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Abstract— Due to increasing computer processing power,
Newton’s method is receiving again increasing interest for
solving optimization problems. In this paper, we provide a
methodology for solving smooth norm optimization problems
under some linear constraints using the Newton’s method.
This problem arises in many machine learning and graph
optimization applications. We consider as a case study optimal
weight selection for average consensus protocols for which we
show how Newton’s method significantly outperforms gradient
methods both in terms of convergence speed and in term of
robustness to the step size selection.

I. INTRODUCTION

Solutions of actual optimization problems are rarely ex-
pressed in a closed-form. More often they are obtained
through iterative methods, that can be very effective in
some cases (e.g. when the objective function is convex).
Among the iterative approaches, gradient methods converge
under quite general hypotheses, but they suffer from very
slow convergence rates as they are coordinate dependent
(scaling the variables in the problem affects the convergence
speed). The Newton’s method converges locally quadratically
fast and is coordinate independent, moreover the presence
of constraints can be addressed through KKT conditions
[1]. The drawback of Newton’s method is that it requires
the knowledge of the Hessian of the function that may
be computationally too expensive to calculate. However,
with the continuous increase of computation power and the
existence of efficient algorithms for solving linear equations,
Newton’s method is again the object of an increasing interest
(e.g. [2], [3], [4]).

In this paper, we deal with an optimization problem that
appears in many application scenarios. Up to our knowledge,
an exact line search Newton’s method has not yet been
proposed for constrained Schatten p-norm problems which
are usually solved by first order gradient methods. The
optimization problem we are interested in is the following:

minimize
X

||X||σp

subject to φ(X) = y,

X ∈ Rn1,n2 , y ∈ Rc,

(1)

where ||X||σp is the Schatten p-norm of the matrix X which
is the L-p norm of its singular values, i.e. ||X||σp =

(
∑
i σ

p
i )

1/p, and φ(X) is a linear function of the elements
of X .
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The Schatten p-norm is orthogonally invariant and is
often considered in machine learning for the regularization
problem in applications such as multi-task learning [5],
collaborative filtering [6] and multi-class classification [7].
For p = 1, the norm is known as the nuclear norm, while for
p =∞ it is the spectral norm; for both values of p, problem 1
can be formulated as a semi-definite programming and solved
using standard interior-point methods [8][9]. The authors in
[10] refer to problem (1) as the minimal norm interpolation
problem. However, the problem is not just limited to machine
learning, and it can also include graph optimization problems
where X is the weighted adjacency matrix of the graph. In
particular, in what follows we will consider as a case study
the calculation of weights that guarantee fast convergence of
average consensus protocols [11].

The main obstacle to apply Newton’s method is the
difficulty to calculate the Hessian and for this reason slower
gradient methods are preferred. However, in this paper, we
show that for an even integer p in problem (1), we can
easily calculate explicitly both the gradient and the Hessian
by exploiting the special structure of the objective function,
constraints linearity, and by carefully rewriting the Schatten
norm problem by stacking the columns of the matrix to form
a long vector. While we still need to invert the Hessian
numerically, this matrix has lower dimension than the typical
KKT matrix used in Newton’s methods for solving such
constrained problems. We then consider the application of the
methodology to a subclass of problems, specifically weighted
graph optimization. With this subclass of problems, the
Hessian matrix is usually sparse, and therefore it is efficient
to implement Newton’s method. The graph optimization
problem considered in this paper is the calculation of optimal
weights for consensus protocols. Interestingly, using the
proposed method, we give a closed form solution for the
special case of p = 2. Simulations are carried to show the
advantage of this method over used gradients techniques.

Notation: in this paper, bold small letters are used for
vectors (e.g., x is a vector and xl is its l-th component), and
capital letters for matrices (e.g., X is a matrix and xij or
Xi,j is the element of row i and column j in that matrix).
Let 1n be the vector of n elements all ones. Let Tr(.) be the
trace of a matrix, vect(.) denotes the operation that stacks the
columns of an n1 by n2 matrix in one vector of dimensions
n1n2 × 1, and diag(.) denotes the operation that changes
a vector into a diagonal matrix by placing its elements on
the diagonal. The notation for the gradient and Hessian of
a scalar function varies depending on its argument. For the
scalar function of a vector, h : Rm → R, the gradient of the



function h(x) with respect to the vector x ∈ Rm is denoted
by ∇xh ∈ Rm and its Hessian is denoted by the matrix
∇2

xh ∈ Rm,m whose elements are given by the following
equations:

(∇xh)l ,
∂h

∂xl
, and

(
∇2

xh
)
l,k

,
∂2h

∂xl∂xk
.

For a scalar function of a matrix, h : Rn1,n2 → R, the
gradient of the function h(X) with respect to the vector
vect(X) ∈ Rn1n2,1 is denoted by ∇Xh ∈ Rn1n2,1 and its
Hessian is denoted by the matrix ∇2

Xh ∈ Rn1n2,n1n2 whose
elements are given by the equations:

∇Xh(ij) ,
∂h

∂xij
, and ∇2

Xh(ij)(st) ,
∂2h

∂xij∂xst
.

II. THE CONSTRAINED NORM MINIMIZATION

In this paper, we deal with the following optimization
problem that appears in a quite large number of applications:

minimize
X

||X||σp

subject to φ(X) = y,

X ∈ Rn1,n2 , y ∈ Rc,

(2)

where ||X||σp = (
∑
i σ

p
i )

1/p is the Schatten p-norm of the
matrix X , and φ(X) is a linear function of the elements of
X and then it can be written also as:

φ(X) = A vect(X),

where A ∈ Rc,n1n2 and c is the number of constraints. We
suppose that the problem admits always a solution X∗.

Since we are interested in applying Newton’s method to
solve equation (2), the objective function should be twice
differentiable. Not all the norms satisfy this property, we
limit then our study to the case where p is an even integer
because in this case we show that the problem (2) is
equivalent to a smooth optimization problem. Let p = 2q,
raising the objective function to the power p will not change
the solution set, so we can equivalently consider the objective
function:

h(X) = ||X||pσp = Tr
((
XXT

)q)
.

Since we only have linear constraints (A vect(X) = y), by
taking only the linearly independent equations, and using
Gaussian elimination to have a full row rank matrix, we can
rewrite the constraints as follows:[

Ir B
]
P vect(X) = ŷ,

where Ir is the r-identity matrix, r is the rank of the
matrix A (the number of linearly independent equations),
B ∈ Rr,n1n2−r, P is an n1n2 × n1n2 permutation matrix
of the variables, and ŷ ∈ Rr is a vector. We arrive at the
conclusion that the original problem (2) is equivalent to:

minimize
X

h(X) = Tr
((
XXT

)q)
subject to

[
Ir B

]
P vect(X) = ŷ.

(3)

Before applying Newton’s method to (3), we can further
reduce the problem to an unconstrained minimization prob-
lem. By considering the equality constraints, we can form a
mapping from X ∈ Rn1,n2 to the vector x ∈ Rn1n2−r as
follows:

x =
[

0n1n2−r,r In1n2−r
]
P vect(X), (4)

and X can be obtained from x and ŷ as

X = vect−1
(
P−1

[
ŷ −Bx

x

])
, (5)

where vect−1 : Rn1n2 → Rn1,n2 is the inverse function
of vect(), i.e. vect−1(vect(X)) = X . The unconstrained
minimization problem is then:

minimize
x

f(x), (6)

where f(x) = Tr
((
XXT

)q)
and X is by (5).

All three problems (2), (3), and (6) are convex and are
equivalent to each other. We apply Newton’s method to (6) to
find the optimal vector x∗ and then deduce the solution of the
original problem X∗. The main difficulty in most Newton’s
methods is the calculation of the gradient and the Hessian.
In many applications, the Hessian is not known and for this
reason gradient methods are applied rather than the faster
Newton’s methods. However, in this paper, we show that by
exploring the special structure of the function h(X), we can
calculate explicitly both ∇xf and ∇2

xf . To this purpose, we
first calculate the gradient and Hessian of h(X), and then
use the linearity of the constraints. Using matrix calculus
[12][13], the gradient and Hessian of h(X) can be given by
the following Lemma:

Lemma 1. Let h(X) = Tr
((
XXT

)q)
where X ∈ Rn1,n2 ,

then the gradient of h is given by,

∇Xh(ij) = 2q
((
XXT

)q−1
X
)
i,j
, (7)

and the Hessian,

∇2
Xh(ij)(st) = 2q

q−2∑
k=0

((
XXT

)k
X
)
i,t

((
XXT

)q−2−k
X
)
s,j

+ 2q

q−1∑
k=0

((
XXT

)k)
i,s

((
XTX

)q−1−k)
t,j
.

(8)

We can now apply the chain rule to calculate the gradient
and Hessian of f(x), taking into account the mapping from
x to X in (5).

For the gradient ∇xf , it holds for l = 1, . . . , n1n2 − r:

(∇xf)l =
∂f

∂xl
=
∑
i,j

∇Xh(ij)
∂xij
∂xl

, (9)

where all the partial derivatives ∂xij

∂xl
are constant values

because (5) is a linear transformation.1 Applying the chain

1Because of space constraints and for the sake of conciseness we do not
write explicitly the value of these partial derivatives in the general case, but
only for the specific case study we consider in the next section.



rule for the Hessian and considering directly that all the
second order derivatives like ∂2xij

∂xl∂xk
are null (again because

the mapping (5) is a linear transformation), we obtain that
for l, k = 1, . . . , n1n2 − r:(
∇2

xf
)
l,k

=
∂2f

∂xl∂xk
=
∑
i,j,s,t

∇2
Xh(ij)(st)

∂xij
∂xl

∂xst
∂xk

. (10)

Since f(x) is a convex function, then the calculated matrix
∇2

xf is semi-definite positive. We can add to the diagonals
a small positive value γ to guarantee the existence of the
inverse without affecting the convergence. The calculated
Hessian is a square matrix having dimensions d by d where
d = n1n2 − r may be large for some applications, and at
every iteration of the Newton’s method, we need to calculate
the inverse of the Hessian. Efficient algorithms for inverting
large matrices are largely discussed in the literature (see
[14] for example) and are beyond the scope of this paper.
Nevertheless, the given matrix has lower dimension than the
typical KKT matrix:2 used in Newton’s method [1][

∇2
Xh AT

A 0

]
, (11)

where A is considered here to be a full row rank ma-
trix, so the KKT matrix is a square matrix of dimensions
dKKT by dKKT where dKKT = n1n2 + r.

Once we know the gradient ∇xf and the Hessian ∇2
xf ,

we just apply the Newton’s method to find the solution
x∗ and then obtain the solution of the original problem
X∗. In the next section, as a case study, we will apply
the optimization technique we developed here to a graph
optimization problem.

III. A CASE STUDY: WEIGHTED GRAPH OPTIMIZATION

In average consensus protocols, nodes in a network, each
having an initial estimate (e.g. node i has the estimate
yi(0) ∈ R), perform an iterative procedure where they update
their estimate value by the weighted average of the estimates
in their neighborhood according to the following equation:

yi(k + 1) = wiiyi(k) +
∑
j∈Ni

wijyj(k),

where Ni is the set of neighbors of node i. Under some
general conditions on the network topology and the weights,
the protocol guarantees that every estimate in the network
converges asymptotically to the average of all initial es-
timates. The speed of convergence of average consensus
protocols depends on the weights selected by nodes for
their neighbors [9]. Minimizing the trace of the weighted
adjacency matrix leads to weights that guarantee fast speed
of convergence (see [11]). In what follows, we show that
this problem is a specific case of our general problem (2)
and then apply the methodology presented above to solve it
using the Newton’s method.

2Note that the sparsity of the matrix to invert is preserved by the proposed
method, i.e. if the KKT matrix is sparse due to the sparsity of A and ∇2

Xh,
then ∇2

xf is also sparse.

A. Problem formulation

We consider a directed graph G = (V,E) where the
vertices (also called nodes) V = {1, . . . , n} are ordered and
E is the set of edges (also called links). The graph G satisfies
the following symmetry condition: if there is a link between
two nodes ((ij) ∈ E) then there is also the reverse link
((ji) ∈ E). We also consider the nodes to have self links,
i.e. (ii) ∈ E for every node i. Then the number of links can
be written as 2m + n with m being a positive integer. The
graph is weighted, i.e. a weight wij is associated to each link
(ij) ∈ E. By considering wij = 0 if (ij) /∈ E, we can group
the values in a weight matrix W ∈ Rn×n (i.e. (W )i,j = wij
for i, j = 1, . . . , n). A graph optimization problem is to find
the weights that minimize a function h(W ) subject to some
constraints. In particular for average consensus protocols, it
is meaningful [11] to consider the following problem:

minimize
W

Tr(W p)

subject to W = WT , W1n = 1n, W ∈ CG,
(12)

where p = 2q is an even positive integer and CG is the
condition imposed by the underlying graph connectivity, i.e.
wij = 0 if (ij) /∈ E. We denote by W(p) the solution of
this optimization problem. The authors in [11] show that
problem (12) well approximates (the larger p, the better
the approximation) the well known fastest distributed linear
averaging problem [9], that guarantees the fastest asymptotic
convergence rate by maximizing the spectral gap of the
weight matrix. Due to the constraint that the matrix is
symmetric, we can write the objective function as h(W ) =
Tr
((
WWT

)q)
. Moreover, we can see that all constraints

are linear equalities. Therefore, the technique derived in the
previous section applies here.

B. The unconstrained minimization

We showed that the general problem (2) is equivalent to an
unconstrained minimization problem (6). This is obviously
true also for the more specific minimization problem (12)
we are considering. It can be easily checked that in this
case the number of independent constraints is equal to r =
n2 −m and then the variables’ vector for the unconstrained
minimization has size m. This vector is denoted by w. There
are multiple ways to choose the m independent variables.
Here we consider a variable for each pair (i, j) and (j, i)
where j 6= i. We express that the l-th component of the
weight vector w corresponds to the links (i, j) and (j, i) by
writing l ∼ (ij) or l ∼ (ji). This choice of the independent
variables corresponds to consider the undirected graph G′ =
(V,E′) obtained from G by removing self loops and merging
links (i, j) and (j, i) and then to determine a weight for each
of the residual m links. Due to space constraints, we do not
write the expression of B, P and ŷ that allow us to map the
weight matrix W to the vector w so defined, but it can be
easily checked that all the weights can be determined from
w as follows: wij = wji = wl for l ∼ (ij) and wii =
1 −

∑
j∈Ni

wij . This can be expressed in a matrix form as
follows: W = In − Qdiag(w)QT , where In is the n × n



identity matrix and Q is the incidence matrix of graph G′

(the incidence matrix of a graph having n nodes and m links
is defined as the n×m matrix where for every link l ∼ (ij),
the l-th column of Q is all zeros except for Qil = +1 and
Qjl = −1). The equivalent unconstrained problem is then:

minimize
w

f(w) = Tr((In −Qdiag(w)QT )p). (13)

C. Gradient and Hessian

To apply Newton’s method to minimize the function f ,
we have to calculate first the gradient ∇wf and the Hessian
matrix ∇2

wf . The function f is a composition function
between h(W ) = Tr(W p) and the matrix function W =
I −Qdiag(w)QT :

f(w) = Tr(W p)|W=In−Qdiag(w)QT .

From Eq. (9), we have

(∇wf)l =
∑
i,j∈V

∇Wh(ij)
∂wij
∂wl

,

where ∇Wh(ij) = p(W p−1)ij (it follows from (7) and the
fact that W = WT ). Due to the conditions mentioned earlier
(wij = wji = wl for all l ∼ (ij) and wij = 0 if (ij) /∈ E
and wii = 1−

∑
j∈Ni

wij), if l ∼ (ab) we have

∂wij
∂wl

=



+1 if i = a and j = b

+1 if i = b and j = a

−1 if i = a and j = a

−1 if i = b and j = b

0 else.

(14)

We can then calculate the gradient ∇wf ∈ Rm. In particular
for l ∼ (ab) we have,

(∇wf)l = ∇Wh(ab) +∇Wh(ba) −∇Wh(aa) −∇Wh(bb)
= p(W p−1)b,a + p(W p−1)a,b

− p(W p−1)a,a − p(W p−1)b,b. (15)

For the calculation of the Hessian, let l ∼ (ab), k ∼ (cd)
be given links. Only 16 of the n21n

2
2 terms in Eq. (10) (those

corresponding to i, j ∈ {a, b} and s, t ∈ {c, d}) are different
from zero because of (14), and they are equal to 1 or to
−1. Moreover we can simplify the expression of ∇2

Xh(ij)(st)
in (8) by considering that X = W = WT . Finally after
grouping the terms, we obtain the more compact form:

(
∇2

wf
)
l,k

= p

p−2∑
z=0

ψ(z)ψ(p− 2− z), (16)

where

ψ(z) = (W z)a,c + (W z)b,d − (W z)a,d − (W z)b,c.

D. Newton’s direction ∆w

Let g ∈ Rm and H ∈ Rm×m such that g = ∇wf(w)
whose elements are given by equation (15) and H =
∇2

wf(w) whose elements are given by equation (16). Then
the direction ∆w to update the solution in Newton’s method
can be obtained solving the linear system H∆w = g.

E. Line search

The Newton’s method uses exact line search if at each
iteration the stepsize is selected in order to guarantee the
maximum amount of decrease of the function f in the
descent direction, i.e. t is selected as the global minimizer
of the univariate function φ(t):

φ(t) = f(w − t∆w), t > 0.

Usually exact line search is very difficult to implement,
possible alternatives can be the pure Newton’s method that
selects a stepsize t = 1 at every iteration or the backtracking
line search if t is selected to guarantee some sufficient
amount of decrease in the function φ(t). But we benefit from
the convexity of our problem to derive a procedure which
gives a high precision estimate of the optimal choice of the
exact line search stepsize. Notice that φ(t) can be written as
follows:

φ(t) = f(w − t∆w)

= Tr((In −Qdiag(w − t∆w)QT )p)

= Tr((In −Qdiag(w)QT + tQdiag(∆w)QT )p)

= Tr((W + tU)p)

= h(W + tU),

where U = Qdiag(∆w)QT and is also symmetric.
Since (12) is a smooth convex optimization problem, h is
also smooth and convex when restricted to any line that
intersects its domain. Then φ(t) = h(W + tU) is convex
in t and applying the chain rule to the composition of the
function h(Y ) = Tr(Y p) and Y (t) = W + tU (similarly to
what we have done for f in (10)), we can find the first and
second derivative:

φ′(t) =
∑
i,j

∂h

∂yij
uij = p

∑
i

(Y p−1U)i,i = pTr(Y p−1U),

φ′′(t) =
dφ′(t)

dt
= p× Tr

(
p−2∑
q=0

Y p−2−qUY qU

)
.

So we can apply a basic Newton’s method to find the
optimal t:

Let t1 = 1 and t0 = 0, select a tolerance η > 0,
while |tn − tn−1| > η

tn ← tn−1 − φ′(tn−1)
φ′′(tn−1)

;
end while

At the end of this procedure, we select t = tn to be
used as the stepsize of the iteration.

F. The algorithm

We summarize the Newton’s method used for the trace
minimization problem (12):

Step 0: Choose a weight matrix W (0) that satisfies the
conditions given in (12) (e.g. In is a feasible starting
weight matrix). Choose a precision ε and set k ← 0.



Step 1: Calculate ∇wf
(k) from equation (15) (call this

gradient g).
Step 2: Calculate ∇2

wf
(k) from equation (16) (since f is

a convex function, we have ∇2
wf

(k) is a semi-definite
positive matrix, let H = ∇2

wf
(k)+γIm where γ can be

chosen to be the machine precision to guarantee that H
is positive definite and thus can have an inverse H−1).

Step 3: Calculate Newton’s direction ∆w(k) = H−1g.
Stop if ||∆w(k)|| ≤ ε.

Step 4: Use the exact line search to find the stepsize t(k).
Step 5: Update the weight matrix by the following equa-

tion:

W (k+1) = W (k) + t(k)Qdiag(∆w(k))QT .

Step 6: Increment iteration k ← k + 1. Go to Step 1.

G. Closed form solution for p = 2

Interestingly, for p = 2 the Newton’s method converges
in 1 iteration. In fact for p = 2, the problem (12) is the
following:

minimize
W

h(W ) = Tr(W 2) =
∑
i,j

w2
ij

subject to W = WT ,W1n = 1n,W ∈ CG.
(17)

Theorem 1. Let W(2) be the solution of the optimization
problem (17), then we have:

W(2) = In −Qdiag
(

(Im +
1

2
QTQ)−11m

)
QT , (18)

where Q is the incidence matrix of the graph G.

Proof. The optimization function is quadratic in the vari-
ables wij , so applying Newton’s algorithm to minimize
the function gives convergence in one iteration independent
from the initial starting point W (0). Let W (0) = In which
is a feasible initial starting point. The gradient g can be
calculated according to equation (15):

gl = 2 ((In)i,j + (In)j,i − (In)i,i − (In)j,j)

= 2(0 + 0− 1− 1) = −4 ∀l = 1, . . . ,m,

so in vector form g = −4 × 1m. To calculate the Hessian
∇2
W f , we apply equation (16) for p = 2, we get that for any

two links l ∼ (ab) and k ∼ (cd), we have(
∇2

wf
)
l,k

= 2× ((In)a,c + (In)b,d − (In)a,c − (In)b,d)
2
,

and thus

(
∇2

wf
)
l,k

=


2× (2)2 if l = k

2× (1)2 if l and k share a common vertex,
0 else.

(19)
In matrix form, we can write the Hessian as follows:

∇2
wf = 2× (2Im +QTQ),

where Q is the incidence matrix of the graph given earlier
(in fact, QTQ−2Im is the adjacency matrix of what is called
the line graph of G). Notice that since QTQ is semi-definite

positive all the eigenvalues of the Hessian are larger than 2
and then the Hessian is invertible. The Newton’s direction is
calculated as follows:

∆w = H−1g = −(Im +
1

2
QTQ)−11m.

Thus the optimal solution for the problem for p = 2 is:

W(2) = W (0) +Qdiag(∆w)QT

= In −Qdiag
(

(Im +
1

2
QTQ)−11m

)
QT .

Moreover, in the sequel we show that on D-regular graphs,
the given optimization problem for p = 2 selects the
same weights as other famous weight selection algorithms
as metropolis weight selection or maximum degree weight
selection (for a survey on weight selection algorithms see
[15] and the references therein).

A D-regular graph is a graph where every node has the
same number of neighbors which is D. Examples of D
regular graphs are the cycle graphs (2-regular), the complete
graph (n− 1-regular), and many others.

On these graphs, the sum of any row in the matrix QTQ
is equal to 2D, then 2D is an eigenvalue that corresponds
to the eigenvector 1m. Since QTQ is a symmetric matrix, it
has an eigenvalue decomposition form:

QTQ =
∑
k

λkvkv
T
k ,

where {vk} is an orthonormal set of eigenvectors (without
loss of generality, let v1 = 1√

m
1m). Moreover, (Im +

1
2Q

TQ) is invertible because it is positive definite and has
the same eigenvectors as QTQ. Considering its inverse as a
function of QTQ, we can write:

(Im +
1

2
QTQ)−1 =

∑
k

(1 +
λk
2

)−1vkv
T
k .

Since 1m is an eigenvector of QTQ and therefore of (Im +
1
2Q

TQ)−1, it is perpendicular to all the others (vTk 1m = 0
for all k 6= 1). Hence, it follows that:

(Im +
1

2
QTQ)−11m = (1 +

λ1
2

)−1v1(
m√
m

) =
1

1 +D
1m.

As a result, the solution of the optimization is given by,

W(2) = In −
1

1 +D
QQT ,

or equivalently the solution in G′ is given by w:

wl =
1

1 +D
∀l = 1, . . . ,m.

Therefore, the solution of the suggested optimization prob-
lem for p = 2 gives the same matrix on D-regular graphs as
other weight selection algorithms for average consensus.



Tconv ER(n = 100, P r = 0.07)
(number of iterations) p = 2 p = 4 p = 6 p = 10

Exact-Newton 1 5 5.7 6.1
Pure-Newton 1 9 11.1 13.9

Exact-GD 72.3 230.5 482.7 1500.5
Exact-Nesterov 130.2 422.8 811.3 1971.2

BT-GD or BT-Nesterov > 5000 > 5000 > 5000 > 5000

TABLE I
CONVERGENCE TIME USING DIFFERENT OPTIMIZATION METHODS FOR

PROBLEM (12).

IV. SIMULATIONS

We apply the above optimization technique to solve prob-
lem (12) on Erdos Renyi random networks ER(n, Pr),
where n is the number of nodes and Pr is the probability
of existence of a link. We compare the number of iterations
for convergence with those of first order methods like the
Descent Gradient (DG) and the accelerated gradient method
(due to Nestrov [16]) using either backtracking line search
(denoted by BT-methods in the figure) or exact line search
(denoted by Exact-methods in the figure).3 The acceler-
ated gradient (Nesterov) is as follows, starting by w(0) =
w(−1) = 0 ∈ Rm, the iterations are given by:

y = w(k−1) +
k − 2

k + 1
(w(k−1) −w(k−2));

w(k) = y − t(k)∇yf(y),

where t(k) is the stepsize. The Nesterov algorithm usually
achieves faster rate of convergence with respect to traditional
first order methods. The Gradient Descent method follows
the same steps of the Newton’s algorithm (section III-F), but
in Step 2, the Hessian H is taken as the identity matrix (for
Gradient Descent methods HGD = Im). Since at the optimal
value w∗ the gradient vanishes (i.e. ||g(k)|| = 0), we consider
the convergence time Tconv to be:

Tconv = min{k : ||g(k)|| < 10−10}.

Table 1 shows the results for the Newton’s and the other first
order methods. The initial condition for the optimization is
given by W (0) = In which is a feasible starting point. The
values are averaged over 100 independent runs for each of
the (n, Pr, p) values. The results show that the average con-
vergence time of Newton’s is much less than the first order
methods in terms of the number of iterations. As we can see,
when using exact line search, Exact-Nesterov is slower than
Exact-DG method, this can be due to the fact that the Descent
Gradient does not suffer from the zig-zag problem usually
caused by poorly conditioned convex problems. Moreover,
using backtracking line search for first order methods is not
converging in a reasonable number of iterations because the
function we are considering is not Lipschitz continuous when
p > 2 and due to the high precision stopping condition.
Note that, the number of iterations is not the only factor to
take into account, in fact the Newton’s method requires at

3We implemented directly the methods in Matlab.

each iteration to invert the Hessian matrix, while GD has
lower computational cost. However, GD is very sensitive
to changing the stepsize, while Newton’s method is not.
By applying constant or backtracking line search stepsizes
to the GD method, the algorithm is not converging in a
reasonable number of iterations while even the simplest
Newton’s method (pure Newton that uses a stepsize equals
to 1 for all iterations) is converging in less than 14 iterations
for the ER(n = 100, P r = 0.07) graphs.

V. CONCLUSION

In this paper, we showed how the Newton’s method
can be used for solving the constrained Schatten p-norm
minimization (for even p). As a case study we showed how
to apply the methodology to optimal weight selection for
consensus protocols. We also derived closed form solutions
for the case of p = 2.
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