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Talk Outline 
•  The General Optimization Framework 
•  Contribution of the Paper 
•  Newton’s Method for the General 

Framework  
•  Newton’s Method for Weighted Graph 

Optimization (a case study) 
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The General Optimization Framework 
•    

 
 
–    
–               : scalar for the trade-off between the 

two terms 

•  For underdetermined systems (more variables 
than the equations): the minimal norm 
interpolation problem [A. Argyriou et al., 2010], 

 
 

– L(X)=Avext(X) is a linear function  (A has r × n1n2 
dimensions , r rank of A) 

ArgminX f (X) = E(X, ŷ)+! R(X)

X !"n1,n2

!

ArgminX  R(X)
subject to  L(X) = ŷ
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Schatten-p Norm 
 
 
–         is the  i-th singular value of X 
–  p=1 is the Nuclear norm  
–  p=2 is the Frobeniuos norm 
–  p=∞ is the Spectral norm  

•  Differentiable for even p=2q,                               
•  The problem is then convex 

R(X) =|| X ||! p= ( ! i
p )1/p

i
!

! i

|| X ||! p
p= Tr((XXT )q )
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Contribution 

•  Transform into unconstrained optimization 
•  Find close form solutions for the gradient and 

the Hessian 
•  Apply Newton’s method 
•  Show that the optimization as applications in 

graph optimization problems  
–  Multi-agents consensus problems 
–  Hessian can be sparse and exact step-size can be 

easily calculated 
•  Study the convergence time of different 

optimization methods for this problem 

minimize
X

 h(X) = Tr((XXT )q )

subject to  Avect(X) = ŷ
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Weighted Graph Optimization: Weight 
Selection in Consensus Protocols 

•  Consensus algorithm 
–  Given a network G=(V, E)	


–  Each node has a local variable  xi(k), where k is the 

iteration number and xi(0) are initial values 
–  Each node performs weighted sum of its value and 

its neighbors’ values: 

–  In matrix form: 

x(k) =Wkx(0)
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•  Consensus algorithm  
 
 
–  For some (easy to satisfy) condition on the weights, the 

algorithm is guaranteed to converge to the average of 
initial values 

–  An approximation to the best weights (that achieve 
fastest convergence independent of initial values) is  

–  p identifies the error from optimal weights [M. El Chamie et 
al., 2012] 

rule for the Hessian and considering directly that all the
second order derivatives like ∂2xij

∂xl∂xk
are null (again because

the mapping (5) is a linear transformation), we obtain that
for l, k = 1, . . . , n1n2 − r:

�
∇2

xf
�
l,k

=
∂2f

∂xl∂xk
=

�

i,j,s,t

∇2
Xh(ij)(st)

∂xij

∂xl

∂xst

∂xk
. (10)

Since f(x) is a convex function, then the calculated matrix
∇2

xf is semi-definite positive. We can add to the diagonals
a small positive value γ to guarantee the existence of the
inverse without affecting the convergence. The calculated
Hessian is a square matrix having dimensions d by d where
d = n1n2 − r may be large for some applications, and at
every iteration of the Newton’s method, we need to calculate
the inverse of the Hessian. Efficient algorithms for inverting
large matrices are largely discussed in the literature (see
[14] for example) and are beyond the scope of this paper.
Nevertheless, the given matrix has lower dimension than the
typical KKT matrix:2 used in Newton’s method [1]

�
∇2

Xh AT

A 0

�
, (11)

where A is considered here to be a full row rank ma-
trix, so the KKT matrix is a square matrix of dimensions
dKKT by dKKT where dKKT = n1n2 + r.

Once we know the gradient ∇xf and the Hessian ∇2
xf ,

we just apply the Newton’s method to find the solution
x∗ and then obtain the solution of the original problem
X∗. In the next section, as a case study, we will apply
the optimization technique we developed here to a graph
optimization problem.

III. A CASE STUDY: WEIGHTED GRAPH OPTIMIZATION

In average consensus protocols, nodes in a network, each
having an initial estimate (e.g. node i has the estimate
yi(0) ∈ R), perform an iterative procedure where they update
their estimate value by the weighted average of the estimates
in their neighborhood according to the following equation:

yi(k + 1) = wiiyi(k) +
�

j∈Ni

wijyj(k),

where Ni is the set of neighbors of node i. Under some
general conditions on the network topology and the weights,
the protocol guarantees that every estimate in the network
converges asymptotically to the average of all initial es-
timates. The speed of convergence of average consensus
protocols depends on the weights selected by nodes for
their neighbors [9]. Minimizing the trace of the weighted
adjacency matrix leads to weights that guarantee fast speed
of convergence (see [11]). In what follows, we show that
this problem is a specific case of our general problem (2)
and then apply the methodology presented above to solve it
using the Newton’s method.

2Note that the sparsity of the matrix to invert is preserved by the proposed
method, i.e. if the KKT matrix is sparse due to the sparsity of A and ∇2

Xh,
then ∇2

xf is also sparse.

A. Problem formulation

We consider a directed graph G = (V,E) where the
vertices (also called nodes) V = {1, . . . , n} are ordered and
E is the set of edges (also called links). The graph G satisfies
the following symmetry condition: if there is a link between
two nodes ((ij) ∈ E) then there is also the reverse link
((ji) ∈ E). We also consider the nodes to have self links,
i.e. (ii) ∈ E for every node i. Then the number of links can
be written as 2m + n with m being a positive integer. The
graph is weighted, i.e. a weight wij is associated to each link
(ij) ∈ E. By considering wij = 0 if (ij) /∈ E, we can group
the values in a weight matrix W ∈ Rn×n (i.e. (W )i,j = wij

for i, j = 1, . . . , n). A graph optimization problem is to find
the weights that minimize a function h(W ) subject to some
constraints. In particular for average consensus protocols, it
is meaningful [11] to consider the following problem:

minimize
W

Tr(W p)

subject to W = WT , W1n = 1n, W ∈ CG,
(12)

where p = 2q is an even positive integer and CG is the
condition imposed by the underlying graph connectivity, i.e.
wij = 0 if (ij) /∈ E. We denote by W(p) the solution of
this optimization problem. The authors in [11] show that
problem (12) well approximates (the larger p, the better
the approximation) the well known fastest distributed linear
averaging problem [9], that guarantees the fastest asymptotic
convergence rate by maximizing the spectral gap of the
weight matrix. Due to the constraint that the matrix is
symmetric, we can write the objective function as h(W ) =
Tr

��
WWT

�q�. Moreover, we can see that all constraints
are linear equalities. Therefore, the technique derived in the
previous section applies here.

B. The unconstrained minimization

We showed that the general problem (2) is equivalent to an
unconstrained minimization problem (6). This is obviously
true also for the more specific minimization problem (12)
we are considering. It can be easily checked that in this
case the number of independent constraints is equal to r =
n2 −m and then the variables’ vector for the unconstrained
minimization has size m. This vector is denoted by w. There
are multiple ways to choose the m independent variables.
Here we consider a variable for each pair (i, j) and (j, i)
where j �= i. We express that the l-th component of the
weight vector w corresponds to the links (i, j) and (j, i) by
writing l ∼ (ij) or l ∼ (ji). This choice of the independent
variables corresponds to consider the undirected graph G� =
(V,E�) obtained from G by removing self loops and merging
links (i, j) and (j, i) and then to determine a weight for each
of the residual m links. Due to space constraints, we do not
write the expression of B, P and ŷ that allow us to map the
weight matrix W to the vector w so defined, but it can be
easily checked that all the weights can be determined from
w as follows: wij = wji = wl for l ∼ (ij) and wii =
1 −

�
j∈Ni

wij . This can be expressed in a matrix form as
follows: W = In − Qdiag(w)QT , where In is the n × n
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•  Consensus algorithm  
 
 
–  For some (easy to satisfy) condition on the weights, the 

algorithm is guaranteed to converge to the average of 
initial values 

–  An approximation to the best weights (that achieve 
fastest convergence independent of initial values) is  

–  p identifies the error from optimal weights [M. El Chamie et 
al., 2012] 

rule for the Hessian and considering directly that all the
second order derivatives like ∂2xij

∂xl∂xk
are null (again because

the mapping (5) is a linear transformation), we obtain that
for l, k = 1, . . . , n1n2 − r:

�
∇2

xf
�
l,k

=
∂2f

∂xl∂xk
=

�

i,j,s,t

∇2
Xh(ij)(st)

∂xij

∂xl

∂xst

∂xk
. (10)

Since f(x) is a convex function, then the calculated matrix
∇2

xf is semi-definite positive. We can add to the diagonals
a small positive value γ to guarantee the existence of the
inverse without affecting the convergence. The calculated
Hessian is a square matrix having dimensions d by d where
d = n1n2 − r may be large for some applications, and at
every iteration of the Newton’s method, we need to calculate
the inverse of the Hessian. Efficient algorithms for inverting
large matrices are largely discussed in the literature (see
[14] for example) and are beyond the scope of this paper.
Nevertheless, the given matrix has lower dimension than the
typical KKT matrix:2 used in Newton’s method [1]

�
∇2

Xh AT

A 0

�
, (11)

where A is considered here to be a full row rank ma-
trix, so the KKT matrix is a square matrix of dimensions
dKKT by dKKT where dKKT = n1n2 + r.

Once we know the gradient ∇xf and the Hessian ∇2
xf ,

we just apply the Newton’s method to find the solution
x∗ and then obtain the solution of the original problem
X∗. In the next section, as a case study, we will apply
the optimization technique we developed here to a graph
optimization problem.

III. A CASE STUDY: WEIGHTED GRAPH OPTIMIZATION

In average consensus protocols, nodes in a network, each
having an initial estimate (e.g. node i has the estimate
yi(0) ∈ R), perform an iterative procedure where they update
their estimate value by the weighted average of the estimates
in their neighborhood according to the following equation:

yi(k + 1) = wiiyi(k) +
�

j∈Ni

wijyj(k),

where Ni is the set of neighbors of node i. Under some
general conditions on the network topology and the weights,
the protocol guarantees that every estimate in the network
converges asymptotically to the average of all initial es-
timates. The speed of convergence of average consensus
protocols depends on the weights selected by nodes for
their neighbors [9]. Minimizing the trace of the weighted
adjacency matrix leads to weights that guarantee fast speed
of convergence (see [11]). In what follows, we show that
this problem is a specific case of our general problem (2)
and then apply the methodology presented above to solve it
using the Newton’s method.

2Note that the sparsity of the matrix to invert is preserved by the proposed
method, i.e. if the KKT matrix is sparse due to the sparsity of A and ∇2

Xh,
then ∇2

xf is also sparse.

A. Problem formulation

We consider a directed graph G = (V,E) where the
vertices (also called nodes) V = {1, . . . , n} are ordered and
E is the set of edges (also called links). The graph G satisfies
the following symmetry condition: if there is a link between
two nodes ((ij) ∈ E) then there is also the reverse link
((ji) ∈ E). We also consider the nodes to have self links,
i.e. (ii) ∈ E for every node i. Then the number of links can
be written as 2m + n with m being a positive integer. The
graph is weighted, i.e. a weight wij is associated to each link
(ij) ∈ E. By considering wij = 0 if (ij) /∈ E, we can group
the values in a weight matrix W ∈ Rn×n (i.e. (W )i,j = wij

for i, j = 1, . . . , n). A graph optimization problem is to find
the weights that minimize a function h(W ) subject to some
constraints. In particular for average consensus protocols, it
is meaningful [11] to consider the following problem:

minimize
W

Tr(W p)

subject to W = WT , W1n = 1n, W ∈ CG,
(12)

where p = 2q is an even positive integer and CG is the
condition imposed by the underlying graph connectivity, i.e.
wij = 0 if (ij) /∈ E. We denote by W(p) the solution of
this optimization problem. The authors in [11] show that
problem (12) well approximates (the larger p, the better
the approximation) the well known fastest distributed linear
averaging problem [9], that guarantees the fastest asymptotic
convergence rate by maximizing the spectral gap of the
weight matrix. Due to the constraint that the matrix is
symmetric, we can write the objective function as h(W ) =
Tr

��
WWT

�q�. Moreover, we can see that all constraints
are linear equalities. Therefore, the technique derived in the
previous section applies here.

B. The unconstrained minimization

We showed that the general problem (2) is equivalent to an
unconstrained minimization problem (6). This is obviously
true also for the more specific minimization problem (12)
we are considering. It can be easily checked that in this
case the number of independent constraints is equal to r =
n2 −m and then the variables’ vector for the unconstrained
minimization has size m. This vector is denoted by w. There
are multiple ways to choose the m independent variables.
Here we consider a variable for each pair (i, j) and (j, i)
where j �= i. We express that the l-th component of the
weight vector w corresponds to the links (i, j) and (j, i) by
writing l ∼ (ij) or l ∼ (ji). This choice of the independent
variables corresponds to consider the undirected graph G� =
(V,E�) obtained from G by removing self loops and merging
links (i, j) and (j, i) and then to determine a weight for each
of the residual m links. Due to space constraints, we do not
write the expression of B, P and ŷ that allow us to map the
weight matrix W to the vector w so defined, but it can be
easily checked that all the weights can be determined from
w as follows: wij = wji = wl for l ∼ (ij) and wii =
1 −

�
j∈Ni

wij . This can be expressed in a matrix form as
follows: W = In − Qdiag(w)QT , where In is the n × n
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Newton’s Method 
•  Form the unconstrained problem: 
 
 
–  w : m by 1 weight vector (each link is given a 

variable) 
–  Q : n by m incidence matrix of the graph G	



•  Form the gradient                   ,          : 
  

 

g =!w f "#m

(!w f )l =
"f
"wl

= p((W p#1)a,b + (W
p#1)b,a # (W

p#1)a,a # (W
p#1)b,b )

l! (a,b)

ACC	
  2014,	
  June	
  5th,	
  Mahmoud	
  El	
  Chamie	
  

identity matrix and Q is the incidence matrix of graph G
�

(the incidence matrix of a graph having n nodes and m links
is defined as the n×m matrix where for every link l ∼ (ij),
the l-th column of Q is all zeros except for Qil = +1 and
Qjl = −1). The equivalent unconstrained problem is then:

minimize
w

f(w) = Tr((In −Qdiag(w)QT )p). (13)

C. Gradient and Hessian

To apply Newton’s method to minimize the function f ,
we have to calculate first the gradient ∇wf and the Hessian
matrix ∇2

wf . The function f is a composition function
between h(W ) = Tr(W p) and the matrix function W =
I −Qdiag(w)QT :

f(w) = Tr(W p)|W=In−Qdiag(w)QT .

From Eq. (9), we have

(∇wf)l =
�

i,j∈V

∇Wh(ij)
∂wij

∂wl
,

where ∇Wh(ij) = p(W p−1)ij (it follows from (7) and the
fact that W = W

T ). Due to the conditions mentioned earlier
(wij = wji = wl for all l ∼ (ij) and wij = 0 if (ij) /∈ E

and wii = 1−
�

j∈Ni
wij), if l ∼ (ab) we have

∂wij

∂wl
=






+1 if i = a and j = b

+1 if i = b and j = a

−1 if i = a and j = a

−1 if i = b and j = b

0 else.

(14)

We can then calculate the gradient ∇wf ∈ Rm. In particular
for l ∼ (ab) we have,

(∇wf)l = ∇Wh(ab) +∇Wh(ba) −∇Wh(aa) −∇Wh(bb)

= p(W p−1)b,a + p(W p−1)a,b

− p(W p−1)a,a − p(W p−1)b,b. (15)

For the calculation of the Hessian, let l ∼ (ab), k ∼ (cd)
be given links. Only 16 of the n

2
1n

2
2 terms in Eq. (10) (those

corresponding to i, j ∈ {a, b} and s, t ∈ {c, d}) are different
from zero because of (14), and they are equal to 1 or to
−1. Moreover we can simplify the expression of ∇2

Xh(ij)(st)

in (8) by considering that X = W = W
T . Finally after

grouping the terms, we obtain the more compact form:

�
∇2

wf
�
l,k

= p

p−2�

z=0

ψ(z)ψ(p− 2− z), (16)

where

ψ(z) = (W z)a,c + (W z)b,d − (W z)a,d − (W z)b,c.

D. Newton’s direction ∆w

Let g ∈ Rm and H ∈ Rm×m such that g = ∇wf(w)
whose elements are given by equation (15) and H =
∇2

wf(w) whose elements are given by equation (16). Then
the direction ∆w to update the solution in Newton’s method
can be obtained solving the linear system H∆w = g.

E. Line search

The Newton’s method uses exact line search if at each
iteration the stepsize is selected in order to guarantee the
maximum amount of decrease of the function f in the
descent direction, i.e. t is selected as the global minimizer
of the univariate function φ(t):

φ(t) = f(w − t∆w), t > 0.

Usually exact line search is very difficult to implement,
possible alternatives can be the pure Newton’s method that
selects a stepsize t = 1 at every iteration or the backtracking

line search if t is selected to guarantee some sufficient
amount of decrease in the function φ(t). But we benefit from
the convexity of our problem to derive a procedure which
gives a high precision estimate of the optimal choice of the
exact line search stepsize. Notice that φ(t) can be written as
follows:

φ(t) = f(w − t∆w)

= Tr((In −Qdiag(w − t∆w)QT )p)

= Tr((In −Qdiag(w)QT + tQdiag(∆w)QT )p)

= Tr((W + tU)p)

= h(W + tU),

where U = Qdiag(∆w)QT and is also symmetric.
Since (12) is a smooth convex optimization problem, h is
also smooth and convex when restricted to any line that
intersects its domain. Then φ(t) = h(W + tU) is convex
in t and applying the chain rule to the composition of the
function h(Y ) = Tr(Y p) and Y (t) = W + tU (similarly to
what we have done for f in (10)), we can find the first and
second derivative:

φ
�(t) =

�

i,j

∂h

∂yij
uij = p

�

i

(Y p−1
U)i,i = pTr(Y p−1

U),

φ
��(t) =

dφ�(t)

dt
= p× Tr

�
p−2�

q=0

Y
p−2−q

UY
q
U

�
.

So we can apply a basic Newton’s method to find the
optimal t:

Let t1 = 1 and t0 = 0, select a tolerance η > 0,
while |tn − tn−1| > η

tn ← tn−1 − φ�(tn−1)
φ��(tn−1)

;
end while

At the end of this procedure, we select t = tn to be
used as the stepsize of the iteration.

F. The algorithm

We summarize the Newton’s method used for the trace
minimization problem (12):

Step 0: Choose a weight matrix W
(0) that satisfies the

conditions given in (12) (e.g. In is a feasible starting
weight matrix). Choose a precision � and set k ← 0.
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Newton’s Method 
•  Form the unconstrained problem: 
 
 
–  w : m by 1 weight vector (each link is given a 

variable) 
–  Q : n by m incidence matrix of the graph G	



•  Form the Hessian                      : 
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uij = p

�

i

(Y p−1
U)i,i = pTr(Y p−1

U),

φ
��(t) =

dφ�(t)

dt
= p× Tr

�
p−2�

q=0

Y
p−2−q

UY
q
U
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.

So we can apply a basic Newton’s method to find the
optimal t:

Let t1 = 1 and t0 = 0, select a tolerance η > 0,
while |tn − tn−1| > η

tn ← tn−1 − φ�(tn−1)
φ��(tn−1)

;
end while

At the end of this procedure, we select t = tn to be
used as the stepsize of the iteration.

F. The algorithm

We summarize the Newton’s method used for the trace
minimization problem (12):

Step 0: Choose a weight matrix W
(0) that satisfies the

conditions given in (12) (e.g. In is a feasible starting
weight matrix). Choose a precision � and set k ← 0.
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identity matrix and Q is the incidence matrix of graph G
�

(the incidence matrix of a graph having n nodes and m links
is defined as the n×m matrix where for every link l ∼ (ij),
the l-th column of Q is all zeros except for Qil = +1 and
Qjl = −1). The equivalent unconstrained problem is then:

minimize
w

f(w) = Tr((In −Qdiag(w)QT )p). (13)

C. Gradient and Hessian

To apply Newton’s method to minimize the function f ,
we have to calculate first the gradient ∇wf and the Hessian
matrix ∇2

wf . The function f is a composition function
between h(W ) = Tr(W p) and the matrix function W =
I −Qdiag(w)QT :

f(w) = Tr(W p)|W=In−Qdiag(w)QT .

From Eq. (9), we have

(∇wf)l =
�

i,j∈V

∇Wh(ij)
∂wij

∂wl
,

where ∇Wh(ij) = p(W p−1)ij (it follows from (7) and the
fact that W = W

T ). Due to the conditions mentioned earlier
(wij = wji = wl for all l ∼ (ij) and wij = 0 if (ij) /∈ E

and wii = 1−
�

j∈Ni
wij), if l ∼ (ab) we have

∂wij

∂wl
=






+1 if i = a and j = b

+1 if i = b and j = a

−1 if i = a and j = a

−1 if i = b and j = b

0 else.

(14)

We can then calculate the gradient ∇wf ∈ Rm. In particular
for l ∼ (ab) we have,

(∇wf)l = ∇Wh(ab) +∇Wh(ba) −∇Wh(aa) −∇Wh(bb)

= p(W p−1)b,a + p(W p−1)a,b

− p(W p−1)a,a − p(W p−1)b,b. (15)

For the calculation of the Hessian, let l ∼ (ab), k ∼ (cd)
be given links. Only 16 of the n

2
1n

2
2 terms in Eq. (10) (those

corresponding to i, j ∈ {a, b} and s, t ∈ {c, d}) are different
from zero because of (14), and they are equal to 1 or to
−1. Moreover we can simplify the expression of ∇2

Xh(ij)(st)

in (8) by considering that X = W = W
T . Finally after

grouping the terms, we obtain the more compact form:

�
∇2

wf
�
l,k

= p

p−2�

z=0

ψ(z)ψ(p− 2− z), (16)

where

ψ(z) = (W z)a,c + (W z)b,d − (W z)a,d − (W z)b,c.

D. Newton’s direction ∆w

Let g ∈ Rm and H ∈ Rm×m such that g = ∇wf(w)
whose elements are given by equation (15) and H =
∇2

wf(w) whose elements are given by equation (16). Then
the direction ∆w to update the solution in Newton’s method
can be obtained solving the linear system H∆w = g.

E. Line search

The Newton’s method uses exact line search if at each
iteration the stepsize is selected in order to guarantee the
maximum amount of decrease of the function f in the
descent direction, i.e. t is selected as the global minimizer
of the univariate function φ(t):

φ(t) = f(w − t∆w), t > 0.

Usually exact line search is very difficult to implement,
possible alternatives can be the pure Newton’s method that
selects a stepsize t = 1 at every iteration or the backtracking

line search if t is selected to guarantee some sufficient
amount of decrease in the function φ(t). But we benefit from
the convexity of our problem to derive a procedure which
gives a high precision estimate of the optimal choice of the
exact line search stepsize. Notice that φ(t) can be written as
follows:

φ(t) = f(w − t∆w)

= Tr((In −Qdiag(w − t∆w)QT )p)

= Tr((In −Qdiag(w)QT + tQdiag(∆w)QT )p)

= Tr((W + tU)p)

= h(W + tU),

where U = Qdiag(∆w)QT and is also symmetric.
Since (12) is a smooth convex optimization problem, h is
also smooth and convex when restricted to any line that
intersects its domain. Then φ(t) = h(W + tU) is convex
in t and applying the chain rule to the composition of the
function h(Y ) = Tr(Y p) and Y (t) = W + tU (similarly to
what we have done for f in (10)), we can find the first and
second derivative:

φ
�(t) =
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i,j

∂h

∂yij
uij = p

�

i

(Y p−1
U)i,i = pTr(Y p−1

U),

φ
��(t) =

dφ�(t)

dt
= p× Tr
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p−2�

q=0
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p−2−q

UY
q
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.

So we can apply a basic Newton’s method to find the
optimal t:

Let t1 = 1 and t0 = 0, select a tolerance η > 0,
while |tn − tn−1| > η

tn ← tn−1 − φ�(tn−1)
φ��(tn−1)

;
end while

At the end of this procedure, we select t = tn to be
used as the stepsize of the iteration.

F. The algorithm

We summarize the Newton’s method used for the trace
minimization problem (12):

Step 0: Choose a weight matrix W
(0) that satisfies the

conditions given in (12) (e.g. In is a feasible starting
weight matrix). Choose a precision � and set k ← 0.

identity matrix and Q is the incidence matrix of graph G
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(the incidence matrix of a graph having n nodes and m links
is defined as the n×m matrix where for every link l ∼ (ij),
the l-th column of Q is all zeros except for Qil = +1 and
Qjl = −1). The equivalent unconstrained problem is then:

minimize
w

f(w) = Tr((In −Qdiag(w)QT )p). (13)

C. Gradient and Hessian

To apply Newton’s method to minimize the function f ,
we have to calculate first the gradient ∇wf and the Hessian
matrix ∇2

wf . The function f is a composition function
between h(W ) = Tr(W p) and the matrix function W =
I −Qdiag(w)QT :

f(w) = Tr(W p)|W=In−Qdiag(w)QT .

From Eq. (9), we have

(∇wf)l =
�

i,j∈V

∇Wh(ij)
∂wij

∂wl
,

where ∇Wh(ij) = p(W p−1)ij (it follows from (7) and the
fact that W = W

T ). Due to the conditions mentioned earlier
(wij = wji = wl for all l ∼ (ij) and wij = 0 if (ij) /∈ E

and wii = 1−
�

j∈Ni
wij), if l ∼ (ab) we have

∂wij

∂wl
=


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

+1 if i = a and j = b

+1 if i = b and j = a

−1 if i = a and j = a

−1 if i = b and j = b

0 else.

(14)

We can then calculate the gradient ∇wf ∈ Rm. In particular
for l ∼ (ab) we have,

(∇wf)l = ∇Wh(ab) +∇Wh(ba) −∇Wh(aa) −∇Wh(bb)

= p(W p−1)b,a + p(W p−1)a,b

− p(W p−1)a,a − p(W p−1)b,b. (15)

For the calculation of the Hessian, let l ∼ (ab), k ∼ (cd)
be given links. Only 16 of the n

2
1n

2
2 terms in Eq. (10) (those

corresponding to i, j ∈ {a, b} and s, t ∈ {c, d}) are different
from zero because of (14), and they are equal to 1 or to
−1. Moreover we can simplify the expression of ∇2

Xh(ij)(st)

in (8) by considering that X = W = W
T . Finally after

grouping the terms, we obtain the more compact form:

�
∇2

wf
�
l,k

= p

p−2�

z=0

ψ(z)ψ(p− 2− z), (16)

where

ψ(z) = (W z)a,c + (W z)b,d − (W z)a,d − (W z)b,c.

D. Newton’s direction ∆w

Let g ∈ Rm and H ∈ Rm×m such that g = ∇wf(w)
whose elements are given by equation (15) and H =
∇2

wf(w) whose elements are given by equation (16). Then
the direction ∆w to update the solution in Newton’s method
can be obtained solving the linear system H∆w = g.

E. Line search

The Newton’s method uses exact line search if at each
iteration the stepsize is selected in order to guarantee the
maximum amount of decrease of the function f in the
descent direction, i.e. t is selected as the global minimizer
of the univariate function φ(t):

φ(t) = f(w − t∆w), t > 0.

Usually exact line search is very difficult to implement,
possible alternatives can be the pure Newton’s method that
selects a stepsize t = 1 at every iteration or the backtracking

line search if t is selected to guarantee some sufficient
amount of decrease in the function φ(t). But we benefit from
the convexity of our problem to derive a procedure which
gives a high precision estimate of the optimal choice of the
exact line search stepsize. Notice that φ(t) can be written as
follows:

φ(t) = f(w − t∆w)

= Tr((In −Qdiag(w − t∆w)QT )p)

= Tr((In −Qdiag(w)QT + tQdiag(∆w)QT )p)

= Tr((W + tU)p)

= h(W + tU),

where U = Qdiag(∆w)QT and is also symmetric.
Since (12) is a smooth convex optimization problem, h is
also smooth and convex when restricted to any line that
intersects its domain. Then φ(t) = h(W + tU) is convex
in t and applying the chain rule to the composition of the
function h(Y ) = Tr(Y p) and Y (t) = W + tU (similarly to
what we have done for f in (10)), we can find the first and
second derivative:

φ
�(t) =

�

i,j

∂h

∂yij
uij = p

�

i

(Y p−1
U)i,i = pTr(Y p−1

U),

φ
��(t) =

dφ�(t)

dt
= p× Tr

�
p−2�

q=0

Y
p−2−q

UY
q
U

�
.

So we can apply a basic Newton’s method to find the
optimal t:

Let t1 = 1 and t0 = 0, select a tolerance η > 0,
while |tn − tn−1| > η

tn ← tn−1 − φ�(tn−1)
φ��(tn−1)

;
end while

At the end of this procedure, we select t = tn to be
used as the stepsize of the iteration.

F. The algorithm

We summarize the Newton’s method used for the trace
minimization problem (12):

Step 0: Choose a weight matrix W
(0) that satisfies the

conditions given in (12) (e.g. In is a feasible starting
weight matrix). Choose a precision � and set k ← 0.
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Newton’s Direction 
•  We calculated the gradient g, and the 

Hessian H	


– Notice that H is positive semi-definite 

since f is convex 
•  Newton’s Direction        is simply the 

solution of : 

identity matrix and Q is the incidence matrix of graph G
�

(the incidence matrix of a graph having n nodes and m links
is defined as the n×m matrix where for every link l ∼ (ij),
the l-th column of Q is all zeros except for Qil = +1 and
Qjl = −1). The equivalent unconstrained problem is then:

minimize
w

f(w) = Tr((In −Qdiag(w)QT )p). (13)

C. Gradient and Hessian

To apply Newton’s method to minimize the function f ,
we have to calculate first the gradient ∇wf and the Hessian
matrix ∇2

wf . The function f is a composition function
between h(W ) = Tr(W p) and the matrix function W =
I −Qdiag(w)QT :

f(w) = Tr(W p)|W=In−Qdiag(w)QT .

From Eq. (9), we have

(∇wf)l =
�

i,j∈V

∇Wh(ij)
∂wij

∂wl
,

where ∇Wh(ij) = p(W p−1)ij (it follows from (7) and the
fact that W = W

T ). Due to the conditions mentioned earlier
(wij = wji = wl for all l ∼ (ij) and wij = 0 if (ij) /∈ E

and wii = 1−
�

j∈Ni
wij), if l ∼ (ab) we have

∂wij

∂wl
=






+1 if i = a and j = b

+1 if i = b and j = a

−1 if i = a and j = a

−1 if i = b and j = b

0 else.

(14)

We can then calculate the gradient ∇wf ∈ Rm. In particular
for l ∼ (ab) we have,

(∇wf)l = ∇Wh(ab) +∇Wh(ba) −∇Wh(aa) −∇Wh(bb)

= p(W p−1)b,a + p(W p−1)a,b

− p(W p−1)a,a − p(W p−1)b,b. (15)

For the calculation of the Hessian, let l ∼ (ab), k ∼ (cd)
be given links. Only 16 of the n

2
1n

2
2 terms in Eq. (10) (those

corresponding to i, j ∈ {a, b} and s, t ∈ {c, d}) are different
from zero because of (14), and they are equal to 1 or to
−1. Moreover we can simplify the expression of ∇2

Xh(ij)(st)

in (8) by considering that X = W = W
T . Finally after

grouping the terms, we obtain the more compact form:

�
∇2

wf
�
l,k

= p

p−2�

z=0

ψ(z)ψ(p− 2− z), (16)

where

ψ(z) = (W z)a,c + (W z)b,d − (W z)a,d − (W z)b,c.

D. Newton’s direction ∆w

Let g ∈ Rm and H ∈ Rm×m such that g = ∇wf(w)
whose elements are given by equation (15) and H =
∇2

wf(w) whose elements are given by equation (16). Then
the direction ∆w to update the solution in Newton’s method
can be obtained solving the linear system H∆w = g.

E. Line search

The Newton’s method uses exact line search if at each
iteration the stepsize is selected in order to guarantee the
maximum amount of decrease of the function f in the
descent direction, i.e. t is selected as the global minimizer
of the univariate function φ(t):

φ(t) = f(w − t∆w), t > 0.

Usually exact line search is very difficult to implement,
possible alternatives can be the pure Newton’s method that
selects a stepsize t = 1 at every iteration or the backtracking

line search if t is selected to guarantee some sufficient
amount of decrease in the function φ(t). But we benefit from
the convexity of our problem to derive a procedure which
gives a high precision estimate of the optimal choice of the
exact line search stepsize. Notice that φ(t) can be written as
follows:

φ(t) = f(w − t∆w)

= Tr((In −Qdiag(w − t∆w)QT )p)

= Tr((In −Qdiag(w)QT + tQdiag(∆w)QT )p)

= Tr((W + tU)p)

= h(W + tU),

where U = Qdiag(∆w)QT and is also symmetric.
Since (12) is a smooth convex optimization problem, h is
also smooth and convex when restricted to any line that
intersects its domain. Then φ(t) = h(W + tU) is convex
in t and applying the chain rule to the composition of the
function h(Y ) = Tr(Y p) and Y (t) = W + tU (similarly to
what we have done for f in (10)), we can find the first and
second derivative:

φ
�(t) =

�

i,j

∂h

∂yij
uij = p

�

i

(Y p−1
U)i,i = pTr(Y p−1

U),

φ
��(t) =

dφ�(t)

dt
= p× Tr
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p−2�

q=0
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.

So we can apply a basic Newton’s method to find the
optimal t:

Let t1 = 1 and t0 = 0, select a tolerance η > 0,
while |tn − tn−1| > η

tn ← tn−1 − φ�(tn−1)
φ��(tn−1)

;
end while

At the end of this procedure, we select t = tn to be
used as the stepsize of the iteration.

F. The algorithm

We summarize the Newton’s method used for the trace
minimization problem (12):

Step 0: Choose a weight matrix W
(0) that satisfies the

conditions given in (12) (e.g. In is a feasible starting
weight matrix). Choose a precision � and set k ← 0.
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Line Search 
•  For choosing a stepsize that guarantees 

sufficient decrease in the function  

•  Exact line search is usually complex and 
other simple (non-optimal) choice are 
usually used 
–  Pure Newton t=1   (for all iterations) 
– Backtracking line search starts from t=1, and 

multiplicatively decrease t till sufficient 
decrease in  the function 

•  However, the special structure of our 
problem allows for a simple exact line 
search 

identity matrix and Q is the incidence matrix of graph G
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(the incidence matrix of a graph having n nodes and m links
is defined as the n×m matrix where for every link l ∼ (ij),
the l-th column of Q is all zeros except for Qil = +1 and
Qjl = −1). The equivalent unconstrained problem is then:

minimize
w

f(w) = Tr((In −Qdiag(w)QT )p). (13)

C. Gradient and Hessian

To apply Newton’s method to minimize the function f ,
we have to calculate first the gradient ∇wf and the Hessian
matrix ∇2

wf . The function f is a composition function
between h(W ) = Tr(W p) and the matrix function W =
I −Qdiag(w)QT :

f(w) = Tr(W p)|W=In−Qdiag(w)QT .

From Eq. (9), we have

(∇wf)l =
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i,j∈V

∇Wh(ij)
∂wij

∂wl
,

where ∇Wh(ij) = p(W p−1)ij (it follows from (7) and the
fact that W = W

T ). Due to the conditions mentioned earlier
(wij = wji = wl for all l ∼ (ij) and wij = 0 if (ij) /∈ E
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+1 if i = a and j = b

+1 if i = b and j = a

−1 if i = a and j = a

−1 if i = b and j = b

0 else.

(14)

We can then calculate the gradient ∇wf ∈ Rm. In particular
for l ∼ (ab) we have,

(∇wf)l = ∇Wh(ab) +∇Wh(ba) −∇Wh(aa) −∇Wh(bb)

= p(W p−1)b,a + p(W p−1)a,b

− p(W p−1)a,a − p(W p−1)b,b. (15)

For the calculation of the Hessian, let l ∼ (ab), k ∼ (cd)
be given links. Only 16 of the n

2
1n

2
2 terms in Eq. (10) (those

corresponding to i, j ∈ {a, b} and s, t ∈ {c, d}) are different
from zero because of (14), and they are equal to 1 or to
−1. Moreover we can simplify the expression of ∇2

Xh(ij)(st)

in (8) by considering that X = W = W
T . Finally after

grouping the terms, we obtain the more compact form:
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∇2

wf
�
l,k
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z=0

ψ(z)ψ(p− 2− z), (16)

where

ψ(z) = (W z)a,c + (W z)b,d − (W z)a,d − (W z)b,c.

D. Newton’s direction ∆w

Let g ∈ Rm and H ∈ Rm×m such that g = ∇wf(w)
whose elements are given by equation (15) and H =
∇2

wf(w) whose elements are given by equation (16). Then
the direction ∆w to update the solution in Newton’s method
can be obtained solving the linear system H∆w = g.

E. Line search

The Newton’s method uses exact line search if at each
iteration the stepsize is selected in order to guarantee the
maximum amount of decrease of the function f in the
descent direction, i.e. t is selected as the global minimizer
of the univariate function φ(t):

φ(t) = f(w − t∆w), t > 0.

Usually exact line search is very difficult to implement,
possible alternatives can be the pure Newton’s method that
selects a stepsize t = 1 at every iteration or the backtracking

line search if t is selected to guarantee some sufficient
amount of decrease in the function φ(t). But we benefit from
the convexity of our problem to derive a procedure which
gives a high precision estimate of the optimal choice of the
exact line search stepsize. Notice that φ(t) can be written as
follows:

φ(t) = f(w − t∆w)

= Tr((In −Qdiag(w − t∆w)QT )p)

= Tr((In −Qdiag(w)QT + tQdiag(∆w)QT )p)

= Tr((W + tU)p)

= h(W + tU),

where U = Qdiag(∆w)QT and is also symmetric.
Since (12) is a smooth convex optimization problem, h is
also smooth and convex when restricted to any line that
intersects its domain. Then φ(t) = h(W + tU) is convex
in t and applying the chain rule to the composition of the
function h(Y ) = Tr(Y p) and Y (t) = W + tU (similarly to
what we have done for f in (10)), we can find the first and
second derivative:

φ
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So we can apply a basic Newton’s method to find the
optimal t:

Let t1 = 1 and t0 = 0, select a tolerance η > 0,
while |tn − tn−1| > η

tn ← tn−1 − φ�(tn−1)
φ��(tn−1)

;
end while

At the end of this procedure, we select t = tn to be
used as the stepsize of the iteration.

F. The algorithm

We summarize the Newton’s method used for the trace
minimization problem (12):

Step 0: Choose a weight matrix W
(0) that satisfies the

conditions given in (12) (e.g. In is a feasible starting
weight matrix). Choose a precision � and set k ← 0.
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Exact Line Search 
•  For choosing a stepsize that guarantees sufficient 

decrease in the function  

 
where                              and let 	


•  Since h is convex, then         is also convex, and the 

first and second derivatives: 

•  With Newton- Raphson (exact stepsize) 
   

!(t) = f (w! t"w) = h(W + tU)

U =Qdiag(!w)QT Y =W + tU
!(t)

!! (t) = pTr(Y p"1U) !!! (t) = pTr( Y p"2"rUY rU
r# )and	
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Summary for Newton’s Method 

•  Step 0: Initial start W(0)=In  , precision ε , k=0	


•  Step 1: Calculate gradient 
•  Step 2: Calculate Hessian 
•  Step 3: Calculate Newton’s direction 

Stopping Condition:  
•  Step 4: Use exact line search for stepsize t(k)	



•  Step 5: Update the weight matrix 

•  Step 6: k=k+1  and go back to Step 1  

g =!w f "#m

H = (!2
w f +! Im )"#m$m

!w(k ) = H "1g

||!w(k ) ||< !

W (k+1) =W (k ) + t (k )Qdiag(!w(k ) )QT
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•  Since objective function is quadratic, pure 
newton converges in one iteration, starting 
from any feasible initial value 

•   Let W(0)=In, then                  and           
•  Substitute in equation       

Closed form solution for p=2 

g = !4"1m H = 2(2Im +Q
TQ)

W (k+1) =W (k ) + t (k )Qdiag(!w(k ) )QT

          = In "Qdiag((Im + 0.5QTQ)"11m )QT

Step 1: Calculate ∇wf
(k) from equation (15) (call this

gradient g).
Step 2: Calculate ∇2

wf
(k) from equation (16) (since f is

a convex function, we have ∇2
wf

(k) is a semi-definite
positive matrix, let H = ∇2

wf
(k)+γIm where γ can be

chosen to be the machine precision to guarantee that H
is positive definite and thus can have an inverse H

−1).
Step 3: Calculate Newton’s direction ∆w(k) = H

−1g.
Stop if ||∆w(k)|| ≤ �.

Step 4: Use the exact line search to find the stepsize t
(k).

Step 5: Update the weight matrix by the following equa-
tion:

W
(k+1) = W

(k) + t
(k)

Qdiag(∆w(k))QT
.

Step 6: Increment iteration k ← k + 1. Go to Step 1.

G. Closed form solution for p = 2

Interestingly, for p = 2 the Newton’s method converges
in 1 iteration. In fact for p = 2, the problem (12) is the
following:

minimize
W

h(W ) = Tr(W 2) =
�

i,j

w
2
ij

subject to W = W
T
,W1n = 1n,W ∈ CG.

(17)

Theorem 1. Let W(2) be the solution of the optimization
problem (17), then we have:

W(2) = In −Qdiag
�
(Im +

1

2
Q

T
Q)−11m

�
Q

T
, (18)

where Q is the incidence matrix of the graph G.

Proof. The optimization function is quadratic in the vari-
ables wij , so applying Newton’s algorithm to minimize
the function gives convergence in one iteration independent
from the initial starting point W (0). Let W (0) = In which
is a feasible initial starting point. The gradient g can be
calculated according to equation (15):

gl = 2 ((In)i,j + (In)j,i − (In)i,i − (In)j,j)

= 2(0 + 0− 1− 1) = −4 ∀l = 1, . . . ,m,

so in vector form g = −4 × 1m. To calculate the Hessian
∇2

W f , we apply equation (16) for p = 2, we get that for any
two links l ∼ (ab) and k ∼ (cd), we have
�
∇2

wf
�
l,k

= 2× ((In)a,c + (In)b,d − (In)a,c − (In)b,d)
2
,

and thus

�
∇2

wf
�
l,k

=






2× (2)2 if l = k

2× (1)2 if l and k share a common vertex,
0 else.

(19)
In matrix form, we can write the Hessian as follows:

∇2
wf = 2× (2Im +Q

T
Q),

where Q is the incidence matrix of the graph given earlier
(in fact, QT

Q−2Im is the adjacency matrix of what is called
the line graph of G). Notice that since Q

T
Q is semi-definite

positive all the eigenvalues of the Hessian are larger than 2
and then the Hessian is invertible. The Newton’s direction is
calculated as follows:

∆w = H
−1g = −(Im +

1

2
Q

T
Q)−11m.

Thus the optimal solution for the problem for p = 2 is:

W(2) = W
(0) +Qdiag(∆w)QT

= In −Qdiag
�
(Im +

1

2
Q

T
Q)−11m

�
Q

T
.

Moreover, in the sequel we show that on D-regular graphs,
the given optimization problem for p = 2 selects the
same weights as other famous weight selection algorithms
as metropolis weight selection or maximum degree weight
selection (for a survey on weight selection algorithms see
[15] and the references therein).

A D-regular graph is a graph where every node has the
same number of neighbors which is D. Examples of D

regular graphs are the cycle graphs (2-regular), the complete
graph (n− 1-regular), and many others.

On these graphs, the sum of any row in the matrix Q
T
Q

is equal to 2D, then 2D is an eigenvalue that corresponds
to the eigenvector 1m. Since Q

T
Q is a symmetric matrix, it

has an eigenvalue decomposition form:

Q
T
Q =

�

k

λkvkv
T
k ,

where {vk} is an orthonormal set of eigenvectors (without
loss of generality, let v1 = 1√

m
1m). Moreover, (Im +

1
2Q

T
Q) is invertible because it is positive definite and has

the same eigenvectors as Q
T
Q. Considering its inverse as a

function of QT
Q, we can write:

(Im +
1

2
Q

T
Q)−1 =

�

k

(1 +
λk

2
)−1vkv

T
k .

Since 1m is an eigenvector of QT
Q and therefore of (Im +

1
2Q

T
Q)−1, it is perpendicular to all the others (vT

k 1m = 0
for all k �= 1). Hence, it follows that:

(Im +
1

2
Q

T
Q)−11m = (1 +

λ1

2
)−1v1(

m√
m
) =

1

1 +D
1m.

As a result, the solution of the optimization is given by,

W(2) = In − 1

1 +D
QQ

T
,

or equivalently the solution in G
� is given by w:

wl =
1

1 +D
∀l = 1, . . . ,m.

Therefore, the solution of the suggested optimization prob-
lem for p = 2 gives the same matrix on D-regular graphs as
other weight selection algorithms for average consensus.
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W(2) = In −Qdiag
�
(Im +

1

2
Q

T
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, (18)

where Q is the incidence matrix of the graph G.

Proof. The optimization function is quadratic in the vari-
ables wij , so applying Newton’s algorithm to minimize
the function gives convergence in one iteration independent
from the initial starting point W (0). Let W (0) = In which
is a feasible initial starting point. The gradient g can be
calculated according to equation (15):

gl = 2 ((In)i,j + (In)j,i − (In)i,i − (In)j,j)

= 2(0 + 0− 1− 1) = −4 ∀l = 1, . . . ,m,
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and thus
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Moreover, in the sequel we show that on D-regular graphs,
the given optimization problem for p = 2 selects the
same weights as other famous weight selection algorithms
as metropolis weight selection or maximum degree weight
selection (for a survey on weight selection algorithms see
[15] and the references therein).
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graph (n− 1-regular), and many others.
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is equal to 2D, then 2D is an eigenvalue that corresponds
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Q =
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where {vk} is an orthonormal set of eigenvectors (without
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1m). Moreover, (Im +

1
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Q) is invertible because it is positive definite and has

the same eigenvectors as Q
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Q. Considering its inverse as a

function of QT
Q, we can write:
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Q)−1 =
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Since 1m is an eigenvector of QT
Q and therefore of (Im +
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Q)−1, it is perpendicular to all the others (vT

k 1m = 0
for all k �= 1). Hence, it follows that:
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)−1v1(
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) =
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1m.

As a result, the solution of the optimization is given by,

W(2) = In − 1

1 +D
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,

or equivalently the solution in G
� is given by w:

wl =
1

1 +D
∀l = 1, . . . ,m.

Therefore, the solution of the suggested optimization prob-
lem for p = 2 gives the same matrix on D-regular graphs as
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Simulation 
Tconv ER(n = 100, P r = 0.07)

(number of iterations) p = 2 p = 4 p = 6 p = 10
Exact-Newton 1 5 5.7 6.1
Pure-Newton 1 9 11.1 13.9

Exact-GD 72.3 230.5 482.7 1500.5
Exact-Nesterov 130.2 422.8 811.3 1971.2

BT-GD or BT-Nesterov > 5000 > 5000 > 5000 > 5000

TABLE I
CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR

PROBLEM (12).

IV. SIMULATIONS

We apply the above optimization technique to solve prob-
lem (12) on Erdos Renyi random networks ER(n, Pr),
where n is the number of nodes and Pr is the probability
of existence of a link. We compare the number of iterations
for convergence with those of first order methods like the
Descent Gradient (DG) and the accelerated gradient method
(due to Nestrov [16]) using either backtracking line search
(denoted by BT-methods in the figure) or exact line search
(denoted by Exact-methods in the figure).3 The acceler-
ated gradient (Nesterov) is as follows, starting by w(0) =
w(−1) = 0 ∈ Rm, the iterations are given by:

y = w(k−1) +
k − 2

k + 1
(w(k−1) −w(k−2));

w(k) = y − t
(k)∇yf(y),

where t
(k) is the stepsize. The Nesterov algorithm usually

achieves faster rate of convergence with respect to traditional
first order methods. The Gradient Descent method follows
the same steps of the Newton’s algorithm (section III-F), but
in Step 2, the Hessian H is taken as the identity matrix (for
Gradient Descent methods HGD = Im). Since at the optimal
value w

∗ the gradient vanishes (i.e. ||g(k)|| = 0), we consider
the convergence time Tconv to be:

Tconv = min{k : ||g(k)|| < 10−10}.

Table 1 shows the results for the Newton’s and the other first
order methods. The initial condition for the optimization is
given by W

(0) = In which is a feasible starting point. The
values are averaged over 100 independent runs for each of
the (n, Pr, p) values. The results show that the average con-
vergence time of Newton’s is much less than the first order
methods in terms of the number of iterations. As we can see,
when using exact line search, Exact-Nesterov is slower than
Exact-DG method, this can be due to the fact that the Descent
Gradient does not suffer from the zig-zag problem usually
caused by poorly conditioned convex problems. Moreover,
using backtracking line search for first order methods is not
converging in a reasonable number of iterations because the
function we are considering is not Lipschitz continuous when
p > 2 and due to the high precision stopping condition.
Note that, the number of iterations is not the only factor to
take into account, in fact the Newton’s method requires at

3We implemented directly the methods in Matlab.

each iteration to invert the Hessian matrix, while GD has
lower computational cost. However, GD is very sensitive
to changing the stepsize, while Newton’s method is not.
By applying constant or backtracking line search stepsizes
to the GD method, the algorithm is not converging in a
reasonable number of iterations while even the simplest
Newton’s method (pure Newton that uses a stepsize equals
to 1 for all iterations) is converging in less than 14 iterations
for the ER(n = 100, P r = 0.07) graphs.

V. CONCLUSION

In this paper, we showed how the Newton’s method
can be used for solving the constrained Schatten p-norm
minimization (for even p). As a case study we showed how
to apply the methodology to optimal weight selection for
consensus protocols. We also derived closed form solutions
for the case of p = 2.
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reasonable number of iterations while even the simplest
Newton’s method (pure Newton that uses a stepsize equals
to 1 for all iterations) is converging in less than 14 iterations
for the ER(n = 100, P r = 0.07) graphs.
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where t
(k) is the stepsize. The Nesterov algorithm usually

achieves faster rate of convergence with respect to traditional
first order methods. The Gradient Descent method follows
the same steps of the Newton’s algorithm (section III-F), but
in Step 2, the Hessian H is taken as the identity matrix (for
Gradient Descent methods HGD = Im). Since at the optimal
value w

∗ the gradient vanishes (i.e. ||g(k)|| = 0), we consider
the convergence time Tconv to be:

Tconv = min{k : ||g(k)|| < 10−10}.

Table 1 shows the results for the Newton’s and the other first
order methods. The initial condition for the optimization is
given by W

(0) = In which is a feasible starting point. The
values are averaged over 100 independent runs for each of
the (n, Pr, p) values. The results show that the average con-
vergence time of Newton’s is much less than the first order
methods in terms of the number of iterations. As we can see,
when using exact line search, Exact-Nesterov is slower than
Exact-DG method, this can be due to the fact that the Descent
Gradient does not suffer from the zig-zag problem usually
caused by poorly conditioned convex problems. Moreover,
using backtracking line search for first order methods is not
converging in a reasonable number of iterations because the
function we are considering is not Lipschitz continuous when
p > 2 and due to the high precision stopping condition.
Note that, the number of iterations is not the only factor to
take into account, in fact the Newton’s method requires at

3We implemented directly the methods in Matlab.

each iteration to invert the Hessian matrix, while GD has
lower computational cost. However, GD is very sensitive
to changing the stepsize, while Newton’s method is not.
By applying constant or backtracking line search stepsizes
to the GD method, the algorithm is not converging in a
reasonable number of iterations while even the simplest
Newton’s method (pure Newton that uses a stepsize equals
to 1 for all iterations) is converging in less than 14 iterations
for the ER(n = 100, P r = 0.07) graphs.

V. CONCLUSION

In this paper, we showed how the Newton’s method
can be used for solving the constrained Schatten p-norm
minimization (for even p). As a case study we showed how
to apply the methodology to optimal weight selection for
consensus protocols. We also derived closed form solutions
for the case of p = 2.
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•  Observation 2 (less intuitive) 
 
Newton’s method is less sensitive to stepsize (exact 
stepsize does not change much convergence) 
In gradient methods, highly sensitive to stepsize 
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Simulation 
Tconv ER(n = 100, P r = 0.07)

(number of iterations) p = 2 p = 4 p = 6 p = 10
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BT-GD or BT-Nesterov > 5000 > 5000 > 5000 > 5000

TABLE I
CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR

PROBLEM (12).

IV. SIMULATIONS

We apply the above optimization technique to solve prob-
lem (12) on Erdos Renyi random networks ER(n, Pr),
where n is the number of nodes and Pr is the probability
of existence of a link. We compare the number of iterations
for convergence with those of first order methods like the
Descent Gradient (DG) and the accelerated gradient method
(due to Nestrov [16]) using either backtracking line search
(denoted by BT-methods in the figure) or exact line search
(denoted by Exact-methods in the figure).3 The acceler-
ated gradient (Nesterov) is as follows, starting by w(0) =
w(−1) = 0 ∈ Rm, the iterations are given by:
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first order methods. The Gradient Descent method follows
the same steps of the Newton’s algorithm (section III-F), but
in Step 2, the Hessian H is taken as the identity matrix (for
Gradient Descent methods HGD = Im). Since at the optimal
value w

∗ the gradient vanishes (i.e. ||g(k)|| = 0), we consider
the convergence time Tconv to be:

Tconv = min{k : ||g(k)|| < 10−10}.

Table 1 shows the results for the Newton’s and the other first
order methods. The initial condition for the optimization is
given by W

(0) = In which is a feasible starting point. The
values are averaged over 100 independent runs for each of
the (n, Pr, p) values. The results show that the average con-
vergence time of Newton’s is much less than the first order
methods in terms of the number of iterations. As we can see,
when using exact line search, Exact-Nesterov is slower than
Exact-DG method, this can be due to the fact that the Descent
Gradient does not suffer from the zig-zag problem usually
caused by poorly conditioned convex problems. Moreover,
using backtracking line search for first order methods is not
converging in a reasonable number of iterations because the
function we are considering is not Lipschitz continuous when
p > 2 and due to the high precision stopping condition.
Note that, the number of iterations is not the only factor to
take into account, in fact the Newton’s method requires at
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each iteration to invert the Hessian matrix, while GD has
lower computational cost. However, GD is very sensitive
to changing the stepsize, while Newton’s method is not.
By applying constant or backtracking line search stepsizes
to the GD method, the algorithm is not converging in a
reasonable number of iterations while even the simplest
Newton’s method (pure Newton that uses a stepsize equals
to 1 for all iterations) is converging in less than 14 iterations
for the ER(n = 100, P r = 0.07) graphs.

V. CONCLUSION

In this paper, we showed how the Newton’s method
can be used for solving the constrained Schatten p-norm
minimization (for even p). As a case study we showed how
to apply the methodology to optimal weight selection for
consensus protocols. We also derived closed form solutions
for the case of p = 2.
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•  Observation 3 (not intuitive) 
 
Decent Gradient method is faster than Nesterov 
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Ques9ons?	
  



Possible Approaches  

•  First Order Methods 
–  Gradient Method 
–  Fast Gradient Method (Nestrov) 
–  Drawbacks 

•  Slow convergence  
•  Step size selection (for unbounded gradient) 

•  Second Order Methods (for differentiable R(.) ) 
–  Newton’s Method 
–  Drawbacks 

•  Difficult to have closed form solutions 
•  Complexity (forming and inverting the Hessian) 

ArgminX  R(X)
subject to  L(X) = ŷ

ACC	
  2014,	
  June	
  5th,	
  Mahmoud	
  El	
  Chamie	
  



Newton’s Method for Schatten-p Norm 

function h(x) with respect to the vector x ∈ Rm is denoted
by ∇xh ∈ Rm and its Hessian is denoted by the matrix
∇2

xh ∈ Rm,m whose elements are given by the following
equations:

(∇xh)l �
∂h

∂xl
, and

�
∇2

xh
�
l,k

� ∂2h

∂xl∂xk
.

For a scalar function of a matrix, h : Rn1,n2 → R, the
gradient of the function h(X) with respect to the vector
vect(X) ∈ Rn1n2,1 is denoted by ∇Xh ∈ Rn1n2,1 and its
Hessian is denoted by the matrix ∇2

Xh ∈ Rn1n2,n1n2 whose
elements are given by the equations:

∇Xh(ij) �
∂h

∂xij
, and ∇2

Xh(ij)(st) �
∂2h

∂xij∂xst
.

II. THE CONSTRAINED NORM MINIMIZATION

In this paper, we deal with the following optimization
problem that appears in a quite large number of applications:

minimize
X

||X||σp

subject to φ(X) = y,

X ∈ Rn1,n2 , y ∈ Rc,

(2)

where ||X||σp = (
�

i σ
p
i )

1/p is the Schatten p-norm of the
matrix X , and φ(X) is a linear function of the elements of
X and then it can be written also as:

φ(X) = A vect(X),

where A ∈ Rc,n1n2 and c is the number of constraints. We
suppose that the problem admits always a solution X∗.

Since we are interested in applying Newton’s method to
solve equation (2), the objective function should be twice
differentiable. Not all the norms satisfy this property, we
limit then our study to the case where p is an even integer
because in this case we show that the problem (2) is
equivalent to a smooth optimization problem. Let p = 2q,
raising the objective function to the power p will not change
the solution set, so we can equivalently consider the objective
function:

h(X) = ||X||pσp = Tr
��

XXT
�q�

.

Since we only have linear constraints (A vect(X) = y), by
taking only the linearly independent equations, and using
Gaussian elimination to have a full row rank matrix, we can
rewrite the constraints as follows:

�
Ir B

�
P vect(X) = ŷ,

where Ir is the r-identity matrix, r is the rank of the
matrix A (the number of linearly independent equations),
B ∈ Rr,n1n2−r, P is an n1n2 × n1n2 permutation matrix
of the variables, and ŷ ∈ Rr is a vector. We arrive at the
conclusion that the original problem (2) is equivalent to:

minimize
X

h(X) = Tr
��

XXT
�q�

subject to
�
Ir B

�
P vect(X) = ŷ.

(3)

Before applying Newton’s method to (3), we can further
reduce the problem to an unconstrained minimization prob-
lem. By considering the equality constraints, we can form a
mapping from X ∈ Rn1,n2 to the vector x ∈ Rn1n2−r as
follows:

x =
�
0n1n2−r,r In1n2−r

�
P vect(X), (4)

and X can be obtained from x and ŷ as

X = vect−1

�
P−1

�
ŷ −Bx

x

��
, (5)

where vect−1 : Rn1n2 → Rn1,n2 is the inverse function
of vect(), i.e. vect−1(vect(X)) = X . The unconstrained
minimization problem is then:

minimize
x

f(x), (6)

where f(x) = Tr
��
XXT

�q� and X is by (5).
All three problems (2), (3), and (6) are convex and are

equivalent to each other. We apply Newton’s method to (6) to
find the optimal vector x∗ and then deduce the solution of the
original problem X∗. The main difficulty in most Newton’s
methods is the calculation of the gradient and the Hessian.
In many applications, the Hessian is not known and for this
reason gradient methods are applied rather than the faster
Newton’s methods. However, in this paper, we show that by
exploring the special structure of the function h(X), we can
calculate explicitly both ∇xf and ∇2

xf . To this purpose, we
first calculate the gradient and Hessian of h(X), and then
use the linearity of the constraints. Using matrix calculus
[12][13], the gradient and Hessian of h(X) can be given by
the following Lemma:

Lemma 1. Let h(X) = Tr
��
XXT

�q�
where X ∈ Rn1,n2 ,

then the gradient of h is given by,

∇Xh(ij) = 2q
��

XXT
�q−1

X
�

i,j
, (7)

and the Hessian,

∇2
Xh(ij)(st) = 2q

q−2�

k=0

��
XXT

�k
X
�

i,t

��
XXT

�q−2−k
X
�

s,j

+ 2q
q−1�

k=0

��
XXT

�k�

i,s

��
XTX

�q−1−k
�

t,j
.

(8)

We can now apply the chain rule to calculate the gradient
and Hessian of f(x), taking into account the mapping from
x to X in (5).

For the gradient ∇xf , it holds for l = 1, . . . , n1n2 − r:

(∇xf)l =
∂f

∂xl
=

�

i,j

∇Xh(ij)
∂xij

∂xl
, (9)

where all the partial derivatives ∂xij

∂xl
are constant values

because (5) is a linear transformation.1 Applying the chain

1Because of space constraints and for the sake of conciseness we do not
write explicitly the value of these partial derivatives in the general case, but
only for the specific case study we consider in the next section.

1.  Substitute the constraints in the objective function,  
 
 

2.  Reformulate into an unconstrained problem: 
 
 
3.  Solve for the gradient                  and Hessian                     

(closed form formulas are given in the paper, we only 
give the results here for a case study ) 

4.  Find the newton’s direction, iteratively update variable 
using stepsize (details in the upcoming case study) 
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X ∈ Rn1,n2 , y ∈ Rc,
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where ||X||σp = (
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1/p is the Schatten p-norm of the
matrix X , and φ(X) is a linear function of the elements of
X and then it can be written also as:

φ(X) = A vect(X),

where A ∈ Rc,n1n2 and c is the number of constraints. We
suppose that the problem admits always a solution X∗.

Since we are interested in applying Newton’s method to
solve equation (2), the objective function should be twice
differentiable. Not all the norms satisfy this property, we
limit then our study to the case where p is an even integer
because in this case we show that the problem (2) is
equivalent to a smooth optimization problem. Let p = 2q,
raising the objective function to the power p will not change
the solution set, so we can equivalently consider the objective
function:

h(X) = ||X||pσp = Tr
��

XXT
�q�

.

Since we only have linear constraints (A vect(X) = y), by
taking only the linearly independent equations, and using
Gaussian elimination to have a full row rank matrix, we can
rewrite the constraints as follows:
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P vect(X) = ŷ,

where Ir is the r-identity matrix, r is the rank of the
matrix A (the number of linearly independent equations),
B ∈ Rr,n1n2−r, P is an n1n2 × n1n2 permutation matrix
of the variables, and ŷ ∈ Rr is a vector. We arrive at the
conclusion that the original problem (2) is equivalent to:
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Before applying Newton’s method to (3), we can further
reduce the problem to an unconstrained minimization prob-
lem. By considering the equality constraints, we can form a
mapping from X ∈ Rn1,n2 to the vector x ∈ Rn1n2−r as
follows:
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where vect−1 : Rn1n2 → Rn1,n2 is the inverse function
of vect(), i.e. vect−1(vect(X)) = X . The unconstrained
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All three problems (2), (3), and (6) are convex and are

equivalent to each other. We apply Newton’s method to (6) to
find the optimal vector x∗ and then deduce the solution of the
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In many applications, the Hessian is not known and for this
reason gradient methods are applied rather than the faster
Newton’s methods. However, in this paper, we show that by
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xf . To this purpose, we
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k=0

��
XXT

�k�

i,s

��
XTX

�q−1−k
�

t,j
.

(8)
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where Ir is the r-identity matrix, r is the rank of the
matrix A (the number of linearly independent equations),
B ∈ Rr,n1n2−r, P is an n1n2 × n1n2 permutation matrix
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D-regular graphs 
•  D-regular graphs are graphs where all 

vertices have the same degree D (cycles, 
complete graphs, …) 

•  Optimal values for p=2 is  

•  Which gives the same weights as well 
known weight selection heuristics as 
Metropolis weight selection or the 
maximum degree. 

Step 1: Calculate ∇wf
(k) from equation (15) (call this

gradient g).
Step 2: Calculate ∇2

wf
(k) from equation (16) (since f is

a convex function, we have ∇2
wf

(k) is a semi-definite
positive matrix, let H = ∇2

wf
(k)+γIm where γ can be

chosen to be the machine precision to guarantee that H
is positive definite and thus can have an inverse H

−1).
Step 3: Calculate Newton’s direction ∆w(k) = H

−1g.
Stop if ||∆w(k)|| ≤ �.

Step 4: Use the exact line search to find the stepsize t
(k).

Step 5: Update the weight matrix by the following equa-
tion:

W
(k+1) = W

(k) + t
(k)

Qdiag(∆w(k))QT
.

Step 6: Increment iteration k ← k + 1. Go to Step 1.

G. Closed form solution for p = 2

Interestingly, for p = 2 the Newton’s method converges
in 1 iteration. In fact for p = 2, the problem (12) is the
following:

minimize
W

h(W ) = Tr(W 2) =
�

i,j

w
2
ij

subject to W = W
T
,W1n = 1n,W ∈ CG.

(17)

Theorem 1. Let W(2) be the solution of the optimization
problem (17), then we have:

W(2) = In −Qdiag
�
(Im +

1

2
Q

T
Q)−11m

�
Q

T
, (18)

where Q is the incidence matrix of the graph G.

Proof. The optimization function is quadratic in the vari-
ables wij , so applying Newton’s algorithm to minimize
the function gives convergence in one iteration independent
from the initial starting point W (0). Let W (0) = In which
is a feasible initial starting point. The gradient g can be
calculated according to equation (15):

gl = 2 ((In)i,j + (In)j,i − (In)i,i − (In)j,j)

= 2(0 + 0− 1− 1) = −4 ∀l = 1, . . . ,m,

so in vector form g = −4 × 1m. To calculate the Hessian
∇2

W f , we apply equation (16) for p = 2, we get that for any
two links l ∼ (ab) and k ∼ (cd), we have
�
∇2

wf
�
l,k

= 2× ((In)a,c + (In)b,d − (In)a,c − (In)b,d)
2
,

and thus

�
∇2

wf
�
l,k

=






2× (2)2 if l = k

2× (1)2 if l and k share a common vertex,
0 else.

(19)
In matrix form, we can write the Hessian as follows:

∇2
wf = 2× (2Im +Q

T
Q),

where Q is the incidence matrix of the graph given earlier
(in fact, QT

Q−2Im is the adjacency matrix of what is called
the line graph of G). Notice that since Q

T
Q is semi-definite

positive all the eigenvalues of the Hessian are larger than 2
and then the Hessian is invertible. The Newton’s direction is
calculated as follows:

∆w = H
−1g = −(Im +

1

2
Q

T
Q)−11m.

Thus the optimal solution for the problem for p = 2 is:

W(2) = W
(0) +Qdiag(∆w)QT

= In −Qdiag
�
(Im +

1

2
Q

T
Q)−11m

�
Q

T
.

Moreover, in the sequel we show that on D-regular graphs,
the given optimization problem for p = 2 selects the
same weights as other famous weight selection algorithms
as metropolis weight selection or maximum degree weight
selection (for a survey on weight selection algorithms see
[15] and the references therein).

A D-regular graph is a graph where every node has the
same number of neighbors which is D. Examples of D

regular graphs are the cycle graphs (2-regular), the complete
graph (n− 1-regular), and many others.

On these graphs, the sum of any row in the matrix Q
T
Q

is equal to 2D, then 2D is an eigenvalue that corresponds
to the eigenvector 1m. Since Q

T
Q is a symmetric matrix, it

has an eigenvalue decomposition form:

Q
T
Q =

�

k

λkvkv
T
k ,

where {vk} is an orthonormal set of eigenvectors (without
loss of generality, let v1 = 1√

m
1m). Moreover, (Im +

1
2Q

T
Q) is invertible because it is positive definite and has

the same eigenvectors as Q
T
Q. Considering its inverse as a

function of QT
Q, we can write:

(Im +
1

2
Q

T
Q)−1 =

�

k

(1 +
λk

2
)−1vkv

T
k .

Since 1m is an eigenvector of QT
Q and therefore of (Im +

1
2Q

T
Q)−1, it is perpendicular to all the others (vT

k 1m = 0
for all k �= 1). Hence, it follows that:

(Im +
1

2
Q

T
Q)−11m = (1 +

λ1

2
)−1v1(

m√
m
) =

1

1 +D
1m.

As a result, the solution of the optimization is given by,

W(2) = In − 1

1 +D
QQ

T
,

or equivalently the solution in G
� is given by w:

wl =
1

1 +D
∀l = 1, . . . ,m.

Therefore, the solution of the suggested optimization prob-
lem for p = 2 gives the same matrix on D-regular graphs as
other weight selection algorithms for average consensus.
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