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Talk Outline

» The General Optimization Framework
* Contribution of the Paper

 Newton's Method for the General
Framework

* Newton's Method for Weighted Graph
Optimization (a case study)

* Performance Evaluation
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‘The General Optimization Framework
" Argmin, f(X) = E(X.9)+7R(X)

Loss Function Regularization
—_— X E %nl,nz
— y  :scalar for the trade-off between the
two terms

* For underdetermined systems (more variables
than the equations): the minimal norm
interpolation problem [A. Argyriou et al., 2010],

Argmin, R(X)
subjectto L(X)=1y

— L(X)=Avext(X) is a linear function (A has r x n;n,
dimensions , r rank of A)
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Schatten-p Norm

R(X)=IXI, = (E or)"r

— 0, is the i-th singular value of X
— p=1is the Nuclear norm

— p=2is tThe Frobeniuos norm

— p=is the Spectral horm

- Differentiable for even p=2q, 11X II"=Tr(XX")")
* The problem is then convex
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Contribution
minimize h(X)= Tr((XX")?)
subject to Avect(X) =y

* Transform into unconstrained optimization

* Find close form solutions for the gradient and
the Hessian

« Apply Newton's method

* Show that the optimization as applications in
graph optimization problems
— Multi-agents consensus problems

— Hessian can be sparse and exact step-size can be
easily calculated

 Study the convergence time of different
optimization methods for this problem
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Weighted Graph Optimization: Weight
Selection in Consensus Protocols

 Consensus algorithm
— Given a network G=(V, E)

— Each node has a local variable x,k), where k is the
iteration number and x(0) are initial values

— Each node performs weighted sum of its value and
its neighbors’ values:

xl(k+1) =Wl-i><xl-(k)+ 2 Wij Xx](k)

neighbors j

— In matrix form:

x(k)=W*x(0)
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Welgh’red Graph Optimization: Weight

Selection in Consensus Protocols
 Consensus algorithm

x;(k+1) =w; X x;(k)+ z w;; X x; (k)
neighbors j
— For some (easy to satisfy) condition on the weights, the
algorithm is guaranteed to converge to the average of
initial values

— An approximation to the best weights (that achieve
fastest convergence independent of initial values) is

minimize Tr(W7P)
%

subject to W =w7%, w1, =1,, W e Cq,

— p identifies the error from optimal weights [M. El Chamie et
al., 2012]

ACC 2014, June 5" Mahmoud El Chamie 8/21



Crzia—~

uuuuuuuuuuuuuuuuuuuuuuuuuu

Weighted Graph Optimization: Weight
Selection in Consensus Protocols
 Consensus algorithm

xile+ D) =wy x a0+ Y wy X0
neighbors j
— For some (easy to satisfy) condition on the weights, the
algorithm is guaranteed to converge to the average of
initial values

— An approximation to the best weights (that achieve
fastest convergence independent of initial values) is

minimize T”/’(Wp) € Schatten p-norm of W
%%

subject to W = WT, W1, =1,, W € Cqg, < Linear constraints

— p identifies the error from optimal weights [M. El Chamie et
al., 2012]
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Newton's Method

* Form the unconstrained problem:
f(W) — TT(WP)‘W:In—Qdiag(w)QT

— w : m by I weight vector (each link is given a
variable)

— Q : n by m incidence matrix of the graph G
* Form the gradient g=v,feR” , i<@n:

(V) = a‘% = P, + (WP, (WP, (W), )
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Newton's Method

* Form the unconstrained problem:
f(W) — TT(WP)‘W:In—Qdiag(w)QT

— w : m by I weight vector (each link is given a
variable)

— Q : n by m incidence matrix of the graph G
* Form the Hessuan H=V,feR™":

V(z) = (W?%)a,e + (W? )b,d — (W?)a,a — (W?)pc.
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Newton's Direction

« We calculated the gradient g, and the
Hessian H

— Notice that H is positive semi-definite
since f is convex

* Newton's Direction Aw is simply the
solution of :

HAw =g
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Line Search

» For choosing a stepsize that guarantees
sufficient decrease in the function

o(t) = f(lw—tAw) , >0

» Exact line search is usually complex and
other simple (non-optimal) choice are
usually used
— Pure Newton t=1 (for all iterations)

— Backtracking line search starts from r=1, and
multiplicatively decrease 1 till sufficient
decrease in the function

» However, the special structure of our
problem allows for a simple exact line
search
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Exact Line Search

» For choosing a stepsize that guarantees sufficient
decrease in the function

O(t)=f(w—tAw)=h(W +tU)

where U =Qdiag(Aw)Q" and let Y =W+:U

« Since h is convex, then ¢(7) is also convex, and the
first and second derivatives:

$()=pTe(Y"'U) and ¢"(t)=pTe(Y Y"*"UY'U)

« With Newton- Raphson (exact stepsize)
_9@,.)
¢ (1,.)
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Summary for Newton's Method

« Step O: Initial start W%=1, , precision ¢ , k=0
» Step l: Calculate gradient g=V,feR”

+ Step 2: Calculate Hessian H =(V.f+yl,)ER™"
« Step 3: Calculate Newton's direction Aw" =H"'g

AW ll< &
« Step 4: Use exact line search for stepsize %
» Step 5: Update the weight matrix
W = w® L Y0 diag(Aw')O"
« Step 6: k=k+1 and go back to Step
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Closed form solution for p=2

c .. 2
minimize h(W) =Tr(W*) wa

subject to W = wt wi, = 1n, W e Cq.

« Since objective function is quadratic, pure
hewton converges in , Starting
from any feasible initial value

*+ Let W9=I,then g=-4x1, and H =2(21,+Q'0)
« Substitute in equation
W(k+1) _ W(k) + l‘(k)Q diag(Aw(k))QT
=1, -Qdiag((7, +0.50"0)"'1,)0"
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Closed form solution for p=2

c .. 2
minimize h(W) =Tr(W?) wa

subject to W = wt wi, = 1n, W e Cq.

» Since objective function is quadratic, pure
newton converges in one iteration, starting

from any feasible initial value

+ Let W0=], then g=-4x1, and H=2(21,+0"Q)

« Substitute in equation
W(k+1) _ W(k) + t(k)Q diag(Aw(k))QT

C

=1, - Qdiag((1, +0.50"0)"'1,)Q"

osed Form
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Simulation

Teonw ER(n = 100, Pr = 0.07)
(number of iterations) p =2 p=4 p==06 p =10
Exact-Newton 1 5 5.7 6.1
Pure-Newton 1 9 11.1 13.9
Exact-GD 72.3 230.5 482.7 1500.5
Exact-Nesterov 130.2 422.8 811.3 1971.2
BT-GD or BT-Nesterov | > 5000 > 5000 > 5000 > 5000

CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR

TABLE I

PROBLEM (12).

GD: Decent
Gradient

BT- : Backtracking
line search

Stopping Condition

l1gll<10-10
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Simulation

Teono ER(n = 100, Pr = 0.07)

(number of iterations) p=2 p=4 p=6 p=10 GD: [,)ecent
| Exact-Newton 1 5 5.7 6.1 | Gradient
Pure-Newton 1 9 11.1 13.9 |+ BT-:Backtracking
Exact-GD 723 2305 4827 15005 |  |ine search
Exact-Nesterov 130.2 422.8 811.3 1971.2
BT-GD or BT-Nesterov | > 5000 > 5000 > 5000 > 5000 |* Stopping Condition
TABLE 1 llgll<10-1°

CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR
PROBLEM (12).

« Observation 1 (intuitive)

On average, the number of iterations to converge of
Newton much less than first order methods
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Simulation

Toome ER(n = 100, Pr = 0.07) . .

(number of iterations) p=2 p=4 p=6 p=10 GD: [,)ecent
Exact-Newton 1 5} 5.7 6.1 Gradient
Pure-Newton 1 9 11.1 13.9 |+ BT-:Backtracking

Exact-GD 723 2305 4827 15005 |  |ine search
Exact-Nesterov 130.2 422.8 811.3 1971.2
BT-GD or BT-Nesterov | > 5000 > 5000 > 5000 > 5000 |* Stopping Condition
TABLE 1 llgll<10-1°

CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR
PROBLEM (12).

« Observation 2 (less intuitive)

Newton's method is less sensitive to stepsize (exact
stepsize does not change much convergence)
In gradient methods, highly sensitive to stepsize

ACC 2014, June 5" Mahmoud El Chamie 19/21



uuuuuuuuuuuuuuuuuuuuuuuuuu

Simulation

Teonw ER(n = 100, Pr = 0.07)
(number of iterations) p =2 p=4 p==06 p =10
Exact-Newton 1 5 5.7 6.1
Pure-Newton 1 9 11.1 13.9
Exact-GD 72.3 230.5 482.7 1500.5
Exact-Nesterov 130.2 422.8 811.3 1971.2
BT-GD or BT-Nesterov | > 5000 > 5000 > 5000 > 5000
TABLE 1

CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR

PROBLEM (12).

« Observation 3 (not intuitive)

GD: Decent
Gradient

BT- : Backtracking
line search

Stopping Condition

l1gll<10-10

Decent Gradient method is faster than Nesterov
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Conclusion

* Newton's method for Schatten p-norm
minimization

» Tts application to weighted graph problems
— Sparse Hessian
— Fast convergence
— Robusthess to stepsize

* Future work
— General values of p (not just for even values)
— Other graph optimization
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Conclusion

* Newton's method for Schatten p-norm
minimization

» Tts application to weighted graph problems
— Sparse Hessian
— Fast convergence
— Robusthess to stepsize

* Future work
— General values of p (not just for even values)

— Other graph optimization Thank you!
Questions?
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Possible Approaches
Argmin, R(X)
subjectto L(X)=1y

* First Order Methods
— Gradient Method
— Fast Gradient Method (Nestrov)

— Drawbacks
* Slow convergence
 Step size selection (for unbounded gradient)

» Second Order Methods (for differentiable R(.) )
— Newton's Method

— Drawbacks
« Difficult to have closed form solutions
« Complexity (forming and inverting the Hessian)
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Newton's Method for Schatten-p Norm

mini}gnize h(X)="Tr ((XXT)Q)

subject to [ I. B ] Pvect(X) =y
1. Substitute the constraints in the objective function,
X = [ L ] P vect(X), X = vect™! (P_l [ y -~ bx ]) )

X
2. Reformulate into an unconstrained problem:
mini}{nize f(x), f(x) = Tr ((XXT))

3. Solve for the gradient g&=V,f and Hessian H =V.f
(closed form formulas are given in the paper, we only
give the results here for a case study )

4. Find the newton's direction, iteratively update variable
using stepsize (details in the upcoming case study)
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D-regular graphs

* D-regular graphs are graphs where all
vertices have the same degree D (cycles,

complete graphs, ...
 Optimal values for p=2 is

1
w=——Vi=1,....m.

1+ D

* Which gives the same weights as well
known weight selection heuristics as
Metropolis weight selection or the
maximum degree.
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