
SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2018 Society for Industrial and Applied Mathematics
Vol. 17, No. 2, pp. 1091–1116

A Stability Result for Periodic Solutions of Nonmonotonic
Smooth Negative Feedback Systems∗
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Abstract. In high dimension, stability and uniqueness of periodic orbits in nonlinear smooth systems are difficult
properties to establish in general. In a previous work, we proved the existence of periodic oscillations
inscribed in an invariant torus for a class of negative feedback systems in Rn, where the regulation
functions defining these systems are supposed to be nonlinear (and possibly nonmonotonic) in a
small window and constant outside this window. Here, under some symmetry assumptions on the
parameters of these models, we establish uniqueness and stability of the periodic orbit inside this
invariant torus. The method used is based on the analysis of the spectrum of the monodromy matrix
associated with the periodic orbit considered. Under the same assumptions, an approximation of the
period of the orbit in terms of the parameters is also provided, and all results are illustrated with
several examples from circadian rhythms.
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1. Introduction. Periodic oscillations are often observed in many physical systems, both
in natural [9] and in synthetically designed networks [4]. Perhaps the most remarkable periodic
phenomena observed in living organisms, circadian rhythms anticipate day/night changes in
the environment and prepare the organism to cope with these changes. Circadian rhythms
have been detected in a variety of organisms [2] and studied in detail since the 1980s in the fly
Drosophila melanogaster, the bread mold Neurospora crassa, the plant Arabidopsis thaliana,
and mice, among others. In most cases, the mechanism behind circadian rhythms is a genetic
signaling network whose core is a negative feedback loop constituted by a gene (e.g., period
in fly or frequency in Neurospora [19]) encoding for a protein which eventually contributes to
inhibit its own transcription.

The rapid progress in experimental techniques (e.g., single cell measurements) has opened
the way to a wide range of new approaches in the study of biological oscillatory phenomena,
and circadian rhythms in particular can be targeted for the development of chronotherapies [5].
It has thus become relevant and useful to develop new mathematical models and theoretical
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tools to establish rigorous results on the existence and stability of oscillatory behavior and
period computation.

One of the first models to describe negative feedback circuits was suggested by Goodwin
in 1965 [10]. This class of models has been studied in detail and exhibits periodic oscilla-
tions under some conditions [11]. Goodwin-like models continue to be used to study circadian
rhythms as recently as in [19] or [6], where a three-variable negative feedback loop was pro-
posed to represent Neurospora’s circadian rhythm. Another well-known contribution to the
negative feedback circuit model repertoire is the class of models introduced by L. Glass [8],
in a piecewise linear setting, where the regulation functions defining the models are piecewise
constant “step” functions (combining piecewise constant production terms with linear degra-
dation terms). More generally, for ordinary differential systems, most of the results found over
the last decades required monotonicity assumptions (see [14, 16, 17]) or the use of slow-fast
dynamics [7].

Very recently, in [18], we proved the existence of periodic oscillations for a particular
class of smooth negative feedback systems in Rn obtained from piecewise linear ones: More
precisely, the regulation functions defining our systems were required to be continuous (or
smooth) and equal to the step functions except in a narrow interval [θ − δ, θ + δ] around
the threshold θ of the step function. In this interval [θ − δ, θ + δ], the nonlinear functions
were allowed to be nonmonotonic, which constitutes the main interest of our result presented
in [18]. The method we used to prove the existence of periodic oscillations in a model Σµ

belonging to such a class of systems (where µ denotes the nonlinear regulation function) is to
circumscribe Σµ by two piecewise linear models Σ− and Σ+ and then to prove the existence
of two periodic solutions γ− and γ+ for these models: These two orbits follow the same cycle
C of regular domains and bound a rectangular torus (i.e., a torus for which each section is a
quadrilateral) in which lies a periodic orbit γµ for Σµ.

The present paper has two objectives: first, to further develop and analyze the stability
and uniqueness of the orbit γµ and, second, to infer an explicit expression for the period in
terms of the system’s parameters, based on the stability hypotheses and results. Indeed, here
we will prove that, in the particular case where all the degradation terms are equal and under
some conditions requiring a symmetry in the dynamic of the model, all periodic orbits of the
system Σµ following cycle C are asymptotically stable. In particular, the periodic orbit γµ

is unique and asymptotically stable in the invariant rectangular torus found in our previous
paper [18]. Although the required conditions might appear to be restrictive from a theoretical
point of view, our results fit well with data taken from concrete biological situations, as can
be seen by the two examples given in section 6 (Arabidopsis thaliana and Neurospora crassa).

Notice that our result does not guarantee the uniqueness and global stability of γµ in
the entire phase space of Σµ: Outside the torus, other invariant regions can exist with other
periodic orbits. Despite this nonglobal unicity, we provide a more accurate localization of
the stable periodic orbits. To establish stability, we compute the monodromy matrix for any
periodic orbit of Σµ: Indeed, the eigenvalues of this matrix determine the stability of the
periodic orbit considered [1, 13]. Due to the fact our models are close to piecewise linear
ones, the Jacobian of Σµ evaluated at a given periodic orbit following cycle C is triangular in
any regular domain of this cycle. We can thus get a complete expression of the monodromy
matrix and then perform an estimation of the spectrum of this matrix. This method is an
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easier alternative to the computation of the Poincaré map of the section obtained in [18]:
Note that the eigenvalues (distinct from the value one) of the Jacobian of this map (i.e., the
so-called Floquet exponents) at its fixed point are precisely those of the monodromy matrix.

The rest of the paper is organized as follows. Section 2 defines the smooth negative
feedback system Σµ introduced and studied in [18]. We define the piecewise linear systems
Σ+ and Σ− that circumscribe Σµ and summarize our previous result on the existence of
periodic oscillations for this smooth system. Then, in section 3, we recall the definition of the
monodromy matrix for a general differential system and enunciate the stability result linking
the spectrum of such a matrix to the stability of its associated periodic orbit. Afterwards,
we compute the monodromy matrix of any periodic orbit following cycle C (see Lemma 3.3).
Section 4 states some symmetry conditions on the parameters of the model under which the
expression of the monodromy matrix can be simplified: It becomes possible to evaluate the
spectrum of this matrix so as to get the main stability result (see Theorem 4.3). Section 5
provides a theoretical approximation for the period and localization of the periodic orbit in
terms of the system’s parameters. In the symmetrical model case, the period is shown to
depend only on the degradation constant and the dimension of the system. Finally, section 6
illustrates our modeling approach by calibrating our model to data from Arabidopsis and
Neurospora circadian rhythms.

2. The smooth negative feedback system Σµ. As explained in the introduction, the
smooth model Σµ introduced in [18] is a differential system coming from piecewise linear
systems of the form

(S)


ẋ1 = κ1 (x)− γ1x1

...

ẋn = κn (x)− γnxn,

in which all γi are positive real numbers, each variable xi is in Rn+, and each function κi :
Rn+ → R+ is a sum of products of functions of the form s+(·, θ) and s−(·, θ), where s+(·, θ) is
the classical step function with threshold θ,{

s+ (z, θ) := 0 if z < θ

s+ (z, θ) := 1 if z > θ,

and s−(·, θ) is defined by the relation s−(·, θ) := 1− s+(·, θ). We recall that the dynamics of
such a system (S) evolves in a rectangular region of Rn+ that can be decomposed in rectangular
regular domains (also called “boxes”) and switching domains (or the boundaries between
regular domains): In a given regular domain B, the flow converges to a unique fixed point
denoted by (k1(B)/γ1, . . . , kn(B)/γn), where ki(B) stands for the constant value of κi in the
box B.

As in [18], we will only consider the case where each focal point of a regular domain B is
outside B in order to prevent having a trivial asymptotic stationary dynamics in a box. We
will also consider the case where all switching domains are transparent, i.e., where
the trajectories can be extended continuously in the switching domains, avoiding by the way
singular cases (see, for instance, [3]). We refer the reader to section 2.2 of our previous paper
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Figure 1. Two examples of function µ: monotonic or sinusoidal.

[18] for more details about these basic facts on the piecewise linear setting or to [8] for a more
complete introduction on this subject.

2.1. Definition of the negative feedback system Σµ
θ,k,γ,δ. The underlying system is a

negative feedback loop, a motif which frequently appears in biological networks [4, 20]. A
corresponding piecewise linear model Σθ,k,γ,δ can be written as

Σθ,k,γ :


ẋ1 = k1s

− (x3, θ3)− γ1x1
...

ẋi = kis
+ (xi−1, θi−1)− γixi, i = 2, . . . , n.

Now, given a real number δ > 0, the system Σµ
θ,k,γ,δ we have studied in [18] is a smooth version

of Σθ,k,γ ,

Σµ
θ,k,γ,δ :


ẋ1 = k1µ

− (x3, θ3, δ)− γ1x1
...

ẋi = kiµ
+ (xi−1, θi−1)− γixi, i = 2, . . . ,

in which the functions µ−(·, θ, δ) : R+ → [0, 1] and µ+(·, θ, δ) : R+ → [0, 1] are continuous or
smooth functions coinciding with s−(·, θ) and s+(·, θ), except in a narrow window of size 2δ
around the threshold θ, where they can be monotonic or not, i.e.,

µ+ (x, θi, δ) :=


0 if x ≤ θi − δ
µ+ (x, θi, δ) if θi − δ ≤ x ≤ θi + δ

1, if θi + δ ≤ x,

where µ+ is at least C1 and satisfies µ+(θi−δ, θi, δ) = 0 and µ+(θi+δ, θi, δ) = 1 (see Figure 1).
Similarly for µ−.

Thus, by defining Σµ
θ,k,γ,δ in this way, we have transformed the piecewise linear system

Σθ,k,γ into a smooth one by layering, in the phase space, regular domains between the domains
associated to Σθ,k,γ , namely, the domains of the form {x ∈ Rn+ : ∃i ∈ {1, . . . , n} : θi− δ < xi <
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θi+ δ}. Therefore, the rectangular region [0,
k1
γ1

]×· · ·× [0,
kn
γn

] is going to be decomposed into

3n boxes depending on whether the ith coordinate xi of a point x is below θi − δ, belongs to
[θi − δ, θi + δ], or is above θi + δ.

2.2. The exterior system Σ+
θ,k,γ,δ and the interior system Σ−

θ,k,γ,δ. The existence of

periodic oscillations for Σµ
θ,k,γ,δ relies on the bounding of this system by two piecewise linear

systems. These are constructed from the step function s+(·, θi − δ) bounding µi
+ from above

and s+(·, θi + δ) bounding µi
+ from below (see Figure 1) and similarly for µi

− bounded by
the step functions s−(·, θi− δ) and s−(·, θi + δ). More precisely, these systems are the exterior
system denoted by Σ+

θ,k,γ,δ,

Σ+
θ,k,γ,δ :


ẋ1 (t) = k1 (s− (x3, θ3 + δ) s+ (x1, θ1 + δ) + s− (x3, θ3 − δ) s− (x1, θ1 + δ))− γ1x1

...

ẋi (t) =ki (s+(xi−1, θi−1+δ) s
− (xi, θi+δ) +s+(xi−1, θi−1−δ) s+(xi, θi+δ))−γixi,

and the interior system denoted by Σ−θ,k,γ,δ,

Σ−θ,k,γ,δ :


ẋ1 (t) = k1 (s− (x3, θ3 − δ) s+ (x1, θ1 + δ) + s− (x3, θ3 + δ) s− (x1, θ1 + δ))− γ1x1

...

ẋi (t) =ki (s+(xi−1, θi−1−δ) s−(xi, θi+δ) +s+(xi−1, θi−1+δ) s
+(xi, θi+δ))−γixi,

for i = 2, . . . , n. The idea to obtain these equations is illustrated by Figure 2: We consider
extended versions of the original model Σθ,k,γ when each threshold θi is replaced by the two
thresholds θi − δ and θi + δ. Each time we reach a switching domain defined by θi − δ, we
can either switch directly to the dynamics defined by another vector field (first possibility)
or continue with the same dynamics until we reach the switching domain defined by the
threshold θi + δ (second possibility). Our two piecewise linear models Σ−θ,k,γ,δ and Σ+

θ,k,γ,δ are
built precisely according to these two possibilities.

As said above, we now have 3n regular domains for the dynamics of Σ+
θ,k,γ,δ, Σ−θ,k,γ,δ (and

thus for Σµ
θ,k,γ,δ as well).

Notation 2.1. Let Ba1···an denote each of the 3n regular domains associated to the systems
Σ+
θ,k,γ,δ and Σ−θ,k,γ,δ, where the tuples (a1, . . . , an) belong to {0, 1, 2}n and are defined by

∀ 1 ≤ i ≤ n, ai =


0 if 0 < xi < θi − δ
1 if θi − δ < xi < θi + δ

2 if θi + δ < xi.

2.3. Existence of periodic orbits for the system Σµ
θ,k,γ,δ. The result proved in [18] can

now be summarized.

Notation 2.2. Let φ−t , φ
+
t , φ

µ
t denote the three flows of the systems Σ−θ,k,γ,δ,Σ

+
θ,k,γ,δ,Σ

µ
θ,k,γ,δ.

It was shown in [18] that, under some assumptions, Σ−θ,k,γ,δ admits a periodic orbit

(φ−s (z−))s∈R and Σ+
θ,k,γ,δ a periodic orbit (φ+s (z+))s∈R, where the two points z− and z+ were
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Figure 2. Constructing the exterior and interior piecewise linear systems. The trajectories of Σ+, Σ−, and
Σµ are projected in the plane x1, x2.

chosen in the switching domain B222···2 ∩ {x1 = θ1 + δ}. These two orbits follow cycle C
defined by

C :
B222···2 → B122···2 → B022···2 → B012···2 → · · · → B00···01
↑ ↓

B22···21 ← · · · ← B210···0 ← B200···0 ← B100···0 ← B000···0.

Then, for any x taken in a given rectangular section delimited by z− and z+ and for any time
t, the point φµt (x) satisfies the relation φµt (x)i ∈ [φ−t (z−)i, φ

+
t (z+)i] ∪ [φ+t (z+)i, φ

−
t (z−)i] for

any 1 ≤ i ≤ n.
In this way, we have shown that there exists a Poincaré section for the system Σµ

θ,k,γ,δ (at
a fixed distance independent on δ from the point (θ1, . . . , θn)) and thus a periodic orbit for
this system.

Theorem 2.3. Given a real number η > 0, assume that the following hypotheses on the
parameters (ki, γi, θi)1≤i≤n and δ are satisfied: For every 1 ≤ i ≤ n, θi > 0, and for every

2 ≤ i ≤ n,
ki
γi
> θi + η.

Then there exists a number Λ0>η and a number δ0 satisfying 0 < δ0 < min1≤i≤n (θi,
ki
γi
− θi, 1)

such that for every
k1
γ1

> Λ0 + θ1 and every 0 < δ ≤ δ0, the continuous system Σµ
θ,k,γ,δ admits

a periodic orbit γµ following cycle C.

In fact, numerical simulations we have performed have shown that for small values of δ,
the system Σµ

θ,k,γ,δ can have a fixed point in the cube Cδ = [θ1−δ, θ1+δ]× [θ2−δ, θ2+δ]×· · ·×
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[θn−δ, θn+δ] around the point (θ1, . . . , θn): Therefore, the introduction of the parameter η in
the assumptions of this result is made precisely to ensure the existence of a Poincaré section
at a distance η from this center point (see Figure 8 in section 6 for an example).

In this paper, we establish stability and uniqueness of this orbit γµ. To do this, we use,
in the next section, an approach based on the monodromy matrix [1, 13] associated to any
given periodic orbit. Some properties on the eigenvalues of the monodromy matrix ensure
stability of the orbit (see Proposition 3.1 below), and then Lefschetz Fixed-Point Theory
implies uniqueness of the orbit.

Notation 2.4. In the rest of the paper, the following notation will be used:

µ−n = µ− (·, θn, δ)
µ+i = µ+ (·, θi, δ) , i = 1, . . . , n− 1.

Notation 2.5. In the rest of the text, Fµ denotes the vector field defining the system Σµ
θ,k,γ,δ.

3. The monodromy matrix of the system Σµ
θ,k,γ,δ.

3.1. Review of monodromy matrices. Our approach is based on the computation of a
monodromy matrix for the differential system Σµ

θ,k,γ,δ: First, recall the basic proposition relat-
ing the stability of a periodic orbit to its monodromy matrix. We refer the reader interested
in this topic to [1] for a complete introduction (that is not needed here) on this subject.

Generally speaking, given a differential system ẋ = F(x, p) in Rn depending on a family
of parameters p and admitting a periodic orbit x∗(t), let us consider the following matrix
differential system: Ż (t) =

∂F (x∗ (t) , p)

∂x
Z (t)

Z (0) = In,
(1)

where In stands for the identity matrix in Rn. Then the monodromy matrix of the vector field
F(·, p) associated to the periodic orbit x∗(t) is the matrix Z(T ∗) solution of this differential
system taken at the time T ∗, where T ∗ is the period of x∗(t). The interest of this particular
matrix lies in the following result [1, 13].

Proposition 3.1. Let S(Z(T ∗)) be the spectrum of the monodromy matrix Z(T ∗) of the
system ẋ = F(x, p) associated to the periodic orbit x∗(t). Then

1. the value 1 belongs to S(Z(T ∗));
2. if for every eigenvalue λ ∈ S(Z(T ∗)) \ 1 we have |λ| < 1, then x∗(t) is asymptotically

stable;
3. if there exists an eigenvalue λ ∈ S(Z(T ∗))\1 such that |λ| > 1, then x∗(t) is unstable.

3.2. Computation of the monodromy matrix of Σµ
θ,k,γ,δ. Considering now the vector

field Fµ, we know it admits a periodic orbit (Theorem 2.3 and [18]). Our goal is to compute
the monodromy matrix associated to such an orbit and study its spectrum. To do this,
consider now any periodic orbit x∗(t) of Fµ of the n-dimensional system, and assume (without
loss of generality) it starts at an initial condition x∗(0) belonging to the switching domain
B22···2 ∩ {xn = θn + δ}.
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This periodic orbit crosses the 4n regular domains Ba1a2···an of cycle C. The times spent
in each of them can be divided into two categories: the times sdi and sci (for 1 ≤ i ≤ n)
corresponding to the times spent in a box Ba1a2···an with ai = 1 and the times tdi and tci spent
in a box Ba1a2···an with all ai 6= 1:

td1 sd1 td2 sd2 sdn
x∗ (0) ∈B222···2 → B122···2 → B022···2 → B012···2 → · · · → B00···01

↑ ↓
B22···21 ← · · · ← B210···0 ← B200···0 ← B100···0 ← B000···0
scn sc2 tc2 sc1 tc1.

(2)

In these notations, the letter “d” stands for “decreasing” and corresponds to the case
where the coordinate i is decreasing when the periodic orbit is crossing the box considered,
and the same for “c,” which stands for “increasing.” These values are used to compute the
time necessary to reach each box of C starting from x∗(0).

Notation 3.2. For x∗(t), a periodic orbit of Σµ
θ,k,γ,δ following cycle C with x∗(0) in B22···2∩

{xn = θn + δ}, denote by (Ti)i=1,...,4n the family of intermediate times necessary for x∗(t) to
reach the ith box from x∗(0) (see (2)), before returning to B22···2 ∩ {xn = θn + δ}:

T1 = td1
T2 = td1 + sd1
T3 = td1 + sd1 + td2
...

T2n =
∑n

i=1

(
tdi + sdi

)
T2n+1 =

∑n
i=1

(
tdi + sdi

)
+ tc1

...

T4n =
∑n

i=1

(
tdi + sdi

)
+
∑n

i=1 (tci + sci ) .

.

Under this notation, the period of the orbit x∗(t) is T4n. Now we have the following:

Lemma 3.3. Let x∗(t) be a periodic orbit of Σµ
θ,k,γ,δ following cycle C with x∗(0) belonging

to B22···2 ∩ {xn = θn + δ} and (Ti)i=1,...,4n be the family of intermediate times associated to
x∗(t). Then the monodromy matrix Z(T4n) of x∗(t) is equal to

Z (T4n) =U(c1, T4n−T4n−1) W (c2, . . . , cn, T4n−1−T2n) U(c̃1, T2n−T2n−1) W (c̃2, . . . , c̃n, T2n),

where the matrices U are upper triangular and W lower triangular, defined by

U(r1, τ) =



e−γ1τ 0 0 · · · 0 r1

0 e−γ2τ 0 · · · 0 0

...
...

...
...

...

0 0 0 · · · 0 e−γnτ
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and

W (r2, . . . , rn, τ) =



e−γ1τ 0 0 0 0 · · · 0 0

r2 e−γ2τ 0 0 0 · · · 0 0

r2r3 r3 e−γ3τ 0 0 · · · 0 0

r2r3r4 r3r4 r4 e−γ4τ 0 · · · 0 0

...
...

...
...

...
...

...

r2 · · · rn r3 · · · rn r4 · · · rn · · · · · · · · · rn e−γnτ



,

and the constants (ci, c̃i)i=1,...,n equal

c1 = k1e
−γ1T4n+γnT4n−1

∫ T4n

T4n−1

µ−n
′
(x∗n (s)) e(γ1−γn)sds

ci = kie
−γiT4n+γi−1T4n−1

∫ T2n+2(i−1)

T2n+2(i−1)−1

µ+i−1
′ (
x∗i−1 (s)

)
e(γi−γi−1)sds, i = 2, . . . , n

c̃1 = k1e
−γ1T2n+γnT2n−1

∫ T2n

T2n−1

µ−n
′
(x∗n (s)) e(γ1−γn)sds

c̃i = kie
−γiT2n−1

∫ T2(i−1)

T2(i−1)−1

µ+i−1
′ (
x∗i−1 (s)

)
e(γi−γi−1)sds, i = 2, . . . , n.

Proof. Let x∗(t) be a periodic orbit. We have, for any time t,

∂Fµ
∂x

(x∗ (t)) =



−γ1 0 0 · · · 0 0 k1µ
−
n
′
(x∗n (t))

k2µ
+
1
′
(x∗1 (t)) −γ2 0 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 knµ
+
n−1
′ (
x∗n−1 (t)

)
−γn


,

and note that, at each box in cycle C, at most one of the off-diagonal components is nonzero:
Only the variable xi with index i equal to one is in the region θi − δ < x∗i (t) < θi + δ, where
µi is not constant.

In addition, notice that the matrix
∂Fµ
∂x (x∗(t)) is either diagonal (in the boxes whose

label contains no “1”), upper triangular in the boxes B00···01 and B22···21 (corresponding,
respectively, to the time intervals [T2n−1, T2n], [T4n−1, T4n]), or lower triangular in any other
regular domain.

Following these observations, the matrix Z(T ∗) can be computed iteratively in four parts.
(i) First consider the restriction of the matrix equation (1) (taken with F = Fµ) to the

interval [T4n−1, T4n), which corresponds to the trajectory x∗(t) restricted to the regular domain
B22···21, where for all t in (T4n−1, T4n)
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∀i ∈ {1, . . . , n− 1} : x∗i (t) > θi + δ

θn − δ < x∗n (t) < θn + δ,

and so only the off-diagonal term k1µ
−
n
′
(x∗n(t)) is nonzero. Thus, (1) (taken with F = Fµ)

restricted to [T4n−1, T4n] is a triangular matrix system, for which solution Z(t) can be fully
expressed step-by-step. Integrating this system, we get, for any time t in [T4n−1, T4n],

Z(T4n) = U(c1, T4n − T4n−1)Z(T4n−1).

(ii) Now let us compute Z(T4n−1). Note that in the interval (T4n−2, T4n−1), the orbit
crosses the box B2···220, where the monodromy matrix is diagonal,

∂Fµ
∂x

(x∗(t)) = diag(−γ1,−γ2, . . . ,−γn),

so that a simple integration gives

Z(T4n−1)= diag(−γ1(T4n−1−T4n−2),−γ2(T4n−1−T4n−2), . . . ,−γn(T4n−1−T4n−2))Z(T4n−2).

In contrast, in the interval (T4n−3, T4n−2), the orbit crosses the box B2···210, where the matrix
∂Fµ
∂x (x∗(t)) is lower triangular:

∂Fµ
∂x

(x∗ (t)) =



−γ1 0 0 · · · 0 0 0

0 −γ2 0 · · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · 0 −γn−1 0

0 0 0 · · · 0 knµ
+
n−1
′ (
x∗n−1 (t)

)
−γn


.

Combining these two steps, we obtain, for the interval (T4n−3, T4n−1),

Z(T4n−1) =



e−γ1(T4n−1−T4n−3) 0 0 · · · 0 0 0

0 e−γ2(T4n−1−T4n−3) 0 · · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · 0 zn,n−1 e−γn(T4n−1−T4n−3)


Z(T4n−3),

where

zn,n−1 = kne
−γnT4n−2+γn−1T4n−3

∫ T4n−2

T4n−3

µ+n−1
′
(x∗n−1(t))e

γn−γn−1ds.
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If we write Z(T4n−1) = QnZ(T4n−3), it is now easy to generalize the integration for the
remaining boxes down to B10···0:

Z(T4n−1) = Qn · · ·Q3Q2Z(T2n) = W (c2, . . . , cn, T4n−1 − T2n) Z(T2n).

(iii) Similary to part (i), the step Z(T2n) = U(c̃1, T2n − T2n−1)Z(T2n−1) is also given by
an upper triangular matrix.

(iv) For the remaining iterations, the Jacobian matrix is always lower triangular, and the
calculations are similar to part (ii), Z(T2n−1) = W (c̃2, . . . , c̃n, T2n−1−T0)Z(T0), where T0 = 0.

All together, (i)–(iv) yield the desired result.

4. A result on the stability of periodic orbits for Σµ
θ,k,γ,δ. Lemma 3.3 gives a general

expression of the monodromy matrix Z(T4n). As said above, stability of the periodic orbit
x∗(t) can be obtained by analyzing the spectrum S(Z(T4n)). However, in general, it is not
possible to compute directly the eigenvalues of Z(T4n) or to evaluate them; to do this, we
need to add further assumptions (see hypotheses H1 and H2 below and hypothesis H3 (used
in Theorem 4.3), under which the expression of Z(T4n) takes a much more simple form:

H1: The parameters γi = γ are all equal.
H2: All the ratios ki/γi satisfy ki/γi = 2θi with k1/γ1 > Λ0 and δ < δ0 (where Λ0, δ0 are

the constants of Theorem 2.3).
H3: ∀i ∈ {1, . . . , n} : ci = c̃i and

G := e−γT4n/2 <
1

n− 1
.

These hypotheses require some symmetries in the model Σµ
θ,k,γ,δ: H1 states that all degrada-

tion rates are equal, which simplifies the form of the explicit solutions in each box; H2 states
that the threshold θi corresponds exactly to the middle of the (invariant) interval [0, ki/γi] for
all i; and, finally, ci = c̃i in H3 corresponds to saying that crossing the “first half” of cycle C
(i.e., from the box B22···2 to B00···01) of the periodic orbit has the same effect as crossing the
other half of C (i.e., from B00···0 to B22···21); that is, the monodromy matrix can be written as
a square. It should be remarked that although these hypotheses introduce some restrictions
on the parameters, they still include many relevant cases, as illustrated by several examples
in sections 5 and 6.

To get our stability result (Theorem 4.3 below), the first thing we need to verify is that
Assumptions H1, H2, and H3 are consistent with the hypotheses of Theorem 2.3 required to
ensure the existence of a periodic orbit for Σµ

θ,k,γ,δ.

Lemma 4.1. Assume the vector field Fµ of Σµ
θ,k,γ,δ satisfies H1 and H2. Then the system

Σµ
θ,k,γ,δ admits a periodic orbit following cycle C.

Proof. It suffices to apply Theorem 2.3 with η =
1

2
min(θ2, . . . , θn) with θ1 > Λ0 and with

δ < δ0.

Lemma 4.2. Assume the vector field Fµ of Σµ
θ,k,γ,δ satisfies the assumptions H1 and H2.

Let x∗(t) be a periodic orbit of Σµ
θ,k,γ,δ following cycle C with x∗(0) belonging to B22···2∩{xn =
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θn + δ}, and let T4n the period of x∗(t). Then the monodromy matrix Z(T4n) associated to
x∗(t) is equal to

Z (T4n) = e−γT4nU(c1, 0) W (c2, . . . , cn, 0) U(c̃1, 0) W (c̃2, . . . , c̃n, 0),

and the constants (ci, c̃i)i=1,...,n in Lemma 3.3 are equal to

c1 =
k1
γ1

∫ θn+δ

θn−δ

µ−n
′
(u)

2θn − u
du

ci =
ki
γi

∫ θi−1+δ

θi−1−δ

µ+i−1
′
(u)

2θi−1 − u
du, i = 2, . . . , n

c̃1 =
k1
γ1

∫ θn+δ

θn−δ

µ−n
′
(u)

u
du

c̃i =
ki
γi

∫ θi−1+δ

θi−1−δ

µ+i−1
′
(u)

u
du, i = 2, . . . , n.

Proof. Consider again the matrix Z(T4n) obtained in Lemma 3.3. Under H1, all degra-
dation rates are equal, so all the exponential terms in the matrices U and W can be factored
out and simplified in a straightforward way to yield the term e−γT4n .

To compute the coefficients (ci)i=1,...,n and (c̃i)i=1,...,n, consider c1. Between T4n−1 and T4n,
the orbit x∗(t) crosses the box B22···21, and in this box the flows φ+t and φ−t of the exterior and
interior systems Σ+

θ,k,γ,δ and Σ−θ,k,γ,δ surrounding the smooth system Σµ
θ,k,γ,δ (see [18]) satisfy

the relation (
φ+t (x)

)
n

=
(
φ−t (x)

)
n
.

Thus, we have

∀s ∈ [T4n−1, T4n] : xn
∗ (s) =

kn
γ

+ e−γs (xn (T4n−1)− s) .

Then, by making the change of variable,{
u = xn

∗ (s)

du = xn
∗ (s) ds

,

which is allowed, as xn
∗(s) is strictly monotone in [T4n−1, T4n], we get, using H2,

c1 =
k1
γ1

∫ θn+δ

θn−δ

µ−n
′
(u)

2θn − u
du

as desired. Similarly for the other coefficients (ci)i=2,...,n and (c̃i)i=1,...,n.

Thanks to Lemmas 3.3 and 4.2, we are now in a position to establish our main result,
which gives the stability of every periodic orbit of Fµ under H1, H2, and H3.
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Theorem 4.3. Assume the conditions H1, H2, and H3 are satisfied. Let x∗(t) be a peri-
odic orbit of Σµ

θ,k,γ,δ following cycle C with period T . Then 1 belongs to the spectrum of the
monodromy matrix S(Z(T )), and all other eigenvalues satisfy |λ| < 1.

Proof. Under H3, it follows that U(c1, 0)=U(c̃1, 0) and W (c2, . . . , cn, 0)=W (c̃2, . . . , c̃n, 0),
and the monodromy matrix can be written Z(T4n) = A2, where A = e−γT/2U(c1, 0)W (c2, . . . ,
cn, 0), which has the form

A = e−γT/2



1 + c1c2 · · · cn c1c3 · · · cn c1c4 · · · cn · · · c1cn c1

c2 1 0 · · · 0 0

c2c3 c3 1 · · · 0 0

c2c3c4 c3c4 c4 · · · 0 0

...
...

...
...

...
...

c2 · · · cn c3 · · · cn c4 · · · cn · · · cn 1



.

To compute the characteristic polynomial of A, χA, it suffices to do the following operations
on the columns Q1, . . . , Qn of A,

∀1 ≤ i ≤ n− 1, Qi ← Qi − ci+1Qi+1

Qn ← Qn,

and then to develop with respect to the last columns. The characteristic polynomial is

χA = ((X − e−γT/2)n − c1 · · · cne−γT/2Xn−1).(3)

Defining G := e−γT/2 and observing that X = 0 cannot be a root of χA, this polynomial can
also be written as

χA = Gn(X/G)n−1
(

(X/G− 1)n

(X/G)n−1
− c1c2 · · · cn

)
= Gn(X/G)n−1 (f(X)− c1c2 · · · cn) ,(4)

where the function f is defined by the relation

f (x) =
(x/G− 1)n

(x/G)n−1
(5)

for x nonzero. By Proposition 3.1, and since the monodromy matrix is given by A2, we know
that either 1 or −1 belongs to the spectrum of A. To analyze the characteristic polynomial,
we will separately study its real and complex roots.
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First case: Real roots. Observe that the sign of the function f(x) satisfies

x < 0⇒ f(x) =
(−1)n |−x/G+ 1|n

(−1)n−1 |x/G|n−1
< 0(6)

x ≥ G⇒ f(x) =
|x/G− 1|n

|x/G|n−1
≥ 0(7)

while in the interval 0 < x < G, it depends on the parity of n, but this will not be needed to
establish our result (note further that G < 1). The derivative of the function f(x) is

df

dx
=

1

G

(x/G− 1)n−1 (x/G)n−2

(x/G)2(n−1)
(x/G+ n− 1)

=
1

G

(x/G− 1)n−1

(x/G)n
(x/G+ n− 1)

=
1

G
(1−G/x)n−1(1 + (n− 1)(G/x)).

So it is clear that df/dx > 0 for all x > G (since all terms are positive) and similarly df/dx > 0
for all x < −(n− 1)G. Next, consider the expression f(x)− c1c2 · · · cn.

(1.a) If c1c2 · · · cn > 0, then using (6), f(x) − c1c2 · · · cn < 0 for all x < 0, which implies
that χA has no real negative roots. It follows that {the monodromy matrix has λ = 1
as an eigenvalue}, which yields

c1c2 · · · cn =
(1−G)n

G
.(8)

Since the derivative of f(x)− c1c2 · · · cn is equal to that of f(x), we know that f(x)−
c1c2 · · · cn is strictly increasing for all x > G and thus for x > 1; hence, χA has no real
roots strictly larger than 1.

(1.b) If c1c2 · · · cn < 0, then using (7), f(x)−c1c2 · · · cn > 0 for all x > G, which implies that
χA has no real positive root strictly larger than G. In this case, since we have G < 1,
it follows that the root given by the monodromy matrix is λ = −1, which yields

c1c2 · · · cn = −(1 +G)n

G
.(9)

Now, assumption H3 gives −(n− 1)G > −1 so that the derivative of f(x)− c1c2 · · · cn
is strictly positive for all x < −1 < −(n − 1)G. As f(−1) = c1c2 · · · cn, χA cannot
have any real roots below −1.

Together, points (1.a) and (1.b) show that all real roots have indeed magnitude less than 1.
Second case: Complex roots. Let us take λ = reiα a complex (nonreal) root of χA. As

above, there are two cases to consider for c1c2 · · · cn: positive or negative: We only describe
the case c1c2 · · · cn < 0 since the case c1c2 · · · cn > 0 is completely similar.

By expression (9), we have (
reiα −G

)n
= eiπ (G+ 1)n

(
reiα

)n−1
,
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and thus there exists an integer 0 ≤ k ≤ n such that

reiα −G = (G+ 1) r
n−1
n ei

(n−1)α+(2k+1)π
n ,

which yields: {
r cosα−G = (G+ 1) r

n−1
n cos (n−1)α+(2k+1)π

n

r sinα = (G+ 1) r
n−1
n sin (n−1)α+(2k+1)π

n .

Notice that α−(2k+1)π
n /∈ πZ; otherwise, λ would belong to R. Now we have

(r cosα−G) sinα = (r cosα−G) (G+ 1) r
−1
n sin

(n− 1)α+ (2k + 1)π

n

= (G+ 1) r
n−1
n cos

(n− 1)α+ (2k + 1)π

n
sin (α) ,

which gives

r
n−1
n

(
cos (α) sin

(n− 1)α+ (2k + 1)π

n
− sin (α) cos

(n− 1)α+ (2k + 1)π

n

)
= Gr

−1
n sin

(n− 1)α+ (2k + 1)π

n
.

Using the identity formula sin(a− b) = sin(a) cos(b)− sin(b) cos(a), we finally get

r = Gκ (α) ,

where κ (α) denotes the function

κ (α) :=
sin
(
(n−1)α+(2k+1)π

n

)
sin
(
−α+(2k+1)π

n

)
defined for α such that α−(2k+1)π

n /∈ πZ.
By assumption H3, we have G < 1

n−1 ; it thus remains to verify that κ(α) < n− 1 to get
that r = |λ| < 1. To do this, it suffices to observe the relation

(n− 1)α+ (2k + 1)π

n
= (n− 1)

(
α− (2k + 1)π

n

)
+ (2k + 1)π,

which yields that κ (α) is of the form

κ (α) =
sin ((n− 1)ω)

sin (ω)

with ω = α−(2k+1)π
n . Applying the identity | sin((n − 1)ω)| ≤ (n − 1)| sin(ω)| (which can be

proven by induction in a very straightforward way), we get κ(α) ≤ n− 1 and thus

r = Gκ (α) ≤ (n− 1)G < 1

as desired.
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In the case c1 · · · cn > 0, the exact similar reasoning gives

r = G κ̃ (α) ,

where κ̃ (α) denotes this time the function

κ̃ (α) :=
sin
(
(n−1)α+2kπ

n

)
sin
(−α+2kπ

n

) ,

and therefore the same inequality r = G κ̃(α) < 1 holds as well in this case.
In conclusion, if hypotheses H1–H3 are satisfied, then the eigenvalues of Z(T ) (other than

λ = 1) satisfy |λ| < 1.

Remark 4.4. Instead of hypothesis H3, we could have required a condition only on the
parameters ci as follows.

H3′: ∀i ∈ {1, . . . , n} : ci = c̃i and either c1 · · · cn < −2n or c1 · · · cn > (n− 1)(n−2n−1)n.
This states that the absolute value of c1 · · · cn should be large. In the case c1 · · · cn > 0,

the inequality is equivalent to G < 1/(n−1) (since in this case c1 · · · cn = (1−G)n

G , as we stated
in the proof of Theorem 4.3), while in the case c1 · · · cn < 0, the inequality is equivalent to

G strictly smaller than a value close to 1/2n (since in this case c1 · · · cn = −(1+G)n

G ), a value
much smaller than 1/(n− 1). We thus have H3′ ⇒ H3. In fact, H3 gives the highest upper
bound on G that still guarantees existence of an asymptotically stable periodic orbit.

To illustrate Theorem 4.3, let us give an example of vector field Fµ in R3 satisfying simulta-
neously the three assumptions H1–H3. This example can be generalized in a straightforward
way to the case n > 3.

Example 4.5. Let us define the functions µ+1 , µ+2 , and µ−3 of Σµ
θ,k,γ,δ by

µ−i (u) =


1 if u ≤ θi − δ

1− 3
4δ3

[−
(
θ2i − δ2

)
u+ θiu

2 − 1

3
u3 +

1

3
(θi − δ)2 (θi + 2δ)] if u ∈ [θi − δ, θi + δ]

0 if θi + δ ≤ u

and

µ+i = 1− µ−i , for i = {1, 2, 3}.

The function µi with θi = 9 and δ = 1.5 is illustrated in Figure 1 (left). Then, with such a
definition of Fµ, if assumptions H1 and H2 hold, assumption H3 is true as well. Indeed, we
have

∀u ∈{θ3 − δ, θ3 + δ} : µ−3
′
(u) = − 3

4δ3
[(2θ3 − u)u−

(
θ23 − δ2

)
],

which gives, according to Lemma 4.2,
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c1 = − 3

4δ3
k1
γ1

∫ θ3+δ

θ3−δ
udu +

3

4δ3
(
θ23 − δ2

) k1
γ1

∫ θ3+δ

θ3−δ

1

2θ3 − u
du

= − 3

4δ3
k1
γ1

∫ θ3+δ

θ3−δ
(2θ3 − u) du +

3

4δ3
k1
γ1

(
θ23 − δ2

) ∫ θ3+δ

θ3−δ

1

u
du

= c̃1.

By computing the integral terms in c1, we notice that

c1 =
3

4δ3
k1
γ1

((
θ23 − δ2

)
ln

(
θ3 + δ

θ3 − δ

)
− 2δθ3

)
= c̃1.

In a completely similar way, we get c2 = c̃2, c3 = c̃3 and

c2 =
−3

4δ3
k2
γ2

((
θ21 − δ2

)
ln

(
θ1 + δ

θ1 − δ

)
− 2δθ1

)
= c̃2

c3 =
−3

4δ3
k3
γ3

((
θ22 − δ2

)
ln

(
θ2 + δ

θ2 − δ

)
− 2δθ2

)
= c̃3.

It remains to verify H3. To do this, we make a Taylor expansion of the coefficients above as
functions of δ, as δ can be taken as small as desired. We have

c1 =
3

4δ3
k1
γ1

((
θ23 − δ2

)
ln

(
1 +

2δ

θ3 − δ

)
− 2δθ3

)
= −2

θ1
θ3

(
1 +

1

5
δ2
)

+ o
(
δ2
)

as δ → 0

and, similarly,

c2 = 2
θ2
θ1

(
1 +

1

5
δ2
)

+ o
(
δ2
)

as δ → 0

c3 = 2
θ3
θ1

(
1 +

1

5
δ2
)

+ o
(
δ2
)

as δ → 0,

which gives c1c2c3 < −23 for δ > 0 small enough. So for δ > 0 small enough, the condition
H3′ (and thus H3) is satisfied.

Finally, as a simple consequence of Theorem 4.3, the main result of this paper follows.

Corollary 4.6. Consider the system Σµ
θ,k,γ,δ, and assume the conditions H1, H2, and H3

of Theorem 4.3 are satisfied. Then all the periodic orbits of Σµ
θ,k,γ,δ following cycle C are

asymptotically stable.

Proof. Under H1, H2, and H3, Theorem 4.3 ensures that all the eigenvalues of Σµ
θ,k,γ,δ

distinct from 1 have their magnitude smaller than 1. By Property 3.1, this means that all
periodic orbits of Σµ

θ,k,γ,δ following C are asymptotically stable.
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In particular, this corollary establishes that, given any invariant torus contained in cycle
C, all fixed points of the return map associated to any Poincaré section of such a torus are
asymptotically stable. (Notably, the fixed points in the Poincaré section of the torus in which
lies the periodic orbit γµ we found in [18] are asymptotically stable.) Now, it is well known
from the Lefschetz Fixed-Point Theory (see, for instance, [12, Chapter 3, section 4]) that this
implies there exists a unique such fixed point for each such Poincaré return map.

Corollary 4.7. Consider the system Σµ
θ,k,γ,δ, and assume the conditions H1, H2, and H3

of Theorem 4.3 are satisfied. Then in each invariant torus contained in cycle C there exists a
unique periodic orbit, which is asymptotically stable.

5. Explicit expressions for the orbit localization and period. This section illustrates our
theoretical results and, in particular, helps to better understand how the symmetry hypotheses
H1–H3 play their role in shaping the dynamics of system Σµ. Using our results, we will derive
an expression for the period of the orbit in terms of the parameters of the system and show that
it can be simplified under the symmetries of the system. The accuracy of these approximations
will be evaluated by comparison to numerical period values, obtained from randomly generated
negative feedback circuits of the form Σµ, with either freely chosen parameters or satisfying
hypotheses H1–H3. From this numerical analysis, it will become clear that hypotheses H1–H3
imply a pinpointed correspondance between our approximated period formula and numerical
computations.

By definition, the period of the orbit is the time it takes the trajectory to complete the
first return to a Poincaré section. Alternatively, along cycle C, (and for each coordinate
xi), the period can be divided into two parts: the time it takes variable xi to first decrease
from its maximal to its minimal amplitude and then back. For instance, x1 strictly increases
throughout B0···01 → B0···00 → · · · → B2···20 and strictly decreases throughout B2···21 →
B2···22 → · · · → B0···02 (since x1 is repressed by xn, and xn is above its threshold in these six
boxes). Furthermore, observe that during each of these “half-periods,” the expression of ẋ1 is
independent of the other variables.

Therefore, assuming ai and bi are, respectively, the minimal and maximal amplitudes of
coordinate xi (i = 1, . . . , n), which satisfy ai < θi − δ < θi + δ < bi, the corresponding
increasing or decreasing right-hand side expressions are given by

ai  bi : ẋi = ki − γixi
bi  ai : ẋi = −γixi.

Hence, the two “half-periods” can be computed separately and explicitly,

ai  bi : T iup =
1

γi
log

ki/γi − ai
ki/γi − bi

bi  ai : T idw =
1

γi
log

bi
ai
,

yielding the formula T = T iup + T idw, where the difficulty lies in calculating ai and bi in terms
of the parameters ki,γi.
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Figure 3. Numerical period (red dots) for randomly generated Σµ systems, shown as a function of γi =
γ. The solid black lines represent the line Tsym = L/γ with L = 2 log(2/α − 1) and α = 0.4 (see text).
Left: three-dimensional systems with randomly chosen parameters. The open squares represent the minimal
period estimates Tmin. Right: three- and six-dimensional systems with randomly chosen parameters satisfying
symmetry assumptions H1–H3.

Notice that the set of ai and bi, for i = 1, . . . , n, provides the localization of the orbit within
the invariant torus. To have an idea of the dependence of ai, bi on the system’s parameters,
we have performed numerical simulations with randomly generated systems Σµ (as indicated
below in Remark 5.2).

5.1. Approximated formulas for localization and period of the orbit (general case).
Numerical simulations with randomly chosen parameters suggest the existence of a minimum
period in terms of the degradation rates (see the lower limiting curve in Figure 3). In fact,
the existence of such a minimal period can be deduced from the equations. First, note that
the full period has the form

T =
1

γ
(log(r) + log(r + ε))

for some r and ε > 0. Since log(r) is a strictly increasing function in [0,+∞), for each γ, the
minimum value of T is obtained for ε ≈ 0. This means

ki/γi − ai
ki/γi − bi

=
bi
ai
⇔

(
bi
ai

)2

− 1

ai

ki
γi

(
bi
ai

)
+

1

ai

ki
γi
− 1 = 0,

a quadratic equation which yields either bi
ai

= 1, which is not possible by assumption, or
bi
ai

= 1
ai
ki
γi
− 1, which leads to

ki
γi

= ai + bi.(10)

In other words, the minimal periods are obtained when the periodic orbit satisfies ai + bi =
ki/γi. To go one step further, consider the case of a simple expression for ai, bi satisfying (10),
such as

ãi = αθi, b̃i =
ki
γi
− αθi,(11)
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with α ∈ (0, 1). In this way, an estimate for the minimal period becomes

Tmin ≈
2

n

n∑
i=1

1

γi
log

(
ki
γi

1

αθi
− 1

)
.

The corresponding values are also shown in Figure 3 and indicate that Tmin recovers the
functional dependence of the period on the system’s parameters, possibly up to a scaling factor.

Furthermore, expressions (10) and (11) provide an estimate for the location of the periodic
orbit in terms of the known parameters of the system, ki, γi, and θi. This rough estimation
suggests that periodic orbits cross the boundaries between regular domains at points satisfying
approximately xi−1 = θi−1 and xi = ãi (going up) or xi = b̃i (going down) (see also Figure 8).

5.2. Localization and period formulas are validated under symmetry hypotheses H1–
H3. Our theoretical results are based on three hypotheses that require the system to have
several symmetry properties. In fact, these hypotheses allow a simplification of the period
formula previously obtained. H1–H2 state that ki = 2θiγi and γi = γ, so the minimal time
Tmin can be written as

Tsym ≈
2

γ
log

(
2

α
− 1

)
,(12)

an expression which is independent of parameters θi. In other words, under the symmetry
hypotheses, the period of the negative feedback circuit depends only on the degradation rate
and parameter α. This deduction is confirmed by numerical simulations, shown in Figure 3
(right): Indeed, the computed numerical period follows expression Tsym very closely.

Furthermore, a striking observation is that the orbit localization approximation (11)is in
extremely good agreement with simulations of systems under H1–H3 (see Figure 4). That
is, for each i, the minimal (ai) and maximal (bi) amplitudes of the periodic orbit are both
effectively linear functions of parameter θi. This result is illustrated in Figure 8, for the
Arabidopsis thaliana model (section 6). The dashed lines in the projection subplots represent
xi ∈ {αθi, ki/γi − αθi} (with α = 0.4) and xi−1 = θi−1. For instance, in the (x1, x2)-plane, it
can be seen that the periodic orbit crosses the plane x1 = θ1 at x2 = αθ2 (as x1 increases) or
x2 = (2−α)θ2 (as x1 decreases), as predicted by the expressions (11). This is indeed the case
for all (xi−1, xi)-plane projections.

Remark 5.1 (interpretation of parameter α). Parameter α is the slope of the lines in Figure 4,
a proportionality constant that depends only on the dimension of the system, and defines a
relation between the dimension of a system, its degradation rate, and its period. Consequently,
expression G in H3, H3′ can be written in term of α as

(13) Gsym = e−γTsym/2 =
α

2− α
.

One of the inequalities in hypothesis H3′, for the case c1 · · · cn < 0, can be writen as

(14) − (1 +Gsym)n

Gsym
< −2n ⇔ α(2− α)n−1 < 1.
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Figure 4. Numerical values ai and bi (blue and red dots) for systems with minimal period as a function
of θi. The black lines represent, respectively, αθi or 2 − αθi. Results are shown for randomly chosen systems
of dimension 3 (left) and for systems satisfying the symmetry assumptions H1–H3 (right). In the latter case,
results are shown for systems of dimension n = 3 (blue/red dots) and n = 6 (blue/red open circles).

Figure 5. Comparison of numerical solutions of α1(2 − α1)n−1 − 1 = 0 (black squares) and numerical
values of the slope α ≈ ai/θi (blue dots) as a function of the system’s dimension, n.

Now, to further explore the dependence of α on n, consider α1(n) to be the solution of the
equality : α1(2 − α1)

n−1 − 1 = 0. Numerically solving this equation for each n ∈ {3, . . . , 9}
yields the solutions represented by black squares in Figure 5. The slopes α from Figure 4 are
represented as blue dots. From Figure 5, we can conclude that parameter α tends to maximize
the period of the system while satisfying the inequality c1 · · · cn < −2n in hypothesis H3′.

Remark 5.2 (numerical simulations methodology). To randomly generate systems, the pa-
rameters were chosen from uniform distributions in the following intervals:

General case: n = 3, ki ∈ [30, 60], γ ∈ [0.3, 2.5], θi ∈
[
9, 0.7

ki
γ

]
.

Symmetric case: n ∈ {3, 4, . . . , 9}, γ ∈ [0.1, 2.5], θi ∈ [1, 30] , ki = 2γθi.

In the general case, the functions µ were taken to be nonmonotonic of the form shown in
Figure 1 (right). In the symmetric case, the functions µ were of the form given in Example 4.5
and Figure 1 (left). The number of simulations is N = 500 for each n. For each simulation, the
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Figure 6. Negative feedback loops at the basis of circadian rhythms in Arabidopsis thaliana (left) and
Neurospora crassa (right).

period of the periodic orbit is computed numerically, as are the maximum (bi) and minimum
(ai) amplitudes of each coordinate.

6. Application to biological oscillators: Circadian rhythms. The negative feedback cir-
cuit theoretically studied in the previous sections is now used to model two different examples
of biological oscillators. As discussed in the introduction, the core of most circadian rhythm
mechanisms is composed by such a negative feedback circuit (Figure 6).

To fit the model to the data, we will assume three-dimensional systems Σµ satisfying
hypotheses H1–H3, according to section 5.2, and estimate the best set of parameters, p∗, that
minimize a cost function, defined as follows. Since the data available in both examples extend
roughly through a single oscillatory cycle, a cost function was defined to fit essentially the
form of the curve rather than the actual data points:

J(p∗) = min
p

{∣∣∣Tmod(p)− T exp∣∣∣+
∣∣∣amod1 (p)− aexp1

∣∣∣+
∣∣∣bmod1 (p)− bexp1

∣∣∣} .
Here, p = [θ1, θ2, θ3, γ, δ] is the set of parameters to estimate; Tmod(p), amod1 (p), and bmod1 (p)
are, respectively, the period, the minimal amplitude, and the maximal amplitude of the orbit
computed from the numerical model with set of parameters p; and T exp, aexp1 , and bexp1 are
the same quantities but measured from the experimental data points.

The fitting results clearly show that, in practice, hypotheses H1–H3 are not really so
restrictive as they appear.

6.1. Example 1: Arabidopsis thaliana. The circadian rhythm of the small plant Ara-
bidopsis thaliana has been studied in detail. The work of Locke et al. was one of the first
to establish the main network of interactions involved in this mechanism [15]. As a first
model, Locke et al. proposed a negative feedback circuit where the protein LHY inhibits tran-
scription of TOC 1 mRNA, which in turn contributes to transcription of LHY mRNA via an
intermediate (as yet unidentified) protein X, as illustrated in Figure 6.

In [15], a set of experimental data for TOC 1 mRNA is given (Figure 5A in that reference).
The cost function is defined with the measured quantities

T exp = 24h, aexp1 = 0.45, bexp1 = 2.

Minimizing the cost function to obtain J(p∗) yields the parameters given in Figure 7. Based
on section 5.2, the period for the Arabidopsis thaliana three-dimensional (α = 0.39) negative
loop with γ = 0.12h−1 is therefore TAT = 2

γ log(2/α − 1) = 23.6h, which corresponds well to
the measured oscillation of the biological system.
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Figure 7. Fitting Arabidopsis thaliana TOC1 mRNA data [15] to a negative feedback circuit Σµ under
hypotheses H1–H3 with µ given by Example 4.5. The parameters are γ = 0.12, θ = [1.19, 0.87, 0.21]′, and
δ = 0.026. The period, computed by the formula Tsym, is 23.6 hours.

Figure 8. Dynamics of Arabidopsis thaliana–fitted model. A trajectory starting from the Poincaré section
is projected into two-dimensional views, where the dashed lines correspond to xi−1 = θi and xi = αθi or
xi = (2 − α)θi with α = 0.39. The corresponding pairs (i− 1, i) are (1, 2), (2, 3), and (3, 1). The bottom right
subplot represents the three-dimensional trajectory. The periodic orbit (black curve) of system Σµ is inside the
invariant torus defined by the interior (blue curve) and exterior (red curve) systems. The Poincaré section is
shown as a graded green-to-red plane. The middle region containing a fixed point is shown in blue.

6.2. Example 2: Neurospora crassa. Red bread mold Neurospora crassa is another or-
ganism exhibiting well-defined circadian rhythms. In [19], a negative feedback circuit involving
three elements related to the frequency (frq) gene was proposed as a model of its circadian
clock: frq mRNA (frq) contributes to translation of FRQ protein in the cytoplasm (FRQcyt),
which is then imported into the nucleus (FRQnuc); finally, in the nucleus, FRQnuc represses
transcription of frq (Figure 6).
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Figure 9. Fitting Neurospora crassa frq mRNA and FRQ protein data [19] to a negative feedback circuit Σµ

of dimension n = 3 or n = 4, under hypotheses H1–H3 with µ given by Example 4.5. The parameters are for
n = 3, γ = 0.145, θ = [0.61, 0.11, 0.25]′, and δ = 0.012 and for n = 4, γ = 0.246, θ = [0.55, 0.072, 0.20, 0.07],
and δ = 0.012. The period, computed by the formula Tsym, is 19.6 hours (n = 3) or 19.4 hours (n = 4). Several
cycles of the model are shown, but there is only one cycle of mRNA and protein measurements (six data points)
available in this experiment, given in arbitrary units and scaled to a common quantity.

Using the experimental data in [19] (Figure 5(a) and 5(b)) for frq mRNA and total FRQ
protein at 21oC, the measured quantities used in the cost function are

T exp = 20h, aexp1 = 0.2, bexp1 = 1, aexp23 = 0.1, bexp23 = 0.4.

Here, a23 and b23 represent, respectively, the minimum and maximum amplitudes of total FRQ
protein, to be compared with the model’s min(x2(t)+x3(t)) and max(x2(t)+x3(t)). It should
be remarked that mRNA and protein data are given in arbitrary units, scaled to a common
quantity. Since the clock circuit could involve other steps, we have fitted Neurospora data to
systems Σµ of dimensions 3 and 4, with the results shown in Figure 9. Qualitatively, the fit is
quite good in both cases, but the model with n = 4 appears to be slightly better, suggesting
a longer circuit. Based on section 5.2, computation of the period from formula (12) is around
19.5 hours for both models, which corresponds to the period measured from the data.

7. Conclusion. This paper studies a system composed of a negative feedback loop where
the regulatory functions have a window of “uncertainty,” described by a smooth function,
monotonic or not. The existence of an invariant torus in the state space as well as the existence
of a periodic orbit within this torus were established in previous work, using comparison to
piecewise linear systems.

Here, under some particular assumptions on the symmetry of the system, we have proved
that all the periodic orbits of the system Σµ

θ,k,γ,δ following cycle C are asymptotically stable:
This has been done thanks to the analysis of the spectra of the monodromy matrices associated
with these periodic orbits. From this fact, we can deduce the uniqueness of the periodic orbit
inside each invariant torus contained in C. Therefore, our method permits a good tracking of
the stable periodic orbits inside the phase space of the class of smooth models considered. This
approach could be used for other, similar models with more complicated regulation functions.

However, the stability is not global: Indeed, it is easy to check that, in many cases, the
system also admits a steady state in the middle domain ([θi − δ, θi + δ]). Alternatively, there
could be, for instance, two disjoint Poincaré sections inside all of these switching domains,
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forming by the way two invariant torii (one of them being the one we found in [18]) in each
of which would lie a unique asymptotically stable periodic orbit and, outside these two torii,
an unstable periodic orbit following another cycle than C.

An advantage of our comparison approach is the fact that the system is allowed to have
a short window with unknown behavior (the length of this window is to be calibrated to each
system), as may often happen with biological regulatory functions. An interesting outcome
from our analysis is the explicit computation of the period in terms of the parameters. Under
the symmetry hypotheses, the period depends only on the degradation rate and the system’s
dimension through a parameter α which maximizes the period while satisfying the constraints
given by the hypotheses (notably H3′). Therefore, if the degradation rates are known, our
analysis can provide an indication of the number of necessary elements in the negative feedback
loop to reach the observed period, which is helpful for practical biological purposes, namely,
for the search of possible intermediate genes. As illustrated by the Arabidopsis and Neurospora
examples, our modeling approach is suitable for analyzing biological oscillatory phenomena,
either in the more general form given in [18] or under the symmetry hypotheses we required
here.
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[15] J. Locke, M. Southern, L. Kozma-Bognar, V. Hibberd, P. Brown, M. Turner, and A. Millar,
Extension of a genetic network model by iterative experimentation and mathematical analysis, Mol.
Syst. Biol., 0013 (2005), pp. 1–9.

[16] J. Mallet-Paret and G. R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback
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