dle point equilibrium (equation (24)) achieves significantly
higher cost than the uniform random adversary (even larger
cost than J0 for graphs of n = 20 and n = 40 nodes).

VI. CONCLUSION

In this paper, we have studied a finite-horizon discrete-
time optimal control for a network designer to achieve
faster consensus given the network structure and the initial
node values. The optimal control is obtained using gradient
methods. Moreover, we have studied the saddle point equi-
librium (SPE) of the consensus problem in the presence of
an adversary, and found that an SPE does not exist in pure
strategies. Nevertheless, an SPE exists in mixed strategies,
where the adversary selects the noise using a randomized
strategy, whereas the network designer’s strategy is still pure.

For future work, distributed implementation of the optimal
control would be an important direction because of the dis-
tributed nature of the average consensus protocols. So far, the
adversary has access to initial values; it would be interesting
to remove the dependence of the strategies on the initial

values. Moreover, considering a broader class of adversaries
(as malicious and misbehaving nodes, or adversaries that
break links) is also one of our future interests.
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