

Newton's Method for Constrained Norm Minimization and Its Application to Weighted Graph Problems

Mahmoud El Chamie and Giovanni Neglia
INRIA - Sophia Antipolis
France

Acknowledgement

Konstantin Avrachenkov k.avrachenkov@inria.fr

Giovanni Neglia giovanni.neglia@inria.fr

Talk Outline

- The General Optimization Framework
- · Contribution of the Paper
- Newton's Method for the General Framework
- Newton's Method for Weighted Graph Optimization (a case study)
- Performance Evaluation

The General Optimization Framework

• Argmin_X
$$f(X) = E(X, \hat{y}) + \gamma R(X)$$

Loss Function Regularization

- $X \in \Re^{n_1,n_2}$
- $-\gamma$: scalar for the trade-off between the two terms
- For underdetermined systems (more variables than the equations): the *minimal norm* interpolation problem [A. Argyriou et al., 2010],

Argmin_X
$$R(X)$$

subject to $L(X) = \hat{y}$

 $-L(X)=A \operatorname{vext}(X)$ is a linear function (A has $r \times n_1 n_2$ dimensions, r rank of A)

Schatten-p Norm

$$\mathbf{R}(X) = \|X\|_{\sigma p} = \left(\sum_{i} \sigma_{i}^{p}\right)^{1/p}$$

- σ_i is the i-th singular value of X
- -p=1 is the Nuclear norm
- -p=2 is the Frobeniuos norm
- $-p=\infty$ is the Spectral norm
- Differentiable for even p=2q, $||X||_{\sigma_p}^p = \text{Tr}((XX^T)^q)$
- The problem is then convex

Contribution

minimize
$$h(X) = \text{Tr}((XX^T)^q)$$

subject to $A \text{ vect}(X) = \hat{y}$

- Transform into unconstrained optimization
- Find close form solutions for the gradient and the Hessian
- Apply Newton's method
- Show that the optimization as applications in graph optimization problems
 - Multi-agents consensus problems
 - Hessian can be sparse and exact step-size can be easily calculated
- Study the convergence time of different optimization methods for this problem

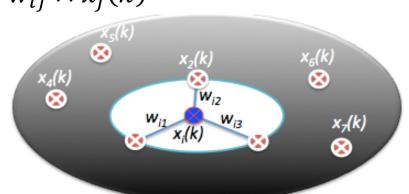
Weighted Graph Optimization: Weight Selection in Consensus Protocols

- · Consensus algorithm
 - Given a network G=(V, E)
 - Each node has a local variable $x_i(k)$, where k is the iteration number and $x_i(0)$ are initial values
 - Each node performs weighted sum of its value and its neighbors' values:

$$x_i(k+1) = w_{ii} \times x_i(k) + \sum_{\text{neighbors } j} w_{ij} \times x_j(k)$$

- In matrix form:

$$x(k) = W^k x(0)$$



Weighted Graph Optimization: Weight Selection in Consensus Protocols

· Consensus algorithm

$$x_i(k+1) = w_{ii} \times x_i(k) + \sum_{\text{neighbors } j} w_{ij} \times x_j(k)$$

- For some (easy to satisfy) condition on the weights, the algorithm is guaranteed to converge to the average of initial values
- An approximation to the best weights (that achieve fastest convergence independent of initial values) is

```
minimize Tr(W^p) subject to W = W^T, \ W\mathbf{1}_n = \mathbf{1}_n, \ W \in \mathcal{C}_G,
```

p identifies the error from optimal weights [M. El Chamie et al., 2012]

Weighted Graph Optimization: Weight Selection in Consensus Protocols

· Consensus algorithm

$$x_i(k+1) = w_{ii} \times x_i(k) + \sum_{\text{neighbors } j} w_{ij} \times x_j(k)$$

- For some (easy to satisfy) condition on the weights, the algorithm is guaranteed to converge to the average of initial values
- An approximation to the best weights (that achieve fastest convergence independent of initial values) is

minimize
$$Tr(W^p)$$
 Schatten p-norm of W subject to $W=W^T,\ W\mathbf{1}_n=\mathbf{1}_n,\ W\in\mathcal{C}_G,$ Linear constraints

p identifies the error from optimal weights [M. El Chamie et al., 2012]

Newton's Method

• Form the unconstrained problem:

$$f(\mathbf{w}) = Tr(W^p)|_{W=I_n - Q \operatorname{diag}(\mathbf{w})Q^T}$$

- -w:m by 1 weight vector (each link is given a variable)
- -Q: n by m incidence matrix of the graph G
- Form the gradient $g = \nabla_w f \in \Re^m$, $l \leftrightarrow (a,b)$:

$$(\nabla_{\mathbf{w}} f)_{l} = \frac{\partial f}{\partial w_{l}} = p((W^{p-1})_{a,b} + (W^{p-1})_{b,a} - (W^{p-1})_{a,a} - (W^{p-1})_{b,b})$$

Newton's Method

• Form the unconstrained problem:

$$f(\mathbf{w}) = Tr(W^p)|_{W=I_n - Q \operatorname{diag}(\mathbf{w})Q^T}$$

- -w:m by 1 weight vector (each link is given a variable)
- -Q: n by m incidence matrix of the graph G
- Form the Hessian $H = \nabla_w^2 f \in \Re^{m \times m}$:

$$(\nabla_{\mathbf{w}}^2 f)_{l,k} = p \sum_{z=0}^{p-2} \psi(z) \psi(p-2-z),$$

$$\psi(z) = (W^z)_{a,c} + (W^z)_{b,d} - (W^z)_{a,d} - (W^z)_{b,c}.$$

Newton's Direction

- We calculated the gradient g, and the Hessian H
 - Notice that H is positive semi-definite since f is convex
- Newton's Direction Δw is simply the solution of:

$$H\Delta \mathbf{w} = \mathbf{g}$$

Line Search

 For choosing a stepsize that guarantees sufficient decrease in the function

$$\phi(t) = f(\mathbf{w} - t\Delta\mathbf{w})$$
 , $t > 0$

- Exact line search is usually complex and other simple (non-optimal) choice are usually used
 - Pure Newton t=1 (for all iterations)
 - Backtracking line search starts from $t\!=\!1$, and multiplicatively decrease t till sufficient decrease in the function
- However, the special structure of our problem allows for a simple exact line search

Exact Line Search

 For choosing a stepsize that guarantees sufficient decrease in the function

$$\phi(t) = f(w - t\Delta w) = h(W + tU)$$

where $U = Q \operatorname{diag}(\Delta w) Q^T$ and let Y = W + tU

• Since h is convex, then $\phi(t)$ is also convex, and the first and second derivatives:

$$\phi'(t) = p \operatorname{Tr}(Y^{p-1}U)$$
 and $\phi''(t) = p \operatorname{Tr}(\sum_{r} Y^{p-2-r}UY^{r}U)$

With Newton-Raphson (exact stepsize)

$$t_n \leftarrow t_{n-1} - \frac{\phi'(t_{n-1})}{\phi''(t_{n-1})}$$

Summary for Newton's Method

- Step 0: Initial start $W^{(0)}=I_n$, precision ε , k=0
- Step 1: Calculate gradient $g = \nabla_w f \in \Re^m$
- Step 2: Calculate Hessian $H = (\nabla_w^2 f + \gamma I_m) \in \Re^{m \times m}$
- Step 3: Calculate Newton's direction $\Delta w^{(k)} = H^{-1}g$ Stopping Condition: $\|\Delta w^{(k)}\| < \varepsilon$
- Step 4: Use exact line search for stepsize $t^{(k)}$
- Step 5: Update the weight matrix $W^{(k+1)} = W^{(k)} + t^{(k)}O\operatorname{diag}(\Delta w^{(k)})O^{T}$
- Step 6: k=k+1 and go back to Step 1

Closed form solution for p=2

minimize
$$h(W) = Tr(W^2) = \sum_{i,j} w_{ij}^2$$
 subject to $W = W^T, W\mathbf{1}_n = \mathbf{1}_n, W \in \mathcal{C}_G$.

- Since objective function is quadratic, pure newton converges in one iteration, starting from any feasible initial value
- Let $W^{(0)}=I_n$, then $g=-4\times 1_m$ and $H=2(2I_m+Q^TQ)$
- Substitute in equation

$$W^{(k+1)} = W^{(k)} + t^{(k)}Q \operatorname{diag}(\Delta w^{(k)})Q^{T}$$

= $I_{n} - Q \operatorname{diag}((I_{m} + 0.5Q^{T}Q)^{-1}\mathbf{1}_{m})Q^{T}$

Closed form solution for p=2

minimize
$$h(W) = Tr(W^2) = \sum_{i,j} w_{ij}^2$$

subject to $W = W^T, W\mathbf{1}_n = \mathbf{1}_n, W \in \mathcal{C}_G$.

- Since objective function is quadratic, pure newton converges in one iteration, starting from any feasible initial value
- Let $W^{(0)}=I_n$, then $g=-4\times 1_m$ and $H=2(2I_m+Q^TQ)$
- Substitute in equation

$$W^{(k+1)} = W^{(k)} + t^{(k)}Q\operatorname{diag}(\Delta w^{(k)})Q^{T}$$

$$= I_{n} - Q\operatorname{diag}((I_{m} + 0.5Q^{T}Q)^{-1}\mathbf{1}_{m})Q^{T}$$
Closed Form

T_{conv}	ER(n = 100, Pr = 0.07)			
(number of iterations)	p=2	p = 4	p = 6	p = 10
Exact-Newton	1	5	5.7	6.1
Pure-Newton	1	9	11.1	13.9
Exact-GD	72.3	230.5	482.7	1500.5
Exact-Nesterov	130.2	422.8	811.3	1971.2
BT-GD or BT-Nesterov	> 5000	> 5000	> 5000	> 5000

TABLE I

CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR PROBLEM (12).

- GD: Decent Gradient
- BT-: Backtracking line search
 - Stopping Condition $|g| < 10^{-10}$

T_{conv}	ER(n = 100, Pr = 0.07)			
(number of iterations)	p=2	p = 4	p = 6	p = 10
Exact-Newton	1	5	5.7	6.1
Pure-Newton	1	9	11.1	13.9
Exact-GD	72.3	230.5	482.7	1500.5
Exact-Nesterov	130.2	422.8	811.3	1971.2
BT-GD or BT-Nesterov	> 5000	> 5000	> 5000	> 5000

TABLE I

CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR PROBLEM (12).

• Observation 1 (intuitive)

bservarion i (initarrive)

- GD: Decent Gradient
- BT-: Backtracking line search
 - Stopping Condition $1/g/l < 10^{-10}$

On average, the number of iterations to converge of Newton much less than first order methods

T_{conv}	ER(n = 100, Pr = 0.07)			
(number of iterations)	p=2	p = 4	p = 6	p = 10
Exact-Newton	1	5	5.7	6.1
Pure-Newton	1	9	11.1	13.9
Exact-GD	72.3	230.5	482.7	1500.5
Exact-Nesterov	130.2	422.8	811.3	1971.2
BT-GD or BT-Nesterov	> 5000	> 5000	> 5000	> 5000

TABLE I

Convergence time using different optimization methods for PROBLEM (12).

Observation 2 (less intuitive)

GD: Decent Gradient

BT-: Backtracking line search

Stopping Condition $||g|| < 10^{-10}$

Newton's method is less sensitive to stepsize (exact stepsize does not change much convergence) In gradient methods, highly sensitive to stepsize

T_{conv}	ER(n = 100, Pr = 0.07)			
(number of iterations)	p=2	p = 4	p = 6	p = 10
Exact-Newton	1	5	5.7	6.1
Pure-Newton	1	9	11.1	13.9
Exact-GD	72.3	230.5	482.7	1500.5
Exact-Nesterov	130.2	422.8	811.3	1971.2
BT-GD or BT-Nesterov	> 5000	> 5000	> 5000	> 5000

TABLE I

CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR PROBLEM (12).

Observation 3 (not intuitive)

Decent Gradient method is faster than Nesterov

- GD: Decent Gradient
- BT-: Backtracking line search
 - Stopping Condition $1/g/l < 10^{-10}$

Conclusion

- Newton's method for Schatten p-norm minimization
- Its application to weighted graph problems
 - Sparse Hessian
 - Fast convergence
 - Robustness to stepsize
- Future work
 - General values of p (not just for even values)
 - Other graph optimization

Conclusion

- Newton's method for Schatten p-norm minimization
- Its application to weighted graph problems
 - Sparse Hessian
 - Fast convergence
 - Robustness to stepsize
- Future work
 - General values of p (not just for even values)
 - Other graph optimization

Thank you! Questions?

Possible Approaches

Argmin_X R(X)subject to $L(X) = \hat{y}$

- First Order Methods
 - Gradient Method
 - Fast Gradient Method (Nestrov)
 - Drawbacks
 - Slow convergence
 - Step size selection (for unbounded gradient)
- Second Order Methods (for differentiable R(.))
 - Newton's Method
 - Drawbacks
 - Difficult to have closed form solutions
 - Complexity (forming and inverting the Hessian)

Newton's Method for Schatten-p Norm

minimize
$$h(X) = Tr\left(\left(XX^{T}\right)^{q}\right)$$

subject to $\begin{bmatrix} I_{r} & B \end{bmatrix} P \operatorname{vect}(X) = \hat{\mathbf{y}}$

1. Substitute the constraints in the objective function,

$$\mathbf{x} = \begin{bmatrix} 0^{n_1 n_2 - r, r} & I_{n_1 n_2 - r} \end{bmatrix} P \operatorname{vect}(X), \quad X = \operatorname{vect}^{-1} \left(P^{-1} \mid \hat{\mathbf{y}} - B\mathbf{x} \mid \right),$$

2. Reformulate into an unconstrained problem:

minimize
$$f(\mathbf{x})$$
, $f(\mathbf{x}) = Tr((XX^T)^q)$

- 3. Solve for the gradient $g = \nabla_x f$ and Hessian $H = \nabla_x^2 f$ (closed form formulas are given in the paper, we only give the results here for a case study)
- 4. Find the newton's direction, iteratively update variable using stepsize (details in the upcoming case study)

D-regular graphs

- D-regular graphs are graphs where all vertices have the same degree D (cycles, complete graphs, ...)
- Optimal values for p=2 is

$$w_l = \frac{1}{1+D} \ \forall l = 1, \dots, m.$$

 Which gives the same weights as well known weight selection heuristics as Metropolis weight selection or the maximum degree.